Math 573 Problem Set 5 Solutions

1. List the primitive roots modulo 14.
The primitive roots modulo 14 are 3 and 5. They were found using SAGE.

2. (a) Prove that for n > 1, the sum of the positive integers less then n and

1
relatively prime to n is §n¢(n)

Proof: Let 5 > 0 be an integer relatively prime to n that is less then n.
Observe that n — j satisfies 0 < n — j < n and is relatively prime to n as
well. (If not, there would be a common divisor of n and j!). If n > 2, then
¢(n) is even and so we can pair off the terms j and n — j to obtain all of
the integers less then n relatively prime to n. Each pair sums to give n and

there are 5q§(n) such pairs. This gives the result for n > 2. The case of

n = 21is clear. W

(b) Let p be a prime. Show that the product of the ¢(p — 1) primitive roots
modulo p is congruent modulo p to (—1)¢®=1),

Proof: Let rq,...,rg4p—1) be the primitive roots modulo p. Recall that for

each j we can write r; = r]fj for some k; with 0 < k; < p — 1, k; relatively
prime to p — 1. Thus we have

— ,3(P=1g(p-1)

where the last equality uses part (a). Applying the result that if r is a
primitive root modulo p then r~1/2 = —1(mod p) we have the result. B

3. Prove that ord,(ab) = ord,(a)ord, () if ged(ord,(a),ord, (b)) = 1.

Proof: Let r = ord,(ab), s = ordy(a),t = ord, (b). Observe that
(ab)st — astbst
— (as)t(bt)s
= 1(modn).



Thus, we have r | st. Note that this did not use that ged(s,?) = 1. Observe
that

a™ = a"'b" (modn) (since b' = 1(modn))
= (ab)""(modn)
= 1(modn) (since ordy,(ab) = 1).

Thus, we have that s | rt. However, ged(s,t) = 1 implies that s | r. Sim-
ilarly, we get that ¢ | r. Since ged(s,t) = 1, we have that st | » and hence
they are equal. B

4. Let a,n € Z~1 and let p be a prime. If p | a®" + 1, prove that p = 2 or
p = 1(mod 27+1).

Proof: If p = 2 we are done, so assume p > 2. The fact that p | a®" + 1
gives that a2 = —1(modp). Thus, a®"" = (a2")? = 1(mod p). Thus, we
must have 2"T! | p — 1 by Euler’s theorem, i.e., p = 1(mod 2"*!). B

5. (a) Let p and ¢ be odd primes. If g | a? — 1, then either ¢ | (a — 1) or
q = 2kp + 1 for some k € Z.

Proof: Let ¢,p be odd primes so that ¢ | a? — 1. i.e., a? = 1(mod ¢). This
says that ordg(a) | p. Thus, we must have either ord,(a) = 1, in which case
q | (a—1) or we must have ord,(a) = p in which case p | ¢(¢q) = ¢— 1. Thus,
we have the result. B

(b) Prove that if p is an odd prime, then the prime divisors of 2P — 1 are of
the form 2kp + 1.

Proof: We use part (a) here with a = 2. In this case it is clear that
g1 (2—1) =1, so it must be that any prime divisor of 27 — 1 is of the form
q = 2kp + 1, as desired. B

(c) Find the smallest prime divisor of 229 — 1.

Part (b) tells us that all prime divisors of 22 — 1 must be of the form
q = 58k + 1. Thus, we just need to run through these for £ > 0. Using
SAGE we quickly find that & = 4 gives the smallest prime divisor, i.e., 223
is the smallest prime divisor.



6. Let p be a prime and a € Z so that ged(a,p) = 1. Show that the
congruence
2" = a(mod p)

has ged(n,p — 1) solutions if

a(P=D/ged(mp=1) = 1(mod p)

and no solutions otherwise. (Hint: Think primitive roots! Write a = 7 for
some j with r a primitive root.)

Proof: Observe that since ged(a,p) = 1, if there is a solution = then we
must have ged(z, p) = 1 as well. Let r be a primitive root modulo p and write
a = 1. For each = with ged(z,p) = 1, there is a k, so that = r*+(mod p).
We have that z is a solution to the congruence if and only if ¥+ is a solution
to the congruence. In turn, this is equivalent to r¥" = rJ (modp). Since
r is primitive, this is equivalent to k,n = j(modp — 1). Thus, we have
reduced the problem to looking for solutions to the linear congruence k,n =
j(modp — 1). From our work on linear congruences, we know this has
exactly ged(n,p— 1) solutions if ged(n,p—1) | j and no solutions otherwise.
If ged(n,p — 1) | j, then

(" >ﬂ/ ged(np- ”(mod n)  (since ged(n,p— 1) | j)
1(mod p).

