
Math 573 Problem Set 5 Solutions

1. List the primitive roots modulo 14.

The primitive roots modulo 14 are 3 and 5. They were found using SAGE.

2. (a) Prove that for n > 1, the sum of the positive integers less then n and

relatively prime to n is
1

2
nφ(n).

Proof: Let j > 0 be an integer relatively prime to n that is less then n.
Observe that n − j satisfies 0 < n − j < n and is relatively prime to n as
well. (If not, there would be a common divisor of n and j!). If n > 2, then
φ(n) is even and so we can pair off the terms j and n − j to obtain all of
the integers less then n relatively prime to n. Each pair sums to give n and

there are
1

2
φ(n) such pairs. This gives the result for n > 2. The case of

n = 2 is clear. �

(b) Let p be a prime. Show that the product of the φ(p− 1) primitive roots
modulo p is congruent modulo p to (−1)φ(p−1).

Proof: Let r1, . . . , rφ(p−1) be the primitive roots modulo p. Recall that for

each j we can write rj = r
kj

1 for some kj with 0 < kj < p − 1, kj relatively
prime to p − 1. Thus we have

r1 · · · rφ(p−1) = r1 · r
k2
1 · · · r

kφ(p−1)

1

= r
Pφ(p−1)

j=1 kj

1

= r
1
2
(p−1)φ(p−1)

where the last equality uses part (a). Applying the result that if r is a
primitive root modulo p then r(p−1)/2 ≡ −1(mod p) we have the result. �

3. Prove that ordn(ab) = ordn(a) ordn(b) if gcd(ordn(a), ordn(b)) = 1.

Proof: Let r = ordn(ab), s = ordn(a), t = ordn(b). Observe that

(ab)st = astbst

= (as)t(bt)s

≡ 1(mod n).



2

Thus, we have r | st. Note that this did not use that gcd(s, t) = 1. Observe
that

art ≡ artbrt(mod n) (since bt ≡ 1(mod n))

≡ (ab)rt(mod n)

≡ 1(mod n) (since ordn(ab) = 1).

Thus, we have that s | rt. However, gcd(s, t) = 1 implies that s | r. Sim-
ilarly, we get that t | r. Since gcd(s, t) = 1, we have that st | r and hence
they are equal. �

4. Let a, n ∈ Z>1 and let p be a prime. If p | a2n

+ 1, prove that p = 2 or
p ≡ 1(mod 2n+1).

Proof: If p = 2 we are done, so assume p > 2. The fact that p | a2n

+ 1
gives that a2n

≡ −1(mod p). Thus, a2n+1
= (a2n

)2 ≡ 1(mod p). Thus, we
must have 2n+1 | p − 1 by Euler’s theorem, i.e., p ≡ 1(mod 2n+1). �

5. (a) Let p and q be odd primes. If q | ap − 1, then either q | (a − 1) or
q = 2kp + 1 for some k ∈ Z.

Proof: Let q, p be odd primes so that q | ap − 1. i.e., ap ≡ 1(mod q). This
says that ordq(a) | p. Thus, we must have either ordq(a) = 1, in which case
q | (a−1) or we must have ordq(a) = p in which case p | φ(q) = q−1. Thus,
we have the result. �

(b) Prove that if p is an odd prime, then the prime divisors of 2p − 1 are of
the form 2kp + 1.

Proof: We use part (a) here with a = 2. In this case it is clear that
q ∤ (2 − 1) = 1, so it must be that any prime divisor of 2p − 1 is of the form
q = 2kp + 1, as desired. �

(c) Find the smallest prime divisor of 229 − 1.

Part (b) tells us that all prime divisors of 229 − 1 must be of the form
q = 58k + 1. Thus, we just need to run through these for k > 0. Using
SAGE we quickly find that k = 4 gives the smallest prime divisor, i.e., 223
is the smallest prime divisor.
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6. Let p be a prime and a ∈ Z so that gcd(a, p) = 1. Show that the
congruence

xn ≡ a(mod p)

has gcd(n, p − 1) solutions if

a(p−1)/ gcd(n,p−1) ≡ 1(mod p)

and no solutions otherwise. (Hint: Think primitive roots! Write a = rj for
some j with r a primitive root.)

Proof: Observe that since gcd(a, p) = 1, if there is a solution x then we
must have gcd(x, p) = 1 as well. Let r be a primitive root modulo p and write
a = rj. For each x with gcd(x, p) = 1, there is a kx so that x ≡ rkx(mod p).
We have that x is a solution to the congruence if and only if rkx is a solution
to the congruence. In turn, this is equivalent to rkxn ≡ rj(mod p). Since
r is primitive, this is equivalent to kxn ≡ j(mod p − 1). Thus, we have
reduced the problem to looking for solutions to the linear congruence kxn ≡
j(mod p − 1). From our work on linear congruences, we know this has
exactly gcd(n, p−1) solutions if gcd(n, p−1) | j and no solutions otherwise.
If gcd(n, p − 1) | j, then

a(p−1)/ gcd(n,p−1) ≡ (rj)(p−1)/ gcd(n,p−1)(mod p)

≡ (rp−1)j/ gcd(n,p−1)(modn) (since gcd(n, p − 1) | j)

≡ 1(mod p).

