Math 573 Problem Set 5 Solutions

1. List the primitive roots modulo 14.

The primitive roots modulo 14 are 3 and 5. They were found using SAGE.

2. (a) Prove that for $n > 1$, the sum of the positive integers less then n and relatively prime to *n* is $\frac{1}{2}$ $\frac{1}{2}n\phi(n).$

Proof: Let $j > 0$ be an integer relatively prime to n that is less then n. Observe that $n - j$ satisfies $0 < n - j < n$ and is relatively prime to n as well. (If not, there would be a common divisor of n and j!). If $n > 2$, then $\phi(n)$ is even and so we can pair off the terms j and $n - j$ to obtain all of the integers less then n relatively prime to n . Each pair sums to give n and there are $\frac{1}{2}\phi(n)$ such pairs. This gives the result for $n > 2$. The case of $n=2$ is clear.

(b) Let p be a prime. Show that the product of the $\phi(p-1)$ primitive roots modulo p is congruent modulo p to $(-1)^{\phi(p-1)}$.

Proof: Let $r_1, \ldots, r_{\phi(p-1)}$ be the primitive roots modulo p. Recall that for each j we can write $r_j = r_1^{k_j}$ $\int_{1}^{k_j}$ for some k_j with $0 < k_j < p-1$, k_j relatively prime to $p-1$. Thus we have

$$
r_1 \cdots r_{\phi(p-1)} = r_1 \cdot r_1^{k_2} \cdots r_1^{k_{\phi(p-1)}}
$$

$$
= r_1^{\sum_{j=1}^{\phi(p-1)} k_j}
$$

$$
= r^{\frac{1}{2}(p-1)\phi(p-1)}
$$

where the last equality uses part (a). Applying the result that if r is a primitive root modulo p then $r^{(p-1)/2} \equiv -1 \pmod{p}$ we have the result. ■

3. Prove that $\text{ord}_n(ab) = \text{ord}_n(a)\,\text{ord}_n(b)$ if $\gcd(\text{ord}_n(a), \text{ord}_n(b)) = 1$.

Proof: Let $r = \text{ord}_n(ab)$, $s = \text{ord}_n(a)$, $t = \text{ord}_n(b)$. Observe that

$$
(ab)^{st} = a^{st}b^{st}
$$

$$
= (a^s)^t (b^t)^s
$$

$$
\equiv 1 \pmod{n}.
$$

Thus, we have r | st. Note that this did not use that $gcd(s, t) = 1$. Observe that

$$
a^{rt} \equiv a^{rt}b^{rt}(\text{mod } n) \qquad (\text{since } b^t \equiv 1(\text{mod } n))
$$

$$
\equiv (ab)^{rt}(\text{mod } n)
$$

$$
\equiv 1(\text{mod } n) \qquad (\text{since } \text{ord}_n(ab) = 1).
$$

Thus, we have that $s | rt$. However, $gcd(s, t) = 1$ implies that $s | r$. Similarly, we get that $t | r$. Since $gcd(s, t) = 1$, we have that $st | r$ and hence they are equal. \blacksquare

4. Let $a, n \in \mathbb{Z}_{>1}$ and let p be a prime. If $p \mid a^{2^n} + 1$, prove that $p = 2$ or $p \equiv 1 \pmod{2^{n+1}}$.

Proof: If $p = 2$ we are done, so assume $p > 2$. The fact that $p | a^{2^n} + 1$ gives that $a^{2^n} \equiv -1 \pmod{p}$. Thus, $a^{2^{n+1}} = (a^{2^n})^2 \equiv 1 \pmod{p}$. Thus, we must have $2^{n+1} \mid p-1$ by Euler's theorem, i.e., $p \equiv 1 \pmod{2^{n+1}}$.

5. (a) Let p and q be odd primes. If $q | a^p - 1$, then either $q | (a - 1)$ or $q = 2kp + 1$ for some $k \in \mathbb{Z}$.

Proof: Let q, p be odd primes so that $q | a^p - 1$. i.e., $a^p \equiv 1 \pmod{q}$. This says that $\text{ord}_a(a) \mid p$. Thus, we must have either $\text{ord}_a(a) = 1$, in which case $q \mid (a-1)$ or we must have $\text{ord}_q(a) = p$ in which case $p \mid \phi(q) = q-1$. Thus, we have the result. \blacksquare

(b) Prove that if p is an odd prime, then the prime divisors of $2^p - 1$ are of the form $2kp+1$.

