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Chapter 1

Introduction

These notes are a work in progress. When finished, they will contain the material
covered in a year-long topology sequence taught at Clemson University during
the 2009-2010 academic year. I will be working on them throughout the year and
posting them as I go so that they can be edited by the students as well as provide
details that were omitted in lectures. I will also add a proper introduction at
some point.

Things to do yet:

1. More details about holomorphic and anti-holomorphic forms in Chapter 3.
Need to add stuff about complex de Rham cohomology, maybe notation
for it, etc.

2. Add a chapter on Riemann surfaces that gives the basic theorems neces-
sary for Chapter 5.

3. Beef up Chapter 4. In particular, at least add the duality theorem in this
case.

4. Add the proofs of the comparison theorem in Chapter 5.
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Chapter 2

Point-Set Topology

This chapter covers the basics of point-set topology that will be needed through-
out the rest of these notes. In addition to basic point-set topology, three sections
are devoted to developing the notion of topological groups. This topic is nor-
mally left to the exercises in a first course in topology, but much more detail is
presented here to illustrate how topological notions can be applied effectively
to enhance our knowledge of some familiar algebraic structures.

2.1 Basic Definitions and Examples

We begin here with the most fundamental definition, namely that of a topology.

Definition 2.1.1. Let X be a set. A collection T of subsets of X is called a
topology on X if they satisfy:

1. ∅, X both lie in T ;

2. Arbitrary unions of elements in T are in T ;

3. Finite intersections of elements in T are in T .

We refer to the elements of T as open sets in X or just open sets if X is clear.
If x ∈ X and U ∈ T with x ∈ U , we say U is an open neighborhood of x.

As this is a fairly abstract definition, before we go any further we give some
examples.

Example 2.1.2. For any set X , the collection T = {∅, X} is a topology on X .
We refer to this topology as the trivial topology.

Example 2.1.3. For any set X , the collection of all subsets of X is a topology.
We refer to this topology as the discrete topology.

Example 2.1.4. LetX = {x, y, z}. The collection T = {∅, X, {x}, {y}, {x, y}, {y, z}}
is a topology on X . It can be pictured as follows where the ovals represent the
open sets.

4



x y z

Example 2.1.5. Let X = {x, y, z}. The collection T = {∅, X, {x}, {y}} is not
a topology because it is not closed under unions.

For a set X , there are generally many different ways to define a topology on
X . Sometimes we are able to compare two different topologies defined on X ,
sometimes we are not.

Definition 2.1.6. Let T1 and T2 be topologies on a set X . If T2 ⊂ T1 we say
that T1 is finer than T2.

One should note here that given two topologies on a set X , often there will
be no containment in one direction or the other so it is not necessarily the case
that one topology will be finer than another.

In most cases it is not convenient (or even possible) to give a topology by
explicitly listing every open set. It will often be much easier to specify the
“important” open sets that can be used to generate the rest of the open sets in
the topology.

Definition 2.1.7. Let X be a set. A basis for a topology on a set X is a
collection B of subsets of X (called basis elements) satisfying:

1. For each x ∈ X there is a basis element containing x;

2. If there exists B1, B2 ∈ B so that x ∈ B1 ∩ B2, then there exists B3 ∈ B
so that x ∈ B3 ⊂ B1 ∩B2.

Definition 2.1.8. Let B be a basis for a topology on X . The topology T on
X generated by B is given by declaring that U ⊂ X is in T if for each x ∈ U
there exists a B ∈ B so that x ∈ B ⊂ U .

Of course, we are calling such a collection T given by a basis B a topology
on X , so it is important that we check that T is actually a topology!

Proposition 2.1.9. Let X be a set and B a basis for a topology generating T .
The collection T is a topology on X.
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Proof. It is easy to see that ∅ and X are both in T .
Let {Ui}i∈I be a collection of elements of T . We need to show that

⋃
i∈I Ui ∈

T . Set U =
⋃
i∈I Ui and let x ∈ U . There exists j ∈ I so that x ∈ Uj . Since

Uj ∈ T , there is a basis element B ∈ B so that x ∈ B ⊂ Uj . However, Uj ⊂ U
so we have a basis element B so that x ∈ B ⊂ U . Thus, U ∈ T .

Finally, we need to show that if U1, . . . , Un ∈ T , then U1 ∩ · · · ∩ Un ∈ T .
We show this by induction on n. The base case here is n = 2. Let x ∈ U1 ∩U2.
Since U1 ∈ T , there exists B1 ∈ B so that x ∈ B1 ⊂ U1 and similarly there
exists a B2 so that x ∈ B2 ⊂ U2. We now use that x ∈ B1 ∩ B2 and the fact
that B is a basis to conclude that there exists B3 ∈ B so that x ∈ B3 ⊂ B1∩B2.
However, since B1 ∩ B2 ⊂ U1 ∩ U2, we have that x ∈⊂ B3 ⊂ U1 ∩ U2 and so
U1 ∩ U2 ∈ T . Suppose now that the result is true for n − 1 sets. Consider
U1 ∩ · · · ∩ Un−1 ∩ Un = (U1 ∩ · · · ∩ Un−1) ∩ Un. Our induction hypothesis gives
U1 ∩ · · · ∩ Un−1 ∈ T and Un ∈ T by assumption, so the case n = 2 then gives
that (U1 ∩ · · · ∩ Un−1) ∩ Un ∈ T and so we have the result.

Lemma 2.1.10. Let X be a set and B a basis for a topology T on X. Then T
is the collection of all unions of elements in B.

Proof. Clearly one has all the unions of elements in B are in T because T is a
topology and B ⊂ T . Now let U ∈ T . For each x ∈ U , there exists Bx ∈ B so
that x ∈ Bx ⊂ U . Thus, U =

⋃
x∈U Bx and so the results follows.

In some cases we will already have a topology defined and we would like to
check that a given basis actually gives this topology. Alternatively, we may be
interested in whether two bases give the same topology. The following lemmas
allow us to check this.

Lemma 2.1.11. Let X be a set and B1 and B2 bases for topologies T1 and T2
on X. One has that T2 is finer than T1 if and only if for each x ∈ X and each
B1 ∈ B1 with x ∈ B1, there exists B2 ∈ B2 so that x ∈ B2 ⊂ B1.

Proof. First, suppose that T2 is finer than T1. For x ∈ X , let B1 ∈ B1 be a basis
element containing x. Since T2 is finer than T1, we must have B1 ∈ T2. However,
since T2 is generated by B2, there must exist a B2 ∈ B2 so that x ∈ B2 ⊂ B1.

Now suppose that for each x ∈ X and each B1 ∈ B1 with x ∈ B1, there exists
B2 ∈ B2 so that x ∈ B2 ⊂ B1. Let U ∈ T1. Let x ∈ U . Since B1 generates T1,
there exists B1 ∈ B1 with x ∈ B1 ⊂ U . Our hypothesis now gives B2 ∈ B2 so
that x ∈ B2 ⊂ B1 ⊂ U . Thus, we have that U ∈ T2 as desired.

Lemma 2.1.12. Let X be a set with a topology T . Let O be a collection of
open sets of X such that for each open set U ⊂ X and each x ∈ U , there exists
a Ux ⊂ U with x ∈ Ux and Ux ∈ O. Then O is a basis for T .

Proof. There are two steps in this proof: first we must show O is a basis and
second we must show that the topology generated by O is T .

The first condition of being a basis is clearly satisfied by O. Let U1, U2 ∈ O
so that x ∈ U1 ∩ U2. Since U1 and U2 are open, we have that U1 ∩ U2 is open
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as well. Thus, there exists U3 ∈ O with x ∈ U3 ⊂ U1 ∩ U2 and so O is a basis
of a topology TO.

We immediately have from Lemma 2.1.11 that TO is finer than T . However,
since the elements of O are in T and TO consists of unions of elements of O by
Lemma 2.1.10, we use that T is a topology to get that TO ⊂ T and so we have
equality.

With the notion of bases, we can now give less trivial examples than the
ones above.

Example 2.1.13. Consider the set Rn = {(x1, . . . , xn) : xi ∈ R}. Let B consist
of the sets of the form

B(x, ǫ) = {y ∈ Rn : |x− y| < ǫ}
for x ∈ Rn and ǫ > 0. One can easily check that this collection constitutes a
basis for a topology on Rn. The topology generated by B is referred to as the
standard topology and is the familiar one from classical analysis. Note that the
basis elements here are open balls.

Example 2.1.14. Once again we work with Rn, but this time we let B′ consist
of sets of the form

B(x, ǫ1, . . . , ǫn) = {y = (y1, . . . , yn) ∈ Rn : |xi − yi| < ǫi}
for x ∈ Rn and ǫi > 0. Once again it is straightforward to check that B′ is
a basis for a topology on Rn. The basis elements in this case are open boxes
centered at points in Rn.

Let x ∈ Rn and ǫ > 0. Consider the basis element B(x, ǫ) ∈ B. One
has that B(x, ǫ/2, . . . , ǫ/2) ⊂ B(x, ǫ) and B(x, ǫ/2, . . . , ǫ/2) ∈ B′. Thus, the
topology generated by B′ is finer than the standard topology on Rn. Now
let B(x, ǫ1, . . . , ǫn) ∈ B′. Let ǫ = min(ǫ1, . . . , ǫn). Then we have B(x, ǫ) ⊂
B(x, ǫ1, . . . , ǫn) and B(x, ǫ) ∈ B. Thus, we see that the topology generated by
B′ is the standard topology.

Example 2.1.15. Let X and Y be sets with topologies TX and TY respectively.
Consider the set

X × Y = {(x, y) : x ∈ X, y ∈ Y }.
We define a basis for a topology on X × Y by

B = {U × V : U ∈ TX , V ∈ TY }.
One should check that B is in fact a basis. It is also not hard to show that if
BX is a basis for TX and BY is a basis for TY , the

BX × BY = {BX ×BY : BX ∈ BX , BY ∈ BY }
is a basis for the topology given by B. This topology is referred to as the product
topology. We will study this further in § 2.5.

Note that from what we have shown above the standard topology on Rn is the
same topology as the product topology arising from viewing Rn as R×· · ·×Rn.
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Up to this point the examples given have either been very straightforward or
familiar examples from analysis. We now introduce a few less familiar though
very important examples. Before we do this, we need to introduce the notion
of closed sets. Recall a set U ⊂ X is an open set if U ∈ T . We say a set C
is closed if C = X − U for some U ∈ T . From this definition it should not be
too surprising that one can give a topology on X by specifying the closed sets
instead of the open sets. In particular, we have the following result.

Proposition 2.1.16. Let X be a set and consider a collection C of subsets of
X. Suppose that C satisfies:

1. ∅, X ∈ C;

2. C is closed under finite unions;

3. C is closed under arbitrary intersections.

Then the set T = {X − C : C ∈ C} is a topology on X.

Proof. First, note that ∅ = X −X and X = X − ∅, so ∅ and X are both in T .
Let U1 = X − C1, . . . , Un = X − Cn be elements of T . We have

n⋂

i=1

Ui =

n⋂

i=1

(x− Ci)

= X −
(

n⋃

i=1

Ci

)
.

Since
⋃n
i=1 Ci ∈ C, we see that

⋂n
i=1 Ui ∈ T and so T is closed under finite

intersections.
Similarly, if we have an arbitrary collection {Ui = X −Ci}i∈I of elements of

T , then

⋃

i∈I

Ui =
⋃

i∈I

(X − Ci)

= X −
(
⋂

i∈I

Ci

)
.

Since
⋂
i∈I Ci ∈ C, we have

⋃
i∈I Ui ∈ T and so T is closed under arbitrary

unions. Thus, we have shown that T is a topology.

It is often the case that it is easier to specify the closed sets of a set X . In
this case one needs to keep in mind that the open sets are the complements of
the specified sets!

Example 2.1.17. Let C be the field of complex numbers. Affine n-space over
C is defined to be

AnC = {(a1, . . . , an) : ai ∈ C}.
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One should note that as a set this is just Cn. However, we use the notation
An

C
to denote the fact that we consider it with a very different topology than

the standard topology generated by open balls. Let A = C[x1, . . . , xn] be the
polynomial ring in n variables over C. We view polynomials f ∈ A as functions
on An

C
in the obvious way, namely, for P = (a1, . . . , an) ∈ An

C
and f(x1, . . . , xn) ∈

A, we have f(P ) = f(a1, . . . , an) ∈ C. For such an f , set

V (f) = {P ∈ AnC : f(P ) = 0}.

Let T ⊂ A. We define

V (T ) = {P ∈ AnC : f(P ) = 0 for every f ∈ T }.

We call a subset Y ⊂ An
C

an algebraic set if there exists a T ⊂ A so that
Y = V (T ). We declare the algebraic sets to be the closed sets of An

C
. In order

to obtain a topology on An
C
, we need to show that the collection of algebraic

sets satisfies the conditions given in Proposition 2.1.16.
First, note that V (1) = ∅ and V (0) = An

C
. Now let V (T1), . . . , V (Tr) be

algebraic sets. We need to show that
⋂r
i=1 V (Ti) is an algebraic set. We claim

that V (T1)∪ V (T2) = V (T1T2) where T1T2 is the set of products of elements in
T1 and T2. Let P ∈ V (T1) ∪ V (T2) so P ∈ V (T1) or P ∈ V (T2). If P ∈ V (T1),
then f(P ) = 0 for every f ∈ T1. Clearly we then have fg(P ) = f(P )g(P ) = 0
for all f ∈ T1, g ∈ T2. Thus, P ∈ V (T1T2). Similarly if P ∈ V (T2) and so
V (T1) ∪ V (T2) ⊂ V (T1T2). Now let P ∈ V (T1T2). Suppose P /∈ V (T1). Then
there exists f ∈ T1 so that f(P ) 6= 0. If P ∈ V (T2) we are done, so suppose
P /∈ V (T2), i.e., there exists g ∈ T2 so that g(P ) 6= 0. However, this gives
fg(P ) 6= 0, which contradicts P ∈ V (T1T2). Thus, we have equality. One now
uses induction to get that

⋃r
i=1 V (Ti) = V (T1 · · ·Tr) and so

⋃r
i=1 V (Ti) is an

algebraic set.
Consider now an arbitrary collection of algebraic sets {V (Ti)}i∈I . We need

to show that
⋂
i∈I V (Ti) is an algebraic set. Note that if P ∈ ⋂i∈I V (Ti), then

P ∈ V (Ti) for all i ∈ I. Thus, f(P ) = 0 for every f ∈ ⋃i∈I Ti. Hence, we have⋂
i∈I V (Ti) ⊂ V

(⋃
i∈I Ti

)
. It is also easy to see that V

(⋃
i∈I Ti

)
⊂ ⋂i∈I V (Ti).

Thus, we see that
⋂
i∈I V (Ti) is an algebraic set as well.

The algebraic sets form a topology on An
C

called the Zariski topology.

Example 2.1.18. We can generalize the previous example. Let R be a commu-
tative ring with identity. Let SpecR denote the set of prime ideals in R. Recall
that an ideal p ⊂ R is a prime ideal if R/p is an integral domain. Equivalently,
p is a prime ideal if whenever xy ∈ p, either x ∈ p or y ∈ p. We deal here only
with proper prime ideals. We define a topology on the space SpecR as follows.
Let I be any subset of R. (It is enough to consider only ideals, but we do not
need that here.) We define the closed sets by setting

V (I) = {p ∈ SpecR : I ⊂ p}.

One must show that these satisfy the criterion given in Proposition 2.1.16. Ob-
serve that V (0) = SpecR since every ideal contains 0. We also have that
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V (1) = ∅ since 1 is not contained in any prime ideal. Much as in the above
example, one can show that for V (I1), . . . , V (Ir) one has

r⋂

i=1

V (Ii) = V

(
r∑

i=1

Ii

)

so that
⋂r
i=1 V (Ii) is a closed set. Similarly, for an arbitrary collection {V (Ii)}i∈I ,

one has
⋃

i∈I

V (Ii) = V

(
∏

i∈I

Ii

)

so that
⋃
i∈I V (Ii) is also a closed set. Thus, we have a Zariski topology on

SpecR as well.

One should take a moment to think about why Example 2.1.17 is a special
case of Example 2.1.18.

2.2 The Subspace Topology

Let X be a set with topology T . Let Y ⊂ X be a subset. There is a natural way
to define a topology on Y using T called the subspace topology. This topology
is given by

TY = {Y ∩ U : U ∈ T }.
As an exercise one can show that TY satisfies the definition of a topology on Y .

Lemma 2.2.1. Let B be a basis for T on X. Then

BY = {B ∩ Y : B ∈ B}

is a basis for TY .

Proof. We use Lemma 2.1.12. Let U ∩ Y ∈ TY . Let x ∈ U ∩ Y . In particular,
we have x ∈ U ∈ T and so there exists B ∈ B so that x ∈ B ⊂ U since B is a
basis for T . Thus, we have x ∈ B ∩ Y ⊂ U ∩ Y and so BY is a basis for TY .

Example 2.2.2. LetX = R2 with the standard topology. Consider Y = ([0, 1]∪
{2})×{0} with the subspace topology. The basis we obtain for TY are sets of the
form B(x, ǫ)∩Y for ǫ > 0 and x ∈ R2. For example, {(2, 0)} = B((2, 0), 1/2)∩Y
and so this point is open in Y . Sets of the form [0, a)×{0} as well as (b, 1]×{0}
are also open in Y for 0 < a ≤ 1 and 0 ≤ b < 1. This shows there are many sets
that are open in Y but not in X .

The best way to get a feel for the subspace topology is to create examples
and see what the topologies look like. We see already that we must be careful
when specifying a set U ⊂ Y is open to specify where it is open. It may be the
case that U is open in Y but not in X . There is a case when one does not have
to be careful, namely when Y is open in X .

10



Lemma 2.2.3. Let Y ⊂ X with Y ∈ T . Then we have TY ⊂ T .

Proof. Let V ∈ TY . Then there exists U ∈ T so that V = Y ∩ U . Since U ∈ T
and Y ∈ T , we have V = Y ∩ U ∈ T .

Consider now two spaces X1 and X2 with topologies T1 and T2 respectively.
Let Y1 ⊂ X1 and Y2 ⊂ X2. We have two natural ways to define a topology
on Y1 × Y2 ⊂ X1 × X2. The first way is to consider Y1 × Y2 as a subspace of
X1×X2 and give it the subspace topology. The second way is to give Y1 and Y2

the subspace topologies and then give Y1×Y2 the product topology arising from
the subspace topologies. Thankfully, it turns out these are the same topologies.

Theorem 2.2.4. Let Y1 ⊂ X1 and Y2 ⊂ X2. The product topology on Y1 × Y2

is the same as the subspace topology on Y1 × Y2.

Proof. The basis elements for the product topology on Y1 × Y2 are of the form
(U1 ∩ Y1) × (U2 ∩ Y2) where Ui ∈ Ti. Basis elements for the subspace topology
on Y1 × Y2 are of the form (U1 × U2) ∩ (Y1 × Y2). However, by basic set theory
we have

(U1 ∩ Y1)× (U2 ∩ Y2) = (U1 × U2) ∩ (Y1 × Y2).

Thus, since the bases are equal the topologies are necessarily equal as well.

2.3 More Basic Concepts

In this section we introduce some more of the basic concepts that arise in topol-
ogy such as the closure of a set, limit points, and Hausdorff spaces. First we
need some more results on closed sets.

Let Y ⊂ X be a subset endowed with the subspace topology. (In general we
give subsets the subspace topology unless otherwise noted. We refer to them as
subspaces.) We say a set C ⊂ Y is closed in Y if it is closed in the subspace
topology, i.e., there is an open set U ∈ TY so that C = Y − U .

Lemma 2.3.1. Let Y be a subspace of X. A set C is closed in Y if and only
if it is the intersection of a closed set in X with Y .

Proof. Let C be closed in Y . Then Y − C is open in Y and so there exists
U ∈ T such that Y −C = Y ∩U . We have that X −U is closed in X . Consider
the following figure as motivation.

U

X

Y

C
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Based on this figure it is not hard to give a purely set-theoretic proof that
C = (X − U) ∩ Y . Thus, C is the intersection of Y and a closed set in X , as
claimed.

Suppose now that C = Y ∩ (X − U) for U ∈ T , i.e., C is the intersection
of Y with a closed set in X . Again, using the above picture as motivation one
shows that C = Y − (Y ∩U). Since Y ∩U is open in Y , we have that C is closed
in Y .

Proposition 2.3.2. Let Y be a subspace of X. If C is closed in Y and Y is
closed in X, then C is closed in X.

Proof. The fact that C is closed in Y gives C = Y ∩E for E a closed set in X .
However, since Y is also closed in X we have that C is closed in X .

Definition 2.3.3. Let A ⊂ X . The interior of A, denoted Int(A), is the union
of all U ∈ T that are contained in A. The closure of A, denoted Cl(A), is the
intersection of all closed sets containing A.

Example 2.3.4. Consider A = [0, 1) ⊂ R. The interior of A is (0, 1) and the
closure is [0, 1].

Clearly one always has

Int(A) ⊂ A ⊂ Cl(A).

Note that if A is open then Int(A) = A and if A is closed then Cl(A) = A.
If we have A ⊂ Y ⊂ X we must be careful whether we mean the closure

of A in X or Y . When dealing with subspaces we write ClY (A) to denote the
closure of A in Y . The following proposition relates Cl(A) and ClY (A).

Proposition 2.3.5. Let Y ⊂ X be a subspace. We have

ClY (A) = Cl(A) ∩ Y.

Proof. Observe that Cl(A) ∩ Y is a closed set in Y and contains A. Thus, we
must have ClY (A) ⊂ Cl(A) ∩ Y since ClY (A) is the intersection of all closed
sets in Y containing A.

As for the other direction, observe that since ClY (A) is closed in Y , there
is a closed set C in X so that ClY (A) = Y ∩ C by Lemma 2.3.1. However, we
know that necessarily A ⊂ C and so Cl(A) ⊂ C. Thus, Cl(A) ∩ Y ⊂ Y ∩ C ⊂
ClY (A).

As we have already seen on several occasions, it is often much easier to work
with a basis rather than all of the open sets. The following result allows us to
do exactly this when trying to determine the closure of a set.

Theorem 2.3.6. Let A be a subset of X.

1. One has that x ∈ Cl(A) if and only if every open set containing x intersects
A.
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2. Let B be a basis giving the topology T of X. Then x ∈ Cl(A) if and only
if every B ∈ B such that x ∈ B satisfies B ∩A 6= ∅.

Proof. Note that the first statement is logically equivalent to the statement that
x /∈ Cl(A) if and only if there exists U ∈ T with x ∈ U so that U ∩ A = ∅. We
prove this statement. Suppose x /∈ Cl(A). Then the U we seek is X − Cl(A).
Conversely, suppose there exists U ∈ T with x ∈ U and U ∩ A = ∅. Then
C = X−U is a closed set containing A that does not contain x and so x /∈ Cl(A).

The second results follows from the first. Let x ∈ Cl(A). Then every open
set containing x intersects A. However, since B ⊂ T we have that every basis
element containing x must also intersect A. Conversely, suppose every B ∈ B
with x ∈ B satisfies B∩A 6= ∅. Let U be an open set containing x. There exists
B ∈ B so that x ∈ B ⊂ U . Thus, U ∩ A 6= ∅ and so the first statement gives
x ∈ Cl(A) as desired.

Example 2.3.7. Let A = {1/n : n ∈ Z>0} ⊂ R where R is given the standard
topology. Note that there are no nontrivial open sets contained in A so there
are no basis elements in A. Thus, Int(A) = ∅.

We know that A ⊂ Cl(A) automatically. The only point we add when taking
the closure of A is 0. If B = (x, y) is a basis element containing 0, then we have
x < 0 < y and we can choose M so that 1/M < y and so (x, y) ∩A 6= ∅. Thus,
0 ∈ Cl(A).

Example 2.3.8. Let A = {(x, y) ∈ R2 : x > 0, y 6= 0}. This is an open set so
Int(A) = A. The closure is given by Cl(A) = {(x, y) ∈ R2 : x ≥ 0}.

Example 2.3.9. Let A = {(x, y) ∈ R2 : x ∈ Q}. Again, we see there are no
nontrivial open sets contained in A and so Int(A) = ∅.

The fact that the rational numbers are dense in the real numbers gives
Cl(A) = R2.

Definition 2.3.10. Let A ⊂ X . We say x ∈ X is a limit point of A if every
open set containing x intersects A in some point other than x, i.e., x is a limit
point of A if it belongs to the closure of A− {x}.

Theorem 2.3.11. Let A ⊂ X and let LP(A) be the set of limit points of A.
Then

Cl(A) = A ∪ LP(A).

Proof. Let x ∈ Cl(A). If x ∈ A we are done. Suppose x /∈ A. Since x ∈ Cl(A) we
know that every open set containing x intersects A by Theorem 2.3.6. However,
since x /∈ A it must intersect A in a point other than x and so x ∈ LP(A). Thus,
Cl(A) ⊂ A ∪ LP(A).

Now suppose x ∈ A∪LP(A). If x ∈ A then clearly x ∈ Cl(A). Thus, assume
x ∈ LP(A) but x /∈ A. Then every open set containing x must intersect A in a
point other than x. Thus, using Theorem 2.3.6 in the other direction we obtain
x ∈ Cl(A). Hence, A ∪ LP(A) ⊂ Cl(A) and so we have equality.
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Corollary 2.3.12. A set A is closed if and only if it contains all of its limit
points.

