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The intent of this paper is to discuss amicable numbers and its related topics. After recalling the long

history of the topic, it will address the important facts about numbers that are and are not amicable.

This discussion will include a proof of Thabit’s Rule (more specifically, Euler’s generalization of the
rule), and will mention other specific types of amicable numbers,

1. Introduction

As is the case with most concepts in Number

Theory, a pair of amicable numbers (or friendly

numbers, as they are otherwise known) is a seemingly
straightforward idea which has vastly complex implications and is mired in a compilation
of strenuous mathematics. We state precisely what it means to be a pair of amicable
number in Definition 1.
Definition 1 - Two integers greater than or equal to 1 are said to amicable if the
sum of the proper positive divisors of one of the integers is equal to the other
integer, and vice versa.
While this treatise will focus on pairs of amicable numbers, there exist other sets of
amicable numbers of higher degrees (such as, amicable triples). We revise the above
definition to suit these cases, as well.
Definition 1.1 - A set S, of n integers greater than or equal to 1 are said to be
amicable if the sum of the proper positive divisors of each element of the set is
equal to the sum of the other integers in the set.
In the cases where the size of the set, n, is greater than or equal to 2, we append an
additional criterion that an integer in such a set may not equal the sum of its own divisors.

Instead, we treat separately the case where an integer forms an amicable set with itself.



We call such an integer a perfect number. We demonstrate the properties of both

amicable and perfect numbers with a couple of examples.
Example 1 - {220, 284} is a pair of amicable numbers. The proper divisors of
220are 1, 2,4, 5, 10, 11, 20, 22, 44, 55, and 110. The sum of these is
1+2+4+5+10+11+20+22+44+55+110=284.
The proper divisors of 284 are 1, 2, 4, 71, and 142. The sum of these is
1+2+4+71+142=220.
It is worth noting that there are no non-perfect amicable numbers less than these
two integers.
Example 2 - 6 is the smallest a perfect number. This is straightforward. The sum
of the proper divisors of 6 is 1+2+3=6. The sum of the proper divisors of 2, 3, 4,
and 5 are 1, 1, 3, and 1, respectively. The sum of the proper divisors of 1 is
undefined, since 1 does not have any proper divisors. So, 6 is the smallest perfect

number.
2. A Brief History

In antiquity, pairs of amicable numbers were thought to have mystical powers, and
they were often utilized in religious texts and in magic, particularly in relation to love and
friendship (thus, the name amicable). In the Old Testament, for example, it is written that
Jacob offered 220 sheep (220 being one of the amicable numbers from Example 1) to his
brother as a sign of goodwill. Additionally, Greek astrologers incorporated these numbers
into their horoscopes, talismans, and charms.

The first set of amicable numbers (220 and 284) was discovered by Pythagoras in
the 6™ century, and the properties of these types of numbers were studied extensively by

the Pythagoreans throughout the group’s existence. While science in the Western world



gave way to more spiritual exploits during Dark Ages, Arabic scholars such as Ibn Tahir

al-Baghdadi and al-Madshritti contributed their thoughts to the study of this subject,
while also preserving the works of other scholars who came before them (al-Baghdadi’s
commentary on the works al-Khwarizmi, for example, are particularly important because
al-Khwarizmi’s original work has been lost to the ages). Perhaps the most important of
these Arab scholars is Thabit ibn Qurra, whose formula for constructing amicable
numbers we will study in a later section. Other more recognizable mathematicians who
studied these types of numbers were René Descartes and Leonhard Euler, both of whom

refined Thabit’s formula.

3. A Few (Simple) Proofs

The first question that may arrive when studying amicable numbers is “How many
amicable numbers are there?” There is, in fact, no proof supporting either that there is a
finite quantity of amicable numbers, or that there are infinitely many such integers, and
such a proof will not be attempted in this paper. First and foremost, however, we should
state a few basic properties of numbers which are not amicable.

Theorem 1 - For a prime p, p is not an amicable number.
Proof: Let p be a prime. Then p has only two divisors, 1 and p. Then 1 is the only proper
divisor of p. Suppose p is an amicable number. Then 1 is an amicable number. But, the
sum of the proper divisors of 1 is undéﬁned, since 1 has no proper divisors. Then 1 is not
amicable. This is a contradiction. So p is not amicable.

That was a rather intuitive, but important, observation. It narrows our search for
amicable numbers to composite numbers.

The next theorem relies on the assumptions that there are no amicable pairs in

which either:



a) Both elements of the pair are relatively prime, or

b) The elements of the pair have opposite parity.
Both of these assumptions have been the objects of considerable study, but have yet to be
proven. However, every known pair of amicable numbers has been found to have both a
greatest common divisor greater than 1 and the same parity. If we can assume there are
no such amicable numbers of these types, the subsequent theorems follow.

Theorem 2.1 - There exists no integer k" for k, n € Z,, such that k is prime

and k" is an amicable number.
Proof: Suppose k" is an amicable number for a prime k. Then, the sum of the proper
factors of k" is t=1+k+k?+...+k™. Then, t is an amicable number. Then, if it is true that
there are no relatively prime pairs of amicable numbers, k" and t share a prime factor. But
k is the only prime factor of k". So, if k" and t are amicable, kjt. But t=1 (mod k). So k

does not divide t. So k" is not amicable.

Theorem 2.2 - There exists no integer k" for k, n € Z,, such that k is even and

k" is an amicable number.

Proof: Suppose k" is an amicable number for an even number k. Then, the sum of the
proper factors of k" is t=1+k+k>+...+k™. Then, t is an amicable number. Then, if it is
true that there are no pairs of amicable numbers with each element in the pair having
different parity, k" and t have the same parity. But, k" is even. Furthermore, k+k*+...+k™"!
is even. Then t=1+k+k?+...+k™! is odd. This is a contradiction. A similar argument can
be made for odd k, but only when n is even.

These proofs lack substance, however, with the earlier conjectures still being

unproven. But, if one were looking to find a counterexample to the two conjectures from



which we based these theorems, looking for an amicable number k" for k prime or k even

would be a good place to start.
4. Thabit’s Rule (Euler’s Rule)

While it obviously is not easy to find a pair of amicable numbers, there have been
some efforts in formulating an algorithm for finding amicable numbers of a certain type.
One such algorithm was created by Thabit ibn Quira, a 9" century Arabic mathematician.
His theorem is as follows:

Theorem 3.1: Thabit’s Rule
Let p=3*2"".1, q=3*2"-1, and r=9*2?"'-1, where n is an integer greater than 1.
Then, if p, q, and r are prime, {2"pq, 2r} is a pair of amicable numbers.
The form we will prove is Euler’s Generalization of Thabit’s Rule, published in 1747,
which is as follows:
Theorem 3.2: Euler’s Rule (a Generalization of Thabit’s Rule)
Let p=2"(2"™+1)-1, g=2"(2"™+1)-1, and r=2"""(2"™+1)*-1, for integers m and n,
where 1<m<n. Then, if p, q, and r are prime, {2"pq, 2"r} is a pair of amicable
numbers.
With his theorem, Thabit was able to rediscover Pythagoras’ amicable pair, {220, 284},
as well as find a new pair, {17296, 18416}. Later, René Descartes would use Thabit’s
Theorem and discover the pair, {9363584, 9437056}. Using his generalization, Euler
discovered the pair {2172649216, 2181168896}. However, after this pair, these theorems
do not produce another pair for integers less than 10%%,

We now proceed to a proof of Euler’s Generalization of Thabit’s Theorem.

However, before continuing, we must make the following definition and a few

observations.



Definition 2 - The Sigma Function - Let o(s) be the sum of all the factors of s

including s itself.
Note that, {n, m} is an amicable pair if and only if o(m)-m=n and o(n)-n=m.
(i.e., if and only if o(m)=c(n)=m+n). Then, if {n, m} is not an amicable pair, either
o(m)#m+n or o(n)#m+n. We will need this later.
Lemmas I-1II - Basic properties of ¢
I. o(mn)=c(m)c(n), if gcd(m,n)=1.
IL If m is prime, 6(m)=m+1.

k n)’l—l

IL If n is prime, 6 (n*)=1+n+n’...n*=

n-1

Proof: Lemmas II & I are instinctive. If m is prime, then the divisors of m are 1 and m.
Then the sum of these divisors is m+1. If n is prime, then the divisors of n* arel, n, n? ...
n® for 1<z<k. Then the sum of these divisors is 1+n+n’+...+n* which can be simplified
as shown above. The proof of Lemma I follows from Lemmas Il & III. Suppose

L2

ged(m,n)=1. Then m=p;* po*2... p/* and n= ;"' q;"*... g for primes p and q and integers

k and L. Furthermore, p; # q; for any 1<i<r or 1<j<s. Then,

o(mn)= (p***'-1) (2*-1).... ('-1) (@"-1) (1) .. .(a," 1)

@i-D) (P2-D)... (p-1) (qi-1) (G2-1)-.. (g5°1)
by Lemma III. Then, since none of the p;’s or g;’s are equal, this equals

(A1) (D (D) * (D) (1) L (g 1)

(-1 (p2-1)... (pr-1) (@1-1) (g2-1)... (gs-1)

which equals o(m) o(n). Now we proceed to the proof of Euler’s generalization of

Thabit’s Rule.

Theorem 3.2: Euler’s Rule (a Generalization of Thabit’s Rule)
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Proof: Let p=2"(2"™+1)-1, q=2"(2"™+1)-1, and =2""™(2"™+1)2-1 all be prime (note that,
furthermore, they are each odd, since they are each congruent to 1 mod 2). Then
o(p)=2"(2"™+1), 6(q)=2"(2"™+1), and o(r)=2""(2"™+1)%, by Lemma II. Note that,
o(r)=o(p)o(q) (i.e. r+1=(p+1)(q+1)). Suppose {2"pq, 2"r} is not an amicable pair. Then,
recall that if m and n are not amicable, either o(m)#m+n or o(n)#m+n. This means either
o(2"pq)#2°(pq+r) or o(2'r)#2"(pq+).
Suppose o(2"pq)#2"(pg+r). Then o(2"e(p)o(q)# 2"(pq+r), by Lemma I, since 2",
p, and q are all relatively prime to one another. So, (2™'-1)(p+1)(q+1)# 2°(pg+r), by
Lemmas I and 111, So, (2"'-1)(r+1)#2"(2r-p-q), substituting (r+1) for (p+1)(g+1) and
substituting 2r-p-q for pq+r (since r+1=(p+1)(q+1)=pq+p+q+1. Then
2" 2™ 122 -2"p-2"
So, 2"*!-(r+1)#-2"p-2"q. Re-substituting (p+1)(q+1) for (r+1) and dividing by -1 gives us
(p+1)(g+1)-2""'#2"(p+q).

So, (p+1)(q+1)-2™"-2"(p+q) #0. Substituting our original values for p and q aids us in
simplifying the left side of this inequality as follows:

(p+1)(q+1)-2""-2"(p+q)

=2™(2"™+1))(2"(2"™+1))-2™ 2" (2" (2" M+ 1)+27(2M ™+ 1)-2)

=(2"+2™)(2°"™M+2")-2" 2N (2N 222 42 2)

—9Inmy 20 520, onim ptl_n2n_pmtm o3nm 20 A0t

=0
So (p+1)(q+1)-2"*'-2"(p+q)=0, which is a contradiction. So 6(2"pq) must equal 2"(pq+r).
But, 6(2°pq)=(2™"-1)(p+1)(q+1)= 2"*'-1)(r+1)=0(2"r). So 6(2"r) must equal 2"(pq-+r), as

well. Then, {2"pq, 2"m} is a pair of amicable numbers.



While Euler’s Rule does not help us find all possible amicable numbers (for

instance, the pair {1184, 1210}, which was found by a sixteen year old Italian boy 83
years after Euler’s death, is not of this form) and though it does not produce a pair for
every m and n, it does provide us with a reliable way of finding some amicable pairs.
Also, if one were able to prove there are infinitely many prime triplets p, q, and r of the
form p=2"(2""™+1)-1, ¢=2"(2"™+1)-1, and r=2"""(2"™+1)%-1, then they will have proven
the existence of infinitely many amicable numbers.

5. Perfect Numbers

We will continue with a short discussion about integers which form an amicable
pair with themselves. In a previous example, we showed that 6 is the smallest perfect
number. In fact, there are only 4 perfect numbers less than 10000: 6, 28, 496, and 8128.
Note that, if a number n is a perfect number, then o(n)-n=n. Then, o(n)=2n. We proceed
with a few proofs involving perfect numbers.