Proof: We use part (a) here with $a = 2$. In this case it is clear that $q \nmid (2 - 1) = 1$, so it must be that any prime divisor of $2^p - 1$ is of the form $q = 2kp+1$, as desired.

(c) Find the smallest prime divisor of $2^{29} - 1$.

Part (b) tells us that all prime divisors of $2^{29} - 1$ must be of the form $q = 58k + 1$. Thus, we just need to run through these for $k > 0$. Using SAGE we quickly find that $k = 4$ gives the smallest prime divisor, i.e., 223 is the smallest prime divisor.

$$
x^n \equiv a(\text{mod } p)
$$

has $gcd(n, p - 1)$ solutions if

$$
a^{(p-1)/\gcd(n,p-1)} \equiv 1(\text{mod } p)
$$

and no solutions otherwise. (Hint: Think primitive roots! Write $a = r^j$ for some i with r a primitive root.)

Proof: Observe that since $gcd(a, p) = 1$, if there is a solution x then we must have $gcd(x, p) = 1$ as well. Let r be a primitive root modulo p and write $a = r^j$. For each x with $gcd(x, p) = 1$, there is a k_x so that $x \equiv r^{k_x}(\text{mod }p)$. We have that x is a solution to the congruence if and only if r^{k_x} is a solution to the congruence. In turn, this is equivalent to $r^{k_x n} \equiv r^j (\text{mod } p)$. Since r is primitive, this is equivalent to $k_x n \equiv j (mod p - 1)$. Thus, we have reduced the problem to looking for solutions to the linear congruence $k_x n \equiv$ $j(\text{mod } p-1)$. From our work on linear congruences, we know this has exactly gcd(n, p-1) solutions if gcd(n, p-1) | j and no solutions otherwise. If $gcd(n, p - 1) | j$, then

$$
a^{(p-1)/\gcd(n,p-1)} \equiv (r^j)^{(p-1)/\gcd(n,p-1)} \pmod{p}
$$

\n
$$
\equiv (r^{p-1})^{j/\gcd(n,p-1)} \pmod{n} \qquad (\text{since } \gcd(n,p-1) \mid j)
$$

\n
$$
\equiv 1 \pmod{p}.
$$

On the other hand, if $gcd(n, p - 1) \nmid j$, then $j(p - 1)/ gcd(n, p - 1) \neq j$ $0(\text{mod } p-1)$ and so $a^{(p-1)/\text{gcd}(n,p-1)} \equiv r^{j(p-1)/\text{gcd}(n,p-1)} \not\equiv 1(\text{mod } p)$. Thus we have the result. \blacksquare

7. Prove that $1^k, 2^k, \ldots, (p-1)^k$ form a reduced residue system modulo p if and only if $gcd(k, p - 1) = 1$.

Proof: Note that there are clearly $p - 1$ elements here, so what we need to prove is that they are distinct if and only if $gcd(k, p - 1) = 1$. Let r be a primitive root modulo p and let $a, b \in \{1, 2, \ldots, p-1\}$ with $a \neq b$. We show a^k and b^k are distinct modulo p if and only if $gcd(k, p - 1) = 1$. Write $a = r^i$, $b = r^j$ for some $i, j \in \{1, ..., p-1\}$. We have that $a^k \equiv b^k \pmod{p}$ if and only if $r^{ik} \equiv r^{jk}(\text{mod } p)$, which is equivalent to $ik \equiv jk(\text{mod } p-1)$. This is satisified if and only if $p-1 \mid (i-j)k$. If $gcd(k, p-1) = 1$, then this gives that $p-1$ | $(i - j)$, which is a contradiction. If $gcd(k, p - 1) = d > 1$,

then we will have $r^d \not\equiv 1 \pmod{p}$ and $1^k \equiv (r^d)^k \pmod{p}$. Thus, in this case we do not get a reduced residue system.

8. (a) Let r be a primitive root modulo p. Express $-r$ as a power of r.

