THE GOLDEN RAIO AND FIBONACCI
S,

ABSTRACT. This paper is an investigation of the history of the golden
ratio ¢ and its relation to various areas of mathematics and science; the
insight gained from this historical undertaking is then applied to yield a
solution to a centuries-old problem: determining a closed-form equation for
calculating the nth tern in the Fibonacci sequence.

I. INTRODUCTION

The Golden Ratio is a transcendental number that has, for many
centuries, fascinated mathematicians, scientists, and even artists. The
number (also known as the Golden Section, the Golden Mean, and the
Divine Proportion, among other monikers) is seemingly ubiquitous in
mathematics and nature, manifesting itself in such diverse areas as
geometry, fractals, Fibonacci numbers, and even phyllotaxis (the way in
which plants develop leaf patterns in order to maximize sun exposure, a
topic very far removed from number theory). The Golden Ratio is
typically denoted ¢ (named for Phidias, a famous Greek sculptor who
lived during the 5" century B.C. and was said to embody the Golden Ratio
in his work) [2] and the number is widely regarded as being aesthetically
pleasing in its manifestations in both visual arts and music; as will be
discussed below, the number ¢ is embodied in works as vastly different
(chronologically and culturally) as the Aegean Acropolis and Penrose
tilings.

In order to facilitate the ease with which this Paper is to be read and
understood, the information presented is arranged chronologically,
intermingling historical and mathematical details; such an approach is
intended to better maintain the reader’s interest and reinforce the idea that
developments in mathematics and a thorough understanding of the
properties of the Golden Ratio are intimately related concepts. Having
established the requisite historical and mathematical background, the main
task of applying the Golden Ratio to the problem of determining a closed
form for the nth term of the Fibonacci sequence will be investigated. In
the following, the historical and mathematical details pertinent to the
Golden Ratio are investigated in the Classical, Medieval, and Modern
periods.



II. THE BIRTH OF PHI

Although the first civilization to be aware of the Golden Ratio and
to embody this proportion in its architecture and other culturally
significant works is speculative and debatable, the oldest known precise
definition of ¢ was provided in Euclid’s Elements [2]). By “extreme and
mean ratios” [3], Euclid proposed that a straight length be cut such that the
ratio of the smaller piece to the larger piece is identical to the ratio of the
larger piece to the entire length. In the Figure below, the ratios a/b and
(a+b)/a are equal.

(a+b)

Figure 1 Dividing a line segment according to the Golden Ratio; ¢ = a/b

Although the majority of the mathematical properties of ¢ were
unknown to the Classical Greeks, early mathematician-philosophers such
as Pythagoras and Euclid were very interested in the role of ¢ in regular
geometric forms, both planar and three-dimensional (i.e. what is now
known as “Golden Geometry”)[4]. The classical ruler-and-compass
construction of g is illustrated below. Draw a circle of unit diameter and
center A, extend a line AC from the circle’s center to a point C on the
circle, draw a line BC of unit length perpendicular to AC, and draw a ray
that begins at B, pierces the circle at D, passes through the center A, and
exits the circle at point E (see Figure 2 below). Then, the ratio |BE//|BC|
(where the absolute value signs denote lengths of line segments) is the
Golden Ratio, ¢. Numerically, then, the value of ¢ can be calculated as
follows: |BC| = 1 by construction; |AC| = |AD| = |AE| = 14 since each of
these segments is equal to the circle’s radius in magnitude.
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Figure 2 Using ruler and compass to derive ¢ = |AE|/|BC




The triangle AABC is a right triangle, so the Pythagorean Theorem can be
invoked:

|AB| = (IBC{’ + JACF)"
=(1+ %)
=Y. 5%

Then, adding, ¢ = |BE| = |AB| + |AE|='2 (1 + 5%) ~ 1.618033989...
Modemn readers will immediately recognize that @ is an irrational number,
being the sum of rational ' and irrational (% - 5%) (since, by clo§ure of the
rational numbers, 5" is irrational, so (1 + 5%y and hence %(1 + 5/’) are
irrational); nevertheless, a brief and straightforward proof of the
irrationality of ¢ is provided below.