Definition 2.3.13. A space X is said to be Hausdorff if for every x, y ∈ X
with x 6= y there exists U, V ∈ T so that x ∈ U , y ∈ V and U ∩ V = ∅.

A Hausdorff space is one in which one can separate points by open sets.
Most familiar spaces that one encounters before studying topology are Hausdorff
spaces. It is not difficult to come up with artificial examples of topological spaces
that are not Hausdorff.

Example 2.3.14. Let X = {x, y, z} with T = {∅, X, {x, y}}. It is not difficult
to check that this is a topology and the points x and y cannot be separated by
open sets and so X is not Hausdorff.

It is not uncommon for people to assume all the spaces worth considering
are Hausdorff spaces as this eliminates some pathologies that can arise in spaces
that are not Hausdorff and will still include most spaces geometers are interested
in. However, do not do this as many interesting examples that arise in number
theory and algebraic geometry are decidedly not Hausdorff.

Example 2.3.15. Let X = Spec Z = {0, 2, 3, 5, 7, . . .}. Let p, ℓ ∈ Spec Z with
p 6= ℓ. Recall the closed sets of Spec Z are of the form V (n) = {q ∈ Spec Z :
q | n} along with the empty set and the entire space. Thus, the basic open sets
are either the empty set, the entire space or of the form D(n) = X − V (n) =
{0} ∪ {q ∈ Spec Z : q ∤ n}. From this it is not hard to see that if p ∈ U and
ℓ ∈ V , we must have U ∩ V 6= ∅. In fact, U ∩ V must contain infinitely many
primes. Thus, Spec Z is not a Hausdorff space but is an interesting space to
arithmetic geometers.

The following theorem is an easy result on Hausdorff spaces. The proof is
left as an exercise.

Theorem 2.3.16. The product of two Hausdorff spaces is Hausdorff. The
subspace of a Hausdorff space is Hausdorff.

Theorem 2.3.17. Let X be a Hausdorff space. All subsets of X consisting of
finitely many points are closed.

Proof. Note that it is enough to prove the result for a set consisting of a single
point as all finite sets can be written as a finite union of one point sets, and
finite unions of closed sets are closed. Let x ∈ X . We show that Cl({x}) = {x}.
Let y ∈ X be a point with y 6= x. Then there exists U, V ∈ T with x ∈ U ,
y ∈ V and U ∩ V = ∅. Thus, y /∈ Cl({x}) since V is an open set that does not
intersect {x}. Since y was any point other than x we must have Cl({x}) = {x}
and so {x} is closed.

Corollary 2.3.18. Let X be Hausdorff and A ⊂ X. One has x ∈ LP(A) if and
only if every open set containing x intersects A in infinitely many points.
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Proof. Let x ∈ LP(A) and suppose there is an open set U with x ∈ U and
U ∩ (A − {x}) = {x1, . . . , xn}. We know that {x1, . . . , xn} is a closed set in X
since X is Hausdorff. Thus, V = X − {x1, . . . , xn} is an open set containing x.
However, V ∩ (A− {x}) is empty contradicting the fact that x ∈ LP(A). Thus,
if x ∈ U ∈ T we must have U ∩A contains infinitely many points.

Conversely, if every open set containing x intersects A in infinitely many
point, clearly it intersects A in a point other than x and so x ∈ LP(A).

2.4 Continuous Functions

Regardless of the branch of mathematics one is studying, if one wishes to study
structure it is important to determine the relevant maps. For instance, in group
theory one wishes to look at group homomorphisms and in analysis one works
with continuous or differentiable maps. In topology, at least at this point, we
are interested in maps that are continuous. (Later we will look at differentiable
maps.)

Definition 2.4.1. Let X,Y be sets with topologies TX and TY respectively.
Let f : X → Y be a map. If for every V ∈ TY one has f−1(V ) ∈ TX we say f
is continuous.

In general we will omit mention of TX and TY and content ourselves with
statements of the form “V is open in Y ”, etc.

Definition 2.4.2. Let f : X → Y . We say f is continuous at x ∈ X if for every
open set V in Y with f(x) ∈ V there is an open set U in X with f(U) ⊂ V .

Proposition 2.4.3. A function f : X → Y is continuous if and only if it is
continuous at every point in X.

Proof. It is clear that if f is continuous then it must be continuous at every
point in X .

Suppose now that f is continuous at each point x ∈ X . Let V be an open set
in Y . Let x ∈ f−1(V ). Then f(x) ∈ V and so there exists a Ux that is open in
X with x ∈ Ux and f(Ux) ⊂ V since f is continuous at x. Thus, Ux ⊂ f−1(V ).
We can write

f−1(V ) =
⋃

x∈f−1(V )

Ux.

Thus, we see that f−1(V ) is open since it is the union of open sets. Since V
was an arbitrary open set, we see f is continuous.

The proof of the following proposition is straight-forward and left as an
exercise.

Proposition 2.4.4. Suppose the topology on Y is given by a basis B. Then
f : X → Y is continuous if and only if for every B ∈ B one has f−1(B) is open
in X.
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Example 2.4.5. Let f : X → Y be a map and suppose that X has the discrete
topology. Then f is continuous as f−1(V ) is open for any V , so in particular is
open for all V that are open in Y .

Example 2.4.6. Let X = Y = R with the standard topology. We need to
check that our new definition of continuous is equivalent to the ǫ− δ definition
from elementary analysis. First, suppose f : R → R is continuous in the ǫ − δ
definition. Let (a, b) be a basis element of the topology. We wish to show
that f−1((a, b)) is open. Note that if f(X) ∩ (a, b) = ∅ then f−1((a, b)) is
trivially open. So assume there exists y ∈ (a, b) so that y = f(x) for some
x ∈ R. Let ǫ = min{|y − a|, |y − b|}. Since f is ǫ − δ continuous, there exists
a δx so that if z satisfies |x − z| < δx, then |f(x) − f(z)| < ǫ. Thus, we see
that B(x, δx) ⊂ f−1((a, b)) and x ∈ B(x, δ). Since we can do this for each
x ∈ f−1((a, b)), we can write

f−1((a, b)) =
⋃

x∈f−1((a,b))

B(x, δx).

Thus, f−1((a, b)) is open and so by Proposition 2.4.4 we see f is continuous.
Conversely, now assume f is continuous in our new definition. Let x ∈ X

and let ǫ > 0. We have that B(f(x), ǫ) is an open set, so f−1(B(f(x), ǫ))
is open. We have that x ∈ f−1(B(f(x), ǫ)) and so there is a basis element
(a, b) ⊂ f−1(B(f(x), ǫ)) so that x ∈ (a, b). Let δ = min{|x − a|, |b− x|}. Then
B(x, δ) ⊂ (a, b) ⊂ f−1(B(f(x), ǫ)). Thus, if z ∈ B(x, δ) then f(z) ∈ B(f(x), ǫ),
i.e., if |x− z| < δ then |f(x)− f(z)| < ǫ. Since x was arbitrary we have that f
is continuous in the ǫ− δ definition.

Theorem 2.4.7. The function f : X → Y is continuous if and only if f−1(C)
is closed in X for every closed set C in Y .

Proof. First, suppose that f is continuous. Let C ⊂ Y be closed. Set A =
f−1(C). Our goal is to show that Cl(A) ⊂ A. By definition we have f(A) ⊂ C.
Let x ∈ Cl(A). If x ∈ A we are done so assume x /∈ A. Let V be an open set
containing f(x). The fact that f is continuous gives that f−1(V ) is open and
contains x. Since x ∈ Cl(A) we have that f−1(V )∩A 6= ∅. Let y ∈ f−1(V )∩A.
Then we have f(y) ∈ V ∩ f(A). Since V was an arbitrary open set containing
f(x) and it intersects f(A), we must have f(x) ∈ Cl(f(A)) and so

(2.1) f(Cl(A)) ⊂ Cl(f(A)).

Thus,
f(x) ∈ f(Cl(A)) ⊂ Cl(f(A)) ⊂ Cl(C) = C

and so Cl(A) = A as claimed.
Now suppose f−1(C) is closed for every closed set C in Y . Let V be an

open set in Y . Then Y − V is closed in Y and so f−1(Y − V ) is closed in X .
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However, basic set theory gives

f−1(V ) = f−1(Y − C)

= f−1(Y )− f−1(C)

= X − f−1(C)

and so f−1(V ) is open. Since V was arbitrary, we have f is continuous.

Accepting that continuous functions are the “right” functions to study topo-
logical spaces, we need to decide under what conditions on f : X → Y we can
reasonably conclude that from a topological point of view that X and Y are
the same space. A reasonable guess might be that we want to require f to be
continuous and bijective.

Example 2.4.8. Let S1 = {(x, y) ∈ R2 : x2 + y2 = 1} be the unit circle
given the subspace topology. Let X = [0, 1) and define f : X → S1 by f(x) =
(cos 2πx, sin 2πx). It is not hard to see using elementary calculus that f is
continuous and bijective. However, we would not say that X and S1 are the
same space topologically. For instance, S1 contains all its limit points where X
does not. Pictorially, one has that 0 and 1 are not close together in R, but they
map to the same point on S1 if one considers f defined on all of R. We will see
in § 2.8 that S1 is compact and X is not, so we do not wish to consider them
the same space for that reason as well.

The previous example shows that it is not enough to require f : X → Y to
be continuous and bijective.

Definition 2.4.9. We say a continuous bijective map f : X → Y is a homeo-
morphism if the inverse map f−1 : Y → X is also continuous.

Example 2.4.10. Returning to the example above we see that g := f−1 is not
continuous. In particular, [0, 1/4) is open in X but g−1([0, 1/4)) is not open in
S1.

If there is a homeomorphism between X and Y we say that X and Y are
homeomorphic. This is the concept of “sameness” that we are looking for. (We
will actually give another definition of “sameness” in Chapter 3 that includes
homeomorphic spaces.) If whenever a space X satisfies a property, all homeo-
morphic spaces must also satisfy that property we call the property a topological
property.

Lemma 2.4.11. A continuous bijective map f : X → Y is a homeomorphism
if and only if f(U) is open for every open set U in X.

Proof. Write g = f−1 and let U be open in X . Let V = f(U). Since f
is bijective, the set f−1(V ) = {x ∈ X : f(x) ∈ V } is precisely U . Thus,
g−1(U) = f(U) so g is continuous if and only if f(U) is open for every open set
U ⊂ X .
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Example 2.4.12. Let X = (−1, 1) and Y = R. Define f : X → Y by f(x) =
x

1−x2 . One can see by graphing this or using calculus that f is bijective and
continuous. It is also easy to see that for (a, b) ⊂ (−1, 1) a basis element of the

subspace topology, that f((a, b)) =
(

a
1−a2 ,

b
1−b2

)
, which is open in R. Thus, f

is a homeomorphism.

Let f : X → Y be continuous and injective. We have that f : X → f(X) is
then continuous and bijective. If f : X → f(X) is a homeomorphism we say f
is an embedding and that X embeds in the space Y .

Example 2.4.13. Define f : R→ R2 by f(x) = (x, 0). Then f is an embedding
of R into R2.

Example 2.4.14. The map f : Spec Z → Spec Z[x] sending (p) to (p) is an
embedding where (p) ⊂ Z[x] is the extension of the ideal (p) ⊂ Z to Z[x].

In general if X is a subspace of Y with the subspace topology then the
identity map id : X → Y is an embedding.

We have already made use of some of the following results, but we gather
them in one place for convenience. As each item is straight-forward to prove,
we leave the proofs to the reader.

Theorem 2.4.15. Let X,Y and Z be topological spaces.

1. The function f : X → Y defined by f(x) = y0 for a fixed y0 ∈ Y is
continuous.

2. If A ⊂ X is a subspace, then the inclusion function f : A→ X is contin-
uous.

3. If f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is
continuous.

4. If f : X → Y is continuous and A ⊂ X is a subspace, then f : A→ Y is
continuous.

5. If f : X → Y is continuous and f(X) ⊂ Z, then f : X → Z is continuous
assuming the topologies on Z and f(X) agree.

Theorem 2.4.16. (The gluing theorem) Let X = A ∪ B with A and B closed
subsets of X. Let f : A → Y and g : B → Y be continuous functions so that
f(x) = g(x) for all x ∈ A ∩B. Then the function h : X → Y given by

h(x) =

{
f(x) x ∈ A
g(x) x ∈ B

is continuous.
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Proof. First note that h is well-defined because of the assumption that f and g
agree on A ∩B.

Let C ⊂ Y be a closed set. We have

h−1(C) = f−1(C) ∪ g−1(C)

by set theory. Necessarily we have f−1(C) ⊂ A and g−1(C) ⊂ B. Since f and
g are continuous, f−1(C) is closed in A and g−1(C) is closed in B. However,
since A is closed in X we have that f−1(C) is closed in X as well. Similarly we
have g−1(C) is closed in X . Thus, h−1(C) is closed in X and so h is continuous
as claimed.

2.5 Products of Topological Spaces

Recall that in § 2.1 we defined a topology on X × Y in terms of the topologies
TX and TY . In particular, a basis for the topology on X × Y was given by

B = {U × V : U ∈ TX , V ∈ TY }.

In this section we will generalize this notion to arbitrary products of topological
spaces. It turns out there are different ways to generalize the topology given
above and these generalizations are not equivalent. We begin with the box
topology, which gives the most obvious generalization.

Definition 2.5.1. Let {Xi}i∈I be a collection of topological spaces with Xi

having topology Ti. The box topology on
∏
i∈I Xi is the topology generated by

the basis

B =

{
∏

i∈I

Ui : Ui ∈ Ti
}
.

One should check that the basis given in the definition of the box topology
actually satisfies the requirements to be a basis.

Though the box topology is the obvious generalization of the topology on
X×Y , it is actually not the “correct” generalization for most instances as we will
see it does not satisfy many of the properties we would expect the topology on∏
i∈I Xi to have. The second way to put a topology on

∏
i∈I Xi that generalizes

the product topology introduced in § 2.1 is called the product topology.

Definition 2.5.2. Let {Xi}i∈I be a collection of topological spaces with Xi

having topology Ti. The product topology on
∏
i∈I Xi is the topology generated

by the basis

B =

{
∏

i∈I

Ui : Ui ∈ Ti, Ui = Xi for all but finitely many i

}
.

Proposition 2.5.3. If I is a finite set then the product and box topologies are
the same topologies on

∏
i∈I Xi. For general I the box topology is finer than the

product topology.
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We leave the proof of this proposition as an exercise. In many contexts the
box topology has too many open sets while the product topology will have the
correct number of open sets. In general if we write

∏
i∈I Xi without specifying

a topology we will mean that it has product topology.
We now state some more easy results. The proofs are left as exercises.

Proposition 2.5.4. Suppose that for each i ∈ I that Ti is given by a basis Bi.
Sets of the form B =

∏
i∈I Bi with Bi ∈ Bi give a basis for the box topology.

Sets of the form
∏
i∈I Bi with Bi ∈ Bi for all i and Bi = Xi for all but finitely

many i give a basis for the product topology on
∏
i∈I Xi.

Proposition 2.5.5. If each Xi is Hausdorff, then
∏
i∈I Xi is Hausdorff in the

box or product topology.

Proposition 2.5.6. Let Ai be a subspace of Xi for each i ∈ I. Then
∏
i∈I Ai

is a subspace of
∏
i∈I Xi as long as both are given the product or box topology.

We close this section with a theorem on continuous functions. This theorem
is one that would be expected, but is only true for the product topology. This
gives a primary reason that the product topology is the correct topology to put
on an infinite product of topological spaces.

Theorem 2.5.7. Let {Xi}i∈I be a collection of topological spaces and let Y
be a topological space. For each i ∈ I let f : Y → Xi be a function. Define
f : Y → ∏

i∈I Xi by f(y) = (fi(y))i∈I . The function f is continuous if and only
if fi is continuous for each i ∈ I.
Proof. First, suppose that f is continuous. Define πj :

∏
i∈I Xi → Xj by

πj((xi)) = xj , i.e., πj is the natural projection map onto the jth component.
Clearly we have fj = πj◦f . By assumption we have that f is continuous, and we
know the composition of continuous functions is continuous, so it only remains to
show that πj is continuous. Let Uj ⊂ Xj be open. We have π−1

j (Uj) =
∏
i∈I Vi

where Vi = Xi for all i 6= j and Vj = Uj. This is clearly open so πj is continuous
and thus fj is open as well. Note here that this part is true for the product or
box topology.

Now suppose that each fi is continuous. Let
∏
i∈I Ui be a basis element for

the product topology. We know that Uj = Xj for all but finitely many j. Let
j1, . . . , jn be the indices where Uj 6= Xj . We have

∏

i∈I

Ui = π−1
j1

(Uj1) ∩ · · · ∩ π−1
jn

(Ujn).

Thus, we have that

f−1

(
∏

i∈I

Ui

)
= f−1

(
π−1
j1

(Uj1) ∩ · · · ∩ π−1
jn

(Ujn)
)

= f−1(π−1
j1

(Uj1)) ∩ · · · ∩ f−1(π−1
jn

(Ujn))

= f−1
j1

(Uj1) ∩ · · · ∩ f−1
jn

(Ujn).
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This last set is open since each fi is continuous. Thus, f−1
(∏

i∈I Ui
)

is open
and so f is continuous.

It is important to be sure to understand where the fact that we were using
the product topology was used in the second part of the proof of Theorem 2.5.7!

2.6 Metric Spaces

Metric spaces are often covered in an analysis class so it is likely that most
already have some experience with metric spaces. In fact, it is generally metric
spaces that give most their geometric intuition. This can be a blessing as well as
a curse when dealing with more abstract spaces. Even if one has not encountered
the definition of a metric space, one is certainly familiar with many of them as
we will soon see.

Definition 2.6.1. A metric on a set X is a function

ρ : X ×X → R

such that

1. ρ(x, y) ≥ 0 for every x, y ∈ X and ρ(x, y) = 0 if and only if x = y;

2. ρ(x, y) = ρ(y, x) for every x, y ∈ X ;

3. ρ(x, y) + ρ(y, z) ≥ ρ(x, z) for every x, y, z ∈ X .

The third condition above is often referred to as the triangle inequality as it
generalizes the triangle inequality |x+ y| ≤ |x|+ |y| from R.

Metrics are generalizations of the distance function ρ(x, y) = |x − y| on R,
i.e., they measure distance between points of a space. Given a set X and a
metric ρ on X , we define the metric topology on X to be the topology generated
by the basis

B = {B(x, ǫ) : x ∈ X, ǫ > 0}
where

B(x, ǫ) = {y ∈ X : ρ(x, y) < ǫ}.
We must show that B satisfies the conditions of being a basis. The first condition
is clear as for any x ∈ X , we have B(x, ǫ) is a basis element containing x
for any ǫ > 0. Consider now two basis elements B(x, ǫ1), B(z, ǫ2). Let y ∈
B(x, ǫ1) ∩ B(z, ǫ2). Set δ = min(ǫ1 − ρ(x1, y), ǫ2 − ρ(x2, y)). Then B(y, δ) ⊂
B(x, ǫ1) ∩B(z, ǫ2). Thus, B is a basis as claimed.

Note that we have shown that U is open in the metric topology if and only
if for each x ∈ U there is an open ball B(x, ǫ) contained in U . This will be a
very useful way to think of open sets in the context of metric spaces.

Example 2.6.2. The space R with ρ(x, y) = |x − y| is a metric space. The
metric topology gives the standard topology on R.
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Example 2.6.3. The space R with ρ(x, y) = |x − y| =
√∑n

i=1(xi − yi)2 is a
metric space. Note here we write x = (x1, . . . , xn) and similarly for y. Again
the metric topology gives the standard topology on Rn.

Example 2.6.4. The space C with ρ(z, w) = |z − w| is a metric space. The
metric topology is the standard topology.

Example 2.6.5. It is often the case that one can define many metrics on
a space, each giving a different topology. Consider the space X = Q. The
function ρ(x, y) = |x − y| giving the usual metric on R can be restricted to Q
to give a metric on Q. In fact, in analysis class one learns that R is constructed
from Q via this metric. In particular, R is formed from Q by adjoining the
limits of Cauchy sequences where convergence is given in terms of the metric
ρ(x, y) = |x− y|.

There are other definitions of distance on Q that are extremely useful and
interesting. Let a

b ∈ Q. For a prime p, we can write a = prc and b = psd with
r, s ∈ Z≥0, c, d ∈ Z and p ∤ cd. We define a new absolute value on Q known as the
p-adic valuation by setting

∣∣a
b

∣∣
p

= ps−r. For example, one has
∣∣10
75

∣∣
5

= 52−1 = 5.

In this case the absolute value is measuring how divisible by p a number is. The
number is small if it is highly divisible by p. Define ρp(x, y) = |x− y|p. In this
metric two numbers are close together if their difference is divisible by a large
power of p. For example, 510 + 1 and 1 are very close together in the metric ρ5.
This metric has many interesting properties that will be given in the following
exercises.

One can adjoin to Q the limits of the Cauchy sequences in the metric ρp as
was done in forming R. In this case one obtains the field of p-adic numbers, Qp.

Exercise 2.6.6. Let ρp be as in the previous example.

1. Show that ρp(x, y) = |x− y|p defines a metric on Q.

2. Show that this absolute value satisfies

|x± y|p ≤ max(|x|p, |y|p).

3. Let x ∈ Q and ǫ > 0. Show that given any y ∈ B(x, ǫ) one has B(x, ǫ) =
B(y, ǫ).

4. As in calculus class, a series
∑∞

n=0 an with an ∈ Qp is said to converge if
the sequence of partial sums converge. Show that

∑∞
n=0 an converges if

and only if limn→∞ an = 0.

5. Let Zp ⊂ Qp be the set defined by

Zp = {x ∈ Qp : |x|p ≤ 1}.

It is a fact that any element x ∈ Zp can be written uniquely in the form

x =
∞∑

n=0

anp
n
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where 0 ≤ an ≤ p− 1 for all n. Show that Z is dense in Zp, i.e., if U is an
open set in Zp then U ∩ Z 6= ∅.

Definition 2.6.7. Let X be a set with topology T . We say X is meterizable if
there exists a metric on X so that T is the topology induced from the metric.

Theorem 2.6.8. Let X and Y be meterizable with metrics ρX and ρY respec-
tively. A function f : X → Y is continuous if and only if given any x ∈ X and
ǫ > 0 there exists a δ > 0 so that if ρX(x, y) < δ then ρY (f(x), f(y)) < ǫ.

Proof. First, suppose that f is continuous and let x ∈ X and ǫ > 0. Consider
the open set B(f(x), ǫ) ⊂ Y . Since f is continuous, we know f−1(B(f(x), ǫ)) is
open in X . Thus, there is a δ > 0 so that B(x, δ) ⊂ f−1(B(f(x), ǫ)). In other
words, if ρX(x, y) < δ then ρY (f(x), f(y)) < ǫ.

Now suppose that given any x ∈ X and ǫ > 0 there exists a δ > 0 so
that if ρX(x, y) < δ then ρY (f(x), f(y)) < ǫ. Let V ⊂ Y be an open set. If
f−1(V ) = ∅, then f−1(V ) is clearly open. Assume there is a x ∈ f−1(V ). Since
V is an open set, there exists a ǫ > 0 so that B(f(x), ǫ) ⊂ V . By assumption,
there exists a δ > 0 so that if ρX(x, y) < δ then ρY (f(x), f(y)) < ǫ, i.e.,
f(B(x, δ)) ⊂ B(f(x), ǫ). Thus, we have that B(x, δ) is an open neighborhood
of x contained in f−1(V ). Since x was arbitrary, we have that f−1(V ) is open
and so f is continuous.

One should compare the proof of this result with that of Proposition 2.4.4
and note the similarity. This shows in many ways a metric space acts much like
the familiar Euclidean spaces one is used to.

Recall from calculus the notion of a sequence. A sequence is a function
f : N → R. We can define a sequence in a topological space X as a function
f : N → X . We again denote the values of f by xn := f(n). We say the
sequence {xn} converges to a point x ∈ X if for every open set U containing x
there is a positive integer N so that if n ≥ N then xn ∈ U . We write xn → x
in this case.

In a general topological space sequences do not behave exactly as one is
familiar from calculus. For instance, a sequence can converge to more than one
point!

Exercise 2.6.9. Construct a sequence that converges to more than one point.

Proposition 2.6.10. Let X be Hausdorff and {xn} a sequence in X. If {xn}
converges then the limit is unique.

Proof. Suppose that {xn} converges to x and x′ with x 6= x′. The fact that X
is Hausdorff implies that there exists open sets U and V with x ∈ U , x′ ∈ V
and U ∩ V = ∅. However, we know that there exists N ∈ N so that if n ≥ N
then xn ∈ U and there exists M ∈ N so that if n ≥ M then xn ∈ V . This is a
contradiction and so it must be that x = x′.

Proposition 2.6.11. Let A ⊂ X. If there is a sequence of points of A con-
verging to x then x ∈ Cl(A). If X is meterizable and x ∈ Cl(A), then there is a
sequence {xn} of points in A that converge to x.
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Proof. Suppose there exists {xn} with xn ∈ A and xn → x. Let U be an open
set containing x. Since xn → x, there are infinitely many xn ∈ U ∩A. If x ∈ A,
we are done. If not, every open set containing x intersects A − {x} and so
x ∈ Cl(A).

