
Math 573 Problem Set 3

1. Prove that every integer of the form 3n + 2 has a prime factor of this
form as well. Can you use this fact to prove there are infinitely many primes
of the form 3n + 2?

2. (a) Prove that for any integer n, one has n2 is equivalent to 0, 1, 4, 5, 6,
or 9 modulo 10.

(b) Find the values of n for which 1! + 2! + · · · + n! is a perfect square.

3. If a ≡ b(mod n), prove that gcd(a, n) = gcd(b, n).

4. Determine the last three digits of 15799 by hand.

5. Write a short program in SAGE (or whatever computer software you
use) that produces all of the solutions to the equation ax ≡ b(mod n).

6. Recall in class that we proved that if n1, n2 are relatively prime positive
integers, then

x ≡ a1(mod n1)

x ≡ a2(mod n2)

has a unique simultaneous solution modulo n1n2. Use this and induction
to prove that if n1, n2, . . . , nr are positive integers so that gcd(ni, nj) = 1 if
i 6= j, then the system

x ≡ a1(mod n1)

x ≡ a2(mod n2)

...

x ≡ ar(modnr)

has a unique simultaneous solution modulo n1n2 · · · nr.

7. Find, by hand, two incongruent solutions modulo 210 of the system

2x ≡ 3(mod 5)

4x ≡ 2(mod 6)

3x ≡ 2(mod 7).
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8. Assuming that 495 divides 273x49y5, find the digits x and y.

9. A palindrome is a number that reads the same backwards as forwards
(for example, 511343115 is a palindrome.) Prove that any palindrome with
an even number of digits is divisible by 11.

10. Use SAGE (or an equivalent computer program) to find all solutions to
the congruence

x3 + 3x2 + 37 ≡ 0(mod 51).

11. Let f(x) be a fixed polynomial with integer coefficients. For any
positive integer n, let N(n) be the number of solutions of the congru-
ence f(x) ≡ 0(mod n). If n = n1n2 with gcd(n1, n2) = 1, prove that
N(n) = N(n1)N(n2). Is the statement true without the condition on
gcd(n1, n2)? If so, prove it. If not, give a counterexample.

12. Recall that in class we defined the Riemann zeta function

ζ(s) =
∞
∑

i=1

1

ns

and used it to show there are infinitely many primes. We use it again here
to show that the sum

∑

p

1

p

diverges where the summation is over all primes.

(a) Prove that the series
∑

p

1

npn
converges for n ≥ 2.

(b) Let
∑

p

1

2p2
= A. Show that

∑

p

1

npn
≤

A

2n−2
. It may be helpful to look

at n = 3, 4, and 5 to get an idea of where the power of 2 is coming from.
Just look at the first term of the series and compare it to the first term of
the series for n = 2.

(d) Conclude from parts (a) and (b) that the sum

∞
∑

n=2

∑

p

1

npn
converges.

(e) Recall that the unique factorization of integers allowed us to write

ζ(s) =
∏

p

(1 − p−s)−1.
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Take logarithms of both sides of this equation to obtain

log(ζ(s)) = − log

(

∏

p

(1 − p−s)

)

= −
∑

p

log(1 − p−s)

where we have used the properties of logarithms extended to infinite sums.
Use the Taylor series for log(1 + x) with x = p−s to obtain a double sum-
mation, one over primes p and one from 1 to ∞.

(f) Set s = 1 in part (d) and using part (c) and the fact that the Riemann
zeta function diverges at s = 1 to conclude that the sum

∑

p

1

p

diverges.

12. A gang of 17 bandit stole a chest of gold coins. When they tried to
divide the coins equally among themselves, there were three left over. This
caused a fight in which one bandit was killed. When the remaining bandits
tried to divide the coins again, there were 10 left over. Another fight started,
and five of the bandits were killed. When the survivors divided the coins,
there were four left over. Another fight ensued in which four bandits were
killed. The survivors then divided the coins equally among themselves, with
none left over. What is the smallest possible number of coins in the chest?