Proving that ¢ is an irrational number is brief but requires some
algebraic manipulation; consider the illustration of Figure 1, assuming
(without loss of generality) that a > b. If ¢ is a rational number, then

_a+b_£
a b

¢

b}

where the fraction a/b is assumed to be written in lowest terms. Then,
multiplying through by (a'b), collecting terms, and dividing,

b-(a+b)=a-a
a-(a-b)=b-b

where (a-b) is a positive integer. Note that now the fraction a/b has been
rendered as a fraction b/(a-b) with a smaller numerator and denominator;
this fact contradicts the assumption that the original ration a/b was written
in lowest terms. Consequently, by contradiction, ¢ = a/b must be an
irrational number since it cannot be written as a ratio of integers.

The simplest and most common forms explored via Golden
Geometry are isosceles triangles with angles (72°, 72°, 36°); these planar
geometric figures arise in regular pentagons, decagons, and pentagrams
[4]. The appearance of @ in the regular pentagon is illustrated on the
following page (Figure 3); connecting a vertex with the two vertices
opposite creates an isosceles triangle with the desired angle measurements.
The ratio of the lengths of one of the large sides to the small side and the
ratio the sum of large and small sides to a large side are both equal to o.




36°

Figure 3 Constructing a Golden Triangle from a pentagon; ¢ = a/b

As for the cultural significance of ¢ in the ancient Greek world,
mathematicians were not the only Greeks impressed by the simplicity and
beauty of the Golden Ratio. Architects and sculptors found the ratio to be
aesthetically pleasing and sought to embody the Divine Proportion in their
artistic endeavors [4]. One of the most famous examples of ¢’s
appearance in the classical Greek world is the Parthenon, one of the many
structures comprising the Aegean Acropolis. According to traditional
sources, the stylobate of the Parthenon (i.e. the top step of the stepped
platform upon which the columns of the structure stand) incorporates
several golden rectangles (rectangles with sides proportionally related by
¢); however, a modern investigation of the issue raises doubt as to whether
the architects of the structure truly intended for this proportionality to
appear, or whether this phenomenon is the result of ¢ enthusiasts
knowingly distorting measurements to fit their expectations [3]. On the
other hand, as mentioned above, the Greek sculptor Phidias (who even
predated Euclid by at least a century) is credited with having employed the
Golden Ratio in the statues he constructed for the Acropolis [4].

I11. PHI IN THE MIDDLE AGES

In the beginning of the thirteenth century, the mathematician
Fibonacci (an abbreviated form of Filius Bonacci) developed a now-
famous sequence bearing his surname. In this series, each term is the sum
of the two previous terms (where the first two terms are taken to be 1), as
follows:

ap = ap t ap2.

The first few terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, ... As will be discussed below (see the PHI GROWS UP section
below), the Fibonacci sequence and the Golden Ratio share a deep
connection; this relationship will prove quite useful when applied to the



problem of finding a closed form for the nth term of the Fibonacci
sequence.

Although the Middle Ages were a period best characterized as
intellectual stagnation, humanity’s interest in and appreciation for the
Golden Ratio was revitalized during the Renaissance. It was in this period
that painters and sculptors employed ¢ in their works as an homage to the
wondrous achievements of classical Greece and due to the aesthetic appeal
of the Golden Ratio. Examples from this period abound, but one work
suffices to demonstrate the appeal of ¢ as a highly aesthetically pleasing
ratio, Leonardo DaVinci’s Deluge over a city. In this work, and in the
series of sketches leading up to completion of the project, DaVinci
explores the beauty and simplicity of logarithmic spirals in the form of a
violent deluge that washes away every trace of the city. These spirals,
however, are closely related to the Golden Ratio (and specifically Golden
Triangles). Figure 4 illustrates the use of such triangles to construct a
logarithmic spiral; beginning with a single Golden Triangle AABC, bisect
one of the 72° angles and adjoin the vertex to the opposing side (i.e.
construct segment BD). The smaller triangle is itself a Golden Triangle,
which can be bisected and adjoined to the opposing side (via segment CE),
in turn yielding a third Golden Triangle. Repeating this process (which
can continue indefinitely), one can construct as many increasingly smaller
Golden Triangles as time and patience permit. Then, drawing a spiral that
intersects each of these constructed points in the order in which they were
drawn (here, A-B-C-D-E-F-G-H), one discovers that the resulting spiral is
logarithmic [3], as in Deluge over a city. DaVinci’s work is mesmerizing
and beautiful, a testament to the aesthetically appealing nature of the
logarithmic spiral and the Golden Ratio contained therein.