Now suppose that x ∈ Cl(A) and X is meterizable with metric ρ. If x ∈ A
we can set xn = x for all n and we are done. Assume x /∈ A. Consider the
open set B(x, 1/n) for n ≥ 1. Since x ∈ Cl(A) − A, for each n there exists
xn ∈ B(x, 1/n) ∩ A. We claim that xn → x. Let U be an open set containing
x. There exists N > 0 so that B(x, 1/N) ⊂ U . Thus, for n > N , xn ∈ U and
so we have the claim.

Example 2.6.12. Let X = RN = {(x1, x2, . . . ) : xi ∈ R} and put the box
topology on X . Set A to be the set

A = {(x1, x2, . . . ) : xi > 0}.

We claim that 0 ∈ Cl(A). Let B = (x1, y1)× (x2, y2)× · · · be a basis element of
the box topology containing 0. Then clearly we have B ∩ A 6= ∅. For example,
the element (y1/2, y2/2, . . . ) is in the intersection.

Suppose there is a sequence of elements in A converging to 0. Call this
sequence {xi,j} where

xj = (x1,j , x2,j , . . . ) ∈ A.
Consider the basis element

B = (−x1,1, x1,1)× (−x2,2, x2,2)× · · · .

Then we have 0 ∈ B, but xj /∈ B for each j and so the sequence cannot converge
to 0. Since the sequence was arbitrary, there can be no sequence in A converging
to 0 ∈ Cl(A).

Note that in light of Proposition 2.6.11 this shows that RN with the box
topology is not meterizable.

Theorem 2.6.13. Let f : X → Y be a function with X meterizable. The
function f is continuous if and only if for every sequence {xn} with xn → x the
sequence {f(xn)} converges to f(x).

Proof. Let f be a continuous function and {xn} a sequence in X converging to
x. Let V be an open set in Y containing f(x). Since f is continuous we have
that f−1(V ) is open in X and contains x. Thus, there exists N ∈ N so that if
n ≥ N then xn ∈ f−1(V ). Thus, for n ≥ N we have f(xn) ∈ V . Since V was
arbitrary, we have f(xn) → f(x). Note that we did not use the fact that X is
meterizable for this direction of the proof.

Conversely, suppose that for every sequence {xn} in X with xn → x we
have f(xn) → f(x). Let A ⊂ X be a subset and let x ∈ Cl(A). Since X
is meterizable, Proposition 2.6.11 gives a sequence {xn} in A converging to x.
Thus, f(xn) → f(x). We have f(xn) ∈ f(A) for all n and so we must have
f(x) ∈ Cl(f(A)) by Proposition 2.6.11. Let C be a closed subset of Y and set
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A = f−1(C). Clearly we have f(A) ⊂ C. Let x ∈ Cl(A). However, as we saw
in equation (2.1), we have f(x) ∈ f(Cl(A)) ⊂ Cl(f(A)) = Cl(C) = C and so
x ∈ f−1(C) = A. Thus, Cl(A) ⊂ A and so A = Cl(A) and so f−1(C) is closed.
Thus, f is continuous.

As in analysis, we can consider the notion of a sequence of functions con-
verging uniformly to a function.

Definition 2.6.14. Let fn : X → Y be a sequence of functions from a set X to
a metric space Y with metric ρ. We say the sequence {fn} converges uniformly
to the function f : X → Y if given any ǫ > 0 there exists an integer N ∈ N so
that

ρ(fn(x), f(x)) < ǫ

for all n ≥ N and all x ∈ X .

Theorem 2.6.15. Let {fn} be a sequence of functions from a topological space
X to a metric space Y with metric ρ. If each fn is continuous and {fn} con-
verges a function f uniformly, then f is continuous.

Proof. Let V be an open set in Y . We want to show that f−1(V ) is open in X ,
i.e., for each z ∈ f−1(V ) there is an open set U containing z so that U ⊂ f−1(V ),
i.e., f(U) ⊂ V .

Let z ∈ f−1(V ) and write y = f(z). Choose ǫ > 0 so that B(y, ǫ) ⊂ V . Since
{fn} converges uniformly to f , there exists N ∈ N so that for n ≥ N and for
all x ∈ X one has ρ(fn(x), z) < ǫ/4. Furthermore, since each fn is continuous,
there is an open neighborhood U1 of z so that fN (U1) ⊂ B(fN (z), ǫ/2). Set
U2 = U ∩ U1. We claim f(U2) ⊂ B(y, ǫ). Observe that if x ∈ U2, then

ρ(f(x), fN (x)) < ǫ/4

by our choice of N . Similarly, we have

ρ(fN (z), fN(x)) < ǫ/2

because fN is continuous and our choice of U1. Finally,

ρ(fN (z), f(z)) < ǫ/4

again by the choice of N . Thus, applying the triangle inequality we have

ρ(f(x), f(z)) ≤ ρ(f(x), fN (x)) + ρ(fN(z), f(z))

≤ ρ(f(x), fN (x)) + ρ(fN(x), fN (z)) + ρ(fN(z), f(z))

< ǫ/4 + ǫ/2 + ǫ/4

= ǫ.

Thus, U2 is the open set around z we were looking for.
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2.7 Connected Spaces

The notion of a space being connected is a fairly intuitive one. Many of the
spaces one would expect to be connected are in fact. However, as with most
things, when considering general topological spaces some counterintuitive things
can occur.

Definition 2.7.1. Let X be a topological space. We say X is connected if
whenever X = U ∪ V with U, V disjoint open sets, we have {U, V } = {∅, X}.
If there exist disjoint open sets U, V with {U, V } 6= {∅, X} so that X = U ∪ V ,
then we call {U, V } a separation of X .

Proposition 2.7.2. A space X is connected if the only sets that are both open
and closed are ∅ and X.

Proof. Suppose that X is connected. Let U be a subset of X that is open and
closed but is not ∅ or X . Then we have that X−U is closed and open and is not
∅ or X . Thus, {U,X − U} provides a separation of X . This is a contradiction
so it must be that there is no such U .

Now suppose that ∅ and X are the only open and closed sets in X . Let
{U, V } be a separation of X . Suppose that {U, V } gives a separation of X .
Then V = X − U , so V is open and closed. This is a contradiction so it must
be that X is connected.

Note that we see in the above proof that if {U, V } provides a separation of
X then U and V are both open and closed in X .

Lemma 2.7.3. Suppose that {U, V } gives a separation of X. If Y is a connected
subset of X then Y lies entirely in U or V .

Proof. This follows immediately from the fact that if not then {Y ∩ U, Y ∩ V }
gives a separation of Y .

Theorem 2.7.4. The union of a collection of connected sets that have a point
in common is connected.

Proof. Let {Ai} be a collection of connected subsets of X with x ∈ ⋂iAi. Set
Y =

⋃
iAi and suppose that {U, V } is a separation of Y . As U and V are

disjoint, we must have x ∈ U or x ∈ V . Without loss of generality we may
assume that x ∈ U . Since each Ai is a connected subset of Y , we must have
Ai ⊂ U or Ai ⊂ V by Lemma 2.7.3. However, since x ∈ Ai ∩ U we must have
Ai ⊂ U . Since i was arbitrary, we have Y ⊂ U . Thus, V = ∅, a contradiction.
Thus it must be that Y is connected as claimed.

Proposition 2.7.5. Let A ⊂ X be a connected set. Let B be such that A ⊂
B ⊂ Cl(A). Then B is connected.
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Proof. Suppose that {U, V } is a separation of B. We have (U∩A)∪(V ∩A) = A.
Since A is connected we must have A ⊂ U or A ⊂ V by Lemma 2.7.3. Without
loss of generality we may assume that A ⊂ U . Then we have Cl(A) ⊂ Cl(U)
and so B ⊂ Cl(U). Observe that we have Cl(U)∩ V = ∅ for if x ∈ V , then V is
an open set containing x that does not intersect U and so x /∈ Cl(U). Thus, we
have B ∩ V = ∅. This is a contradiction so it must be that B is connected.

The following result shows that the property of being connected is a topolog-
ical property. This means that we can use this as a way to distinguish different
topological spaces. Namely, if X is connected and Y is not connected then X
cannot be homeomorphic to Y .

Theorem 2.7.6. Let f : X → Y be a continuous map. If A ⊂ X is connected,
then f(A) ⊂ Y is connected.

Proof. Let {U, V } be a separation of f(A). Since U and V are open and f is
continuous, we have f−1(U) and f−1(V ) are open in X . They are nonempty
because U and V are nonempty and contained in f(A). Similarly, we have
f−1(U) ∪ f−1(D) ⊂ A because U ∪ V = f(A). Thus we have that f−1(U) ∪
f−1(V ) = A so it only remains to show the intersection is trivial to obtain a
separation of A. Suppose that x ∈ f−1(U) ∩ f−1(V ). Then we have f(x) ∈
U∩D, a contradiction. Thus, the intersection is trivial and we have a separation
of A. However, this contradicts the fact that A is connected. Thus, we must
have f(A) is connected.

We now prove the familiar result that R is connected. We will be able to
combine this with other results to obtain many familiar spaces such as Rn and
intervals are connected.

Theorem 2.7.7. The space R is connected.

Proof. Suppose that {U, V } is a separation of R. Let x ∈ U and y ∈ V . Without
loss of generality we may assume x < y. (If there is no element of U that is less
than an element of V , just interchange U and V .

Set U0 = [x, y] ∩ U and V0 = [x, y] ∩ V . We have that U0 is open in [x, y]
in the subspace topology since U is open in R and similarly V0 is open in [x, y].
Let x0 = lub(U0). We split into two cases:

Case 1: Suppose that x0 ∈ U0. Then clearly we have x0 6= y since U0 ∩ V0 = ∅.
Now since x0 ∈ U0 and U0 is open, there is an interval of the form [x0, z) con-
tained in U0. However, this means we can choose an element w ∈ (x0, z) so that
w ∈ U0. This contradicts the fact that x0 = lub(U0). Thus, we cannot have
x0 ∈ U0.

Case 2: Suppose that x0 ∈ V0. Note that is has to be one of these two cases since
y /∈ V0 so lub(U0) < y, so lies in [x, y] and [x, y] = U0 ∪ V0 by our assumption
that {U, V } is a separation of R. Since x0 ∈ V0, we have that x0 6= x. Thus,
x < x0 ≤ y and so there is an interval of the form (z, x0] contained in V0. If
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x0 = y we have a contradiction because then z is an upper bound of U0 that is
less than lub(U0). Suppose that x0 < y. We then have (x0, y] does not intersect
U0, so

(z, y] = (z, x0] ∪ (x0, y]

does not intersect U0. However, this gives z as a smaller upper bound on U0

than x0, a contradiction.
Since we have a contradiction in either case, it must be that R is connected.

One can use the same argument to obtain that intervals and rays in R are
connected as well. However, it is often easier to use Theorem 2.7.6. For example,
since sin : R → [−1, 1] is continuous, surjective, and R is connected, we have
[−1, 1] is connected. To see that (−a, a) is connected, just observe that R is
homeomorphic to (−a, a) under the map

f : R −→ (−a, a)

f(x) =
2ax

1 +
√

1 + 4x2
.

We can use the following theorem to conclude that Rn is connected for any
n ≥ 1.

Theorem 2.7.8. The product of connected spaces is connected.

Proof. We begin by proving the theorem for finite products via induction. Our
base case is n = 2. Consider two connected spaces X and Y . We wish to show
that X×Y is connected. Pick a point (x0, y0) ∈ X×Y . Observe that {x0}×Y
is homeomorphic to Y so is connected and similarly X × {y0} is connected.
Consider the space

Tx = ({x} × Y ) ∪ (X × {y0}).
Since {x} × Y and X × {y0} are both connected and both contain the point
(x, y0), Theorem 2.7.4 we have that Tx is connected for every x ∈ X . Given
any x ∈ X , we have (x0, y0) ∈ Tx. We also have that

⋃
x∈X Tx = X × Y . Since

X ×Y is the union of connected sets having a point in common, Theorem 2.7.4
gives that X×Y is connected. See the following picture where Tx is given in red.

x0

y0
Tx

Y

X
x

28



Now suppose the result is true for n−1, i.e., if j ≤ n−1 and X1, . . . , Xj are
connected, then X1×· · ·×Xj is connected. Observe that we have X1×· · ·×Xn

is homeomorphic to (X1×· · ·×Xn−1)×Xn. We apply the induction hypothesis
to get that X1×· · ·×Xn−1 is connected and then apply the base case to obtain
X1 × · · · ×Xn is connected as desired.

The more difficult case is when we have an arbitrary product of connected
spaces. Let {Xi}i∈I be a collection of connected sets. Set X =

∏
i∈I Xi. Pick

a base point a = (ai)i∈I ∈ X . For any finite set of indices {i1, . . . , im} in I, set

X(i1, . . . , im) ⊂ X

to be the set of points (xi)i∈I so that xi = ai for all i /∈ {i1, . . . , im}. Let

Y =
⋃
X(i1, . . . , im)

where the union is over all finite subsets of I. First, note that Y is not all of X .
However, we will show that the closure of Y is all of X . Before we show this,
we show why this gives the result.

Observe that we have maps

φ : Xi1 × · · · ×Xim −→ X(i1, . . . , im)

(xi1 , . . . , xim) 7→ (yi)i∈I

where yi = ai for i /∈ {i1, . . . , im} and yij = xij for ij ∈ {i1, . . . , im}. It
should also be clear how to define the inverse map as well. Since we are in
the product topology, we claim this map is continuous and open. The basis
element Bi1 × · · · × Bim maps to

∏
Bj where Bij = Bij if ij ∈ {i1, . . . , im}

and otherwise Bi = {ai} = X(i1, . . . , im) ∩∏j 6=iXj × Bi. This gives that the
map is open. To see it is continuous, observe a basis element of X(i1, . . . , im)
is of the form B =

∏
Bj where Bj = {aj} for j /∈ {i1, . . . , im} and Bj is a

basis element of Xj for j ∈ {i1, . . . , im}. Thus, φ−1(B) = Bi1 ×Bim . Thus, we
have a homeomorphism. The result we have already for finite products gives
X(i1, . . . , im) is connected. Since each X(i1, . . . , im) contains a we have that
the union is connected, i.e., Y is connected. If we can show that Cl(Y ) = X ,
then Proposition 2.7.5 will give that X is connected.

It remains to show that Cl(Y ) = X . Let x = (xi)i∈I ∈ X . Let B =
∏
i∈I Bi

be a basis element containing x. Each Bi is open in Xi and for all but finitely
many indices we haveBi = Xi. (Note here it is required we are using the product
topology!) Let {i1, . . . , in} be the indices where Bi 6= Xi. Define (yi)i∈I ∈ X
by

yi =

{
xi i ∈ {i1, . . . , im}
ai otherwise.

Observe that y = (yi)i∈I ∈ X(i1, . . . , im) ⊂ Y . We also have y ∈ B. Thus, every
basis element containing x intersects Y and so x ∈ Cl(Y ). Thus, Cl(Y ) = X
and we are done.
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Definition 2.7.9. A space X is said to be totally disconnected if the only
subsets of X that are connected are one point sets.

Example 2.7.10. Let R = R[x]/(x2−1). Note that since x2−1 = (x−1)(x+1)
we have

R[x]/(x2 − 1) ∼= R⊕ R.

The isomorphism is given by the map

R[x] −→ R⊕ R

f(x) 7→ (f(1), f(−1)).

This map is onto, a homomorphism, and the kernel is (x2 − 1). We consider
the set of prime ideals SpecR in R. There are precisely two elements in SpecR,
namely, (x−1) and (x+1). These correspond to the two prime ideals in R⊕R,
namely, (0) ⊕ R and R ⊕ (0). Recall given a general ring R, we defined the
Zariski topology on SpecR in § 2.1. We see that V ((x − 1)) = {(x − 1)} and
V ((x+1)) = {(x+1)}. Thus, {(x+1)} and {(x−1)} are both closed in SpecR.
Furthermore, since {(x+1)} = SpecR−V ((x−1)), we have that {(x+1)} is open.
Similarly, {(x−1)} is open as well. We have that SpecR = {(x−1)}∪{(x+1)}
so is totally disconnected.

Exercise 2.7.11. Show that Q with the subspace topology from R is a totally
disconnected space.

There are other notions of how a space can be connected that are useful
depending on the situation.

Definition 2.7.12. Let X be a space and x, y ∈ X . A continuous map f :
[a, b] → X with f(a) = x, f(b) = y is called a path from x to y. If given any
x, y ∈ X there is a path from x to y we say the space X is path-connected.

Example 2.7.13. Let B(a, ǫ) ⊂ Rn be an open ball. This is path-connected.
To see this, let x, y ∈ B(a, ǫ). A path between x and y that lies in B(a, ǫ) is
given by f : [0, 1]→ B(a, ǫ) where f(t) = (1 − t)x + ty. One should check that
the image of f lies in B(a, ǫ).

Proposition 2.7.14. Let X be path-connected. Then X is connected.

Proof. Suppose X is not connected and let {U, V } be a separation of X . Let
x ∈ U, y ∈ V . Since X is path-connected, there is a path f : [a, b] → X with
f(a) = x, f(b) = y for some interval [a, b] ⊂ R. Since [a, b] is connected and
f is continuous, f([a, b]) is connected. Thus, f([a, b]) ⊂ U or f([a, b]) ⊂ V .
However, this contradicts the fact that x ∈ U , y ∈ V and f is a path between
x and y. Thus, it must be that X is connected.

It may seem at first glance that a connected space would be path-connected
as well. However, this is not the case as the next example demonstrates.
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Example 2.7.15. Consider the space Y =
{(
x, sin

(
1
x

))
: x ∈ (0, 1)

}
. This

space is known as the topologist’s sine curve. It is connected as it is the image
of the connected set (0, 1) under the continuous map y = sinx. The topology
on Y is the subspace topology it inherits as a subset of R2.

Our first claim is that (0, 0) ∈ Cl(Y ). Let U = B(x, ǫ) be a basis element of
the topology on R2 containing (0, 0). We can choose δ > 0 so that B((0, 0), δ) ⊂
U . Choose n ∈ N so that 1

nπ < δ. Then
(

1
nπ , sin(nπ)

)
=
(

1
nπ , 0

)
is contained in

B(x, ǫ) ∩ Y . Since B(x, ǫ) was arbitrary, this shows (0, 0) ∈ Cl(Y ). One should
also note that Y is path-connected by the definition of Y .

Now consider the space X = Y ∪ {(0, 0)}. This is a connected set by Propo-
sition 2.7.5 since Y is connected and (0, 0) is a limit point of Y . We will now
show that X is not path-connected by showing that one cannot connect (0, 0)
to any other point in Y .

Let f : [a, b] → X be a path connecting (0, 0) to a point α =
(
x, sin

(
1
x

))

in Y . Since f is continuous and [a, b] is connected, f([a, b]) must be connected
as well. Consider f−1({(0, 0)}). Since {(0, 0)} is closed, we have f−1({(0, 0)})
is also closed. We now show that f−1({(0, 0)}) is open as well. This will give
that f−1({(0, 0)}) is a nonempty subset of the connected set [a, b] that is open
and closed and so must be the entire interval. This contradicts the fact that
f is a path from (0, 0) to α. Let V = B((0, 0), 1/2). Let t ∈ f−1(V ) and
U ⊂ [a, b] a basis element with t ∈ U and f(U) ⊂ B((0, 0), 1/2). We now
show that U ⊂ f−1({(0, 0)}) and so f−1({(0, 0)}) is an open set since any point
can be surrounded by an open neighborhood that lies in f−1({(0, 0)}). Since
U is a basis element, it is connected and so f(U) is connected as well. We
claim that this gives f(U) cannot contain any point other than (0, 0). Suppose

β =
(
y, sin

(
1
y

))
is in f(U). Choose n ∈ N so that 1

nπ < y. Then we see

that since f(U) ⊂ B((0, 0), 1/2), the point
(

2
nπ , sin

(
nπ
2

))
=
(

2
nπ , (−1)n+1

)
is

not in f(U). Consider the disjoint subsets of R2 given by
(
−∞, 2

nπ

)
× R and(

2
nπ ,∞

)
× R. We see that f(U) must lie completely in the union of these two

sets since it does not intersect the line x = 2
nπ . However, each set is connected

so f(U) must lie entirely in one or the other. Since (0, 0) ∈ f(U), we must have
f(U) ⊂

(
−∞, 2

nπ

)
× R. However, β ∈

(
2
nπ ,∞

)
× R. This is a contradiction.

Thus, f(U) = {(0, 0)} as claimed.

Let X be a topological space. We define an equivalence relation on X by
setting x ∼ y if there is a connected subset of X that contains x and y. The set
of equivalence classes under this relation are called the connected components of
X . Similarly, we can define another equivalence relation on X by setting x ∼ y
if there is a path in X that connects x and y. The equivalence classes in this
case are called the path components of X . One should check that each of these
relations is an equivalence relation.

We leave the proof of the following two propositions as exercises.

Proposition 2.7.16. The connected components of X are connected, disjoint
subsets of X whose union is X such that each connected subsets of X intersects
only one of the components.
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Proposition 2.7.17. The path components of X are path-connected disjoint
subsets of X whose union is X such that each path-connected subset of X in-
tersects only one of the components.

Example 2.7.18. Let Y be the topologist’s sine curve. We saw above that Y
has one connected component and one path component. By adding points in
{0}× [−1, 1], we can form a space with one connected component and as many
path components as we desire. For instance, X = {(0, 0)} ∪ Y has two path
components. The spaceX = {(0, r) : r ∈ Q∩[−1, 1]}∪Y has a countably infinite
number of path components where Z = {(0, r) : r ∈ (R−Q) ∩ [−1, 1]} ∪ Y has
an uncountably infinite number of path components.

We end this section by briefly discussing the notion of a space being locally
connected.

Definition 2.7.19. A space X is said to be locally connected at x ∈ X if for
every open set U containing x there is a connected open neighborhood of x
contained in U . We say X is locally connected if it is locally connected at each
point.

Similarly one has the notion of locally path-connected, which we leave the
reader to define.

Note that being locally connected is equivalent to having a basis of connected
sets.

Example 2.7.20. The space [0, 1) ∪ (1, 2] is clearly not connected, but it is
locally connected. The topologist’s sine curve with the points {(0, r) : r ∈
Q ∩ [−1, 1]} added is connected but not locally connected.

Theorem 2.7.21. A space X is locally connected if and only if for every open
set U ⊂ X, each connected component of U is open in X.

Proof. LetX be locally connected and U ⊂ X an open set. Let A be a connected
component of U . Let x ∈ A. We can choose a connected open neighborhood
V of x that is contained in U . However, since A is connected, we must have
V ⊂ A and so A is open in X .

Suppose now that every connected component of every open set in X is open
in X . Let x ∈ X and let U be an open neighborhood of x. There is a connected
component A of U that contains x. Since A is open in X by assumption, we
have that X is locally connected.

2.8 Compact Spaces

The notion of a space being compact is not nearly as intuitive as that of being
connected. However, the property of compactness is a very powerful property
for a space to have so is very important to study.
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Definition 2.8.1. Let X be a space and {Ui} a collection of open sets. We
call {Ui}i∈I an open cover of X if X =

⋃
i∈I Ui. We say the space X is compact

if every open cover {Ui}i∈I of X contains a finite subcover, i.e., there exists
U1, . . . , Un ∈ {Ui}i∈I so that X = U1 ∪ · · · ∪ Un.

Example 2.8.2. The space R is not compact. For instance, if we set Ui =
(−i, i), then {Ui}i∈N is an open cover of R but there is no finite subcover of R.

Example 2.8.3. Let X = Spec Z. Recall the open sets for the Zariski topology
are very large. In fact, the basis elements are given by sets of the form D(n) =
{(p) ∈ Spec Z : p ∤ n}. This should lead us to believe that Spec Z is compact,
which it is. Let {Ui} be an open cover of X . Since each Ui is open, each contains
a basis element. Pick any Ui and any basis element contained in Ui, call it D(n).
This basis element contains all the elements of Spec Z except those primes that
divide n. Since there are only finitely many such primes, to cover Spec Z we
only need to choose the finitely many Uj needed to cover the primes that divide
n along with Ui. Thus, we have a finite subcover. Since the open covering was
arbitrary, we have that Spec Z is compact.

Theorem 2.8.4. Every closed interval in R is compact.

Proof. Let [a, b] be such an interval and let U = {Ui} be an open cover of [a, b].
Let x ∈ [a, b] and let Ui contain x. Since Ui is open, there exists a y ∈ [a, b]
so that [x, y) ⊂ Ui. Choose z ∈ [x, y). Then [x, z] ⊂ Ui. This can be done for
any point x ∈ [a, b], i.e., for each x ∈ [a, b] there is a z ∈ (a, b) so that [x, z] is
covered by one element in U .

Let C be the set of points c ∈ (a, b) so that [a, c] can be covered by finitely
many elements of U . By what we have just shown C is nonempty. It is clearly
bounded above, so there is a least upper bound. Set c = lub C.

Suppose c /∈ C. Choose U ∈ U containing c. There exists d ∈ [a, c) so that
(d, c] ⊂ U . Since c = lub C, there must be an element z ∈ C so that z ∈ (d, c)
for otherwise d would be a least upper bound of C. Thus, the interval [a, z] can
be covered by finitely many elements in U . However, [z, c] ⊂ U and so adding
this one element to the cover of [a, z] we obtain a finite cover of [a, c], which
contradicts the assumption that c /∈ C. Thus, c ∈ C.

If we can show that c = b we will be done. Suppose c < b. We can find
x ∈ (c, b) so that [c, x] is covered by only one U ∈ U . However, we know [a, c] is
covered by finitely many intervals, so [a, x] = [a, c] ∪ [c, x] is covered by finitely
many Ui. This shows x ∈ C, which contradicts c = lub C. Thus, c = b.

Proposition 2.8.5. Every closed subset of a compact space is compact.

Proof. Let X be compact and let Y be a closed subset of X . Let U = {Ui}
be any open covering of Y . Set U ′ = {Ui} ∪ {X − Y }. We see that U ′ is an
open covering of X , so has a finite subcover U ′

1, . . . , U
′
n since X is compact. If

X − Y is among the U ′
i for i = 1, . . . , n, throw it out. If not, leave the U ′

i for
i = 1, . . . , n alone. Either way, we obtain a finite subcover of Y . Thus, Y is
compact.
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Proposition 2.8.6. Every compact subset of a Hausdorff space is closed.

Proof. Let X be a Hausdorff space and let Y be a compact subset. Let x0 ∈
X − Y . For each point y ∈ Y , the fact that X is Hausdorff allows us to
choose open sets Uy, Vy so that x0 ∈ Uy, y ∈ Vy and Uy ∩ Vy = ∅. Note that
V = {Vy}y∈Y forms an open cover of Y . The fact that Y is compact gives a
finite subcover Vy1 , . . . , Vyn of Y . We have that

⋃n
i=1 Vyi covers Y and is disjoint

from the open set Uy1 ∩ · · · ∩Uyn . Thus, U =
⋂n
i=1 Uyi is an open set in X − Y

that contains x0. Since x0 was arbitrary, we see that X − Y is open and so Y
is closed as claimed.

It is very important to notice that this last proposition does not say that
compact sets are closed in general. This is only true in Hausdorff spaces!

Example 2.8.7. Let X = {a, b, c} and set T = {∅, X, {a}}. Then {c} is a
compact subset of X but is not closed.

The following result was contained in the proof of Proposition 2.8.6 but we
list it as a separate result here as it will be very useful.

Corollary 2.8.8. Let X be Hausdorff and Y a compact subset of X. If x ∈
X − Y , there are disjoint open sets U, V so that x ∈ U and Y ⊂ V .

As with connectedness, the criterion of being compact is a topological prop-
erty.

Proposition 2.8.9. The image of a compact space under a continuous map is
compact.

Proof. Let X be a compact space and f : X → Y a continuous map. Let
V = {Vi} be an open cover of f(X). Since f is continuous, f−1(Vi) is continuous
for each i and so {f−1(Vi)} forms an open cover of X . Since X is compact, there
is a finite subcover f−1(V1), . . . , f

−1(Vn). Then V1, . . . , vn is a finite cover of
f(X). Thus, f(X) is compact.

In addition to the previous result showing that being compact is a topological
property, we can also use it to give an easier criterion one can check to determine
if a continuous map from a compact to a Hausdorff space is a homeomorphism.

Theorem 2.8.10. Let f : X → Y be a bijective continuous map. If X is
compact and Y is Hausdorff, then f is a homeomorphism.

Proof. The bijectivity of f gives the existence of an inverse function g : Y → X .
To see that f is a homeomorphism we must show that g is continuous. To
see this, it is enough to show that f(C) is closed for every closed set C ⊂
X . The fact that C is closed and X is compact gives that C is compact by
Proposition 2.8.5. We now apply Proposition 2.8.9 to see that f(C) is compact.
Finally, Proposition 2.8.6 gives that f(C) is closed because Y is assumed to be
Hausdorff.
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If we follow the same general outline as when dealing with connected spaces,
the next step would be to prove that the product of compact spaces is again
compact. This is true in general, though we will only prove it for a finite product.
Before we can prove this we need the following lemma.

Lemma 2.8.11. (Tube Lemma) Let X and Y be topological spaces and assume
Y is compact. If N is an open set in X × Y that contains the slice {x0} × Y
for some x0 ∈ X, then N contains a tube U × Y around {x0} × Y where U is
an open set in X containing x0.

Proof. Note that {x0}×Y is homeomorphic to Y so it is compact. Let {Ui×Vi}
be an open cover of {x0}×Y with each Ui×Vi ⊂ N . Since {x0}×Y is compact,
there is a finite subcover U1 × V1, . . . , Un × Vn. Set

W = U1 ∩ · · · ∩ Un.

This is an open set in X that contains x0. We claim that W × Y ⊂ N .
Let (x, y) ∈ W × Y . There exists j so that (x0, y) ∈ Uj × Vj . However, we

know that W ⊂ Uj for all j, so we have x ∈ Uj as well. Thus, (x, y) ∈ Uj×Vj ⊂
N . Hence, we have W × Y ⊂ N as claimed.

The following picture illustrates the proof where the red is W × Y and the
blue boxes are the Ui × Vi:
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It is essential in the tube lemma that Y be compact. If not, the result does
not necessarily hold. For example, let X = Y = R. Set

N =

{
(x, y) ∈ R2 : |y| < 1

|x|

}
∪ {(0, y) : y ∈ R}.

This does not contain a tube around Y .

Theorem 2.8.12. The product of finitely many compact sets is compact.
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Proof. First we note that if we show the result for the product of two compact
spaces, the general result for finitely many spaces then follows by induction.

LetX and Y be compact spaces. Let U = {Ui}i∈I be an open cover of X×Y .
Let x0 ∈ X . The space {x0} × Y is homeomorphic to Y , so is compact. Thus,
there is a finite subcover U1, . . . , Un of {x0}× Y . We have that U1 ∪ · · · ∪Un is
an open set containing {x0} × Y , so Lemma 2.8.11 gives an open set Wx0 ⊂ X
with x0 ∈Wx0 and Wx0 × Y ⊂ U1 ∪ · · · ∪Un. Thus, the set Wx0 × Y is covered
by finitely many open sets U1, . . . , Un in U .

Thus, we see for each x ∈ X , there is an open neighborhood Wx of x so
that Wx × Y can be covered by finitely many elements of U . Observe that
{Wx}x∈X is an open cover ofX and sinceX is compact, there is a finite subcover
Wx1 , . . . ,Wxm . Thus, Wx1 × Y, . . . ,Wxm × Y is a covering of X × Y . We know
that each Wxj×Y can be covered by finitely many element of U , and since there
are finitely many Wxj × Y covering X × Y , we obtain a finite cover of X × Y
as desired.

The more general statement is known as the Tychonoff Theorem. One can
find a proof of it in [8].

Theorem 2.8.13. (Tychonoff Theorem) An arbitrary product of compact spaces
is compact in the product topology.

There are other forms of compactness that are useful as well. We introduce
two here.

Definition 2.8.14. A space X is said to be limit point compact if every infinite
subset of X has a limit point.

Definition 2.8.15. A space X is said to be sequentially compact if every se-
quence in X has a convergent subsequence.

Lemma 2.8.16. A compact space X is limit point compact.

Proof. Let A be an infinite subset of X and suppose A has no limit points.
Since the closure of A is A along with the limit points of A, we see A must be
closed. Since A is closed and X is compact, Proposition 2.8.5 gives that A is
necessarily compact as well.

For each a ∈ A there is an open neighborhood Ua of a so that Ua ∩ A = ∅
since a is not a limit point of A. The collection {Ua ∩ A}a∈A is an open cover
of A with each element containing only one point. Since A is compact, there is
a finite subcover. However, this contradicts the fact that A is infinite. Thus, A
must have a limit point.

Lemma 2.8.17. Let X be a meterizable space. If X is limit point compact then
it is sequentially compact.

Proof. Let ρ be a metric giving the topology on X . Let {xn} be a sequence in
X . Set A = {xn : n ∈ N}. If A is finite there is clearly a convergent subsequence
because for some N ∈ N, if n > N we have xn+j = xn for all j ≥ 0. Thus,
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we have a constant subsequence which obviously converges. Suppose that A is
infinite. Since X is limit point compact, A has a limit point x. For each i ≥ 1,
there is an element in A∩B(x, 1/i) that is not equal to x. Call this element xni .
It is now clear that the subsequence {xni} converges to x. Since the sequence
{xn} was arbitrary, we see that X is sequentially compact.

Let X be a metric space with metric ρ. We say a subset A of X is bounded if
there exists M ∈ R>0 so that ρ(a1, a2) < M for all a1, a2 ∈ A. If A is bounded,
the diameter of A is defined to be

diam(A) = lub{ρ(a1, a2) : a1, a2 ∈ A}.

Lemma 2.8.18. (Lebesgue Number Lemma) Let U be an open cover of a metric
space (X, ρ). If X is sequentially compact, there is a δ > 0 (called the Lebesgue
number of U) so that for each subset A of X with diam(A) < δ, there is an
element of U containing A.

Proof. Let U be an open cover of X and suppose there is no such δ, i.e., for
every δ > 0 there is a subset Aδ of X with diam(Aδ) < δ but Aδ is not contained
inside any element of U . In particular, if we set δi = 1

i , we have sets Ai with
diam(Ai) <

1
i so that Ai is not contained in any element of U . For each n,

choose a xn ∈ An and form a sequence {xn}.
Suppose that {xn} has a convergent subsequence {xni} that converges to

an element x. Let U ∈ U be an element that contains x. Since we are in a
metric space, there exists ǫ > 0 so that B(x, ǫ) ⊂ U . Choose a large j so that

ρ(x, xnj ) <
ǫ
2 and 1

nj
< ǫ

2 . Note that Anj ⊂ B
(
xnj ,

1
nj

)
since diam(Anj ) <

1
nj

,

and so Anj ⊂ B(x, ǫ) ⊂ U . This is a contradiction, so the sequence {xn} has
no convergent subsequence. This contradicts the fact that X is sequentially
compact, so we must have that there exists such a δ.

In the case that X is meterizable we can now relate the different notions of
compactness we have given here.

Corollary 2.8.19. Let X be meterizable. The following are equivalent:

1. X is compact;

2. X is limit point compact;

3. X is sequentially compact.

Proof. We have already shown that (1) implies (2) in the general case and that
(2) implies (3) in the case of a metric space, so it only remains to show that (3)
implies (1).

Let ǫ > 0. We claim that we can cover X by finitely many sets of the form
B(x, ǫ). Suppose not. Let x1 be any element in X . Note that if B(x1, ǫ)
is all of X we are done. Otherwise, choose x2 ∈ X − B(x1, ǫ). We con-
struct a sequence inductively as follows. Suppose we have chosen x1, . . . , xn−1.
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If B(x1, ǫ), . . . , B(xn−1, ǫ) covers X we are done, if not, choose xn ∈ X −⋃n−1
i=1 B(xi, ǫ). For each i we have ρ(xn, xi) ≥ ǫ. Therefore, the sequence can

have no convergent subsequence, a contradiction. Thus, the claim follows.
Now let U be any open cover of X . Since X is sequentially compact there is

a Lebesgue number δ associated to U . Choose a finite covering of X by balls of
the form B

(
x, δ3

)
. Each ball has diameter 2δ

3 < δ. Thus, for each ball there is an
element of U containing it. Thus, the finitely many elements of U containing the
finitely many δ

3 -balls covering X give a finite cover. Since U was an arbitrary
open cover, we see X is compact.

This allows us to prove the following calculus result generalized to the setting
of metric spaces.

Corollary 2.8.20. Let f : X → Y be a continuous function with (X, ρX) a
compact metric space and (Y, ρY ) a metric space. Then f is uniformly contin-
uous, i.e., for every ǫ > 0 there exists a δ > 0 so that if x1, x2 ∈ X satisfy
ρX(x1, x2) < δ, then ρY (f(x1), f(x2)) < ǫ.

Proof. Let ǫ > 0. Cover Y by open balls of the form B
(
y, ǫ2

)
. Let U be the open

cover of X given by the inverse images of the B
(
y, ǫ2

)
under f . Let δ be the

Lebesgue number of U . If x1, x2 ∈ X satisfy ρX(x1, x2) < δ, then x1, x2 ∈ U ∈ U
for some U and so ρY (f(x1), f(x2)) < ǫ since f(x1), f(x2) ∈ B

(
y, ǫ2

)
for some

y ∈ Y .

As was the situation when studying connectedness, it is often the case that
even though our space is not compact, locally it is compact. Though weaker
than being compact, it is still a very useful property to have.

Definition 2.8.21. A space X is said to be locally compact at a point x ∈ X if
there is a compact subset C of X that contains an open set containing x. If X
is locally compact at each point we say that X is locally compact.

Example 2.8.22. The space R with the standard topology is locally compact.
If x ∈ R, for any ǫ > 0 the set [x− ǫ, x + ǫ] is a compact set containing x that
contains the open set (x− ǫ, x+ ǫ).

Lemma 2.8.23. Let X be Hausdorff. The space X is locally compact at x if
and only if for every open neighborhood U of x there is an open neighborhood V
of x so that Cl(V ) is compact and Cl(V ) ⊂ U .

Proof. First suppose that X is locally compact at x. Let C be a compact set
containing an open neighborhood of x. Let U be any open neighborhood of x
and set A = C − U . Since A is closed in C and C is compact, we see A is
compact as well. Using Corollary 2.8.8 we can choose disjoint open sets V1 and
V2 around x and A respectively. Set W = V1 ∩ Int(C). Note that W is an open
neighborhood of x. The fact that X is Hausdorff and C is compact gives that
C is closed by Proposition 2.8.6. Thus, Cl(W ) ⊂ C and so Cl(W ) is compact.
Now W ⊂ V1 so W ∩ A = ∅. Thus, Cl(W ) ⊂ C − A and so Cl(W ) ⊂ U . This
gives the first direction.
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The second direction is obvious as one can take Cl(V ) as the desired compact
set containing an open neighborhood of the point x.

Corollary 2.8.24. Let X be a Hausdorff space that is locally compact. If a
subspace Y is open or closed in X then it is locally compact.

Proof. First we suppose that Y is open in X . Let y ∈ Y . Lemma 2.8.23 allows
us to choose an open (in X) neighborhood V of y so that Cl(V ) is compact and
Cl(V ) ⊂ Y where Y is our open neighborhood of y. Then Cl(V ) is a compact
set contained in Y containing the open neighborhood V of y. Note that V ⊂ Y
here since V ⊂ Cl(V ) ⊂ Y . Thus, Y is locally compact.

Now suppose that Y is closed in X . Let y ∈ Y . Let C be a compact set
containing an open (in X) neighborhood U of y. Then C ∩ Y is closed in Y
and hence compact. Thus, we have a compact set C ∩ Y containing the open
neighborhood U ∩ Y . Thus, Y is locally compact.

One should note that in Corollary 2.8.24 the condition that X is Hausdorff
was only used in the case that Y is open in X ; it was not needed in the case
that Y is closed in X .

By now it should be clear that compact spaces are nice ones to work with.
Given a locally compact Hausdorff space, there is a way to make the space
compact by adding points to it. We will focus on the basic case of a one-point
compactification, but one should be aware there are other ways to compactify
a space. We will come back to examples and some motivation after definitions.

Definition 2.8.25. Let X be a locally compact Hausdorff space. Let ∞ be an
object not in X . We adjoin this to X :

Y = X ∪ {∞}.

We put a topology on Y as follows: TY consists of

1. TX
2. Y − C where C is a compact set in X .

The space Y is called the one-point compactification of X .

Exercise 2.8.26. Check that TY is actually a topology on Y .

We have the following important theorem.

Theorem 2.8.27. Let X be a locally compact Hausdorff space that is not com-
pact and let Y be the one-point compactification of X. Then Y is a compact
Hausdorff space, X is a subspace of Y , the set Y −X consists of a single point,
and Cl(X) = Y .

Proof. First we show X is a subspace of Y . Let U ∈ TY . Then we have either
U ∈ TX and so U is open in X or U = Y − C for C a compact subset of X .
However, in this second case we have U ∩X = (Y −C) ∩X = X −C, which is
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open in X since C is compact and hence closed because X is Hausdorff. Thus,
any U ∈ TY restricts to an open set in X . Conversely, if V ∈ TX , then V ∈ TY
and V ∩X = V so we see that TX is the subspace topology induced from Y .

Observe that since X is not compact, Y − C must contain ∞ and intersect
X . Thus, ∞ is a limit point of X and so Cl(X) = Y .

Now we show Y is Hausdorff. Let x, y ∈ Y . If both lie in X then there exists
U, V ∈ TX ⊂ TY that are disjoint with x ∈ U , y ∈ V . If x ∈ X and y = ∞,
then choose a compact set C containing and open neighborhood U of x. Then
U and Y − C are disjoint open neighborhoods of x and ∞ respectively. Thus,
Y is Hausdorff.

Finally we show that Y is compact. Let U be an open cover of Y . There
must be at least one open set of the form Y − C in U in order to cover ∞. Set
U1 = Y −C for one of these sets. Let U ′ be the collection of sets Ui ∩X where
Ui ∈ U − {U1}. We see that U ′ is an open cover of C and so there is a finite
subcover U2∩X, . . . , Un∩X . Thus, the finite collection U1, U2, . . . , Un is a finite
cover of Y and so Y is compact.

Example 2.8.28. Let X = R. The one-point compactification of X is then
Y ∼= S1.

Example 2.8.29. The one-point compactification of R2 is the Riemann sphere
S2. One generally encounters this in complex analysis as stereographic projec-
tion:
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The above picture gives the map from Y to X .

In many cases one does not want to compactify a space by adding a single
point.

Definition 2.8.30. A compactification of a space X is a compact Hausdorff
space Y containingX such that X is dense in Y , i.e., Cl(X) = Y . Two compact-
ifications Y1 and Y2 of X are said to be equivalent if there is a homeomorphism
h : Y1 → Y2 so that h(x) = x for all x ∈ X .

Not all spaces have compactifications, though we have just seen that all
locally compact Hausdorff spaces do. This is enough for many applications.
There are particularly useful ways of compactifying Euclidean spaces known as
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projective spaces. We will deal with these more thoroughly in § 2.9 when dealing
with quotient spaces, but we give some motivation here. Consider the space Kn

where K = R or C. We can form a compactification of Kn called projective
space and denoted by KPn. As we will deal with this more in the next section,
we restrict to the case of n = 2. One has the following very important theorem
from algebraic geometry.

Theorem 2.8.31. (Bezout’s Theorem) Let F (x, y, z) and G(x, y, z) be homo-
geneous polynomials over C of degree n and m respectively. Suppose F and G
have no common factor. Then the curves they define in CP2 have mn points of
intersection counting multiplicity.

For example, Bezout’s Theorem tells us that if we have two lines that are not
the same line, they must intersect when considered in CP2! Thus, in projective
space parallel lines also intersect! This type of result makes it much easier
to work so that one does not have to constantly split into cases of how many
intersections two curves have.

Finally, we give a quick illustration of RP2. One can think of RP2 as the
plane R2 along with a “line at infinity” L∞ with a distinguished point ∞ on
this line that compactifies it into a circle:

∞

R2

L∞

2.9 Quotient Spaces

The notion of a quotient space is really the first concept we have encountered
that is not in some way generalized from classical analysis. The notion of quo-
tient objects is a familiar one from abstract algebra and we will see how the two
can be combined when we study topological groups in § 2.10 - 2.12.

Definition 2.9.1. Let π : X → Y be a surjective map between topological
spaces. The map π is said to be a quotient map provided U ∈ TY if and only if
π−1(U) ∈ TX .

Recall that π : X → Y is an open map if π(U) is open for every open set
U ∈ TX . The map π is said to be a closed map if π(C) is closed for every closed
set C in X . It is straightforward to check that if π is an open or closed map
then it is a quotient map.
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One is often interested in the case where one has a surjective map π : X → A
where X is a topological space and A is a set with no topological structure
associated to it. In this case one can put a unique topology on A via the map
π. This topology is called the quotient topology.

Theorem 2.9.2. Let π : X → A be a surjective map from a topological space
X to a set A. There is a unique topology TA on A so that π is a quotient map.

Proof. Set TA to be the set of subsets of A so that U ∈ TA if and only if
π−1(U) ∈ TX .

Example 2.9.3. Let X = R2 and A = {a, b, c} and define π : X → A by

π((x, y)) =






a xy > 0
b xy = 0
c xy < 0.

The quotient topology induced onA in this case is given by TA = {∅, A, {a}, {c}, {a, c}}.
One of the most common ways one encounters the quotient topology is in

the case that A is a partition of X . Recall a partition A of a set X is a collection
of subsets {Ui}i∈I of X so that

⋃
i∈I Ui = X and Ui ∩ Uj = ∅ for i 6= j.

Definition 2.9.4. Let X be a topological space and A a partition of X . Let
π : X → A be a surjective map given by π(x) = Ui where Ui is the unique
element of the partition containing x. If we let TA denote the quotient topology
on A arising from π, we call A the quotient space of X with respect to A. Note
that this is often also referred to as the identification space.

Note that the quotient space depends upon the partition given. If one gives
a different partition, one will construct different spaces in general, as we will see
in the following examples and exercises.

Example 2.9.5. Let X be a topological space and Y a subspace. We define the
quotient space X/Y by using the partition A = {Y } ∪⋃x/∈Y {x}. For example,
if we set D2 = {x ∈ R2 : |x| ≤ 1}, and let Y = S1 ⊂ D2, then X/Y is
homeomorphic to S2.

Example 2.9.6. Let ω1 and ω2 be complex numbers that are linearly indepen-
dent over R. The following picture gives an example:

Let
X = {aω1 + bω2 : 0 ≤ a, b ≤ 1},

i.e., X is the parallelogram spanned by ω1 and ω2. Define a partition on X by
the sets:

{aω1 + bω2 : 0 < a < 1, 0 < b < 1}
{aω1, aω1 + ω2 : 0 < a < 1}
{bω2, ω1 + bω2 : 0 < b < 1}
{0, ω1, ω2, ω1 + ω2}.
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ω1

ω2

Essentially we are gluing the sides of the parallelogram together to form a tube
and then gluing the ends of the tube together to form a doughnut shape. The
resulting quotient space is a torus:

Write T for the torus, i.e., for the quotient space given by the partition given
above. Recall a set U is open in T if and only if π−1(U) is open in X . The
basic open sets in X are given by the subspace topology from C, i.e., they are
intersections of open balls with X :
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On the torus we can see them easily:

Example 2.9.7. We can construct another example from the same space X
used in the previous example by specifying a different partition. The resulting
space is referred to as the Klein bottle. Define the partition in this case by the
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sets:

{aω1 + bω2 : 0 < a < 1, 0 < b < 1}
{aω1, aω1 + ω2 : 0 < a < 1}
{bω2, ω1 + (1 − b)ω2 : 0 < b < 1}
{0, ω1, ω2, ω1 + ω2}.

Essentially we are identifying sides of the parallelogram to form a tube as in
the previous example, but now we twist when we identify the ends of the tube.
The following series of pictures shows how the Klein bottle is constructed:

We will return to the Klein bottle in § 3.5 when discussing embedding of
manifolds in Euclidean space.

Example 2.9.8. We now can give a precise definition of projective space. Con-
sider the space Rn+1. (One could consider Cn+1, Fn+1

p , etc. instead if one
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wanted.) Define an equivalence relation on Rn+1−{0} by setting (x1, . . . , xn+1) ∼
(y1, . . . , yn+1) if there exists λ ∈ R− {0} so that (x1, . . . , xn) = (λy1, . . . , λyn).
We write [x1 : · · · : xn+1] for the equivalence class containing (x1, . . . , xn+1).
Each equivalence class can be pictured as a line through the origin as all points
on the line are equivalent under this equivalence relation. The quotient space
obtained from this equivalence relation is denoted RPn. We will deal specifically
with the case RP2. In this case we have that the “points” of RP2 are equivalence
classes [x1 : x2 : x3] where (x1, x2, x3) 6= (0, 0, 0).

Observe that if x3 6= 0, then [x1 : x2 : x3] =
[
x1

x3
: x2

x3
: 1
]
. In this way we

have a homeomorphism between the space of equivalence classes with x3 6= 0
and R2. Call the space of such equivalence classes U1. Similarly, one can define
U2 = {[x : 1 : z]} and U3 = {[1 : y : z]}. Since any [x : y : z] ∈ RP2 satisfies x, y,
or z is non-zero, we have that RP2 is covered by U1, U2 and U3. Note that there
is a large intersection between the Ui. For example, U1∩U2 = {[x : 1 : 1]}, which
is homeomorphic to R. Anther way to view this is that RP2 = U1 ∪{[x : y : 0]}.
Note that we can write {[x : y : 0]} as {[0 : 1 : 0]} ∪ {[x : 0 : 0]}, which is
homeomorphic to RP1. Thus, we have that RP2 is U1 along with projective
line, often referred to as the “line at infinity. In the notation of § 2.8 we have
that RP2 = U1 ∪ L∞ ∪ {∞} where L∞ = {[x : 0 : 0]} and {∞} = {[0 : 1 : 0]}.
One can picture this line at infinity as the line one intersects off infinitely far
when going out in R2 away from the origin. The distinguished point at infinity
can be viewed as

[0 : 1 : 0] = lim
y→∞

[
x

y
: 1 : 0

]

i.e., you hit this point by traveling vertically in the y-direction.

As was mentioned previously, the notion of forming a quotient space does
not directly generalize anything from classical analysis. As such, many of the
nice properties we have been studying do not behave nicely when forming a
quotient space. We will give several examples of such properties.

Let A be a subspace of a topological space X and let π : X → Y be a
quotient map. It is not necessarily true that π|A : A→ π(A) is a quotient map.

Example 2.9.9. Let X = [0, 1] ∪ [2, 3] and Y = [0, 2]. Define π : X → Y by

π(x) =

{
x x ∈ [0, 1]
x− 1 x ∈ [2, 3].
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One can check that this map is a quotient map.
Set A = [0, 1] ∪ (2, 3]. Then π|A : A → [0, 2] is continuous and surjective.