On the other hand, if ged(n,p — 1) 1 j, then j(p — 1)/ged(n,p — 1) #
0(mod p — 1) and so aP~D/gedmp=1) = p.j(p=1)/ged(mp=1) =£ |(mod p). Thus
we have the result. B

7. Prove that 1% 25 ..., (p— 1)’“ form a reduced residue system modulo p
if and only if ged(k,p — 1) = 1.

Proof: Note that there are clearly p — 1 elements here, so what we need
to prove is that they are distinct if and only if ged(k,p — 1) = 1. Let r be
a primitive root modulo p and let a,b € {1,2,...,p — 1} with a # b. We
show a”* and b* are distinct modulo p if and only if ged(k,p — 1) = 1. Write
a =7 b=rJ for some i,j € {1,...,p—1}. We have that a* = b*(mod p)
if and only if r** = r7¥(mod p), which is equivalent to ik = jk(modp — 1).
This is satisified if and only if p— 1| (i — j)k. If ged(k,p — 1) = 1, then this
gives that p — 1| (i — j), which is a contradiction. If ged(k,p — 1) =d > 1,



then we will have r¢ # 1(modp) and 1*¥ = (r?)*(modp). Thus, in this case
we do not get a reduced residue system. H

8. (a) Let r be a primitive root modulo p. Express —r as a power of r.

The fact that 7 is a primitive root modulo p gives that r?~! = 1(mod p) and
77 # 1(modp) for all 0 < j < p — 1. Thus, we have (r?~1/2)2 = 1(mod p)
with r(®=1/2 2 1(mod p). By our earlier work, we know the only solutions
to 22 = 1(mod p) are & = £1. Thus, we must have »?~1/2 = —1(mod p).
Using this we can write —r = (—1)r = r®=1/2p = p0+D/2(mod p).

(b) If p = 3(mod 4), prove that —r is not a primitive root modulo p.
and
(c) If p = 1(mod 4), prove that —r is a primitive root modulo p.

Proof: Recall that the order of an element a* modulo n is precisely
ordy(a)/ ged(k, ordy,(a)).

Thus, the order of —r is precisely p—1/ged((p+1)/2,p—1). Thus we need
to determine ged((p + 1)/2,p — 1). Let d be a divisor of (p + 1)/2. There
exists e € Z so that de = (p+1)/2, i.e., p = 2de — 1. Thus, p+ 1 = 2de + 2.
Thus, the only possible common divisor is 2. If p = 3(mod 4), then we have
that 2 | (p+1)/2 and so 2 | ged((p + 1)/2.p — 1) and so the order of —r is
strictly less then p—1 and so it cannot be a primitive root. If p = 1(mod 4),
then 21 (p+1)/2 and so it must be that the greatest common divisor is 1. H

9. Use Euler’s criterion to prove that if 2F +1 is a prime, then all quadratic
nonresidues are primitive roots modulo 2% + 1.

Proof: Let p = 2¥ + 1 be a prime and a a quadratic nonresidue. We
know that ord,(a) | ¢(p) = p — 1 = 2%, If a is a quadratic nonresidue,
then Euler’s criterion says that a?~1/2 = —1(mod p). However, in this case
(p —1)/2 = 2871, Thus, if we had ord,(a) < p — 1, we would have that
aP~1/2 = 1(mod p), a contradiction. Thus it must be that ord,(a) = p — 1.
Note here that we are using that p — 1 = 2¥ to conclude that if a?~1)/2 £
1(mod p), then no power other then p — 1 could possibly work. B



10. (a) Consider the polynomial f(z) = x2"" + 1 for m > 1, n > 1 with
n odd. Prove that the polynomial is not irreducible. In other words, show
that the polynomial factors into two polynomials each of degree greater then
or equal to 1.

Proof: The polynomial factors as:
f(aj) _ (xQWL + 1)(27(”71)27n - x(n72)27n + L xz'm, + 1)
Thus, as long as n > 1, this is a nontrivial factorization. H

(b) Let a € Zw1, k € Z+( and suppose p = a* + 1 is a prime. Prove that
ord,(a) must be a power of 2.

Proof: The definition of p gives that a?* = 1(modp), so we must have
ordp(a) | 2k. Thus, we are reduced to showing that £ must be a power of 2.
If k& is not a power of 2, then one writes k = 2"'n with n > 1. Now apply
part (a) with 2 = a to contradict that p is prime. Just note that since a # 1,
we have a("=D2" —q(n=2)2" 4 ... 42" 11 > 1 because a(* 12" > a(n_z)zm’
etc so that (a(=12" — q(»=22" 1 ... _ 42™) > 0. Thus, a must have order
a power of 2. W