The fact that r is a primitive root modulo p gives that $r^{p-1} \equiv 1 \pmod{p}$ and $r^j \not\equiv 1 \pmod{p}$ for all $0 < j < p-1$. Thus, we have $(r^{(p-1)/2})^2 \equiv 1 \pmod{p}$ with $r^{(p-1)/2} \not\equiv 1 \pmod{p}$. By our earlier work, we know the only solutions to $x^2 \equiv 1 \pmod{p}$ are $x = \pm 1$. Thus, we must have $r^{(p-1)/2} \equiv -1 \pmod{p}$. Using this we can write $-r = (-1)r \equiv r^{(p-1)/2}r \equiv r^{(p+1)/2}(\text{mod }p).$

(b) If $p \equiv 3 \pmod{4}$, prove that $-r$ is not a primitive root modulo p.

and

(c) If $p \equiv 1 \pmod{4}$, prove that $-r$ is a primitive root modulo p.

Proof: Recall that the order of an element a^k modulo n is precisely

 $\operatorname{ord}_n(a)/\operatorname{gcd}(k,\operatorname{ord}_n(a)).$

Thus, the order of $-r$ is precisely $p-1/\gcd((p+1)/2, p-1)$. Thus we need to determine $gcd((p+1)/2, p-1)$. Let d be a divisor of $(p+1)/2$. There exists $e \in \mathbb{Z}$ so that $de = (p+1)/2$, i.e., $p = 2de - 1$. Thus, $p+1 = 2de + 2$. Thus, the only possible common divisor is 2. If $p \equiv 3 \pmod{4}$, then we have that 2 | $(p+1)/2$ and so 2 | gcd $((p+1)/2,p-1)$ and so the order of $-r$ is strictly less then $p-1$ and so it cannot be a primitive root. If $p \equiv 1 \pmod{4}$, then $2/(p+1)/2$ and so it must be that the greatest common divisor is 1.

9. Use Euler's criterion to prove that if $2^k + 1$ is a prime, then all quadratic nonresidues are primitive roots modulo $2^k + 1$.

Proof: Let $p = 2^k + 1$ be a prime and a a quadratic nonresidue. We know that $\mathrm{ord}_p(a) \mid \phi(p) = p - 1 = 2^k$. If a is a quadratic nonresidue, then Euler's criterion says that $a^{(p-1)/2} \equiv -1 \pmod{p}$. However, in this case $(p-1)/2 = 2^{k-1}$. Thus, if we had $\text{ord}_p(a) < p-1$, we would have that $a^{(p-1)/2} \equiv 1 \pmod{p}$, a contradiction. Thus it must be that $\text{ord}_p(a) = p-1$. Note here that we are using that $p-1=2^k$ to conclude that if $a^{(p-1)/2} \neq$ $1(\text{mod } p)$, then no power other then $p-1$ could possibly work. ■

10. (a) Consider the polynomial $f(x) = x^{2^m n} + 1$ for $m \ge 1$, $n > 1$ with n odd. Prove that the polynomial is not irreducible. In other words, show that the polynomial factors into two polynomials each of degree greater then or equal to 1.

Proof: The polynomial factors as:

$$
f(x) = (x^{2^m} + 1)(x^{(n-1)2^m} - x^{(n-2)2^m} + \dots - x^{2^m} + 1).
$$

Thus, as long as $n > 1$, this is a nontrivial factorization.

(b) Let $a \in \mathbb{Z}_{>1}$, $k \in \mathbb{Z}_{>0}$ and suppose $p = a^k + 1$ is a prime. Prove that $\mathrm{ord}_p(a)$ must be a power of 2.

Proof: The definition of p gives that $a^{2k} \equiv 1 \pmod{p}$, so we must have $\text{ord}_p(a)$ | 2k. Thus, we are reduced to showing that k must be a power of 2. If k is not a power of 2, then one writes $k = 2^m n$ with $n > 1$. Now apply part (a) with $x = a$ to contradict that p is prime. Just note that since $a \neq 1$, we have $a^{(n-1)2^m} - a^{(n-2)2^m} + \cdots - a^{2^m} + 1 > 1$ because $a^{(n-1)2^m} > a^{(n-2)2^m}$, etc so that $(a^{(n-1)2^m} - a^{(n-2)2^m} + \cdots - a^{2^m}) > 0$. Thus, a must have order a power of 2.