A

Figure 4 Constructing a logarithmic spiral from a Golden Rectangle



IV. PHI GROWS UP

Modern developments in mathematics have enabled artists,
scientists, and mathematicians alike to gain a deeper understanding of the
intricacies of the Golden Ratio and its astonishing properties. One of the
most interesting properties of ¢ that has come to light only during the last
two centuries is the Golden Ratio’s curious continued fraction
representation, a derivation of which follows. Suppose a generic line
segment, illustrated in Figure 1 above, were cut in the Golden Ratio such
that the small end of the segment has unit length and long end length x.
Then, since the ratio of x to 1 equals the ratio of (x + 1) to x,

x+1
X=—,
x
or
1
x=1+—.
x

One can then substitute the expression into the denominator on the left
hand side to obtain

Continuing in this fashion,

x=1 +——11— =[LLLLL..].
I+ ——
1+—
1+...

Thus, the fractional expansion for @, denoted x above, is an infinite
continued fraction in which every integer is unity. The fact that the
continued fraction representation is infinite indicates that ¢ is an irrational
number [1]; compare the ease with which this fact was established in
comparison to the proof of the irrationality of ¢ above.

The Golden Ratio has several unique algebraic properties; by
definition, ¢* = ¢ + 1, so ¢* ~2.618033989 or



— = [2ZLLLLL,..]=¢+1..

I+
1+...

Furthermore, when the continued fraction form of ¢! is calculated, one
obtains

= 1 =[O;LLLLL,...]=¢—1.

1+ 1
1
1+ ]
1+ —
1+...

|-

The continued fraction form of ¢ is interesting because it reveals the
connection between the Golden Ratio and the Fibonacci sequence; when
one computes the convergents of the continued fraction version of o,

Co=1=11; S=2=21; G=3n;, =53, S=8/5.

Thus, the numerators and denominators are numbers in the Fibonacci
sequence (1, 1, 2, 3, 5, 8, ...), with the numerators “one step ahead” of the
denominators.

V. THE BINET FORMULA

Since the Fibonacci sequence is a sequence defined by a linear
recursion formula, it must be the case that there exists some closed-form
version of the sequence that allows one to compute the Fibonacci number
appearing at position n without resorting to the time-consuming alternative
of computing every prior number in the sequence (a daunting task even for
a powerful computing algorithm, given large enough n). A closed form
for the Fibonacci sequence had been pondered and sought since the series
was introduced in the thirteenth century; the equation was apparently
discovered by Euler in the eighteenth century and rediscovered by Jacques
Binet nearly a century later [3]. The closed form of the sequence takes the
form

Fny=2"=0-9)" “f/lg“ 2



The verity of this formula shall be proven by induction:
Basis Case: for n = 1, the formula in question yields

(1-9) _-1+2:¢ _—1+(1++5) _
V5 N Vs

which is indeed the first number in the Fibonacci sequence.
Induction Case: suppose the equation for F(n) is accurate for some
arbitrary n, n > 1. Since the Fibonacci sequence

Fay=2=- 1

Fn+2)=Fn+1)+ F(n)
or
Fn+2)-(n+)-Fn)=0
closely resembles the equation for the derivation of @ (i.e. x> —x ~ 1 = 0),
then a sufficient verification of the Binet formula is to construct a function
composed of a linear combination of the two roots of the ¢ equation, ¢

and (1 - ¢), and show that this linear combination has properties and
values identical to the Fibonacci sequence :

F'(n)y=a-¢"+b-(1-4)",

where a and b are determined by initial conditions (i.e. plugging in known
values of the Fibonacci sequence and solving for a and b). Then, for the
induction (n + 1) case,

F'n+)=a-¢"" +b-(1-$)"";
however, by the defining equation for ¢,
¢ =p+1.

Multiplying through by a factor of ",

¢n+l =¢n +¢n—l.



Inserting this relation into the induction step equation above,

F'(n+)=a-¢"" +b-(1-g)""

F'(n+)=a-(¢" +¢" ") +b-((1-9)" +(1-¢)"")
F'n+l)=a-¢" +a-¢"" +b-(1-¢)" +b-(1-¢)""
F'(n+)=a-¢"+b-(1-¢)" +a-¢"" +b-(1—g)""
F'(n+l)=(a-¢" +b-(1—-g)") +(a-¢"" +b-(1-$)™")
F'(n+1))=F'(n)+ F'(n-1).

Thus, the equation F'(n) satisfies the recursive relationship among the
numbers in the Fibonacci sequence. The Binet formula, F(n), is this
equation F'(n) with the substitution

-1

a—Lb=—
N

Consequently, by induction, the Binet formula gives the nth term in the
Fibonacci sequence.
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