MATH 573 — SECOND MIDTERM EXAM (IN CLASS PORTION)

May 17, 2007

NAME: Solutions

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 5 pages including this cover. There are 4 problems.
- 3. Do not separate the pages of the exam.
- 4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.
- 5. If you are unsure whether you can quote a result from class or the book, please ask.
- 6. Please turn off all cell phones.

1. (3 points each) In this problem we will work with the elliptic curve E_{21} : $y^2 = x^3 - 441x$.

(a) If we reduce this curve modulo 5 is the resulting curve nonsingular? If so, prove it. If not, give a singular point.

Let \overline{E}_{21} be the curve after reducing modulo 5. Let $f(x,y) = y^2 + \overline{4}x^3 + x$. Then a point $(x_0, y_0) \in (\mathbb{Z}/5\mathbb{Z})^2$ is on the curve \overline{E}_{21} if and only if $f(x_0, y_0) = \overline{0}$. To see if points are singular, we look at partial derivatives:

$$
\frac{\partial f}{\partial y} = \overline{2}y
$$

$$
\frac{\partial f}{\partial x} = \overline{2}x^2 + \overline{1}.
$$

The curve is singular if and only if there is a point with both partial derivatives vanishing. Observe that $\frac{\partial f}{\partial x} = \overline{0}$ if and only if $2x^2 + 1 \equiv 0 \pmod{5}$. However, this is equivalent to $2x^2 \equiv 4 \pmod{5}$, i.e, $x^2 \equiv 2 \pmod{5}$. Thus, we have that the partial derivative with respect to x vanishes if and only if $\left(\frac{2}{5}\right)$ $(\frac{2}{5}) = 1$. However, we know that 2 is not a quadratic residue modulo 5 (as $5 \not\equiv \pm 1 \pmod{8}$). Thus, there are no singular points when we reduce modulo 5.

(b) Though we only defined $a_{E_N, p}$ for primes where \overline{E}_N is an elliptic curve, we can use the exact same definition to define $a_{E_N, p}$ for primes where \overline{E}_N is not an elliptic curve. Keeping this in mind, compute $a_{E_{21},5}$.

This amounts to checking whether each point (i, j) satisfies $f(i, j) = \overline{0}$ for $0 \leq i, j \leq 4$. The points that satisfy this are $\{(0, 0), (1, 0), (2, 1), (2, 4), (3, 2), (3, 3), (4, 0)\}.$ Thus, (throwing in the point at infinity) we have $\#\overline{E}_{21}(\mathbb{Z}/5\mathbb{Z}) = 8$. So we have $a_{E_{21},5} = 5 + 1 - 8 = -2$.

(c) Show that the point $(-3, 36)$ is on the curve E_N .

This amounts to showing $36^2 = (-3)^3 - 441(-3)$, which is easily confirmed.

(d) Prove that the number 21 is a congruent number.

Proof: Part (c) showed that $P = (-3, 36) \in E_{21}(\mathbb{Q})$. We know that the torsion subgroup is given by $E_{21}(\mathbb{Q})_{\text{tors}} = \{0_{E_{21}}, (0,0), (\pm 21, 0)\}\$ as was shown in class. Thus, we have a non-torsion point on the curve which implies the rank is positive. Thus, 21 is a congruent number (as was shown in the last homework set!). \blacksquare

- 2. (4 points each) Let $n > 1$ and $a \in \mathbb{Z}$ so that $gcd(a, n) = 1$.
- (a) Define $\mathrm{ord}_n(a)$.

It is the smallest positive integer so that $a^{\text{ord}_n(a)} \equiv 1 \pmod{n}$.

(b) Prove that $a^h \equiv 1 \pmod{n}$ if and only if $\operatorname{ord}_n(a) \mid h$.

Proof: Suppose that $a^h \equiv 1 \pmod{n}$. Write $h = \text{ord}_n(a)q + r$ for $q, r \in \mathbb{Z}$ with $0 \le r < \text{ord}_n(a)$. We have

$$
ar \equiv aordn(a)qar (mod n)
$$

\n
$$
\equiv aordn(a)q+r (mod n)
$$

\n
$$
\equiv ah (mod n)
$$

\n
$$
\equiv 1 (mod n).
$$

However, since $r < \text{ord}_n(a)$ and $r \geq 0$, the definition of $\text{ord}_n(a)$ implies that we must have $r = 0$ and so $\operatorname{ord}_n(a) \mid h$.

Suppose now that $\text{ord}_n(a) \mid h$. There exists $k \in \mathbb{Z}$ so that $h = k \text{ ord}_n(a)$. Thus,

$$
ah \equiv ak \text{ ord}_n(a) \pmod{n}
$$

$$
\equiv 1k \pmod{n}
$$

$$
\equiv 1 \pmod{n}
$$

as desired.

(c) Prove that $a^i \equiv a^j \pmod{n}$ if and only if $i \equiv j \pmod{\text{ord}_n(a)}$.

