MATH 8530 — Midterm Exam

October 21, 2014

NAME:

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 12 pages including this cover. There are 3 problems.
- 3. Write your name on the top of EVERY sheet of the exam at the start of the exam!
- 4. Do not separate the pages of the exam.
- 5. If you are unsure if you are allowed to use a theorem, ask.
- 6. Turn **off** all cell phones.

PROBLEM	POINTS	SCORE
1	40	
2	30	
3	30	
TOTAL	100	

Name:

1. (10+10+5+5+10 each) Let $T_A \in \text{Hom}_F(F^n, F^m)$ be the linear map given by multiplication by the matrix $A = (a_{i,j}) \in \text{Mat}_{m,n}(F)$.

(a) Prove that a basis for the image of T_A can be found by row reducing A to a matrix B and then taking the columns of A that correspond to the pivot columns of B.

(b) Find a basis for the kernel and image of the map given by the matrix

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{pmatrix}.$$

⁽c) Give a matrix representing the dual map T_A^{\vee} . Explain how you arrived at your answer.

(d) Consider the bases $\mathcal{B} = \{1, x, x^2, x^3\}$ and $\mathcal{C} = \{1, 1 + x, (1 + x)^2, (1 + x)^3\}$ of $V = P_3(F)$ where we recall $P_3(F)$ is the vector space of polynomials of degree less than or equal to 3. Find the change of basis matrix that changes $[v]_{\mathcal{B}}$ into $[v]_{\mathcal{C}}$ for $v \in V$

(e) Find the eigenvalues and bases for the corresponding eigenspaces of the matrix $A \in Mat_3(\mathbf{Q})$ given by

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

2. (5 + 5 + 10 + 10 points) Let $V = P_3(\mathbf{Q})$ be the vector space over \mathbf{Q} of polynomials of degree less than or equal to 3.

(a) Let $\mathcal{B} = \{2, 5x, 3x^2 + x, x^3 + 2x^2 + 3\}$. Show that \mathcal{B} is a basis of V.

(b) Let $T \in \text{Hom}_F(V, V)$ be the map given by differentiation. Find the matrix of this linear map with respect to the basis \mathcal{B} .

⁽c) Find the rational canonical form of the matrix you found in part (b).

(d) If the Jordan canonical form of the matrix you found in part (b) exists over \mathbf{Q} , find it. If it does not exist over \mathbf{Q} , find it over \mathbf{C} and explain why it did not exist over \mathbf{Q} .

3. (15+5+10 points) Let V be a finite dimensional F-vector space. Let $T \in \text{Hom}_F(V, V)$. We say T is *semi-simple* if every T-invariant subspace of V has a T-invariant complement. We say T is *nilpotent* if there is a non-negative integer r so that T^r is the zero map.

(a) Prove that $T \in \text{Hom}_F(V, V)$ is semi-simple if and only if $m_T(x) = p_1(x) \cdots p_k(x)$ with the $p_i(x)$ distinct irreducible polynomials over F.

(b) Let \overline{F} be the algebraic closure of F. Let \mathcal{B} be a basis of V. Prove that T is semi-simple if and only if $[T]_{\mathcal{B}}$ is similar to a diagonal matrix over \overline{F} .

(c) In this problem we work over \overline{F} . Prove that there is a semi-simple linear map $S \in \operatorname{Hom}_{\overline{F}}(V, V)$ and a nilpotent linear map $N \in \operatorname{Hom}_{\overline{F}}(V, V)$ so that

- (i) T = S + N;
- (ii) SN = NS.

Furthermore, show that S and N are unique. (Note: One can actually prove this over an arbitrary field, but it is much easier over an algebraically closed field.)