On the other hand, if gcd(n, p − 1) ∤ j, then j(p − 1)/ gcd(n, p − 1) 6≡
0(mod p − 1) and so a(p−1)/ gcd(n,p−1) ≡ rj(p−1)/ gcd(n,p−1) 6≡ 1(mod p). Thus
we have the result. �

7. Prove that 1k, 2k, . . . , (p − 1)k form a reduced residue system modulo p
if and only if gcd(k, p − 1) = 1.

Proof: Note that there are clearly p − 1 elements here, so what we need
to prove is that they are distinct if and only if gcd(k, p − 1) = 1. Let r be
a primitive root modulo p and let a, b ∈ {1, 2, . . . , p − 1} with a 6= b. We
show ak and bk are distinct modulo p if and only if gcd(k, p− 1) = 1. Write
a = ri, b = rj for some i, j ∈ {1, . . . , p − 1}. We have that ak ≡ bk(mod p)
if and only if rik ≡ rjk(mod p), which is equivalent to ik ≡ jk(mod p − 1).
This is satisified if and only if p− 1 | (i− j)k. If gcd(k, p− 1) = 1, then this
gives that p − 1 | (i − j), which is a contradiction. If gcd(k, p − 1) = d > 1,
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then we will have rd 6≡ 1(mod p) and 1k ≡ (rd)k(mod p). Thus, in this case
we do not get a reduced residue system. �

8. (a) Let r be a primitive root modulo p. Express −r as a power of r.

The fact that r is a primitive root modulo p gives that rp−1 ≡ 1(mod p) and
rj 6≡ 1(mod p) for all 0 < j < p − 1. Thus, we have (r(p−1)/2)2 ≡ 1(mod p)
with r(p−1)/2 6≡ 1(mod p). By our earlier work, we know the only solutions
to x2 ≡ 1(mod p) are x = ±1. Thus, we must have r(p−1)/2 ≡ −1(mod p).
Using this we can write −r = (−1)r ≡ r(p−1)/2r ≡ r(p+1)/2(mod p).

(b) If p ≡ 3(mod 4), prove that −r is not a primitive root modulo p.

and

(c) If p ≡ 1(mod 4), prove that −r is a primitive root modulo p.

Proof: Recall that the order of an element ak modulo n is precisely

ordn(a)/ gcd(k, ordn(a)).

Thus, the order of −r is precisely p− 1/ gcd((p+1)/2, p− 1). Thus we need
to determine gcd((p + 1)/2, p − 1). Let d be a divisor of (p + 1)/2. There
exists e ∈ Z so that de = (p + 1)/2, i.e., p = 2de− 1. Thus, p + 1 = 2de + 2.
Thus, the only possible common divisor is 2. If p ≡ 3(mod 4), then we have
that 2 | (p + 1)/2 and so 2 | gcd((p + 1)/2.p − 1) and so the order of −r is
strictly less then p−1 and so it cannot be a primitive root. If p ≡ 1(mod 4),
then 2 ∤ (p+1)/2 and so it must be that the greatest common divisor is 1. �

9. Use Euler’s criterion to prove that if 2k + 1 is a prime, then all quadratic
nonresidues are primitive roots modulo 2k + 1.

Proof: Let p = 2k + 1 be a prime and a a quadratic nonresidue. We
know that ordp(a) | φ(p) = p − 1 = 2k. If a is a quadratic nonresidue,
then Euler’s criterion says that a(p−1)/2 ≡ −1(mod p). However, in this case
(p − 1)/2 = 2k−1. Thus, if we had ordp(a) < p − 1, we would have that
a(p−1)/2 ≡ 1(mod p), a contradiction. Thus it must be that ordp(a) = p− 1.
Note here that we are using that p − 1 = 2k to conclude that if a(p−1)/2 6≡
1(mod p), then no power other then p − 1 could possibly work. �
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10. (a) Consider the polynomial f(x) = x2mn + 1 for m ≥ 1, n > 1 with
n odd. Prove that the polynomial is not irreducible. In other words, show
that the polynomial factors into two polynomials each of degree greater then
or equal to 1.

Proof: The polynomial factors as:

f(x) = (x2m

+ 1)(x(n−1)2m

− x(n−2)2m

+ · · · − x2m

+ 1).

Thus, as long as n > 1, this is a nontrivial factorization. �

(b) Let a ∈ Z>1, k ∈ Z>0 and suppose p = ak + 1 is a prime. Prove that
ordp(a) must be a power of 2.

Proof: The definition of p gives that a2k ≡ 1(mod p), so we must have
ordp(a) | 2k. Thus, we are reduced to showing that k must be a power of 2.
If k is not a power of 2, then one writes k = 2mn with n > 1. Now apply
part (a) with x = a to contradict that p is prime. Just note that since a 6= 1,
we have a(n−1)2m

−a(n−2)2m

+ · · ·−a2m

+1 > 1 because a(n−1)2m

> a(n−2)2m

,
etc so that (a(n−1)2m

− a(n−2)2m

+ · · · − a2m

) > 0. Thus, a must have order
a power of 2. �


