
MATH 573 — SECOND MIDTERM EXAM
(TAKE HOME PORTION)

May 17, 2007

NAME: Solutions

1. This exam is due Monday, May 21 before the bell rings for class. After the bell rings I will NOT
accept the exam.

2. This exam has 5 pages including this cover. There are 4 problems.

3. Do not separate the pages of the exam.

4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.

5. You are welcome to use any non-human sources you choose. (Note, talking to someone on the
phone, over the internet, etc. falls under getting human help.) Be sure to cite your sources as
unacknowledged sources constitute plagarism and will receive 0 points.

PROBLEM POINTS SCORE

1 10

2 14

3 16

4 10

TOTAL 50
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1.(10 points) Let p and q be odd primes. Define εp = (−1)(p−1)/2. Prove that εpp is a square
modulo q if and only if q is a square modulo p.

Proof: Observe that if one shows that
(

εpp
q

) (
q
p

)
= 1 this is the same as showing that εpp is a

square modulo q if and only if q is a square modulo p. We have(
εpp

q

) (
q

p

)
=

(
εp

q

) (
p

q

) (
q

p

)
=

(
−1
q

)(p−1)/2 (
p

q

) (
q

p

)
= (−1)(p−1)(q−1)/4

(
p

q

) (
q

p

)
= (−1)(p−1)(q−1)/4(−1)(p−1)(q−1)/4 by quadratic reciprocity
= 1.

Thus, we have the result. �
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2. (2+2+5+5 points each) Consider the elliptic curve E161 : y2 = x3 − 1612x.

(a) What is the rank of E161?

Using SAGE we have

sage : E = EllipticCurve([−1612, 0]); E.rank()
sage : 2

Thus the rank of the elliptic curve is 2.

(b) What are the elements of E161(Q)tors?

As computed in class, we have E161(Q)tors = {0E161 , (0, 0), (±161, 0)}.

(c) Compute aE161,n for 1 ≤ n ≤ 25. (This does not have to be done by hand!) Use these values
to estimate L(E161, 1).

We use SAGE to compute the values of aE161,n for 0 ≤ n ≤ 25:

sage : E.anlist(25)
sage : [0, 1, 0, 0, 0,−2, 0, 0, 0,−3, 0, 0, 0,−6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0,−1]

We see the only nonzero terms correspond to n = 1, 5, 9, 13, 17, 25 with corresponding values
1,−2,−3,−6, 2,−1. Thus, our approximation for L(E161, 1) is given by

L(E161, 1) ≈ 1 · 1−1 + (−2)5−1 + (−3)9−1 + (−6)13−1 + 2 · 17−1 + (−1)25−1

= − 1943
16575

≈ −0.117.

(d) Is 161 a congruent number? If so, find a triangle with rational sides and area 161.

One has from part (a) that the rank is 2, thus 161 is a congruent number. To find a trian-
gle with area 161 we need a rational point on the curve. We use SAGE and the command
E.point search(10) to find the point (x, y) = (289, 4080). We now plug this into the bijection es-
tablished in the most recent homework assignment to get the triangle with sides (X, Y, Z) where

X =
2737
120

Y =
240
17

Z =
54721
2040

where we have used that if (x, y) is a point on the curve, then (x,−y) is also on the curve. Thus,
when we use the homework problem and the point (x, y) we get a triple (X, Y, Z) with X < 0 and
Y < 0, not real useful for a triangle! But if we use (x,−y) instead we get the sides listed above.
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3. (4 points each) In this problem you show that x2−2
2y2+3

is not an integer for any integers x, y.

Suppose that there exists x, y ∈ Z so that x2−2
2y2+3

∈ Z.

(a) Show that if p is a prime with p | 2y2 + 3, then necessarily p ≡ ±1(mod 8).

Proof: By assumption we have that x2−2
2y2+3

∈ Z and so if p | 2y2 + 3 we must have p | x2 − 2 as

well. Thus, 2 is a square modulo p, i.e.,
(

2
p

)
= 1. However, we know this is the case if and only

if p ≡ ±1(mod 8). �

(b) Show that 2y2 + 3 ≡ ±1(mod 8).

Proof: We know that every prime that divides 2y2 + 3 is congruent to ±1(mod 8). Thus, when
we reduce 2y2 + 3 modulo 8 we obtain a product of 1’s and −1’s. This gives the result. �

(c) Show 2 - y.

Proof: Suppose 2 | y. Then 2y2 + 3 ≡ 3(mod 8) since 8 | 2y2 if 2 | y. However, we know that
2y2 + 3 ≡ ±1(mod 8). Thus, 2 - y. �

(d) Use the previous results in this problem to reach a contradiction, showing that x2−2
2y2+3

/∈ Z for
any x, y ∈ Z. (Using (c), what form must y be? Use this!)

Proof: Since 2 - y, y is necessarily odd. We can write y = 2k + 1 for some k ∈ Z. Thus we have

2y2 + 3 = 2(2k + 1)2 + 3

= 2(4k2 + 4k + 1) + 3
≡ 5(mod 8).

However, this again contradicts part (b). Thus, it must be that x2−2
2y2+3

/∈ Z. �
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4. (5+5 points) (a) Let p be a prime and let a be an integer so that ordp(a) = 3. Prove that
1 + a + a2 ≡ 0(mod p).

Proof: Observe that (1− a)(1 + a + a2) = 1− a3 (finite geometric series). Thus, we have

a3 − 1 ≡ (a− 1)(1 + a + a2)(mod p).

However, since ordp(a) = 3 we have that the left hand side of the equation is 0. Thus, p |
(a−1)(1+a+a2). Since ordp(a) = 3, it can’t be that p | (a−1) and so p | (1+a+a2) as desired.
�

(b) Prove that ordp(1 + a) = 6.

Proof: To show this we must establish the two facts that (1+a)6 ≡ 1(mod p) and that (1+a)h 6≡
1(mod p) for any h | 6, i.e., for h = 1, 2, 3. Observe that (1+a)6 = a6 +6a5 +15a4 +20a3 +15a2 +
6a + 1. We now use that a3 ≡ 1(mod p) to get that

(1 + a)6 ≡ 22 + 21a + 21a2(mod p)

≡ 1 + 21(1 + a + a2)(mod p)
≡ 1(mod p)

where we used part (a) for the last congruence. Thus, we at least have that ordp(1 + a) | 6.
If 1 + a ≡ 1(mod p) then we have p | a which would contradict ordp(a) = 3.
Suppose (1+a)2 ≡ 1(mod p). Then 1+2a+a2 ≡ 1(mod p), i.e., (a2 +a+1)+(a−1) ≡ 0(mod p).
Using part (a) we obtain that a ≡ 1(mod p), contradicting that ordp(a) = 3.
Suppose (a + 1)3 ≡ 1(mod p). Then a3 + 3a2 + 3a + 1 ≡ 1(mod p), i.e., a(a2 + 3a + 3) ≡ 0(mod p).
Again, p - a so we must have a2 + 3a + 3 ≡ 0(mod p). Using part (a) again we obtain 2(a + 1) ≡
0(mod p). Since by assumption we have an element of order 3, p 6= 2. Thus p | a+1 which implies
a ≡ −1(mod p), i.e., ordp(a) = 2. Thus, the order of 1 + a cannot be 3.
Thus, 6 is the smallest positive integer gives 1 when we raise 1 + a and look modulo p, so
ordp(1 + a) = 6 as desired. �


