MATH 566 — SECOND MIDTERM EXAM

February 23, 2007

NAME: Solutions

1. (3+2+6+4 points) Let R be a binary relation on a set A.

(a) Define what it means for R to be reflexive, symmetric, and transitive.

The relation R is reflexive if for every $a \in A$ one has aRa. The relation R is symmetric if whenever $x, y \in A$ are such that xRy, then yRx. The relation R is transitive if whenever $x, y, z \in A$ are such that xRy and yRz, then xRz.

(b) Define what it means for R' to be the transitive closure of R.

The relation R' on A is the transitive closure of a relation R if it satisfies the following two conditions:

1. $R \subseteq R'$ 2. If S is a relation on A that is transitive and $R \subseteq S$, then $R' \subseteq S$.

(c) Let R be given by the following directed graph. Is R reflexive? symmetric? transitive? Be sure to give reasons.

Reflexive: yes

Symmetric: yes

Transitive: No, cRb and bRe but c is not related to e

(d) Draw the transitive closure R' of R.

2. (6+4 points)Consider the following algorithm:

```
for k := 1 to n - 1
for j := 1 to k + 1
x := a[k] + b[j]
next j
next k
```

(a) Compute the actual number of elementary operations that must be performed when the algorithm segment is executed.

We construct a table to help set up the summation that gives the total number of elementary operations:

k = 1		k = 2			•••	k = n - 1		
j = 1	j = 2	j = 1	j = 2	j = 3	•••	j = 1	•••	j = n
1	1	1	1	1	•••	1	•••	1

Thus we have the summation:

$$2+3+4+\dots+n = (1+2+3+\dots+n)-1$$
$$= \frac{n(n+1)}{2}-1$$
$$= \frac{1}{2}n^2 + \frac{1}{2}n - 1.$$

(b) Find the order of the algorithm segment from among the set of power functions.

The order of $\frac{1}{2}n^2 + \frac{1}{2}n - 1$ is $\Theta(n^2)$.

3. (5 points each) (a) State in terms of an inequality what the statement "f(n) is O(1)" means.

The statement f(n) is O(1) means that there exists a positive integer N and a real number $c \ge 0$ so that $|f(n)| \le c$ for all $n \ge N$.

(b) Prove that
$$\sum_{k=1}^{n} \frac{1}{k^5}$$
 is $O(1)$.

One can use an indefinite integral for this problem. One has

$$\sum_{k=2}^{\infty} \frac{1}{k^5} \leq \int_2^{\infty} x^{-5} dx$$
$$= \lim_{b \to \infty} \int_2^b x^{-5} dx$$
$$= \lim_{b \to \infty} -\frac{1}{4} (b^{-4} - 2^{-4})$$
$$= 2^{-6}.$$

Thus, we have that

$$\sum_{k=1}^{\infty} \frac{1}{k^5} \le 1 + \frac{1}{2^6}$$

for all n.

(c) If f(n) is $\Omega(1)$ and g(n) is $\Omega(1)$, is f(n) - g(n) = 0? Is f(n) - g(n) of order $\Omega(1)$? Be sure to justify your answers with proofs or counterexamples.

Let f(n) = 10 and g(n) = 2, then f(n) and g(n) are both $\Omega(1)$ but clearly $f(n) - g(n) \neq 0$. Now consider the case that f(n) = 1 and g(n) = n. Then f(n) and g(n) are both $\Omega(1)$, but f(n) - g(n) = 1 - n which is not bounded from below, so is not $\Omega(1)$.

(d) If f(n) is O(n) and g(n) is O(n), is f(n) + g(n) of order O(n)? Be sure to justify your answer with proofs or counterexamples.

Since f(n) is O(n) we know there exists a constant c and a positive integer N so that $|f(n)| \leq cn$ for all $n \geq N$. Similarly, there exists a M and d so that $|g(n)| \leq dn$ for all $n \geq M$. Let $T = \max(M, N)$. Then for $n \geq T$ we have

$$\begin{aligned} |f(n) + g(n)| &\leq |f(n)| + |g(n)| \qquad \text{(triangle inequality)} \\ &\leq cn + dn \\ &(c+d)n. \end{aligned}$$

Thus, f(n) + g(n) is O(n).

4. (5 points each) A single pair of rabbits (male and female) is born at the beginning of a year. Assume the following conditions:

(1) Rabbit pairs are not fertile during their first 3 months of life, but thereafter give birth to five new male/female pairs at the end of every month.

(2) No rabbits die.

Let s_n = the number of pairs of rabbits alive at the end of month n for each integer $n \ge 1$ and let $s_0 = 1$.

(a) Compute $s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8$.

We solve this by first forming a table:

Month	0	1	2	3	4	5	6	7	8
Fertile	0	0	0	1	1	1	1	6	11
Unfertile	1	1	1	0	5	10	15	15	40

Thus, we have that $s_0 = 1 = s_1 = s_2 = s_3$, $s_4 = 6$, $s_5 = 11$, $s_6 = 16$, $s_7 = 21$ and $s_8 = 51$.

(b) Find a recurrence relation for s_n . (You may wish to check it on the data from part (a) to make sure it works!)

