
MATH 573 — FINAL EXAM

May 30, 2007

NAME: Solutions

1. This exam is due Wednesday, June 6 before the 1:30 pm. After 1:30 pm I will NOT accept the exam.

2. This exam has 12 pages including this cover. There are 10 problems.

3. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.

4. You are welcome to use any non-human sources you choose. (Note, talking to someone on the
phone, over the internet, etc. falls under getting human help.) Be sure to cite your sources as
unacknowledged sources constitute plagarism and will receive 0 points.

PROBLEM POINTS SCORE

1 11

2 10

3 12

4 10

5 10

6 10

7 15

8 10

9 12

TOTAL 100
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1.(6+5 points) We proved in class that given integers a1, a2,m1,m2 with gcd(m1,m2) = 1, then
there is a unique simultaneous solution x modulo m1m2 to the system of equations

x ≡ a1(modm1)
x ≡ a2(modm2).

(a) If gcd(m1,m2) = d, prove that there is a simultaneous solution x to the system of equations

x ≡ a1(modm1)
x ≡ a2(modm2)

if and only if a1 ≡ a2(mod d). Show that this solution x is unique modulo m1m2/d.

Proof: We know that x = a1 + m1t is a solution to x ≡ a1(modm1) for any t ∈ Z. We now
want to determine when we can choose t ∈ Z so that x = a1 + m1t is also a solution to the
congruence x ≡ a2(modm2). We have that x is a solution to this second congruence if and only
if a1 + m1t ≡ a2(modm2), which is equivalent to m1t = a2 − a1(modm2). This is now a linear
congruence and we know this has a solution if and only if gcd(m1,m2) | (a2 − a1), as desired.
Suppose now that x and y are both solutions to the system of congruences. Then x ≡ y(modm1)
and x ≡ y(modm2). Thus, we must have the least common multiple of m1 and m2 divides x− y,
i.e., m1m2/d divides x− y. This is precisely what it means for the solution to be unique modulo
m1m2/d. �

(b) Find the smallest positive simultaneous solution to the system of equations:

x ≡ 17(mod 65)
x ≡ 42(mod 20).

From part (a) we see that we need to find a solution to

65t ≡ 42− 17(mod 20),

i.e., a solution to
5t ≡ 5(mod 20).

This is obvious though with t = 1. Thus, our simultaneous solution is x = 17 + 65 = 82.
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2. (10 points) Let D be a positive integer and suppose there exists a prime p dividing D so that
p ≡ 3(mod 4). Prove that x2 −Dy2 = −1 has no integer solutions.

Proof: Suppose x0, y0 is an integer solution to the equation, i.e., x0, y0 ∈ Z and

x2
0 − dy2

0 = −1.

Looking at this equation modulo p we obtain

x2
0 ≡ −1(mod p).

This implies that −1 is a quadratic residue modulo p. Since p ≡ 3(mod 4) this cannot be the case.
Thus, there are no integer solutions to this equation. �

3. (6+6 points) (a) Evaluate the continued fraction [2 : 1, 2].

Set x = [1, 2]. Then we have x = [1, 2, 1, 2]. From this we have

x = 1 +
1

2 + 1
x

= 1 +
x

2x + 1

=
3x + 1
2x + 1

.

This leads to the quadratic equation

2x2 − 2x− 1 = 0.

We can use the quadratic equation to solve for x, noting that x > 0 to discard one of the solutions:

x =
1
2

+
√

3
2

.

So we have

[2 : 1, 2] = 2 +
1
x

= 2 +
2

1 +
√

3

= 2 +
2− 2

√
3

1− 3
= 1 +

√
3.
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(b) Express 71
55 as a finite simple continued fraction. Do this by hand!

We use the Euclidean algorithm to accomplish this:

71 = 55(1) + 16
55 = 16(3) + 7
16 = 7(2) + 2
7 = 2(3) + 1
2 = 1(2) + 0.

We now convert these equations into the form we need:

71
55

= 1 +
16
55

55
16

= 3 +
7
16

16
7

= 2 +
2
7

7
2

= 3 +
1
2

2 = 2 + 0.

Combining these equations we obtain the following continued fraction:

71
55

= 1 +
16
55

= 1 +
1
55
16

= 1 +
1

3 + 7
16

= 1 +
1

3 + 1
16
7

= 1 +
1

3 +
1

2 + 2
7

= 1 +
1

3 +
1

2 +
1

3 + 1
2

.

Thus, the continued fraction expansion of 71
55 is [1; 3, 2, 3, 2].



