
MATH 566 — SECOND MIDTERM EXAM

February 23, 2007

NAME: Solutions

1. (3+2+6+4 points) Let R be a binary relation on a set A.

(a) Define what it means for R to be reflexive, symmetric, and transitive.

The relation R is reflexive if for every a ∈ A one has aRa.
The relation R is symmetric if whenever x, y ∈ A are such that xRy, then yRx.
The relation R is transitive if whenever x, y, z ∈ A are such that xRy and yRz, then xRz.

(b) Define what it means for R′ to be the transitive closure of R.

The relation R′ on A is the transitive closure of a relation R if it satisfies the following two con-
ditions:
1. R ⊆ R′

2. If S is a relation on A that is transitive and R ⊆ S, then R′ ⊆ S.

(c) Let R be given by the following directed graph. Is R reflexive? symmetric? transitive? Be
sure to give reasons.
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Reflexive: yes

Symmmetric: yes

Transitive: No, cRb and bRe but c is not related to e

(d) Draw the transitive closure R′ of R.
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2. (6+4 points)Consider the following algorithm:

for k := 1 to n − 1
for j := 1 to k + 1

x := a[k] + b[j]
next j

next k

(a) Compute the actual number of elementary operations that must be performed when the al-
gorithm segment is executed.

We construct a table to help set up the summation that gives the total number of elementary
operations:

k = 1 k = 2 · · · k = n − 1

j = 1 j = 2 j = 1 j = 2 j = 3 · · · j = 1 · · · j = n

1 1 1 1 1 · · · 1 · · · 1

Thus we have the summation:

2 + 3 + 4 + · · · + n = (1 + 2 + 3 + · · · + n) − 1

=
n(n + 1)

2
− 1

=
1

2
n2 +

1

2
n − 1.

(b) Find the order of the algorithm segment from among the set of power functions.

The order of
1

2
n2 +

1

2
n − 1 is Θ(n2).
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3. (5 points each) (a) State in terms of an inequality what the statement “f(n) is O(1)” means.

The statement f(n) is O(1) means that there exists a positive integer N and a real number c ≥ 0
so that |f(n)| ≤ c for all n ≥ N .

(b) Prove that

n
∑

k=1

1

k5
is O(1).

One can use an indefinite integral for this problem. One has

∞
∑

k=2

1

k5
≤

∫

∞

2

x−5dx

= lim
b→∞

∫ b

2

x−5dx

= lim
b→∞

−
1

4
(b−4 − 2−4)

= 2−6.

Thus, we have that
∞
∑

k=1

1

k5
≤ 1 +

1

26

for all n.

(c) If f(n) is Ω(1) and g(n) is Ω(1), is f(n)− g(n) = 0? Is f(n)− g(n) of order Ω(1)? Be sure to
justify your answers with proofs or counterexamples.

Let f(n) = 10 and g(n) = 2, then f(n) and g(n) are both Ω(1) but clearly f(n) − g(n) 6= 0.
Now consider the case that f(n) = 1 and g(n) = n. Then f(n) and g(n) are both Ω(1), but
f(n) − g(n) = 1 − n which is not bounded from below, so is not Ω(1).

(d) If f(n) is O(n) and g(n) is O(n), is f(n)+ g(n) of order O(n)? Be sure to justify your answer
with proofs or counterexamples.

Since f(n) is O(n) we know there exists a constant c and a positive integer N so that |f(n)| ≤ cn
for all n ≥ N . Similarly, there exists a M and d so that |g(n)| ≤ dn for all n ≥ M . Let
T = max(M,N). Then for n ≥ T we have

|f(n) + g(n)| ≤ |f(n)| + |g(n)| (triangle inequality)

≤ cn + dn

(c + d)n.

Thus, f(n) + g(n) is O(n).
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4. (5 points each) A single pair of rabbits (male and female) is born at the beginning of a year.
Assume the following conditions:
(1) Rabbit pairs are not fertile during their first 3 months of life, but thereafter give birth to five
new male/female pairs at the end of every month.
(2) No rabbits die.
Let sn = the number of pairs of rabbits alive at the end of month n for each integer n ≥ 1 and
let s0 = 1.

(a) Compute s0, s1, s2, s3, s4, s5, s6, s7, s8.

We solve this by first forming a table:

Month 0 1 2 3 4 5 6 7 8

Fertile 0 0 0 1 1 1 1 6 11

Unfertile 1 1 1 0 5 10 15 15 40

Thus, we have that s0 = 1 = s1 = s2 = s3, s4 = 6, s5 = 11, s6 = 16, s7 = 21 and s8 = 51.

(b) Find a recurrence relation for sn. (You may wish to check it on the data from part (a) to
make sure it works!)

To find sn we observe that we have all of the pairs of rabbits from the previous month, sn−1, plus
all of the pairs newly born. The number of newly born is given by 5sn−4. Thus, sn = sn−1+5sn−3.
We can check this, for example s8 = 51 = s7 + 5s4.

(c) How many rabbits will there be at the end of two years?

We need to compute s12. Observe that we have

s9 = s8 + 5s5 = 51 + 55 = 106

s10 = s9 + 5s6 = 106 + 80 = 186

s11 = s10 + 5s7 = 186 + 105 = 291

s12 = s11 + 5s8 = 291 + 255 = 546.

Of course, this is giving the number of pairs of rabbits, so we must multiply this by 2 to get the
total number of rabbits, 1092 rabbits.
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5. (5 points each) Prove the following properties:

(a) If k is an integer and x is a real number with 2k ≤ x < 2k+1, then ⌊log2 x⌋ = k.

Since log2 is an increasing function, we can apply log2 to the inequality 2k ≤ x < 2k+1 to obtain
k ≤ log2 x < k + 1 where we have used the fact that log2 xb = b log2 x and log2 2 = 1. Thus, by
definition of the floor function we have ⌊log2 x⌋ = k. �

(b) For any odd integer n > 1, ⌊log2(n − 1)⌋ = ⌊log2 n⌋.

Let n be an odd integer. There exists a positive integer k so that 2k < n < 2k+1. Note that the
inequalities are strict because n is assumed to be odd. Applying part (a) gives that ⌊log2 x⌋ = k.
Since the inequality 2k < n < 2k+1 is strict, we have that n is at least 1 more then 2k, so we have
2k ≤ n − 1 < 2k+1. Applying part (a) again we see that ⌊log2(n − 1)⌋ = k = ⌊log2 x⌋. �

6. (5 points each) (a) Prove that

∞
∑

k=0

4kx4k+2 =
4x6

(1 − x4)2
.

Substituting x4 into the geometric series formula we obtain:

∞
∑

k=0

x4k =
1

1 − x4
.

Taking the derivative of each side of this equation we obtain:

∞
∑

k=0

4kx4k−1 =
4x3

(1 − x4)2
.

Multiplying both sides of this equation by x3 gives the desired result.

(b) Use part (a) (or any other valid method) to calculate

∞
∑

k=0

k

24k
.

Plugging in x = 1
2

into the series from part (a) we observe first that the series converges at x = 1
2

because the geometric series converges there and then simple arithmetic gives the result.
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7. (10 points) Use a recursion tree to determine the order of the recurrence

T (n) = T (n − 2) + 15n + 2.

Let n = 2k + r where r = 0, 1. The recurrence tree for T (n) is given by

15n + 2

15(n − 2) + 6

15(n − 4) + 6

...

15(n − 2(k − 2)) + 2

T (r + 2).

Thus, we have

T (n) =

k−2
∑

j=0

(15(n − 2j) + 2) + T (r + 2)

= 15n

k−2
∑

j=0

1 − 30

k−2
∑

j=0

j + 2

k−2
∑

j=0

1 + T (r + 2)

= 15n(k − 1) − 30

(

(k − 2)(k − 1)

2

)

+ 2(k − 1) + T (r + 2)

= 15n

(

n − r

2
− 1

)

− 15

(

n − r

2
− 2

) (

n − r

2
− 1

)

+ 2

(

n − r

2
− 1

)

+ T (r + 2)

= Θ(n2).
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8. (10 points) You may use whatever method you find easiest (as long as it is a valid method!!)
to determine the order of the recurrence

T (n) = 4T
(⌈n

2

⌉)

+ 2n3 + log2 n2.

We can use the Master Method on this recursion with a = 4, b = 2, and f(n) = 2n3 + log2 n2.
Observe that logb a = log2 4 = 2. Thus we want to compare f(n) with n2. It is clear that f(n)
is Ω(nlogb a+ε) for ε = 1. Thus, we would like to apply part 3 of the master method. However,
before we can do that we need to show that for large enough n there exists a constant c < 1 so
that af(n/b) ≤ cf(n). Observe that we have

4f(n/2) = n3 + 8 log2 n − 8

= n3 + 2 log2 n2 + 2 log2 n2 − 8

> cf(n)

for any 0 < c < 1 for large enough n as 2 log2 n2 − 8 > 0 for large n. In particular, we can choose
c = 1/2 and n ≥ 4. Thus, the master method gives that T (n) is Θ(f(n)) = Θ(n3).