However, π|−1
A ((1, 2]) = (2, 3]. The set (2, 3] is closed in A but (1, 2] is not closed

in A. Thus, πA is not a quotient map.

Proposition 2.9.10. Let π : X → Y be a quotient map and A a subspace of X.
If π is an open map and A is open in X, then π|A is a quotient map. Similarly,
if π is a closed map and A is closed in X then π|A is a quotient map.

Proof. We already know that in general we have π|A : A→ π(A) is continuous
and surjective.

Suppose that π is an open map and A ⊂ X is open. Note that it is enough
to show that π|A(U) is open for all U open in A. However, if U is open in A
and A is open in X , then U = V ∩ A for some V ∈ TX and so U ∈ TX . The
fact that π|A is an open map gives that π|A(U) = π(U) is open in Y . Since
π|A(U) ⊂ π(A), we see that π|A(U) = π(U) ∩ π(A) and so is open in π(A).
Thus, π|A is a quotient map.

A similar argument will give the case that A is closed and π is a closed
map.

Consider the case of a quotient map π : X → Y and a continuous map
f : X → Z for some topological space Z. The natural question is whether f
descends to a map from Y to Z. This type of question arises often in abstract
algebra. For example, given a group G and a normal subgroup N , one often is
interested in determining when a map φ : G→ H factors through G/N .

Theorem 2.9.11. Let π : X → Y be a quotient map, Z a topological space, and
f : X → Z a continuous map. Assume that f is constant on π−1({y}) for each
y ∈ Y . Then f descends to a continuous map g : Y → Z so that the following
diagram commutes:

X

π

��

f // Z

Y

g

88ppppppppppppp

Proof. Let y ∈ Y . Since f is constant on π−1({y}), we have that f(π−1({y}))
is a one point set. Let g(y) be this point. This defines a map g : Y → Z so that
for each x ∈ X , g(π(x)) = f(x). It remains to show that g is continuous. Let
V ⊂ Z be open. Since f is continuous we know that f−1(V ) is open in X . Note
that f−1(V ) = π−1(g−1(V )). The fact that π is a quotient map gives f−1(V )
open implies g−1(V ) is open in Y . Thus, g is continuous as desired.

This theorem is very useful in practice. For example, to define a map from
RPn to a space Z, it is enough to define a continuous map f : Rn+1 → Z so
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that f is constant on each π−1([x1 : · · · : xn+1]). In other words, we just need
f to satisfy

f(x1, . . . , xn+1) = f(λx1, . . . , λxn+1)

for all (x1, . . . , xn+1) ∈ Rn+1 and λ ∈ R.

Exercise 2.9.12. Show that the composition of quotient maps is again a quo-
tient map.

Theorem 2.9.13. Let f : X → Z be a surjective continuous map. Let

Y = {f−1({x}) : z ∈ Z}.
We put the quotient topology on Y .

1. If Z is Hausdorff, so is Y .

2. The map f induces a bijective continuous map g : Y → Z which is a
homeomorphism if and only if f is a quotient map.

Proof. We apply Theorem 2.9.11 to see that f induces a continuous function
g : Y → Z. It is clear that g is a bijective map as well. Suppose that Z is
Hausdorff and let y1, y2 ∈ Y be distinct points. The images of these points,
z1 = g(y1) and z2 = g(y2) are distinct points in Z and so there exist disjoint
open neighborhoods V1 and V2 of these points in Z. However, this gives that
g−1(V1) and g−1(V2) are disjoint open neighborhoods of y1 and y2 in Y . Thus,
Y is Hausdorff as well.

Suppose now that g is a homeomorphism. Then we have that g and π are
both quotient maps. Thus, f = g ◦ π is a quotient map as well. Conversely,
assume that f is a quotient map. Let V ⊂ Y be an open set. Then f−1(g(V )) =
π−1(V ), which is open in X because π is continuous. Thus, using that f is a
quotient map we have that g(V ) is open in Z. Thus, g maps open sets to open
sets, hence it is a homeomorphism by Lemma 2.4.11.

In general one does not have that a quotient space of a Hausdorff space is
Hausdorff, so this result can be very useful!

Example 2.9.14. Let A = {a, b, c} and consider the map π : R → A defined
by

π(x) =





a x > 0
b x < 0
c x = 0.

This is a quotient map inducing the quotient topology TA = {∅, A, {a, b}, {a}, {b}}.
Even though R is Hausdorff, the quotient space A is not Hausdorff with the quo-
tient topology.

Let π1 : X1 → Y1 and π2 : X2 → Y2 be quotient maps. A natural question
is whether we can conclude that the product map

π1 × π2 : X1 ×X2 → Y1 × Y2

(x1, x2) 7→ (π1(x1), π2(x2))
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is a quotient map. In general, this will not be a quotient map. One can see [8]
for a counterexample. Fortunately, if we add some conditions on the spaces we
can conclude that the product map is a quotient map.

Definition 2.9.15. Given a map f : X → Y we say a subset A ⊂ X is saturated
if f−1(f(A)) = A. Given an arbitrary subset B ⊂ X , we define the saturation
of B to be

Sat(B) = f−1(f(B)).

We leave the proof of the following lemma as an exercise.

Lemma 2.9.16. A surjective continuous map π : X → Y is a quotient map if
and only if it takes saturated open sets to open sets.

Theorem 2.9.17. Let π : X → Y be a quotient map and assume Z is a locally
compact Hausdorff space. Let id : Z → Z be the identity map. Then the product
map

h := π × id : X × Z → Y × Z
(x, z) 7→ (π(x), z)

is a quotient map.

Proof. The fact that π is a quotient map gives that h is continuous and surjective
(id is clearly continuous and surjective as well.) It only remains to show that h
takes saturated open sets to open sets.

Let U ⊂ X × Z be a saturated open set and let (x0, z0) ∈ U . Suppose we
can find a saturated open neighborhood V ×W of (x0, z0) contained in U . Then
h(V ×W ) = π(V ) ×W contains (π(x0), z0) and is contained in h(U). Since π
is a quotient map and V is necessarily saturated and open, we have π(V ), and
hence h(V ×W ), is open. Thus, h(U) is open. It remains to show that we can
find such a V ×W .

Let V 1×W 1 be a basis element of X×Z containing (x0, z0) that is contained
in U . As we have seen before, since Z is locally compact and Hausdorff there is
an open set W0 so that Cl(W0) is compact and Cl(W0) ⊂W 1. Thus,

(x0, z0) ∈ V 1 × Cl(W0) ⊂ V 1 ×W 1 ⊂ U.

Since U is assumed to be saturated one can check that Sat(V 1)× Cl(W0) ⊂ U .
The definition of h gives that Sat(V 1) × W0 is a saturated subset of X × Z
contained in U that contains (x0, z0). (Note that h is the identity on W0 so
saturation is automatic there.) It remains to show it is open.

We now show that there exists an open V 2 ⊂ X with Sat(V 1) ⊂ V 2 so that
V 2 × Cl(W0) ⊂ U . Fix x ∈ Sat(V 1). For any z ∈ Cl(W0), there is a basis
element Vx ×Wz ⊂ U in X × Z. We can cover the compact set {x} × Cl(W0)
with these open sets and so obtain a finite subcover

Vx1 ×Wz1 , . . . , Vxn ×Wzn .
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Set Vx = ∩ni=1Vxi . We have that Vx is an open neighborhood of x with Vx ×
Cl(W0) ⊂ U . Set V 2 = ∪xVx where the union is over x ∈ Sat(V 1). Repeating
this construction we form a sequence

V 1 ⊂ Sat(V 1) ⊂ V 2 ⊂ Sat(V 2) ⊂ V 3 ⊂ · · ·

with V i × Cl(W0) ⊂ U . Let V = ∪V i. We have that V is open as it is the
union of open sets and V ×W0 ⊂ U . We also have that V ×W0 is saturated.
If (x, z) ∈ V ×W0, then x is in some V i and if x′ is in the same factor as x,
then x′ ∈ V i+1 and so (x′, z) ∈ V ×W0 as well. Thus, V ×W0 is the required
saturated open neighborhood of (x0, z0).

Corollary 2.9.18. Let π1 : X1 → Y1 and π2 : X2 → Y2 be quotient maps. If
X2 and Y1 are locally compact Hausdorff spaces, then π1×π2 is a quotient map.

Proof. Consider the map

π1 × idX2 : X1 ×X2 → Y1 ×X2.

Theorem 2.9.17 gives that this is a quotient map since X2 is locally compact
and Hausdorff. Similarly, we have

idY1 ×π2 : Y1 ×X2 → Y1 × Y2

is a quotient map because Y1 is locally compact and Hausdorff. We now can
use that the composition of quotient maps is again a quotient map to finish the
proof.

2.10 Topological Groups: Definitions and Basic

Properties

In this section we introduce the notion of a topological group. It is the first
instance of topology and algebra mixing together. In the subsequent two sections
we will see how topologies can be put on familiar algebraic structures to enhance
our understanding of them.

Definition 2.10.1. A topological group is a group G that has a topology so
that the following conditions hold:

1. If we endow G×G with the product topology, then the group operation

G×G −→ G

(g, h) 7→ gh

is continuous.
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2. The inversion map

G −→ G

g 7→ g−1

is continuous.

For general groups we will denote the identity element as e and the group
operation as multiplication. It is also convention that unless otherwise noted,
finite groups are all given the discrete topology.

Example 2.10.2. Let G be any group. We can form a topological group by
putting the discrete topology on G. This may seem to be a trivial example, but
we will see that we can use finite groups with the discrete topology to build very
interesting topological groups.

Example 2.10.3. The spaces Rn and Cn with the usual topology are topolog-
ical groups with the operation being addition and the identity being (0, . . . , 0).

Example 2.10.4. The spaces R× and C× with the subspace topology are topo-
logical groups under the operation of multiplication. Note that even though they
are subspaces of R and C respectively, they are not subgroups!

Example 2.10.5. Let V be a finite dimensional vector space over k where
we take k to be R or C. We can think of V as just a group by focusing on
the addition and ignoring scalar multiplication. (One can actually define a
topological vector space, but we omit that.) As a vector space, we have V ∼= kn

if n = dimk V . We can use this to define a topology on V by declaring that
U ⊂ V is open if and only if T (U) is open in kn where T is the linear map
giving the isomorphism V ∼= kn. A priori this depends on the choice of T , but
it turns out that one gets homeomorphic spaces for different choices of T .

Example 2.10.6. Let k be R or C again and consider

GLn(k) = {g ∈ Mn(k) : det(g) 6= 0}.
This is a finite dimensional vector space with operation given by matrix multi-
plication. As such, it is a topological group.

Let
SLn(k) = {g ∈ GLn(k) : det(g) = 1}.

This is a subgroup of GLn(k) that one gives the subspace topology. In fact,
this is a closed subgroup of GLn(k) as g ∈ GLn(k) is in SLn(k) if and only if g
satisfies the polynomial equation

det(g)− 1 = 0.

Let G be a topological group. Given any g ∈ G, we can define left and right
translation maps:

Lg : G −→ G

h 7→ gh
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Rg : G −→ G

h 7→ hg.

It is clear from the definitions that Lg and Rg are homeomorphisms for any
g ∈ G. Thus, we see that U ⊂ G is open if and only if gU is open if and only
if Ug is open. Similarly, we use that inversion is a homeomorphism to see U is
open if and only if U−1 = {g−1 : g ∈ U} is open.

Proposition 2.10.7. Let G be a topological group. It is enough to give a basis
of open neighborhoods around the identity in order to give a basis for the entire
space.

Proof. This follows from the fact that Lg is a homeomorphism for each g. Thus,
U is an open neighborhood of g if and only if g−1U is an open neighborhood of
e.

Definition 2.10.8. Let S be a subset of a group G. We say S is symmetric if
S = S−1.

Proposition 2.10.9. Let G be a topological group.

1. Every neighborhood U of the identity contains a neighborhood V of the
identity so that V · V ⊂ U .

2. Every neighborhood U of the identity contains a symmetric neighborhood
V of the identity.

3. If H is a subgroup of G, Cl(H) is also a subgroup.

4. Every open subgroup of G is also closed.

5. If K1 and K2 are compact subsets of G, so is K1 ·K2.

Proof. 1. Note that since every neighborhood of the identity contains an open
neighborhood of the identity, we can assume without loss of generality that
U is open. Let m : U×U → G denote the continuous map arising from the
group operation. Since U is open, m−1(U) is open in U ×U and contains
the point (e, e). The fact that U ×U has the product topology gives that
there are open sets V1, V2 ⊂ U so that (e, e) ∈ V1 × V2. Set V = V1 ∩ V2.
Then e ∈ V , V ⊂ U , and by construction we have V · V ⊂ U .

2. Note that g ∈ U ∩U−1 if and only if g, g−1 ∈ U . Thus, set V = U ∩U−1.
This is clearly a symmetric neighborhood of the identity contained in U .

3. Recall that the map f : G × G → G defined by f(x, y) = xy−1 is a
continuous map as it is the composition of two continuous maps. Also
recall that under a continuous map f : G × G → G we have f(Cl(H) ×
Cl(H)) ⊂ Cl(f(H ×H)) by equation (2.1). Let h1, h2 ∈ Cl(H). Then we
have f(h1, h2) = h1h

−1
2 ∈ f(Cl(H) × Cl(H)) ⊂ Cl(f(H × H)) = Cl(H)

since H is a subgroup. Thus, we have Cl(H) is a subgroup.
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4. Let H be a subgroup of G. Then G =
∐
Hgi for some set of coset

representatives {gi}. If H is open, we have Hgi is open for every gi and
so
∐
Hgi is open. In particular, if we consider {gi} − {e}, then we get

H = G−
∐

gi 6=e

Hgi,

which shows H is a closed set.

5. The set K1 ·K2 is the continuous image of the compact set K1 × K2 in
G×G under the multiplication map. Thus, it is compact.

Note that by combining the first two parts of the previous proposition we
see that every neighborhood of the identity contains a symmetric neighborhood
of the identity so that V · V ⊂ U . Also note that if G is connected, the only
open subgroups of G are the empty set and G. This can be used to show G is
not connected in many instances.

Proposition 2.10.10. Let G be a topological group. The following are equiva-
lent:

1. G is Hausdorff.

2. The set {e} is closed.

3. Every point of G is closed.

Proof. Suppose that G is Hausdorff. Then we know every one point set in a
Hausdorff space is closed, so we get the first statement implies the second and
third.

Suppose now that {e} is closed. Let g ∈ G and consider the map Lg−1 . This

is a continuous map and L−1
g−1({e}) = {g}. Since {e} is closed, we must have

{g} is closed as well.
Finally, assume that every point of G is closed. Let g, h ∈ G be distinct

points. The set {gh−1} is a closed set and so there is an open neighborhood U of
e that does not contain gh−1. Choose V to be an open symmetric neighborhood
of e contained in U as given by Proposition 2.10.9. Then V g and V h are open
neighborhoods of g and h respectively. Note that they must be disjoint as well
for if not, we’d have xg = yh for some x, y ∈ V , i.e., gh−1 = x−1y ∈ V , a
contradiction. Thus, G is Hausdorff.

As was mentioned in § 2.9, we can also study quotient groups in the setting
of topological groups. Let H ⊂ G be a subgroup and consider the set G/H of
left cosets of G. Recall this partitions G into disjoint sets so we can put the
quotient topology on this space via the usual projection map

π : G→ G/H,

i.e., U ⊂ G/H is open if and only if π−1(U) is open in G. If H is normal in G,
then G/H is also a topological group as we will see in the next proposition.
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Proposition 2.10.11. Let G be a topological group and H a subgroup.

1. The quotient space G/H is homogeneous under G, i.e., left translation is
a homeomorphism.

2. The projection π : G→ G/H is an open map.

3. The quotient space G/H is discrete if and only if H is open. Moreover, if
G is compact, then H is open if and only if G/H is finite.

4. If H is normal in G, then G/H is a topological group with respect to
multiplication of cosets and the quotient topology.

5. If H is normal in G, the topological group G/H is Hausdorff if and only
if H is closed.

6. Set H = Cl({e}). Then H is normal in G and the quotient group G/H is
Hausdorff with respect to the quotient topology.

Proof. 1. Let x ∈ G. We need to show the map

Lx : G/H → G/H

gH 7→ xgH

is a homeomorphism. Note that the inverse map is given by Lx−1 ,so it is
enough to show that Lx is an open map. Let U be an open set in G/H and
set U = π−1(U). We have that U is an open set by the definition of the
quotient topology. Given any x ∈ G, it is easy to see that π−1(xU) = xU .
Since U is open, xU is open as well. Now we use the definition of the
quotient topology again to see that xU is open. Thus, Lx is an open map.

2. Let U ⊂ G be an open set. We need to show that π(U) ⊂ G/H is an
open set. We know that π(U) is open if and only if π−1(π(U)) is open.
Group theory gives that π−1(π(U)) = U ·H . Let g ∈ U ·H . Then there
exists u ∈ U and h ∈ H so that g = uh. Since U is open, there is an open
neighborhood Vu of u contained in U . Thus, Vuh is an open neighborhood
of g contained in U ·H . Thus, U ·H is open as desired.

3. Let H be an open subgroup of G. By what we have just shown, π(H) is
open in G/H , i.e., H is an open point in G/H . However, we know that
Lx is a homeomorphism on G/H for every x ∈ G, so xH is open for every
x ∈ G. Thus, all the points in G/H are open and so G/H has the discrete
topology.

Conversely, if G/H has the discrete topology the point H in G/H is open
and so π−1(H) = H is open in G.

Suppose now that G is compact. We have that H is open if and only if
G/H has the discrete topology. However, since G/H is the continuous
image of the compact set G, it is compact as well. But this means it must
be finite since it is compact and discrete.
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4. Let H be a normal subgroup so that G/H is a group with multiplication of
cosets being the operation. We must show multiplication and inversion in
G/H are continuous in the quotient topology. For multiplication, observe
we have a commutative diagram

G×G m //

π×π

��

G

π

��
G/H ×G/H m // G/H.

Let U ⊂ G/H be open. Then we must show that m−1(U) is open in
G/H ×G/H . We have by the commutativity of the diagram that

m−1(U) = (π × π)(m−1(π−1(U))).

Since π is continuous and m is continuous, we have that m−1(π−1(U)) is
open in G×G. We have shown above that π : G→ G/H is an open map,
so π × π is also an open map. Thus, m−1(U) is open in G/H × G/H .
A similar argument shows inversion is a continuous map on G/H and so
G/H is a topological group with respect to the quotient topology.

5. Let H be a normal subgroup of G. Proposition 2.10.10 applied to the
group G/H gives that G/H is Hausdorff if and only if H is closed as a
point in G/H . If H is closed as a point in G/H , we have π−1(H) = H is
closed in G. Thus, ifG/H is Hausdorff then H is closed in G. Suppose now
that H is closed in G. Then G−H is open. Note that π(G−H) is open in
G/H since π is an open map. Furthermore, π(G−H) = (

⋃
gH)−H , i.e.,

all the cosets except H . Thus, H = (G/H)−π(G−H) and so is closed as
a point in G/H . Now we use Proposition 2.10.10 again to conclude that
G/H is Hausdorff.

6. We know that {e} is a subgroup ofG and soH = Cl({e}) is also a subgroup
by Proposition 2.10.9 Observe that for any g ∈ G, the map

f : G→ G

h 7→ ghg−1

is a continuous map on G. Thus, we know that f(Cl({e})) ⊂ Cl(f({e})),
i.e., gHg−1 ⊂ H for all g ∈ G. On the other hand, since H is the
smallest closed subgroup containing e, we have H ⊂ gHg−1 for otherwise
H ∩ gHg−1 would be a smaller closed subgroup containing e. Thus, H =
gHg−1 for every g ∈ G and so H is normal. The rest now follows from
the previous part.
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Example 2.10.12. Consider the topological group C. Let ω1, ω2 ∈ C with ω1

and ω2 linearly independent over R. Consider the subgroup of C given by

Λ = {mω1 + nω2 : m,n ∈ Z}.

This is clearly a group under addition. We refer to such a group in C as a lattice.
The topology is the subspace topology, which one can easily check is actually
the discrete topology in this case. Since C is an abelian group, all subgroups are
normal so we can form the topological group C/Λ. This is precisely the torus
we studied in § 2.9. Note that since Λ is easily seen to be closed in C, we recover
the (also easy) fact that the torus is Hausdorff.

Definition 2.10.13. A topological group G that is locally compact and Haus-
dorff is called a locally compact group.

Note that we require Hausdorff in this definition. The reason is that under
such an assumption one has the existence of a Haar measure on G. Though
we will not prove such a measure exists, we will briefly review some definitions
from measure theory and then precisely state the theorem. First, we prove the
following result.

Proposition 2.10.14. Let G be a Hausdorff topological group. A subgroup H
of G that is locally compact in the subspace topology is closed. In particular,
every discrete subgroup of G is closed.

Proof. LetK be a compact neighborhood of e sitting inH . SinceH is Hausdorff,
we have that K is closed in H . Thus, there is a closed set C in G so that
K = H ∩C. Now H ∩C is compact and sits inside the Hausdorff space G, so it
is closed in G as well. Proposition 2.10.9 gives a neighborhood V of e in G so
that V · V ⊂ C. Our goal is to show that if g ∈ Cl(H), then g ∈ H .

The fact that H is a subgroup gives that Cl(H) is a subgroup as well. Let
g ∈ Cl(H). This means that g−1 ∈ Cl(H) as well. If g ∈ H , we are done
so assume g /∈ H . We know that g−1 /∈ H as well then. Since g−1 ∈ Cl(H),
every neighborhood of g−1 must intersect H . In particular, there exists a y ∈
V g−1 ∩ H . We claim that yg ∈ C ∩ H . Since C ∩ H is closed, showing that
yg ∈ Cl(C ∩H) is the same as showing yg ∈ C ∩H . Thus, to show the claim
it is enough to show every neighborhood of yg meets C ∩ H . Let W be a
neighborhood of yg. Then we have that y−1W is a neighborhood of g. Observe
that y−1W∩gV is also a neighborhood of g. Since g ∈ Cl(H), there is an element
z ∈ y−1W ∩ gV ∩H . We then have yz ∈ W ∩H , y ∈ V g−1, and z ∈ gV . Thus,
yz ∈ V g−1 · gV = V · V ⊂ C. Thus, the intersection W ∩ C ∩ H 6= ∅. Thus,
yg ∈ Cl(C ∩H) and so the claim is true.

We can now use the claim to see that yg ∈ H and y ∈ H , so g ∈ H as
desired.

We now begin our review of the relevant definitions from measure theory.

Definition 2.10.15. A collection M of subsets of a set X is called a σ-algebra
if it satisfies:
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1. X ∈M;

2. If A ∈M, then X −A ∈M;

3. If An ∈ M for all n ≥ 1, then
⋃∞
i=1Ai ∈ M, i.e., M is closed under

countable unions.

One should note that the definition implies that ∅ ∈ M and M is closed
under finite and countably infinite intersections.

Definition 2.10.16. A set X along with a σ-algebra M is called a measurable
space. If X is a topological space with topology T , the smallest σ-algebra
containing T is denoted by B. The elements of B are called the Borel subsets
of X .

Definition 2.10.17. Given a measurable space (X,M), a function

µ : M→ R>0 ∪ {∞}

is called a positive measure if given any family {An} of disjoint sets in M, one
has that µ is countably additive, i.e.,

µ

(
∞⋃

i=1

Ai

)
=

∞∑

i=1

µ(Ai).

Moreover, if X is a locally compact Hausdorff space and µ is a positive measure
defined on the Borel sets, µ is called a Borel measure.

Definition 2.10.18. Let µ be a Borel measure on X and let E be a Borel
subset of X . We say µ is outer regular on E if

µ(E) = inf{µ(U) : U ⊃ E,U ∈ T }.

We say µ is inner regular on E if

µ(E) = sup{µ(K) : K ⊂ E, K compact}.

A Radon measure on X is a Borel measure that is finite on compact sets, outer
regular on all Borel sets, and inner regular on all open sets.

Consider now a groupG. A Borel measure µ onG is said to be left translation
invariant if for all Borel subsets E of G one has

µ(gE) = µ(E)

for all g ∈ G. We say µ is right translation invariant if

µ(Eg) = µ(E)

for all g ∈ G and all Borel subsets E of G.
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Definition 2.10.19. Let G be a locally compact topological group. A left
(resp. right) Haar measure on G is a nonzero Radon measure µ on G that is left
(resp. right) translation invariant. A bi-invariant Haar measure is a nonzero
Radon measure that is left and right invariant.

Theorem 2.10.20. Let G be a locally compact group. Then G admits a left
invariant Haar measure. Moreover, this measure is unique up to a scalar mul-
tiple.

The proof of this theorem is not terribly difficult, but it would take us too
far afield. The interested reader can consult [9] for a proof of this result. One
has the same result for a right invariant Haar measure. As the measure is only
unique up to scalar multiple, in practice one must choose a Haar measure. One
generally does this by picking a set that one specifies to have measure 1 which
fixes the scalar. Having a Haar measure allows one to define integration on
general locally compact groups.

Example 2.10.21. The topological group R is locally compact and hence has a
Haar measure. The Haar measure in this case is the familiar Lebesgue measure.

Example 2.10.22. The topological group Qp is a locally compact groups and
so has a Haar measure. One generally normalizes it so that the measure of Zp
is 1.