5

4. (10 points) Is 137 a congruent number? Be sure to justify your answer. If it is a congruent
number, find a triangle with rational sides and area 137.

Using SAGE one finds the rational point
(
−3136

25 , 77112
125

)
. This is clearly not in the set E137(Q)tors,

so 137 is a congruent number. Previous homework allows one to turn this rational point into the
triangle with side lengths: 1377

280 , 76720
1377 , 21565121

385560 , which one can easily check has area 137.

5. (10 points) Prove that 3 is a primitive root of all integers of the form 7k and 2 · 7k for k ≥ 1.

Proof: For this one needs to go back to how we proved primitive roots existed for prime powers.
In fact, with the proper set-up one could just quote these results. It is elementary to check that
3 is a primitive root modulo 7. We can also check that 36 6≡ 1(mod 49). Thus, 3 satisfies the
hypotheses of Lemma 2 on page 160 of the textbook (we also covered this in class, but we didn’t
number it there.) Thus, we have 37k−26 6≡ 1(mod 7k) for all k ≥ 2. Now the proof of Theorem 8.9
of the text shows that 3 is a primitive root for 7k with k ≥ 1 and the Corollary to Theorem 8.9
shows 3 is a primitive root of 2 · 7k for all k ≥ 1. �

6. (10 points) Find 6 different positive values of n so that n+1 and n
2 +1 are both perfect squares.

Are there infinitely many different values for n so that n + 1 and n
2 + 1 are both perfect squares?

Prove your answer is true. (You may use any theorems proven in class to prove your result.)

Proof: Suppose n + 1 and n
2 + 1 are both perfect squares, i.e., there exists x, y ∈ Z so that

n+1 = x2 and n
2 +1 = y2, i.e., n+2 = 2y2. Subtracting these two equations gives that n+1 and

n
2 +1 are perfect squares if and only if there is an integer solution to the equation x2− 2y2 = −1.
We know from class that if we let pk

qk
be the convergents of the continued fraction expansion of√

2, then
p2

k − 2q2
k = (−1)k+1bk+1

where bk+1 is defined as in class. We saw that this equation has solutions if and only if the period
of the continued fraction expansion of

√
2 is odd, which in this case it is with period n = 1.

We found the solutions to be given by pn(2t+1)−1, qn(2t+1)−1 with t ≥ 1, which in our case are
given by p2t, q2t. This shows in fact that we have infinitely many x, y ∈ Z satisfying this equation
and thus infinitely many such n. We now just need to find 6 of them. The first 6 solutions of
the equation are: (x, y) = (7, 5), (41, 29), (239, 169), (1393, 985), (8119, 5741), (47321, 33461). The
corresponding values of n are: 48, 1680, 57120, 1940448, 65918160, 2239277040. �
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7. (5 points each) Let a and b > 1 be relatively prime integers with b odd. Write b = p1 · · · pr

with the pi odd, define the Jacobi symbol
(

a
b

)
by(a

b

)
=

(
a

p1

)
· · ·

(
a

pr

)
.

(a) Prove that if a is a quadratic residue of b then
(

a
b

)
= 1. Is the converse true? Prove it or give

a counterexample.

Proof: Let b = p1 · · · pr with pi odd primes. If a is a quadratic residue modulo b then there exists
an integer x so that x2 ≡ a(mod b). Thus, b | (x2 − a). Since pi | b, we have x2 ≡ a(mod pi) for
each i. Namely, we have (a

b

)
=

n∏
i=1

(
a

pi

)
=

n∏
i=1

1 = 1.

The converse is false. Consider a = 3 and b = 35. Then a is not a quadratic residue modulo 35
(check by computation) but (

3
35

)
=

(
3
5

) (
3
7

)
= (−1)(−1) = 1.�

(b) Prove that
(

aa′

b

)
=

(
a
b

) (
a′

b

)
and

(
a

bb′

)
=

(
a
b

) (
a
b′

)
.

Proof: Let b = p1 · · · pr. We have(
aa′

b

)
=

n∏
i=1

(
aa′

pi

)

=
n∏

i=1

(
a

pi

) (
a′

pi

)
=

(a

b

) (
a′

b

)
where we have used the analogous property for the quadratic residue symbol. Let b′ = pr+1 · · · ps

with pj (r + 1 ≤ j ≤ s) primes. We have

( a

bb′

)
=

s∏
i=1

(
a

pi

)

=
r∏

i=1

(
a

pi

) s∏
j=r+1

(
a

pj

)
=

(a

b

) ( a

b′

)
as claimed. �
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(c) Prove that if a and b are relatively prime positive odd integers each greater then 1, then(a

b

) (
b

a

)
= (−1)

a−1
2

b−1
2 .