Theorem 4 - If 21 is prime for k greater than 1, then 2%1(2%-1) is perfect and
every even perfect number is of this form.
Proof: Suppose 2*-1 is prime. Then
o(2'(25-1))= 6(2¥")o(2%-1), because 25! and 2*-1 are relatively prime.
So,
o(25'(2%-1))=(2%-1)(2%), by Lemmas 1 & II1.
But,
@5-DE@=2*@2%'(2*-1)).
So, setting 25!(2%-1)=n, o(n)=2n. So n=2*"'(2*-1) is a perfect number.
Moreover, suppose n is an even perfect number. Then n=2""m for k greater than or

equal to 2, with m being odd. Then,



o(2¢'m)=0(2*HYo(m)=(2*-1)o(m), by Lemmas I and TII.

But, 2%'m is perfect. So, 6(2X'm)=2(2*'m)=2"m. Then, (2*-1)o(m)=2"m. Then, 2*-1]2*m.
So, 21 |2k or 2-1jm. But, since the only prime factor of 2%is 2 and 2*-1 is odd, 2* and
2%-1 are relatively prime. So *"! cannot divide 2¥, So, 25'|m. Then, m=(2*")z forz € Z.
Then, since (25-1)o(m)=2"m,
(2% Do(m)=2%2*"z.
Then,
cs(m)=2"z.
Note that, m and z are unequal divisors of m. Then
2¥z= 0(m)2m+z=(2k-1)z+z=2kz.
Then, o(m)=m-+z. Then, by the definition of 6, m has only two divisors, m and z. Then
z=1, and m is prime. So, since m=(2k-l)z, m=2-1. So n=2""(2k-]) for a prime 2%-1, thus
completing our proof that every even perfect number is of this form. We will use the
second part of this proof shortly. First, however, we must prove the following.
Theorem 5 - If a*-1 is prime for a positive integer @ and an integer & greater
than or equal to 2, then a=2 and K is prime.
Proof: Note that a*-1=(a-1)(a*'+a*2+.. .+a+1). Furthermore,

ak-l _I_ak

2., +atl>at1>1.
So, because a*-1 is prime, and we know it has a factor a*'+a¥2+. . +a+1>1, it must be that
a*-1= a*'+a%2+.. +a+1 and that a-1,the other factor of ak-l, equals 1. So a=2.

Suppose k is a composite. Then, a“-1=a"-1 for integers r and s, both greater than 1.



r(s-1),  r(s-2) r : —
a +a  ’+...a+1). Then, since a=2, both of these factors are greater

But, a®-1=(a"-1)(
than 1. Then, a™-1 is not prime. Then a*-1 is not prime. This is a contradiction. So k is not

a composite, and k is greater than or equal to 2. So k is prime.
Using the previous two proofs, we will prove the following:

Theorem 6 - If n is an even perfect number, then the last digit of n is either 6
or 8.
Proof: Suppose n is an even perfect number. Then, by Theorem 4, n=2%"'(2-1) for some

prime 2%-1. Then, by Theorem 5, k is prime. Then k=2 or k is congruent to either 1 or 3

mod 4.
Suppose k=2. Then n=2*3=6.
Suppose k=1 mod 4. Then k=4x+1 for an integer x. Then,
n=2%(2%*1.1
=oBx+1_dx
—xn8x_ o
=2%16"*-16"
=2*6"*-6" (mod 10)
=2%6-6 (mod 10)

since the product of any two numbers congruent to 6 mod 10 is congruent to 6 mod 10, as

well. Then,

=12-6=6 (mod 10).
So, if k=1 mod 4, n=6 mod 10 (i.e. the last digit of n is 6).
Suppose k=3 mod 4. Then k=4x-+3 for an integer x. Then,

n=24x+2(24x+3_1 )



=2*28x+4_4*24x

=2*16""'-4%16"
By the same argument from before, this is congruent to
=2*6-4*6 (mod 10)
=-12 (mod 10)=8 (mod 10).
So, if k=3 mod 4, n=8 mod 10 (i.e. the last digit of n is 8). Thus, if n is an even perfect

number, n ends in the digit 6 or 8.
6. Applications of Amicable Numbers

Though they have been studied for nearly one and a half millennia, there are, as of
the present, no significant practical applications for amicable numbers, other than
recreational mathematics. However, most of what is now a part of the field of
mathematics was spawned out of the study of certain numbers with specific properties.
What’s more, the fact that amicable numbers are an application of factorization may
naturally lead to there use in the field of cryptography and the domain of unique
factorization into primes. As much as any other discipline of number theory, the area of

amicable numbers is ripe for a breakthrough discovery.
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