Example 2.10.23. If G is locally compact, then so is GLn(G) and so GLn(G)
has a Haar measure as well.

2.11 Profinite Groups

Profinite groups given an example of how one can build an interesting topology
out of discrete topologies. Profinite groups arise in many situations. For exam-
ple, infinite Galois groups are profinite. Profinite groups are also very prevalent
in number theory. Before we define profinite groups, we give a quick review of
inverse limits.

Let I be a nonempty set. We say I is preordered with respect to a relation
≤ if i ≤ i for every i ∈ I and if i ≤ j and j ≤ k, then i ≤ k. Note that we do
not require that if i ≤ j and j ≤ i then i = j.

Example 2.11.1. The set R is preordered with respect to the usual inequality
≤.

Example 2.11.2. The set Z is preordered with respect to the operation of
division.

Let I be a preordered set and let {Gi} be a family of sets indexed by I. We
assume that for every i, j ∈ I with i ≤ j we have a mapping ϕij : Gj → Gi so
that

1. ϕii = idGi for every i ∈ I;
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2. ϕij ◦ ϕjk = ϕik for every i, j, k ∈ I with i ≤ j ≤ k.

The collection (Gi, ϕij) is called an inverse system or projective system.

Definition 2.11.3. Let (Gi, ϕij) be a projective system of sets. The projective
limit or inverse limit of the system is defined by

lim←−
i

Gi =

{
(gi) ∈

∏

i∈I

Gi : if i ≤ j, then ϕij(gj) = gi

}
.

It is clear that lim←−Gi is a subset of the product
∏
i∈I Gi. As such, one

obtains for each i ∈ I natural projection maps

πj : lim←−
i

Gi → Gj .

For our interests we will require the Gi to be topological groups and the
maps ϕij to be continuous maps. In this case we see that lim←−Gi is a topological
group with componentwise multiplication and the subspace topology coming
from the product topology on

∏
iGi.

We recall the following universal property of inverse limits. One can find
a proof of this result in any elementary commutative algebra or graduate level
abstract algebra book. One should adapt the proofs given there to our setting
of topological groups.

Theorem 2.11.4. (Universal Property of Inverse Limits) Let H be a topolog-
ical group and let there be a system of continuous maps ψj : H → Gj for all
j ∈ I that is compatible with the given projective system (Gi, ϕij) in the sense
that for each i, j ∈ I with i ≤ j, the following diagram commutes:

H
ψj

~~}}
}}

}}
}

ψi

  B
BB

BB
BB

B

Gj
ϕij // Gi.

Then there exists a unique continuous map ψ : H → lim←−Gj such that for each
i ∈ I the following diagram commutes

H
ψ //

ψi ""E
EE

EE
EE

EE
lim←−Gj

πi

��
Gi.
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The main case of interest is when each Gi is a finite group with the discrete
topology. The projective limit lim←−Gi acquires the subspace topology from the
product topology as mentioned above. One should immediately note that even
though each Gi has the discrete topology,

∏
i∈I Gi does not have the discrete

topology and neither does lim←−Gi. The topology on lim←−Gi is called the profinite
topology.

Definition 2.11.5. A topological group G is said to be a profinite group if it is
isomorphic (as a topological group) to the projective limit of a projective system
of finite groups with the profinite topology.

One should note here that as is always the case, when we use the term “iso-
morphic” we mean that the relevant structures agree. So in the the case of
topological groups isomorphic means they are isomorphic as groups and home-
omorphic as topological spaces.

Proposition 2.11.6. Let G be a profinite group with G ∼= lim←−Gi. Then we
have

1. G is Hausdorff in the profinite topology;

2. G is a closed subset of
∏
iGi;

3. G is compact.

Proof. 1. We know that each Gi is Hausdorff because it has discrete topol-
ogy. The product of Hausdorff spaces is Hausdorff, and the subspace of a
Hausdorff space is Hausdorff.

2. Note that we have

∏

i

Gi −G =
⋃

i

⋃

j≥i

{
(gk) ∈

∏

k

Gk : ϕij(gj) 6= gi

}
.

This is an open set as it is the union of open sets, thus G is closed in∏
iGi.

3. Since each Gi is compact,
∏
iGi is compact. Thus, we have a closed subset

of a compact space, hence it is compact.

This proposition can be very useful in showing spaces are compact. It can
be easier to realize a space as a profinite than to show it is compact directly.
We now give a few examples before studying the topology of profinite groups
further.

Example 2.11.7. Let p be a prime number and consider Gi = Z/piZ. We have
natural maps

ϕij : Z/pjZ→ Z/piZ
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for j ≥ i given by reduction modulo pi. The projective limit is denoted by Zp,
the ring of p-adic integers:

Zp = lim←−
i

Z/piZ.

We can view Zp in other ways as well. The most common way is as a ring of
power series in p. Let x ∈ Zp. Then x = (xj) with each xj ∈ Z/pjZ so that
if j ≥ i then xj ≡ xi (mod pi). We can define a power series inductively as
follows. Set a0 = x1. For x2 ∈ Z/p2Z, write x2 = a0 + a1p. For x3 ∈ Z/p3Z,
since ϕ23(x3) = x2, we can write x3 = a0 +a1p+a2p

2 for some a2. We continue
in this pattern to get the power series in p.

Another way that Zp arises is as the valuation ring of Qp, i.e.,

Zp = {x ∈ Qp : |x|p ≤ 1}.

It is clear from the above description of Zp as a power series that these two
definitions coincide algebraically. One must still check that the metric topology
arising from | · |p is the same as the profinite topology. It is easy to see the only
values |·|p takes on Zp are 1, 1

p ,
1
p2 , . . . . Thus, given an ǫ > 0, we choose n0 so that

1
pn0+1 < ǫ ≤ 1

pn0
. In this case, if we look at B(x, ǫ) with x = a0+a1p+a2p

2+· · · ,
we see y =

∑∞
i=0 bip

i ∈ B(x, ǫ) if and only if ai = bi for 0 ≤ i ≤ n0. Thus, we
have that B(x, ǫ) is contained in the open set

{x1} × {x2} × · · · × {xn0} × Z/pn0+1Z× · · ·

where x1 = a0, x2 = a0 + a1p, etc. Now we just need to show we can find an
ǫ so that given an open set U around x in Zp in the profinite topology, that
U ⊂ B(x, ǫ). We will then have that the topologies match up as well. In general,
a basic open set in Zp in the profinite topology will be of the form

{x1} × {x2} × · · · × {xn} × Z/pnZ× · · ·

This follows from the fact that we must have xj ≡ xi (mod pi) for x = (xn) ∈
Zp. It now follows that if we choose ǫ = 1

pn , then U ⊂ B(x, ǫ) as claimed.

Example 2.11.8. We briefly note here that one can do the same procedure
as the previous example with the groups Z/NZ. In this case the ordering is
divisibility. Thus, if N |M we write N ≤M and have the natural projection

ϕNM : Z/MZ→ Z/NZ.

If we take the projective limit in this case we obtain the group Ẑ. We will see
later that in fact one has

Ẑ ∼=
∏

p

Zp.

Example 2.11.9. Consider the collection of finite Galois extensions of Q in
some fixed algebraic closure Q. This collection forms a directed set with respect
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to inclusion. We have a direct system of finite groups where if L and K are
finite Galois extensions of Q with Q ⊂ K ⊂ L, then

ϕKL : Gal(L/Q)→ Gal(K/Q)

via restriction. We can consider the inverse limit lim←−LGal(L/Q). It is not hard
to see that

Gal(Q/Q)
≃−→ lim←−

L

Gal(L/Q)

σ 7→ (σ|L).

Recall that a topological space is said to be totally disconnected if every point
is its own connected component. For a topological group G, the fact that G is
homogeneous gives that G is totally disconnected if and only if the connected
component of the identity is {e}. We write the connected component of the
identity in G as G0. Thus, G is totally disconnected if and only if G0 = {e}.
Lemma 2.11.10. The set G0 is a normal subgroup of G. The quotient space

G/G0 is totally disconnected and so
(
G/G0

)0
is the trivial subgroup of G/G0.

Proof. Let g ∈ G0 be any element. The fact that G is homogeneous gives
g−1G0 is connected. Now since g ∈ G0, we have e ∈ g−1G0. Thus, g−1G0

is a connected set containing e and so g−1G0 ⊂ G0. Thus, G0 is closed under
inverses. The same type of argument gives gG0 ⊂ G0 and so G0 is a subgroup of
G. Let g ∈ G. Then by homogeneity we have gG0g−1 is connected and contains
e, so gG0g−1 ⊂ G0. Thus, G0 is normal in G.

The homogeneity of G gives that the connected components of G are pre-
cisely the elements of G/G0. Thus, G/G0 is totally disconnected.

Lemma 2.11.11. Let G be a profinite topological group. Then G is compact
and totally disconnected.

Proof. We have already seen that G is necessarily compact, so it only remains
to show that G is totally disconnected, i.e., that G0 = {e}.

Let U ⊂ G be an open subgroup. Since e ∈ U necessarily, we have U ∩ G0

is a nonempty open subgroup of G0. Set

V =
∐

x∈G0−U

x(U ∩G0).

We have that V is open in G0. Suppose that there exists y ∈ U ∩V . Then there
exists x ∈ G0 − U so that y ∈ x(U ∩ G0), i.e., there exists u ∈ U ∩ G0 so that
y = xu. But this gives that x = yu−1 ∈ U , a contradiction. Thus, U ∩ V = ∅.
Furthermore, one has G0 = (G0 ∩ U)

∐
V . However, since G0 is connected we

must have U ∩G0 = ∅ or V = ∅. We know that e ∈ U ∩G0, so it must be that
V = ∅. Thus, we have G0 ⊂ U . Since U was arbitrary, we have

G0 ⊂
⋂
U
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where the intersection is over open subgroups of G. Note that up to this point
we have not used that G is profinite.

Write G = lim←−Gi where each Gi is finite with discrete topology. Let g ∈ G
with g 6= e. Then there exists a j so that gj 6= e. Let πi : G → Gi be the
natural projection map. Since Gi has discrete topology, {e} is open in Gi. The
fact that {e} is open and πi is continuous gives that U = π−1

i ({e}) is an open
set in G which by construction does not contain g. Since g was any element not
equal to e, we see ⋂

U = {e}

where the intersection is over the open subgroups of G. Thus, G0 = {e} as
claimed.

The converse to this theorem is also true, namely, if G is compact and totally
disconnected then G is profinite. The proof of this result is more involved so we
break it into pieces. First we define the profinite group that we will eventually
show G is isomorphic to.

Let N be the collection of open normal subgroups of G. This is a directed
set where we say M ≤ N if N ⊂M . If we assume that G is compact and totally
disconnected, we see that Proposition 2.10.11 gives that G/N is finite with the
discrete topology for each N ∈ N . Letting M,N ∈ N with M ≤ N , we have
that the natural projection map G → G/M must have N in the kernel, so it
descends to

ϕMN : G/N −→ G/M

gN 7→ gM.

Thus, if N1 ≤ N2 ≤ N3 with Ni ∈ N , we see that

ϕN1N2 ◦ ϕN2N3 = ϕN1N3

so {G/N}N∈N gives a projective system. One goal will be to show that G ∼=
lim←−G/N .

Lemma 2.11.12. Set G′ = lim←−G/N . There exists a surjective, continuous

homomorphism α : G→ G′.

Proof. Let N ∈ N and let αN : G → G/N be the canonical projection map.
Recall that G/N is homogeneous because G is. The map αN is continuous be-
cause G/N is homogeneous and α−1

N (eG/N ) = N , an open set. If M ≤ N we
have that the following diagram commutes:

Thus, applying the universal property of projective limits we have a continuous
map

α : G→ G′ = lim←−
N∈N

G/N

so that πN ◦ α = αN for all N ∈ N .
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G/N

ϕMN

��

G

αN

<<yyyyyyyy

αM ""E
EE

EE
EE

E

G/M.

We still must show that α is surjective. First, we show that α has dense
image in G′, i.e., there is no open set in G′ disjoint from α(G). The topology of
G′ is generated by open sets of the form π−1

N (UN ) where UN is any subset ofG/N
since G/N has the discrete topology. Thus, given any open set in G′, we can
express it as a union of finite intersections of sets of the form π−1

N (UN ). Let U
be such a set. Then U consists of elements of the form (xN )N∈N ∈

∏
N∈N G/N

where xN ∈ G/N with finitely many of the xN required to lie in a subset ofG/N .
Let N1, . . . , Nr be the groups where the coordinates of (xN ) are constrained to
lie in a subset. Set

M =

r⋂

j=1

Nj .

Then for (xN ) ∈ G′, the coordinates of xNj are all determined by the projection
of xM under the map ϕNjM : G/M → G/Nj . Since αM is surjective there exists
a g ∈ G so that αM (g) = xM and so αNj (g) = xNj for j = 1, . . . , r. Now if
(xN ) ∈ U , then α(g) ∈ U as well since α(g) agrees with (xN ) on the constrained
coordinates. Thus, U ∩ α(G) 6= ∅ and so α(G) is dense in G′.

We can now show α is in fact surjective. Recall that G is compact and G′

is Hausdorff and thus α(G) is compact and Hausdorff, hence closed. However,
since it is also dense we must have α(G) = G′.

Lemma 2.11.13. Let X be a compact Hausdorff space. For any fixed x0 ∈ X,
set

Ux0 = {K : K compact and open, x0 ∈ K}.
Set

Y =
⋂

K∈Ux0

K.

The set Y is connected.

Proof. First, observe that Ux0 is nonempty because X ∈ Ux0 . Suppose that
there exist nonempty disjoint closed sets Y1, Y2 so that Y = Y1∪Y2. Recall that
since X is compact and Hausdorff and Y1 and Y2 are closed, there exist disjoint
open sets U1 and U2 so that Yi ⊂ Ui for i = 1, 2. Set Z = X − (U1 ∪U2) so that
Z is closed and hence compact. By construction we have Z and Y are disjoint,
i.e., Z ⊂ X − Y . Thus, the sets {X − K} form an open cover of Z. There
is a finite subcover X − K1, . . . , X − Kr. Thus, there exist K1, . . . ,Kr ∈ Ux0
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so that Z ∩
(⋂r

j=1Kj

)
= ∅. Set W =

⋂r
j=1Kj . Then W is a compact open

neighborhood of x0 and so W ∈ Ux0 . However, since W is disjoint from Z we
have

W = (W ∩ U1)
∐

(W ∩ U2).

Now W ∩ U1 and W ∩ U2 are compact open subsets of X and x0 must lie in
W ∩ U1 or W ∩ U2, but not both. Suppose x0 ∈ W ∩ U1. Then W ∩ U1 ∈ Ux0

and so Y ⊂ W ∩ U1. Since Y2 ⊂ Y and Y2 is disjoint from U1, we must have
Y2 = ∅. This is a contradiction. Thus, Y is connected as claimed.

Finally, we come to the last lemma we need before we can prove the converse
to Lemma 2.11.11.

Lemma 2.11.14. Let G be a compact, totally disconnected topological group.
Then every neighborhood of the identity contains an open normal subgroup.

Proof. The proof this lemma consists of three steps. First, we show every open
neighborhood of e contains a compact open neighborhood W of e. The second
step consists of showing that W contains an open symmetric neighborhood V
of e so that W · V ⊂ W . Finally, using V we construct an open subgroup and
then an open normal subgroup of G contained in U .

Let U be the set of compact open neighborhoods of e. Then, as in the
previous lemma using e for x0, we see that Y =

⋂
K∈U K is a connected set

containing e. However, since we are assuming G is totally disconnected we
must have Y = {e}. Let U be any open neighborhood of e. Then G − U is
closed and hence compact. The fact that e is the only element in every K ∈ U
shows that we can coverG−U with {X−K}K∈U . Since G−U is compact, there
finitely many K ∈ U so that G − U is covered by X −K1, . . . , X −Kr. Thus,
W =

⋂r
j=1Kj must be a subset of U . It is also a compact open neighborhood

of e. Thus, W ∈ U as desired. This gives the first step.
We consider the continuous map m : W ×W → G given by restricting the

group operation to W . Note that

1. For every w ∈W , (w, e) ∈ m−1(W ).

2. Since W is open, m−1(W ) is open in W ×W .

3. The first two imply that for every w ∈W , there exist open neighborhoods
Uw of w and Vw of e so that Uw × Vw ⊂ m−1(W ). Moreover, we can
assume Vw is symmetric by Proposition 2.10.9.

4. The collection {Uw} is an open cover of W . Since W is compact, we can
choose a finite subcover U1, . . . , Ur.

Let V1, . . . , Vr be the sets corresponding to U1, . . . , Ur so that Ui×Vi ⊂ m−1(W ).
Define V ⊂W by

V =

r⋂

j=1

Vj .
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By construction we have W · V ⊂ W . By induction we have W · V n ⊂ W for
all n ≥ 0. Thus, V n ⊂W for all n ≥ 0. This gives the second step.

Set O =
⋃∞
n=1 V

n. Note that O is open in G and contained in W . Moreover,
since V is symmetric O is closed under inversion and so is an open subgroup
contained in W . The space G/O is compact and discrete and hence finite.
Thus, we can find a finite set of cost representatives x1, . . . , xm for O in G.
Similarly, xjOx−1

j for j = 1, . . . ,m are the finitely many conjugates of O in

G. Thus, N =
⋂m
j=1 xjOx−1

j is an open normal subgroup of G. Moreover,

since necessarily xjOx−1
j = O for one of the j’s, we see that N ⊂ O ⊂ W as

desired.

Theorem 2.11.15. Let G be a topological group. Then G is profinite if and
only if G is compact and totally disconnected.

Proof. We have already seen that if G is profinite then it is compact and totally
disconnected. Suppose now that G is compact and totally disconnected. We
have seen in Lemma 2.11.12 that there is a surjective homomorphism α : G→ G′

where G′ = lim←−G/N . It is enough to show that α is injective by Theorem 2.8.10.

It is easy to see that ker(α) =
⋂
N∈N N. Lemma 2.11.14 gives that every

open neighborhood of e contains an open normal subgroup, which is necessarily
in N . Thus, ker(α) is contained in every neighborhood of e, and hence is in
the intersection of all such neighborhoods. However, since G is Hausdorff, the
intersection of all neighborhoods of e is {e} and so α is injective.

Theorem 2.11.15 is important because it may not immediately be clear a
group is profinite. Moreover, not only does it tell us that a compact totally
disconnected topological group G is profinite, but it gives us exactly how the
profinite group is realized:

G ∼= lim←−
N∈N

G/N

where N consists of the open normal subgroups of G. We will see a particularly
interesting example of this in the next section.

We close this section with the following theorem on the closed subgroups of
a profinite group.

Theorem 2.11.16. Let G be a profinite group and H a subgroup of G. The
subgroup H is open if and only if G/H is finite. Moreover, the following three
statements are equivalent:

1. H is closed.

2. H is profinite.

3. H is the intersection of a family of open subgroups.

Finally, if the above conditions are satisfied, then G/H is compact and totally
disconnected.
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Proof. The fact that H is open if and only if G/H is finite follows from Propo-
sition 2.10.11.

Suppose that H is closed. Since H is a closed subset of a compact space, H
is compact. We also have that G0 = {e}, so H0 = {e}. Thus, H is compact
and totally disconnected and so profinite.

Suppose now that H is profinite. Then H is a compact subset of a Hausdorff
space, so it must be closed. This shows the first two statements are equivalent.

Now suppose that H is the intersection of a family of open subgroups of G.
Recall that every open subgroup is also closed by Proposition 2.10.9. Thus, we
have that H is the intersection of a family of closed subgroups, and so must be
closed.

Let H be closed. Once again, let N denote the family of all open normal
subgroups of G. For each N ∈ N , NH is a subgroup of G because N is normal.
We also see by the first statement that [G : N ] is finite because N is open.
Thus, [G : NH ] is also finite and hence NH is open. We also have

H ⊂
⋂

N∈N

NH.

Let x ∈ ⋂N∈N NH . Let U be any neighborhood of x. Then Ux−1 is a neigh-
borhood of e and so contains a Nx ∈ N by Lemma 2.11.14 where we have used
that G is profinite since we have already shown the equivalence of the first two
statements in the theorem. So x ∈ NxH . Since e ∈ Nx, x ∈ Nxx as well. Thus,
Nxx = Nxh for some h ∈ H and so h ∈ Nxx ⊂ U . Thus, every neighborhood
of x intersects H and so x ∈ Cl(H). However, we assumed H is closed and
so Cl(H) = H . Thus,

⋂
N∈N NH = H as desired. This shows that the first

and third condition are equivalent, which when combined with what we have
already shown gives the equivalence of all three conditions.

Finally, we must show if one of the three equivalent conditions is satisfied
then G/H is compact and totally disconnected. Since G is compact and G/H
is the continuous image of G, we have that G/H is compact as well. Let π :
G → G/H be the canonical projection map. Suppose that G/H is not totally
disconnected. Let π(X) be a connected subset of G/H that properly contains
π(H). Note that we may assume H 6= {e} for otherwise the result is trivial. We
also clearly see that H is a proper subset of X and so X−H contains at least one
point. Suppose X−H = {x}. Then we have {x} is closed because G, and hence
X is Hausdorff. Thus, H is open in X . Now observe that π({x}) is nonempty,
π({x}) 6= π(X) since π(H) is a proper subset of π(X), and π({x}) is open
because projection is an open map, and closed because once again H is closed
and we are in a Hausdorff space and π({x}) is a point. This contradicts π(X)
being connected and so it must be that π(H) is its own connected component.

Suppose now that X −H has at least two points. In this case we set Y =
X−H . Then Y cannot be connected because G is totally disconnected so there
exist disjoint nonempty open (and hence closed) sets F1 and F2 in X so that
Y = F1 ∪ F2. Then X = (F1 ∪ H) ∪ F2. Now repeat the argument above
replacing {x} by F2.
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One should note that the last part of the previous theorem could also be
shown by directly showing

G/H ∼= lim←−
N∈N

G/NH.

2.12 Examples of profinite groups

In this section we work out a couple of important examples of profinite groups
based on the material covered in the previous sections. We also introduce the
notion of pro-p groups and examine what they say for these examples.

It is customary in a beginning abstract algebra class to cover Galois theory
for finite extensions of fields. However, one is often interested in studying infinite
field extensions. For example, if we have a field K, the separable closure Ksep

is a very interesting infinite field extension. Often by studying properties of the
larger field extension one can recover information about the finite extensions.
The theory of profinite groups is very important in this study. We quickly recall
some notions from abstract algebra.

Definition 2.12.1. Let F be a field and K a field that contains F . We say
α ∈ K is algebraic over F if there is a monic polynomial f(x) ∈ F [x] so that
f(α) = 0. We say that α is separable if f(x) is irreducible and has no repeated
roots. The field K is said to be a separable extension of F if it is generated over
F by separable elements.

Definition 2.12.2. Let F be an algebraic closure of F and K a field so that
F ⊂ K ⊂ F . The field K is said to be a normal extension of F if every
embedding σ : K →֒ F so that σ|F = id is an automorphism of K.

Definition 2.12.3. A field extension K/F is said to be Galois if it is separable
and normal. The set of all automorphisms of K that fix F form a group under
composition denoted Gal(K/F ).

One should note that there is no assumption the field extensions were finite
extensions in the above definitions!

One of the deepest and most beautiful theorems one learns as an under-
graduate or graduate student is the Fundamental Theorem of Galois Theory for
finite extensions:

Theorem 2.12.4. Let K/F be a finite Galois extension. Set G = Gal(K/F ).
There is a bijection

{subfields E of K containing F} ↔ {subgroups H of G}

given by
E 7→ Gal(K/E)

and
H 7→ KH
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which are inverse to each other where

KH = {x ∈ K : σx = x for every σ ∈ H}.
Furthermore, we have that E is Galois over F if and only if Gal(K/E) is normal
in Gal(K/F ).

One can see [3] for a more detailed discussion of this result as well as a proof.
Out interest is in the corresponding statement for infinite extensions.

Let K/F be a Galois extension of fields, not necessarily finite. Let N be the
set of normal subgroups of G = Gal(K/F ) of finite index. If N1, N2 ∈ N with
N1 ⊂ N2, we have a natural projection map

ϕN2,N1 : G/N1 −→ G/N2.

Thus, we obtain a projective system {G/N}N∈N . It is easy to see the projections
ϕN2,N1 are compatible with the natural projection

ϕN2 : G→ G/N2.

Note that ϕN2 is the restriction map Gal(K/F ) → Gal(KN2/F ). Thus, as
before we have a canonical induced homomorphism

ϕ : G −→ lim←−
N∈N

G/N.

Proposition 2.12.5. The canonical map

ϕ : Gal(K/F ) −→ lim←−
N∈N

Gal(K/F )/N

is an isomorphism of groups and so G is a profinite group in the topology induced
by ϕ.

Proof. It is clear that

kerϕ =
⋂

N∈N

N.

We wish to show that kerϕ is trivial and ϕ is onto. Let σ ∈ kerϕ and let
x ∈ K. Then there exists a finite Galois extension E of F where F ⊂ E ⊂ K
with x ∈ E. The restriction map Gal(K/F )→ Gal(E/F ) has kernel Gal(K/E).
Thus, Gal(K/E) is normal and has finite index so Gal(K/E) ∈ N . Thus,
σ ∈ Gal(K/E), which gives σ(x) = x since x ∈ E. Since x was arbitrary, we
must have σ(x) = x for every x ∈ K, i.e., σ = e and so kerϕ must be trivial as
desired.

Now let (σN )N∈N ∈ lim←−G/N . We need to show there is a σ ∈ G so that

ϕN (σ) = σN for every N ∈ N . Let x ∈ K. There exists a finite Galois extension
E of F contained in K that contains x with N = Gal(K/E) normal and of finite
index in G. Note G/N ∼= Gal(E/F ). Define σ ∈ Gal(K/F ) by σ(x) = σN (x).
The definition of projective limit shows that this is well-defined, i.e., if we choose
another field E′ satisfying the same conditions as E, the definition of σ on x
does not change. Doing this for each x ∈ K defines σ and it is clear from
construction that ϕN (σ) = σN .
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From this proposition we obtain that Gal(K/F ) is compact and totally dis-
connected. We have that a subgroup H ⊂ Gal(K/F )is open if and only if G/H
is finite.

Theorem 2.12.6. Let K/F be any Galois extension of fields and set G =
Gal(K/F ) endowed with the profinite topology. The maps

E 7→ Gal(K/E)

and
H 7→ E = KH

give a bijection between the intermediate fields F ⊂ E ⊂ K and the closed
subgroups of G. The maps are inverse to each other and are order reversing.
Furthermore, E/F is Galois if and only if Gal(K/E) is normal in Gal(K/F ).

One should note that if G is finite, the topology on G is the discrete topology
and this theorem reduces to Theorem 2.12.4. We will assume the that Theorem
2.12.4 is known in the process of proving Theorem 2.12.6.

Proof. Let f be the map that sends E to Gal(K/E) and g the map that
sends H to KH . It is clear that for any subset H ⊂ G, the set KH is a
field between F and K so g is well-defined. We must show that f is well-
defined, i.e., for F ⊂ E ⊂ K, the group Gal(K/E) is a closed subgroup of
G. Consider the collection {L a field : L/F is finite and Galois, L ⊂ E}. For
each such L, we have Gal(K/L) is a subgroup of Gal(K/F ). It is open because
Gal(K/F )/Gal(K/L) ∼= Gal(L/F ), a finite group, so we can apply Theorem
2.11.16 to conclude it is open. Now recall from Proposition 2.10.9 that every
open subgroup of a topological group is also closed, so Gal(K/L) is closed for
each such L as well. It is easy to see that Gal(K/E) ⊂ ⋂L Gal(K/L) since if
σ ∈ Gal(K/E), then certainly σ ∈ Gal(K/L) for every L ⊂ E. Conversely, let
σ ∈ Gal(K/L) for every such L. Suppose there is an α ∈ E so that σ(α) 6= α.
This is a contradiction because by adjoining α and the rest of the roots of the
minimal polynomial of α to F we obtain a finite Galois extension of F , and so
σ must fix this extension. Thus, Gal(K/E) =

⋂
L Gal(K/L), and so being the

intersection of closed sets, Gal(K/E) is itself closed.
Our next step is to show that g ◦ f is the identity map. Let F ⊂ E ⊂ K so

f(E) = Gal(K/E), which clearly fixes E. Thus, we must have (g ◦ f)(E) ⊃ E.
Let x ∈ (g ◦ f)(E). There exists a finite Galois extension of E containing x that
is contained in K. Call this extension L. Let σ ∈ Gal(L/E). There exists a
τ ∈ Gal(K/E) so that τ |L = σ. This follows exactly as in the finite case only
requiring an application of Zorn’s Lemma in this instance. By definition, we
have x ∈ (g ◦ f)(E) = KGal(K/E), and so τ(x) = x. However, since τ |L = σ
and x ∈ L, we see that σ(x) = x as well. We now use finite Galois theory on
Gal(L/E) to conclude that x ∈ E and so g ◦ f is the identity map.

We now show that f ◦ g is the identity map. Let H be a subgroup of G. We
have

(f ◦ g)(H) = f(KH) = Gal(K/KH)
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and so clearly we have H is a subgroup of (f ◦ g)(H). Now let H be a closed
subgroup. Theorem 2.11.16 gives that H is the intersection of a family of open
subgroups, call the family U = {Ui}. We have

g(H) = g(∩Ui)
= K∩Ui

⊃
⋃
KUi

=
⋃
g(Ui).

If we apply f we obtain

(f ◦ g)(H) = Gal(K/g(H))

⊂ Gal(K/ ∪ g(Ui))
⊂
⋂

Gal(K/g(Ui))

=
⋂
Ui

= H

where we have used that since the Ui are open, they have finite index and so we
can use the finite case to get

⋂
Gal(K/g(Ui)) =

⋂
Ui. Thus, we have that f ◦ g

is the identity.
It only remains to show that given an intermediate field E, E/F is Galois if

and only if H = Gal(K/E) is normal in G = Gal(K/F ). Let σ ∈ G. We claim
that

σHσ−1 = Gal(K/σ(E)).

Let τ ∈ H . If x ∈ σ(E), we have σ−1(x) ∈ E and so τσ−1(x) ∈ E and
thus στσ−1(x) ∈ σ(E). Hence, στσ−1 ∈ Gal(K/σ(E)) and so σHσ−1 ⊂
Gal(K/σ(E)). Now suppose that χ ∈ Gal(K/σ(E)). Let x ∈ E. Then σ(x) ∈
σ(E) so χ(σ(x)) = σ(x), and so σ−1χσ(x) = x. Thus, σ−1χσ ∈ Gal(K/E).
From this we see that χ = σ(σ−1χσ)σ−1 ∈ σHσ−1. Thus, Gal(K/σ(E)) =
σHσ−1. From what we have shown above, we have σ(E) = E for every σ ∈ G
if and only if σHσ−1 = H for every σ ∈ G, i.e., E is Galois over F if and only
if H is normal in G.

Before our next examples we need some definitions and theorems.

Definition 2.12.7. Let p be a prime number. We say a profinite group is a
pro-p group if it is the projective limit of finite p-groups.

Example 2.12.8. We constructed Zp as

Zp = lim←−
n

Z/pnZ.

Thus, Zp is a pro-p group.
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Definition 2.12.9. A supernatural number is a formal product

∏

p

pnp

where p runs over the set of primes and np ∈ N ∪ {∞}.

Definition 2.12.10. Let G be a profinite group and let N denote the set of
open normal subgroups in G. Let H be a closed subgroup of G. The index of
H in G, denoted [G : H ], is defined by

[G : H ] = lcmN∈N [G/N : HN/N ] .

The order of G is defined by

|G| = [G : {e}].

Note that since N ∈ N is an open subgroup in G, |G/N | < ∞ so [G/N :
HN/N ] <∞ for each N . However, [G : H ] is a supernatural number.

Example 2.12.11. We claim that |Zp| = p∞. To see this, observe that the
open subgroups of Zp are pnZp for n ≥ 0. Thus,

|Zp| = lcmn≥0[Zp : pnZp]

= lcmn≥0 p
n

= p∞.

It is possible to prove many of the standard results of group theory in this
setting. We state one of them here but omit the proof.

Proposition 2.12.12. Let G be a profinite group, H and K closed subgroups
of G with H ⊂ K. Then

[G : K] = [G : H ][K : H ].

Definition 2.12.13. Let G be a profinite group. A maximal pro-p subgroup
of G is called a pro-p Sylow subgroup of G, or simply a p-Sylow subgroup of G.

Theorem 2.12.14. Let G be a profinite group and p a prime number. One has

1. p-Sylow subgroups of G exist (they may be trivial.)

2. Any pair of p-Sylow subgroups of G are conjugate.

3. If H is a p-Sylow subgroup of G, then [G : H ] is relatively prime to p.

4. Each p-Sylow subgroup of G is nontrivial if and only if p divides the order
of G.

72



Proof. We begin with a basic observation. If we let N denote the open normal
subgroups of G, then we have

G
≃−→ lim←−

N∈N

G/N

x 7→ (xN )N∈N .

Thus, given g, h ∈ G, g = h if and only if gN = hN for all N ∈ N .

1. Let N ∈ N and write P(N) for the (possibly empty) set of p-Sylow sub-
groups of the finite group G/N . Let M,N ∈ P(N) with N ⊂ M . There
is a natural surjection

ϕM,N : G/N −→ G/M.

For PN ∈ P(N) we have a natural induced surjection

(G/N)/PN −→ (G/M)/(ϕM,N (PN )).

The kernel of this map is PN kerϕM,N/PN . In particular, we have

[G/N : PN ] = [G/M : ϕM,N (PN )][PN kerϕM,N : PN ].

It is clear that ϕM,N (PN ) is a p-group and this equality shows it is a
p-Sylow subgroup of G/M since p ∤ [G/N : PN ] implies p ∤ [G/M :
ϕM,N (PN )]. Thus, we have a map

ϕM,N : P(N) −→ P(M)

induced from the original ϕM,N . Thus, the collection ({P(N)}, ϕM,N)
forms a projective system of finite nonempty sets. This projective limit is
nonempty, so we can take an element of it. An element in this projective
limit is a collection of p-Sylow subgroups PN ⊂ G/N , one for each N ∈ N .
However, these are finite groups themselves so form a projective system
themselves:

P = lim←−
N

PN .

We have that P is then a subgroup of G and by construction we have
that P is a pro-p group. We must show that P is maximal. Let Q be any
p-Sylow subgroup of G containing P . Then for each N ∈ N we have

QN/N ⊃ PN/N = PN ,

and is a p-group. Since PN is a p-Sylow subgroup of G/N , the finite Sylow
theorem gives PN = QN/N for every N ∈ N . Thus, by the comment at
the beginning of the proof we have Q = P .
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2. Let P and Q be p-Sylow subgroups of G. Set PN = PN/N , QN = QN/N
and

AN = {gN ∈ G/N : gNPNg
−1
N = QN}.

By the finite Sylow theorems we have that AN 6= ∅ for all N ∈ N . The
sets AN form a projective system. Set

A = lim←−
N

AN ,

which is a subset of G. Let a ∈ A. Then we have that aPa−1 and Q have
the same projection in G/N for each N ∈ N , so they must be equal.

3. This is a homework exercise.

4. This follows immediately from the previous parts.

Corollary 2.12.15. Let G be an abelian profinite group. Then:

1. For every prime p, G has a unique p-Sylow subgroup.

2. Let p and q be distinct primes and P a p-Sylow subgroup and Q a q-Sylow
subgroup. Then P ∩Q = {e}.

3. The group G is isomorphic to a direct product of its Sylow subgroups.

Proof. The first two results follow immediately from the previous theorem. The
third statement follows from the isomorphism

G/N ∼=
∏

PN/N

where the product is over the p-Sylow subgroups of G and the fact that P ∩N
forms a cofinal system among the open subgroups of G.

We close this section and chapter by returning to the example of Ẑ formed
by looking at the projective system formed by Z/NZ → Z/MZ. We begin by

observing that |Ẑ| =
∏
p p

∞. To see this, let n ≥ 1. We have a surjection

Ẑ→ Z/nZ with a kernel, call it Hn. Thus, every integer n divides |Ẑ|.
Let p be a prime and let P be the p-Sylow subgroup of Ẑ. Let Pn be the

unique p-Sylow subgroup of Z/nZ. Then

P = lim←−
n

Pn

= lim←−
n

Z/pυp(n)Z

= lim←−
m

Z/pnZ

= Zp
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where υp(n) is the power of p exactly dividing n. Thus,

Ẑ ∼=
∏

p

Zp.
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Chapter 3

Differential Topology and

de Rham cohomology

In the last few sections of Chapter 2 we saw how topology can be useful in giving
more information to algebraic settings such as Galois theory. In this chapter we
begin to see how algebra can be used to study topological notions. This chapter
focuses on the differential theory, which one can think of as generalized calculus.
As such, we draw our motivation from calculus and develop the theory over Rn

before moving on to the more abstract theory over differentiable manifolds. One
should keep in mind that this theory can be developed over Cn as well. In this
case one needs to use the theory of several complex variables. We will return to
this later and develop what is needed for covering some of the desired examples
from algebraic geometry.

3.1 Motivation

In this section we give the basic motivation for deRham cohomology by study-
ing a familiar problem from multivariable calculus and rephrasing it in a more
algebraic language.

Definition 3.1.1. Let D ⊂ R2. A vector field on D is a function that assigns
a vector F(x, y) to each point (x, y) ∈ D.

Example 3.1.2. Define a vector field on R2 − {(0, 0)} by setting

F(x, y) =

(
− y√

x2 + y2

)
i +

(
x√

x2 + y2

)
j

where i and j are the standard unit vectors in the x and y directions respectively.
This vector field can be pictured as follows:
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Recall that given a function z = f(x, y), the gradient of f is defined by

∇f(x, y) =
∂f

∂x
(x, y)i +

∂f

∂y
(x, y)j.

The gradient of a function is a vector field where it is defined.
One knows from elementary physics class that work done by a constant force

F over a straight line displacement D is given by

W = F ·D.

More generally, we can consider the work done by a variable force F(x, y) in
moving a particle over a path C. Suppose the path is traced out as the tips of
the vectors r(t) = x(t)i + y(t)j for a ≤ t ≤ b. Let t0 = a < t1 < · · · < tn = b be
a partition of the interval and let sj be the arc-length of the curve from r(tj)
to r(tj+1) for 0 ≤ j ≤ n − 1. Let T(t) be the unit tangent vector to C at t,

i.e., T(t) = r(t)
|r(t)| . As long as sj is small for each j, we can approximate the

force over this interval by F(r(tj)) and the displacement by sjT(tj). Thus, one
has that the work done over the interval tj to tj+1 is approximately equal to
F(r(tj)) · T(tj)(sj). If we add up all of these contributions we end up with a
Riemann sum approximating the value of the total work:

n−1∑

j=0

(F(r(tj)) ·T(tj))sj .

Now, let the width of the partition, i.e., min1≤j≤n(tj− tj−1), go to 0. This gives
that the work over this curve is given by

W =

∫

C

F ·T ds

=

∫ b

a

F(r(t)) ·T(t) dt.

Of course, we recall that this is how a line integral is defined even when one
does not have the physical interpretation of F as a force moving something.
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Suppose now that there is a function z = f(x, y) so that ∇f(x, y) = F(x, y).
In this case we see from the fundamental theorem of line integrals (which follows
immediately from the standard fundamental theorem of calculus) that

∫

C

F ·T ds = f(r(b))− f(r(a)).

In other words, if there is such a f then the line integral along C from the point
r(a) to the point r(b) is independent of the path C! We call such a f a potential
function and such a vector field F a conservative vector field. The question is,
given a vector field F(x, y) = F1(x, y)i + F2(x, y)j, is F conservative, i.e., when
does there exist a function z = f(x, y) so that F1 = ∂f

∂x and F2 = ∂f
∂y ? Using the

equality of mixed partial derivatives we see immediately that it is necessary for

∂F1

∂y
=

∂2f

∂y∂x

=
∂2f

∂x∂y

=
∂F2

∂x
.

However, it is not immediately clear if this is also a sufficient condition.

Example 3.1.3. Consider the vector field F given in Example 3.1.2 and let C
be the unit circle parameterized by x(t) = cos t, y(t) = sin t for 0 ≤ t ≤ 2π.
Then we have

∫

C

F ·T ds =

∫ 2π

0

((− sin ti + cos tj) · (− sin ti + cos tj)) dt

= 2π.

Thus, we have that F is not conservative because C is a closed curve and the line
integral of a conservative vector field over a closed curve must be 0. However,
it is easy to check that F satisfies the necessary condition given above. Thus,
this condition cannot be a sufficient condition as well!

It turns out that the topology of the region D the vector field is defined on
is fundamental to whether or not the condition is also sufficient.

Definition 3.1.4. A region U ⊂ R2 is said to be star-shaped with respect to the
point (x0, y0) if the line segment {t(x0, y0) + (1 − t)(x, y) : 0 ≤ t ≤ 1} lies in U
for all (x, y) ∈ U .

Theorem 3.1.5. Let U ⊂ R2 be open and star-shaped. Let F(x, y) = F1(x, y)i+
F2(x, y)j be a vector field defined on U with F1 and F2 having continuous partial
derivatives on U . Furthermore, assume ∂F1

∂y = ∂F2

∂x on U . Then F is conserva-
tive.
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Proof. Without loss of generality we may assume that U is star-shaped with
respect to (0, 0). Define f : U → R by

f(x, y) =

∫ 1

0

xF1(tx, ty) + yF2(tx, ty) dt.

Note that this is well-defined because U is star-shaped with respect to (0, 0) and
F is defined on U . Observe that we have

∂f

∂x
(x, y) =

∫ 1

0

(
F1(tx, ty) + tx

∂F1

∂x
(tx, ty) + ty

∂F2

∂x
(tx, ty)

)
dt.

An application of the chain rule gives

d

dt
(tF1(tx, ty)) = F1(tx, ty) + tx

∂F1

∂x
(tx, ty) + ty

∂F1

∂y
(tx, ty).

Thus, we see that

∂f

∂x
(x, y) =

∫ 1

0

(
d

dt
(tF1(tx, ty)) + ty

(
∂F2

∂x
(tx, ty)− ∂F1

∂y
(tx, ty)

))
dt

=

∫ 1

0

d

dt
(tF1(tx, ty)) dt

= F1(x, y)

where we have used that ∂F1

∂y = ∂F2

∂x . Similarly, we obtain ∂f
∂y (x, y) = F2(x, y)

and so F is conservative.

Let U ⊂ Rn and V ⊂ Rm. We write C∞(U, V ) for the set of functions
f : U → V that have continuous partial derivatives of all orders. We refer
to this as the set of smooth functions. For most instances continuous partial
derivatives to the second order, but we don’t lose much by focusing on the
smooth functions and it simplifies the exposition.

Let U ⊂ R2. Define

curl : C∞(U,R2)→ C∞(U,R)

by setting

curl(F1, F2) =
∂F1

∂y
− ∂F2

∂x

and
grad : C∞(U,R)→ C∞(U,R2)

by setting

grad(f) =

(
∂f

∂x
,
∂f

∂y

)
.

Observe that we have
curl(grad(f)) = 0
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for all f ∈ C∞(U,R). Thus, we see that the image of ∇ lies in the kernel of curl.
The problem we are trying to solve is to determine when the image of grad is
precisely the kernel of curl. To this end, define

H1
dR(U) = ker(curl)/ im(grad)

and
H0

dR(U) = ker(grad).

Observe that Theorem 3.1.5 can be restated as follows.

Theorem 3.1.6. If U is star-shaped then H1
dR(U) = 0.

It is clear that C∞(U,R2) has the structure of a R-vector space. Further-
more, ker(grad) and im(curl) are both R-subspaces and so H0

dR(U) and H1
dR(U)

both have natural R-vector space structures. This structure will be essential in
the forthcoming sections to establish a nice algebraic theory.

At this point we do not have enough machinery to calculate H1
dR(U) for any

nontrivial spaces U . However, we can calculate H0
dR(U).

Theorem 3.1.7. The dimension of H0
dR(U) as a R-vector space is precisely the

number of connected components of U .

Proof. Let U have k connected components U1, . . . , Uk. Define functions f1, . . . , fk
by

fi(x, y) =

{
1 (x, y) ∈ Ui
0 otherwise.

It is immediate that each fi satisfies grad(fi) = 0 and so f1, . . . , fk ∈ H0
dR(U).

It is also clear that f1, . . . , fk are linearly independent, so it only remains to
show they span H0

dR(U).
Let f ∈ H0

dR(U). Since grad(f) = 0 we have that f is locally constant, i.e.,
for each (x0, y0) ∈ U there is an open set V(x0,y0) containing (x0, y0) so that
f(x, y) = f(x0, y0) for all (x, y) ∈ V(x0,y0). Let (xi, yi) ∈ Ui be fixed points and
set f(xi, yi) = zi for 1 ≤ i ≤ k. We claim that f(x, y) = zi for al (x, y) ∈ Ui.
To see this, consider the set

f−1(f(xi, yi)) ∩ Ui = {(x, y) ∈ Ui : f(x, y) = zi}.

This set is closed in Ui since it is the preimage of the closed set {zi} under the
continuous map f and it is open because f is locally constant. Thus, it must
be that it is all of Ui as claimed. Thus, we see that we can write

f(x, y) =

k∑

i=1

zifi(x, y)

and so f1, . . . , fk span H0
dR(U) as claimed.
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3.2 Some General Homological Algebra

Before we proceed further with de Rham cohomology we give some basic ho-
mological algebra results. One could prove all the results in this section for de
Rham cohomology in particular, but as we will encounter other types of co-
homology theories it is best to have some of the machinery set up generally.
We also briefly review some basic algebra facts that we will use often. For the
reader that desires to see a concrete example before seeing such general theory,
the following section can safely be read before this one. Section 3.3 is spent
constructing an example of a chain complex that satisfies the definitions laid
out in this section and whose cohomology groups generalize those constructed
in § 3.1.

Let V 1, V 2, and V 3 be vector spaces and T i : V i → V i+1 be linear maps.
Note we use superscripts here as we are going to be dealing with cohomology,
so superscripts are standard. One can also keep in mind that spaces Ωi(U) are
the vector spaces that will take the place of these when we specialize to the case
of de Rham cohomology. We say the sequence

V 1 T 1

−→ V 2 T 2

−→ V3

is exact when ker(T 2) = im(T 1).
Let {V i} be a collection of vector spaces and {di : V i → V i+1} a collection

of linear maps. We call the sequence

· · · −→ V i−1 di−1

−→ V i
di

−→ V i+1 di+1

−→ V i+2 −→ · · ·
a chain complex if di+1 ◦ di = 0 for all i. We say the chain complex is exact if
ker(di) = im(di−1) for all i. If the chain complex is exact, we obtain a short
exact sequence

0 −→ im(di−1) −→ V i −→ im(di) −→ 0.

Let V ∗ = {V i, di} be a chain complex. Note that the maps di are understood
from context. The cohomology groups of this chain complex are defined by

Hm(V ∗) =
ker(dm : V m → V m+1)

im(dm−1 : V m−1 → V m)
.

Note that this is a natural vector space to consider as it measures how far
the complex V ∗ is from being exact. In general, we refer to the elements in
ker(dm) as the m-cocycles and the elements in im(dm−1) as the m-coboundaries
(or simply the cocyles and coboundaries if m is clear from context.) Note in the
de Rham setting we will refer to these as closed and exact instead.

Let V ∗ and W ∗ be chain complexes. A chain map T ∗ : V ∗ → W ∗ is a
collection of linear maps T i : V i → W i satisfying diW ◦ T i = T i+1diV for all i,
i.e., the following diagram commutes:

Lemma 3.2.1. A chain map T ∗ : V ∗ →W ∗ induces a linear map

Hm(T ∗) : Hm(V ∗)→ Hm(W ∗)

for all m.
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· · · // V i−1
di−1

V //

T i−1

��

Vi
di

V //

T i

��

V i+1 //

T i+1

��

· · ·

· · · // W i−1
di−1

W // Wi

di
W // W i+1 // · · ·

Proof. Let v ∈ V m be a cocycle and [v] = v + im(dm−1) be the corresponding
cohomology class. Define

Hm(T ∗)([v]) = [Tm(v)].

We must show this map is well-defined. The first step of this is to show that
Tm(v) is a cocycle in Hm(W ∗), i.e., that dmW (Tm(v)) = 0. Observe that

dmW (Tm(v)) = Tm+1(dmV (v))

= Tm+1(0)

= 0

since v is a cocycle.
It remains to show that Hm(T ∗)([v]) is independent of the representative of

[v] we choose. Let v1 and v2 be representatives of [v]. Note that this means
there is a x ∈ V m−1 so that v1 − v2 = dm−1

V (x). So we have

Tm(v1 − v2) = Tm(dm−1
V (x))

= dmW (Tm−1(x))

i.e., we have Tm(v1)− Tm(v2) = dmW (Tm−1(x)). Thus,

[Tm(v1)] = [Tm(v2)]

and so Hm(T ∗)([v1]) = Hm(T ∗)([v2]). Hence, the map is well-defined.

We say a sequence of chain complexes

0 −→ U∗ S∗

−→ V ∗ T∗

−→W ∗ −→ 0

is a short exact sequence of chain complexes provided that the sequence

0 −→ Um
Sm

−→ V m
Tm

−→Wm −→ 0

is exact for every m.
From this we get the following commutative diagram for any m:
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...

dm−1
U

��

...

dm−1
V

��

...

dm−1
W

��
0 // Um

Sm
//

dm
U

��

V m
Tm

//

dm
V

��

Wm //

dm
W

��

0

0 // Um+1 Sm+1
//

dm+1
U

��

V m+1 Tm+1
//

dm+1
V

��

Wm+1

dm+1
W

��

// 0

...
...

...

Lemma 3.2.2. Given a short exact sequence of chain complexes as above, one
as that the sequence

Hm(U∗)
Hm(S∗)−→ Hm(V ∗)

Hm(T∗)−→ Hm(W ∗)

is exact for every m.

Proof. Let [u] ∈ Hm(U∗). We have

Hm(T ∗) ◦Hm(S∗)([u]) = Hm(T ∗)([Sm(u)])

= [Tm ◦ Sm(u)]

= 0

since Tm ◦Sm = 0 for all m because of the fact that we have an exact sequence
of chain complexes. Thus, we have im(Hm(S∗)) ⊂ ker(Hm(T ∗)).

Suppose now that [v] ∈ ker(Hm(T ∗)). Thus we have Tm(v) ∈ im(dm−1
W ) so

there exists w ∈ Wm−1 so that Tm(v) = dm−1
W (w). Since the sequence is exact

at the level of chain complexes we know that Tm−1 is surjective. Thus, there is
a v1 ∈ V m−1 so that Tm−1(v1) = w. Hence, we have

Tm(v − dm−1
V (v1)) = 0.