It may be helpful to note that if u, v are odd integers, then (u−1)/2+(v−1)/2 ≡ (uv−1)/2(mod 2).

Proof: Let a = p1 · · · pr and b = q1 · · · qs. We have(a

b

)
=

s∏
i=1

(
a

qi

)

=
s∏

i=1

r∏
j=1

(
pj

qi

)

=
s∏

i=1

r∏
j=1

(
qi

pj

)
(−1)

“
pj−1

2

”“
qi−1

2

”
(quadratic reciprocity)

=
(

b

a

) s∏
i=1

r∏
j=1

(−1)
“

pj−1

2

”“
qi−1

2

”

=
(

b

a

)
(−1)

Ps
i=1

Pr
j=1

“
pj−1

2

”“
qi−1

2

”

=
(

b

a

)
(−1)

Ps
i=1

“
qi−1

2

”
(−1)

Pr
j=1

“
pj−1

2

”

=
(

b

a

)
(−1)(

b−1
2 )(a−1

2 )

where the last equality follows from the hint. Now we use that
(

b
a

)
= ±1 to move

(
b
a

)
to the

other side of the equation
((

b
a

)
=

(
b
a

)−1
)
. �

8. (10 points) Prove that φ(p!) = (p− 1)φ((p− 1)!) for p prime.

Proof: We can write p! = p(p− 1)!. Since p is a prime, gcd(p, (p− 1)!) = 1 and so φ(p(p− 1)!) =
φ(p)φ((p− 1)!) = (p− 1)φ((p− 1)!), as claimed. �
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Choose either version of problem 9 to do. You may receive extra credit for doing the other one
though!

9. (12 points) Consider the equation

a2 + b2 = p(c2 + d2).

Show that if p ≡ 3(mod 4) that this equation has no solutions. (You may want to use descent here!)

Proof: Let u1, v1, x1, y1 ∈ Z>0 be a solution to the equation so that

u2
1 + v2

1 = p(x2
1 + y2

1). (1)

This implies that u2
1 + v2

1 ≡ 0(mod p), i.e., u2
1 ≡ −v2

1(mod p). Suppose p - v1. Then we have that(
−v2

1
p

)
= 1. However, we know that

(
v2
1
p

)
= 1 and so we must have

(
−1
p

)
= 1. This is impossible

since p ≡ 3(mod 4). Thus, we have p | v1 and hence p | u1 as well. Set u2 = u1/p and v2 = v1/p.
Then we have

(pu2)2 + (pv2)2 = p(x2
1 + y2

1)

i.e.,
x2

1 + y2
1 = p(u2

2 + v2
2).

Note that u2 < u1. We can now repeat the same argument to obtain that p | x1 and p | y1.
Setting x2 = x1/p and y2 = y1/p and applying the same argument we obtain

u2
2 + v2

2 = p(x2
2 + y2

2).

However, this gives another solution (u2, v2, x2, y2) with strictly smaller positive values then our
original solution. Applying descent we see that we have a strictly decreasing sequence of positive
integers, a contradiction. Thus there can be no solutions. �
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9. (6+6 points) Let m be a positive square-free integer.

(a) Show that the elements a + b
√

m with a, b ∈ Z are all algebraic integers in Q(
√

m).

Proof: Set α = a + b
√

m with a, b ∈ Z. Observe that α + α = 2a ∈ Z and αα = a2 −mb2 ∈ Z.
Thus, the polynomial f(x) = x2 − (α + α)x + αα is a monic polynomial with integer coefficients.
Plugging in α we see that

f(α) = α2 − (α + α)α + αα = 0.

Thus, we see that α is necessarily an algebraic integer in Q(
√

m). �

(b) Prove there are infinitely many units in Q(
√

m).

Proof: Recall that α = a + b
√

m ∈ Q(
√

m) is a unit if and only if N(α) = αα = ±1 and
α is an algebraic integer. The statement about the norm is equivalent to the statement that
a2 −mb2 = ±1. Consider the equation x2 −my2 = 1. This is Pell’s equation and we know there
are infinitely many solutions to this equation for m positive and square-free. For any solution
xn, yn of the equation x2−my2 = 1 we have that the element xn +yn

√
m is then a unit in Q(

√
m)

by part (a) along with the fact that it has norm 1. Since there are infinitely many integer solutions
to Pell’s equation, there are infinitely many units in Q(

√
m). �


