MATH 454/654 — MIDTERM EXAM

July 14, 2010

NAME: _____

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 7 pages including this cover. There are 5 problems.
- 3. Write your name on the top of EVERY sheet of the exam!
- 4. Do not separate the pages of the exam.
- 5. Please read the instructions for each individual exercise carefully. One of the skills being tested on this exam is your ability to interpret questions, so I will not answer questions about exam problems during the exam.
- 6. Show an appropriate amount of work for each exercise so that I can see not only the answer but also how you obtained it. Be precise in your proofs!
- 7. Turn **off** all cell phones.

PROBLEM	POINTS	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

Name: _____

1. (10 points each) (a) Precisely state the fundamental theorem of calculus (both parts.)

Name: (b) Let $F(x) = \int_{x^2}^{\cos(x)} t e^t dt$. Calculate $\frac{d}{dx} F(x)$.

Name:

2. (10 points each) (a) Calculate the integral $\int_0^{\pi} 2x \sin(x^2) dx$.

(b) Determine if the series $\sum_{n=1}^{\infty} \frac{n!}{n^4+3}$ converges or diverges. Be sure to justify your answer.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

Prove that if $\sum_{k=1}^{\infty} b_k$ converges then so does $\sum_{k=1}^{\infty} a_k$.

4. (10 points each) Recall in class we proved the following result: Let $\{a_k\}$ be a sequence of real numbers. The infinite series $\sum_{k=1}^{\infty} a_k$ converges if and only if for every $\epsilon > 0$ there is a $N \in \mathbb{N}$ so that if $m \ge n \ge N$ then $|\sum_{k=n}^{m} a_k| < \epsilon$. (a) Rephrase this into a statement about sequences.

(b) Prove that if $\sum_{k=1}^{\infty} a_k$ converges and $\{b_k\}$ is a bounded sequence, then $\sum_{k=1}^{\infty} a_k b_k$ converges.

Name:

5. (10 points each) (a) Let $a, b \in \mathbb{R}$ with a < b. Give an example of a partition P of [a, b] so that the norm of P is 1/n.

(b) Let f be an increasing function on [a, b]. Show that f is integrable on [a, b].