Theorems for use on Midterm 1

Theorem 1. (Integral Test) Let f be a continuous, positive, nonincreasing function on the interval $[1, \infty)$ and suppose that $a_k = f(k)$ for all positive integers k. Then the infinite series

$$\sum_{k=1}^{\infty} a_k$$

converges if and only if the improper integral

$$\int_{1}^{\infty} f(x) dx$$

converges.

Theorem 2. (*p*-series) The series

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

converges if p > 1 and diverges if $p \leq 1$.

Theorem 3. (Ordinary Comparison Test) Suppose that $0 \le a_n \le b_n$ for all $n \ge N$.

(i) If $\sum b_n$ converges, so does $\sum a_n$. (ii) If $\sum a_n$ diverges, so does $\sum b_n$.

Theorem 4. (Limit Comparison Test) Suppose that $a_n \ge 0$, $b_n > 0$, and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L.$$

If $0 < L < \infty$, then $\sum a_n$ and $\sum b_n$ converge of diverge together. If L = 0 and $\sum b_n$ is convergent, then $\sum a_n$ converges.

Theorem 5. (Alternating Series Test) Let

$$a_1-a_2+a_3-a_4+\cdots$$

be an alternating series with $a_n > a_{n+1} > 0$. If $\lim_{n \to \infty} a_n = 0$, then the series converges. Moreover, the error made by using the sum S_n of the first n terms to approximate the sum S of the series is not more than a_{n+1} .

Theorem 6. (Absolute Ratio Test) Let $\sum a_n$ be a series of nonzero terms and suppose that

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \rho$$

(i) If ρ < 1, the series converges absolutely (hence converges).
(ii) If ρ > 1, the series diverges.
(iii) If ρ = 1, the test is inconclusive.