Proof: If $i = j$ the statement is trivial. Without loss of generality we can assume $i > j$. Assume $a^i \equiv a^j \pmod{n}$. Since $gcd(a, n) = 1$, we can cancel j copies of a to achieve $a^{i-j} \equiv$ 1(mod n). Part (b) then gives that $\text{ord}_n(a) | (i - j)$, which is the desired result. Assume $i \equiv j \pmod{\text{ord}_n(a)}$. Then $\text{ord}_n(a) \mid (i - j)$ which implies $a^{i - j} \equiv 1 \pmod{n}$. Multiplying both sides by a^j gives the desired result.

(c) Prove that $\{a, a^2, \ldots, a^{\text{ord}_n(a)}\}$ are all incongruent modulo n.

Proof: Suppose $a^i \equiv a^j \pmod{n}$ for some $1 \leq i < j \leq \text{ord}_n(a)$. This implies by part (c) that $i \equiv j(\text{mod ord}_n(a))$. However, this is clearly impossible. Thus $\{a, a^2, \ldots, a^{\text{ord}_n(a)}\}$ must all be incongruent modulo $n. \blacksquare$

3. (10 points) Does the congruence $x^2 \equiv 60 \pmod{83}$ have a solution? Be sure to justify your answer as a "yes" or "no" with no justification will receive 0!

We want to calculate $\left(\frac{60}{83}\right)$ since 83 is a prime. Note that $60 = 2^2 \cdot 3 \cdot 5$. Recalling from class that $\left(\frac{60}{83}\right) = \left(\frac{2^2}{83}\right)\left(\frac{3}{83}\right)\left(\frac{5}{83}\right)$ and applying problem 4 (a), we see that $\left(\frac{60}{83}\right) = \left(\frac{3}{83}\right)\left(\frac{5}{83}\right)$. We use quadratic reciprocity to calculate the second two:

$$
\left(\frac{3}{83}\right)\left(\frac{83}{3}\right) = (-1)^{(83-1)(3-1)/4} = -1.
$$

We have that $\left(\frac{83}{3}\right)$ $\left(\frac{33}{3}\right) = \left(\frac{2}{3}\right)$ $\left(\frac{2}{3}\right) = -1$. Thus, $\left(\frac{3}{83}\right) = 1$.

$$
\left(\frac{5}{83}\right)\left(\frac{83}{5}\right) = (-1)^{(83-1)(5-1)/4} = 1.
$$

We have $\left(\frac{83}{5}\right)$ $\left(\frac{33}{5}\right) = \left(\frac{3}{5}\right)$ $\frac{3}{5}$). One can now look at all the squares modulo 5 or apply quadratic reciprocity again to conclude that $\left(\frac{3}{5}\right)$ $(\frac{3}{5}) = -1$. Thus, $(\frac{5}{83}) = -1$ and so $(\frac{60}{83}) = -1$ and so there are no solutions to the given congruence.

4. (4+8 points) (a) Prove that $\left(\frac{a^2}{n}\right)$ $\left(\frac{a^2}{p}\right) = 1$ for all a with $p \nmid a$.

Proof: This is equivalent to showing there is a solution to the congruence $x^2 \equiv a^2 \pmod{p}$ with $p \nmid a$. This is clear though, take $x = a$.

(b) If $p > 7$ is a prime, prove that there are at least 2 consecutive quadratic residues modulo p. (Hint: Consider 4 and 9. Look at the cases $\left(\frac{5}{n}\right)$ $\left(\frac{5}{p}\right) = 1$ and $\left(\frac{5}{p}\right)$ $\left(\frac{5}{p}\right) = -1.$

Proof: By part (a) we have $\left(\frac{4}{n}\right)$ $\left(\frac{4}{p}\right) = 1$ and $\left(\frac{9}{p}\right)$ $\left(\frac{9}{p}\right) = 1$ for all primes p with $p > 7$. If $\left(\frac{5}{p}\right)$ $(\frac{5}{p}) = 1$ we are done with our consecutive quadratic residues being 4 and 5. Suppose $\left(\frac{5}{n}\right)$ $\left(\frac{5}{p}\right) = -1$. Then we have $\sqrt{10}$ $\left(\frac{10}{p}\right) = \left(\frac{2}{p}\right)$ $\left(\frac{2}{p}\right)\left(\frac{5}{p}\right) = -\left(\frac{2}{p}\right)$ $\left(\frac{2}{p}\right)$. If $\left(\frac{2}{p}\right)$ $\left(\frac{2}{p}\right) = -1$ then $\left(\frac{10}{p}\right)$ $\left(\frac{10}{p}\right) = 1$ and our consecutive quadratic residues are 9 and 10. If $\left(\frac{2}{n}\right)$ $\left(\frac{2}{p}\right) = 1$, then $\left(\frac{8}{p}\right)$ $\left(\frac{8}{p}\right) = \left(\frac{2}{p}\right)$ $\left(\frac{p}{p}\right)$ = 1 and so 8 and 9 are our consecutive quadratic residues. Thus, in all cases we have consecutive quadratic residues.