To find s_n we observe that we have all of the pairs of rabbits from the previous month, s_{n-1} , plus all of the pairs newly born. The number of newly born is given by $5s_{n-4}$. Thus, $s_n = s_{n-1} + 5s_{n-3}$. We can check this, for example $s_8 = 51 = s_7 + 5s_4$.

(c) How many rabbits will there be at the end of two years?

We need to compute s_{12} . Observe that we have

 $s_9 = s_8 + 5s_5 = 51 + 55 = 106$ $s_{10} = s_9 + 5s_6 = 106 + 80 = 186$ $s_{11} = s_{10} + 5s_7 = 186 + 105 = 291$ $s_{12} = s_{11} + 5s_8 = 291 + 255 = 546.$

Of course, this is giving the number of pairs of rabbits, so we must multiply this by 2 to get the total number of rabbits, 1092 rabbits.

5. (5 points each) Prove the following properties:

(a) If k is an integer and x is a real number with
$$2^k \le x < 2^{k+1}$$
, then $\lfloor \log_2 x \rfloor = k$

Since \log_2 is an increasing function, we can apply \log_2 to the inequality $2^k \le x < 2^{k+1}$ to obtain $k \le \log_2 x < k+1$ where we have used the fact that $\log_2 x^b = b \log_2 x$ and $\log_2 2 = 1$. Thus, by definition of the floor function we have $|\log_2 x| = k$.

(b) For any odd integer n > 1, $|\log_2(n-1)| = |\log_2 n|$.

Let *n* be an odd integer. There exists a positive integer *k* so that $2^k < n < 2^{k+1}$. Note that the inequalities are strict because *n* is assumed to be odd. Applying part (a) gives that $\lfloor \log_2 x \rfloor = k$. Since the inequality $2^k < n < 2^{k+1}$ is strict, we have that *n* is at least 1 more then 2^k , so we have $2^k \le n - 1 < 2^{k+1}$. Applying part (a) again we see that $\lfloor \log_2 (n-1) \rfloor = k = \lfloor \log_2 x \rfloor$.

6. (5 points each) (a) Prove that $\sum_{k=0}^{\infty} 4kx^{4k+2} = \frac{4x^6}{(1-x^4)^2}$.

Substituting x^4 into the geometric series formula we obtain:

$$\sum_{k=0}^{\infty} x^{4k} = \frac{1}{1 - x^4}.$$

Taking the derivative of each side of this equation we obtain:

$$\sum_{k=0}^{\infty} 4kx^{4k-1} = \frac{4x^3}{(1-x^4)^2}.$$

Multiplying both sides of this equation by x^3 gives the desired result.

(b) Use part (a) (or any other valid method) to calculate $\sum_{k=0}^{\infty} \frac{k}{2^{4k}}$.

Plugging in $x = \frac{1}{2}$ into the series from part (a) we observe first that the series converges at $x = \frac{1}{2}$ because the geometric series converges there and then simple arithmetic gives the result.

7. (10 points) Use a recursion tree to determine the order of the recurrence

$$T(n) = T(n-2) + 15n + 2.$$

Let n = 2k + r where r = 0, 1. The recurrence tree for T(n) is given by

$$\begin{array}{c|c}
15n+2 \\
| \\
15(n-2)+6 \\
| \\
15(n-4)+6 \\
| \\
15(n-2(k-2))+2 \\
| \\
T(r+2).
\end{array}$$

Thus, we have

$$\begin{split} T(n) &= \sum_{j=0}^{k-2} (15(n-2j)+2) + T(r+2) \\ &= 15n \sum_{j=0}^{k-2} 1 - 30 \sum_{j=0}^{k-2} j + 2 \sum_{j=0}^{k-2} 1 + T(r+2) \\ &= 15n(k-1) - 30 \left(\frac{(k-2)(k-1)}{2}\right) + 2(k-1) + T(r+2) \\ &= 15n \left(\frac{n-r}{2} - 1\right) - 15 \left(\frac{n-r}{2} - 2\right) \left(\frac{n-r}{2} - 1\right) + 2 \left(\frac{n-r}{2} - 1\right) + T(r+2) \\ &= \Theta(n^2). \end{split}$$

8. (10 points) You may use whatever method you find easiest (as long as it is a valid method!!) to determine the order of the recurrence

$$T(n) = 4T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 2n^3 + \log_2 n^2.$$

We can use the Master Method on this recursion with a = 4, b = 2, and $f(n) = 2n^3 + \log_2 n^2$. Observe that $\log_b a = \log_2 4 = 2$. Thus we want to compare f(n) with n^2 . It is clear that f(n) is $\Omega(n^{\log_b a + \varepsilon})$ for $\varepsilon = 1$. Thus, we would like to apply part 3 of the master method. However, before we can do that we need to show that for large enough n there exists a constant c < 1 so that $af(n/b) \le cf(n)$. Observe that we have

$$4f(n/2) = n^3 + 8\log_2 n - 8$$

= n^3 + 2\log_2 n^2 + 2\log_2 n^2 - 8
> cf(n)

for any 0 < c < 1 for large enough n as $2 \log_2 n^2 - 8 > 0$ for large n. In particular, we can choose c = 1/2 and $n \ge 4$. Thus, the master method gives that T(n) is $\Theta(f(n)) = \Theta(n^3)$.