Thus, using exactness there is a u ∈ Um with Sm(u) = v − dm−1
V (v1). We need

to show that u is a cocycle. Observe that we have

Sm+1(dmU (u)) = dmV (Sm(u))

= dmV (v − dm−1
V (v1))

= 0

since v is a cocycle by definition and dmV ◦ dm−1
V = 0. The fact that Sm+1

is injective gives that dmU (u) = 0 and so u is a cocycle. Thus, given [v] ∈
ker(Hm(T ∗)) we have found [u] ∈ Hm(U∗) so that

Hm(S∗)([u]) = [Sm(u)]

= [v − dm−1
V (v1)]

= [v].
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Thus, ker(Hm(T ∗)) ⊂ im(Hm(S∗)) and so we have equality as desired.

One should note that given an exact sequence of complexes

0 −→ U∗ S∗

−→ V ∗ T∗

−→W ∗ −→ 0

in general one does not obtain a short exact sequence of cohomology groups.
The issue arises in the fact that even though Tm : V m → Wm is surjective for
all m, it can be the case that (Tm)−1(w) does not contain any m-cocycles even
if w is a m-cocycle. In fact, this is measured via a map

∂m : Hm(W ∗)→ Hm+1(U∗).

Our goal will be to show that we can define such a map so that we obtain a
long exact sequence of cohomology groups

· · · ∂
m−1

−→ Hm(U∗)
Hm(S∗)−→ Hm(V ∗)

Hm(T∗)−→ Hm(W ∗)
∂m

−→ Hm+1(U∗)
Hm+1(S∗)−→ Hm+1(V ∗) −→ · · · .

Define
∂m([w]) = [(Sm+1)−1

(
dmV ((Tm)−1(w))

)
].

Graphically, we have

(Tm)−1(w)C

��

�
�

�
�

�
�
��
#
'
+
/
3

7
;

w�oo_ _ _ _ _ _ _ _

V m

dm
V

��

Tm
// Wm

Um+1 Sm+1
// V m+1

(Sm+1)−1(dmv ((Tm)−1(w))) dmV ((Tm)−1(w)).
�oo_ _ _ _ _ _

We must show that this map is well-defined. In order to do this, we must
show

1. If Tm(v) = w and dmW (w) = 0, then dmV (v) ∈ im(Sm+1).

2. If Sm+1(u) = dmV (v), then dm+1
U (u) = 0, i.e., the elements that map to

dmV (v) are cocycles.

3. If Tm(v1) = Tm(v2) = w and Sm+1(ui) = dmV (vi), then [u1] = [u2] in
Hm+1((∗)U).
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Note that the following diagram commutes:

V m
Tm

//

dm
V

��

Wm

dm
W

��
V m+1 Tm+1

// Wm+1

Thus, we have that Tm+1(dmV (v)) = 0, i.e., dmV (v) ∈ ker(Tm+1). The fact that
the sequence

0 −→ Um+1 S
m+1

−→ V m+1 T
m+1

−→ Wm+1 −→ 0

is exact implies that there must be a u ∈ Um+1 so that Sm+1(u) = dmV (v). This
gives the first part.

For the second part, we use the following diagram:

V m

dm
V

��
0 // Um+1

dm+1
U

��

Sm+1
// V m+1

dm+1
V

��
0 // Um+2 Sm+2

// V m+2.

If Sm+1(u) = dmV (v), then we have dm+1
V (Sm+1(u)) = dm+1

V (dmV (v)) = 0, since
we have a chain complex. Using that the diagram commutes we have

Sm+2(dm+1
U (u)) = 0.

However, the fact that Sm+2 is injective gives that dm+1
U (u) = 0. Thus, we have

the second part.
Finally, we show the third statement and thus conclude that ∂m is well-

defined. Note that Tm(v1) = Tm(v2) implies that v1− v2 ∈ ker(Tm) = im(Sm).
Thus, there is a u ∈ Um so that Sm(u) = v1 − v2. We use that dmV ◦ Sm =
Sm+1 ◦ dmU to conclude that we have

dmV (v1 − v2) = dmV (Sm(u))

= Sm+1(dmU (u)).

Thus,
(Sm+1)−1(dmV (v1)) = (Sm+1)−1(dmV (v2)) + dmU (u),

i.e., [u1] = [u2] as desired.
We can now show that we obtain the long exact sequence of cohomology as

stated above.
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Theorem 3.2.3. Let

0 −→ U∗ S∗

−→ V ∗ T∗

−→W ∗ −→ 0

be a short exact sequence of chain complexes. Then the sequence

· · · ∂
m−1

−→ Hm(U∗)
Hm(S∗)−→ Hm(V ∗)

Hm(T∗)−→ Hm(W ∗)
∂m

−→ Hm+1(U∗)
Hm+1(S∗)−→ Hm+1(V ∗) −→ · · ·

is exact.

Proof. There are two things to check, namely, that given any m, the sequences

Hm(V ∗)
Hm(T∗)−→ Hm(W ∗)

∂m

−→ Hm+1(U∗)

and

Hm(W ∗)
∂m

−→ Hm+1(U∗)
Hm+1(S∗)−→ Hm+1(V ∗)

are exact. We begin with the first sequence.
Let [v] ∈ Hm(V ∗). We have

∂m(Hm(T ∗)([v])) = ∂m([Tm(v)])

= [(Sm+1)−1(dmV (Tm)−1(Tm(v)))]

= [(Sm+1)−1(dmV (v))]

= 0

since v is a cocycle. Thus, im(Hm(T ∗)) ⊂ ker(∂m).
Now let [w] ∈ ker(∂m). Let v ∈ V m so that Tm(v) = w. (Recall the sequence

is exact at the level of chain complexes!) Observe that since w is a cocycle, we
have that dmW (w) = 0. Consider the following diagram:

0 // Um
Sm

//

dm
U

��

Vm
Tm

//

dm
V

��

Wm //

dm
W

��

0

0 // Um+1 Sm+1
// V m+1 Tm+1

// Wm+1 // 0.

Since this diagram commutes and we have dmW (w) = 0, we have that dmV (v) ∈
ker(Tm+1). Thus, using the exactness we see there is a u ∈ Um+1 so that

Sm+1(u) = dmV (v).

Using the definition of ∂m we have

∂m([w]) = [(Sm+1)−1(dmV ((Tm)−1(w)))]

= [(Sm+1)−1(dmV (v))]

= [u].

86



However, we know that ∂m([w]) = 0 so we must have u′ ∈ Um with u = dmU (u′).
Now observe that we have

Tm(v − Sm(u′)) = Tm(v)− Tm(Sm(u′))

= Tm(v)

= w.

Moreover, we have

dmV (v − Sm(u′)) = dmV (v) − dmV (Sm(u′))

= dmV (v) − Sm+1(dmU (u′))

= dmV (v) − Sm+1(u)

= dmV (v) − dmV (v)

= 0

Thus, we have that v − Sm(u′) is a cocycle that maps to w and so

Hm(T ∗)([v − Sm(u′)]) = [w].

Thus, we have exactness of the first sequence.
Let [w] ∈ Hm(W ∗). We have

Hm+1(S∗)(∂m([w])) = [Sm+1((Sm+1)−1dmV (Tm)−1(w))]

= [dmV (v)]

= 0

where v ∈ V m such that Tm(v) = w. Thus, im(∂m) ⊂ ker(Hm+1(S∗)).
Now let [u] ∈ ker(Hm+1(S∗)), i.e., Sm+1(u) = dmV (v) for some v ∈ V m. We

have

dmW (Tm(v)) = Tm+1(dmV (v))

= Tm+1(Sm+1(u))

= 0.

Thus, we have that Tm(v) is a cocycle. We also see that

∂m([Tm(v)]) = [(Sm+1)−1(dmV (Tm)−1(Tm(v)))]

= [(Sm+1)−1(dmV (v))]

= [u].

This shows that ker(Hm+1(S∗)) ⊂ im(∂m) and so the second sequence is exact
as well.

Exercise 3.2.4. Show that ∂m is a linear map.
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Definition 3.2.5. Let S∗, T ∗ : V ∗ → W ∗ be chain maps. We say S∗ and T ∗

are chain-homotopic if there are linear maps Ψm : V m → Wm−1 satisfying

dm−1
W Ψm + Ψm+1dmV = Sm − Tm : V m →Wm

for all m.

Chain homotopies will be very important for calculating cohomology groups
in § 3.4. We will also construct a chain homotopy in Theorem ?? of § 3.3 to
calculate the cohomology groups of a star-shaped region in Rn.

Proposition 3.2.6. Let S∗, T ∗ : V ∗ → W ∗ be chain homotopic maps. Then
for all m we have

Hm(S∗) = Hm(T ∗) : Hm(V ∗)→ Hm(W ∗).

Proof. Let [v] ∈ Hm(V ∗). We have

(Hm(T ∗)−Hm(S∗))([v]) = [(Tm − Sm)(v)]

= [dm−1
W (Ψm(v)) + Ψm+1(dmV (v))]

= [dm−1
W (Ψm(v)) + Ψm+1(0)]

= [dm−1
W (Ψm(v))]

= 0.

Exercise 3.2.7. Let V ∗ and W ∗ be chain complexes. Show that

Hm(V ∗ ⊕W ∗) = Hm(V ∗)⊕Hm(W ∗)

where V ∗ ⊕W ∗ has the obvious definition. Extend this to a finite number of
chain complexes.

3.3 de Rham Cohomology on Open Subsets of

Rn

We set up the basic definitions of de Rham cohomology groups for open subsets
of Rn as well as prove the basic properties in this section. The main purpose of
this section is to show that we can generalize the results of § 3.1 and define a
chain complex of “differential forms” with the resulting cohomology groups as
defined in § 3.2 recovering the ones defined in § 3.1.

Let K be a field of characteristic 0. We will be interested in the case when
K = R or K = C, so one can specialize to those cases immediately if one likes.
Let V be a K-vector space. We write V k for the product V ×V ×· · ·×V where
there are k terms.
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Definition 3.3.1. Let F be a field. A map f : V k → F is said to be k-linear
if it is linear in each of the k variables.

In general we will take F = K in the above definition, but we will also be
interested in the case that the maps are on a R-vector space but map into C as
in Example 3.3.4 below.

Example 3.3.2. The natural projection maps

xi : Rk → R

given by
xi(a1, . . . , ak) = ai

are k-linear for 1 ≤ i ≤ k.

Example 3.3.3. The projection maps on Ck are k-linear as well. We denote
them by zi in this case.

Example 3.3.4. We can consider Cn as a 2n-dimensional R-vector space. If
we do this, then we have that the maps

zi : Ck → C

defined by
zi(a1, . . . , ak) = ai

are k-linear for 1 ≤ i ≤ k.

Definition 3.3.5. A k-linear map f is said to be alternating if f(v1, v2, . . . , vk) =
0 whenever vi = vj for some i 6= j. We denote the set of alternating k-linear

maps by Altk(V,K). We set Alt0(V,K) = K.

It is easy to see that for a K-vector space V , the set Altk(V,K) is a K-vector
space as well. One should also note that Alt1(V,K) is the dual space to V , i.e.,
Alt1(V,K) = HomK(V,K).

Exercise 3.3.6. Show that Altk(V,K) = 0 for all k > dimK V .

Let Sk denote the symmetric group on k letters. As is standard, we write
a transposition interchanging i and j by (i, j). Recall that any permutation
σ ∈ Sk can be written as a product of transpositions. Moreover, there is a
well-defined homomorphism

sgn : Sk → {±1}

where sgn(τ) = −1 for any transposition τ .

Lemma 3.3.7. Let f ∈ Altk(V,K) and σ ∈ Sk. Then we have

f(vσ(1), . . . , vσ(k)) = sgn(σ)f(v1, . . . , vk).
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Proof. We prove the result for a transposition σ = (i, j). The general result
then follows by induction and the fact that any permutation can be written
as a product of transpositions. Set fi,j(vi, vj) = f(v1, . . . , vi, . . . , vj , . . . , vk)
where we view the vr’s with r /∈ {i, j} as arbitrary but fixed vectors. We see
immediately that fi,j ∈ Alt2(V,K) and so

fi,j(vi + vj , vi + vj) = 0.

We use the linearity and the fact that fi,j is alternating to obtain

fi,j(vi, vj) + fi,j(vj , vi) = 0,

i.e.,
fi,j(vi, vj) = −fi,j(vj , vi).

This gives the result for σ and so finishes the proof.

Exercise 3.3.8. Let V = K2. Let v = (v1, v2) and w = (w1, w2) be vectors in
V . Show that the map

f(v, w) = det

(
v1 v2
w1 w2

)

is alternating. More generally, prove the corresponding statement for V = Kk.

Definition 3.3.9. Let m,n be positive integers. A (m,n)-shuffle σ is a permu-
tation of {1, . . . ,m+ n} that satisfies

σ(1) < · · · < σ(m)

and
σ(m+ 1) < · · · < σ(m+ n).

The set of all such permutations is denoted S(m,n).

Exercise 3.3.10. Show #S(m,n) =
(
m+n
m

)
.

Definition 3.3.11. Let f ∈ Altm(V,K) and g ∈ Altn(V,K). Define

(f∧g)(v1, . . . , vm+n) =
∑

σ∈S(m,n)

sgn(σ)f(vσ(1), . . . , vσ(m))g(vσ(m+1), . . . , vσ(m+n)).

Example 3.3.12. Let m = n = 1. Then for f, g as above, we have

(f ∧ g)(v1, v2) =
∑

σ∈S(1,1)

sgn(σ)f(vσ(1))g(vσ(2))

= f(v1)g(v2)− f(v2)g(v1).

Example 3.3.13. For m = 2, n = 1 we have S(2, 1) = {1, (1, 2, 3), (2, 3)}.
Then for f, g as above we have

(f ∧ g)(v1, v2, v3) = f(v1, v2)g(v3) + f(v2, v3)g(v1)− f(v1, v3)g(v2).
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Proposition 3.3.14. Let f ∈ Altm(V,K) and g ∈ Altn(V,K). Then f ∧ g ∈
Altm+n(V,K).

Proof. It is clear from the definition that f ∧ g is (m + n)-linear, so it only
remains to check that it is alternating.

Recall that Sk is generated by transpositions (j, j + 1). We have seen above
that for any h ∈ Altr(V,K),

h(v1, . . . , vj , vj+1, . . . , vr) = −h(v1, . . . , vj+1, vj , . . . , vr).

Suppose that h satisfies h(v1, . . . , vr) = 0 for all r-tuples with vj = vj+1 for
some 1 ≤ j ≤ r − 1. We claim that this implies that h is alternating. Suppose
vi = vj for some i 6= j with i < j. We can write (i, j) a product of transpositions
(k, k + 1) so we have

h(v1, . . . , vj , . . . , vi, . . . , vr) = −1h(v1, . . . , vj+1, vj , . . . , vi, . . . , vr)

= h(v1, v2, . . . , vj+1, vj+2, vj , . . . , vi, . . . , vr)

= · · · = (−1)j−i−1h(v1, v2, . . . , vj+1, vj+2, . . . , vi−1, vj , vi, . . . , vr)

= 0

by assumption. Thus, the claim is satisfied and so it is enough to show (f ∧
g)(v1, . . . , vm+n) = 0 whenever vi = vi+1 for some 1 ≤ i ≤ m+ n− 1. We show
the case that v1 = v2 as the general case is completely analogous.

Let

S(1,2) = {σ ∈ S(m,n) : σ(1) = 1, σ(m+ 1) = 2}
S(2,1) = {σ ∈ S(m,n) : σ(1) = 2, σ(m+ 1) = 1}
S0 = S(m,n)− (S(1,2) ∪ S(2,1)).

Suppose that σ ∈ S0. We must have either vσ(1) = vσ(2) or vσ(m+1) =
vσ(m+2) by the definition of S(m,n) and S0. Thus, for σ ∈ S0 we have either
f(vσ(1), vσ(2), . . . , vσ(m)) = 0 or g(vσ(m+1), vσ(m+2), . . . , vσ(m+n)) = 0. Thus, we
see that we can ignore these terms in the definition of f ∧g when v1 = v2. Thus,
in our situation we have

(f∧g)(v1, . . . , vm+n) =
∑

σ∈S(1,2)∪S(2,1)

sgn(σ)f(vσ(1), . . . , vσ(m))g(vσ(m+1), . . . , vσ(m+n)).

The transposition τ = (1, 2) gives a bijection S(1,2) → S(2,1), so we can write

(f ∧ g)(v1, . . . , vm+n) =
∑

σ∈S(1,2)

sgn(σ)f(vσ(1), . . . , vσ(m))g(vσ(m+1), . . . , vσ(m+n))

−
∑

σ∈S(1,2)

sgn(σ)f(vτσ(1), . . . , vτσ(m))g(vτσ(m+1), . . . , vτσ(m+n)).

Since σ ∈ S(1,2), we have σ(1) = 1 and σ(m + 1) = 2 and so τσ(1) = 2 and
τσ(m+ 1) = 1 and τσ(j) = σ(j) for j /∈ {1,m+ 1}. However, v1 = v2 so we see
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that

f(vσ(1), . . . , vσ(m))g(vσ(m+1), . . . , vσ(m+n)) = f(v1, vσ(2), . . . , vσ(m))g(v2, vσ(m+2), . . . , vσ(m+n))

= f(v1, vτσ(2), . . . , vτσ(m))g(v2, vτσ(m+2), . . . vτσ(m+n))

= f(v2, vτσ(2), . . . , vτσ(m))g(v1, vτσ(m+2), . . . vτσ(m+n)).

This shows that the remaining terms in f ∧ g cancel. The same argument for
general vi = vi+1 combined with the observation at the beginning of the proof
shows that f ∧ g ∈ Altm+n(V,K).

Exercise 3.3.15. Given c ∈ K, f1, f2 ∈ Altm(V,K), g1, g2 ∈ Altn(V,K), then

1. (f1 + f2) ∧ g1 = (f1 ∧ g1) + (f2 ∧ g1)
2. (cf1) ∧ g1 = c(f1 ∧ g1) = f1 ∧ (cg1)

3. f1 ∧ (g1 + g2) = (f1 ∧ g1) + (f2 ∧ g2).
Lemma 3.3.16. Let f ∈ Altm(V,K), g ∈ Altn(V,K). Then

f ∧ g = (−1)mng ∧ f.

Proof. Define τ ∈ S(m+ n) by

τ(1) = m+ 1, τ(2) = m+ 2, . . . , τ(n) = m+ n

τ(n+ 1) = 1, τ(n+ 2) = 2, . . . , τ(m+ n) = m.

Note that sgn(τ) = (−1)mn. The map

S(m,n)→ S(n,m)

σ 7→ σ ◦ τ

is a bijection. Observe that

g(vστ(1), . . . , vστ(n)) = g(vσ(m+1), . . . , vσ(m+n))

and
f(vστ(n+1), . . . , vστ(m+n)) = f(vσ(1), . . . , vσ(m)).

Thus, we have

(g ∧ f)(v1, . . . , vm+n) =
∑

σ∈S(n,m)

sgn(σ)g(vσ(1), . . . , vσ(n))f(vσ(n+1), . . . , vσ(m+n))

=
∑

σ∈S(m,n)

sgn(στ)g(vστ(1), . . . , vστ(n))f(vστ(n+1), . . . , vστ(m+n))

= (−1)mn
∑

σ∈S(m,n)

sgn(σ)g(vσ(m+1), . . . , vσ(m+n))f(vσ(1), . . . , vσ(m))

= (−1)mn(f ∧ g)(v1, . . . , vm+n).
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We leave the messy and tedious proof of the following lemma as an exercise.
It follows along the same reasoning as in the previous few results.

Lemma 3.3.17. Let f ∈ Altm(V,K), g ∈ Altn(V,K), and h ∈ Altr(V,K).
Then one has

f ∧ (g ∧ h) = (f ∧ g) ∧ h.
Definition 3.3.18. A vector space A over K is a K-algebra if there is an
associative bilinear map

m : A×A→ A.

We say the algebra is unitary if there exists an element 1A ∈ A so thatm(1A, a) =
a = m(a, 1A) for all a ∈ A.

Definition 3.3.19. Let {Ak} be a sequence of K-vector spaces along with an
associative bilinear map

m : Ak ×Al → Ak+l

for all k, l. Such a sequence is called a graded K-algebra. The elements of Ak
are said to have degree k.

Recall that Alt0(V,K) = K. Using this, if we define

c ∧ f = cf

for c ∈ Alt0(V,K), f ∈ Altn(V,K), then we have the following theorem.

Theorem 3.3.20. The sequence {Altk(V,K)}∞k=0 along with the wedge product
map forms a graded algebra.

The following lemma will be useful in determining a basis of Altk(V,K).

Lemma 3.3.21. Let f1, . . . , fn ∈ Alt1(V,K). Then

(f1 ∧ · · · ∧ fn)(v1, . . . , vn) = det



f1(v1) · · · f1(vn)

...
. . .

...
fn(v1) · · · fn(vn)


 .

Proof. The case n = 2 is clear as we have

(f1 ∧ f2)(v1, v2) = f1(v1)f2(v2)− f1(v2)f2(v1)

= det

(
f1(v1) f1(v2)
f2(v1) f2(v2)

)
.

We now proceed by induction on n. Assume the result is true for all 2 ≤ k < n.
Observe we have

f1 ∧ (f2 ∧ · · · ∧ fn)(v1, . . . , vn) =
∑

σ∈S(1,n−1)

sgn(σ)f1(vσ(1))(f2 ∧ · · · ∧ fn)(vσ(2), . . . , vσ(n))

=

n∑

j=1

(−1)j+1f1(vj)(f2 ∧ · · · ∧ fn)(v1, . . . , v̂j , . . . , vn)
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where (v1, . . . , v̂j , . . . , vn) indicates the (n− 1)-tuple with vj removed.
On the other hand, we have

det



f1(v1) · · · f1(vn)

...
. . .

...
fn(v1) · · · fn(vn)


 = f1(v1) det



f2(v2) · · · f2(vn)

...
. . .

...
fn(v2) · · · fn(vn)




+ · · ·+ (−1)n+1f1(vn) det



f2(v1) · · · f2(vn−1)

...
. . .

...
fn(v1) · · · fn(vn−1)




=

n∑

j=1

(−1)j+1f1(vj)(f2 ∧ · · · ∧ fn)(v1, . . . , v̂j , . . . , vn)

by our induction hypothesis. Thus, we have the result.

Corollary 3.3.22. Forms f1, . . . , fn ∈ Alt1(V,K) are linearly independent if
and only if f1 ∧ · · · ∧ fn 6= 0.

Proof. First, suppose that f1, . . . , fn are linearly dependent. Thus, for some
1 ≤ j ≤ n we can write

fj =
∑

i6=j

aifi

for some ai ∈ K. For ease of notation we take j = n. We have

f1 ∧ · · · ∧ fn =

n−1∑

i=1

ai(f1 ∧ · · · ∧ fn−1 ∧ fi).

Thus,

(f1 ∧ · · · ∧ fn)(v1, . . . , vn) =

n−1∑

i=1

ai(f1 ∧ · · · ∧ fn−1 ∧ fi)(v1, . . . , vn)

=

n−1∑

i=1

ai det




f1(v1) · · · f1(vn)
...

. . .
...

fn−1(v1) · · · fn−1(vn)
fi(v1) · · · fi(vn)




= 0

since each determinant has a repeated row.
Conversely, suppose now that f1, . . . , fn are linearly independent. Then for

each j, there exists vj so that

fi(vj) =

{
1 i = j
0 otherwise.

It is easy to see that det(fi(vj)) = 1 and so it must be the case that f1∧· · ·∧fn 6=
0 by Lemma 3.3.21.
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Recall that given a vector space V over a field K with basis e1, . . . , en, one
can define the dual basis ε1, . . . , εn of Alt1(V,K) = HomK(V,K) by

εi(ej) =

{
1 i = j
0 otherwise.

Theorem 3.3.23. Let e1, . . . , en be a basis of V and ε1, . . . , εn the dual basis
of Alt1(V,K). Then

{εσ(1) ∧ · · · ∧ εσ(n)}σ∈S(n,m−n)

is a basis of Altn(V,K). In particular, we see that

dimK Altn(V,K) =

(
dim V

n

)
.

Proof. One can show (and should as an exercise) that for f ∈ Altn(V,K) one
can write

f(v1, . . . , vn)
∑

σ∈S(n,m−n)

f(eσ(1), . . . , eσ(n))εσ(1) ∧ · · · ∧ εσ(n)(v1, . . . , vn).

Thus, our set spans Altn(V,K) so it only remains to show they are linearly
independent.

Suppose we have a relation

∑

σ∈S(n,m−n)

aσεσ(1) ∧ · · · ∧ εσ(n) = 0

for some aσ ∈ K. If we apply this equation to (eσ(1), . . . , eσ(n)) and use the fact
that

εi1 ∧ · · · ∧ εin(ej1 , . . . , ejn) =

{
0 {i1, . . . , in} = {j1, . . . , jn}
sgn(σ) otherwise

where σ is the permutation that takes {i1, . . . , in} to {j1, . . . , jn} we obtain

aσ sgn(σ) = 0

and so aσ = 0. Thus, we have the result.

Suppose now that we have two vector spaces V and W over K and a linear
map T : V →W . For each n we have an induced linear map

Altn(T ) : Altn(W,K)→ Altn(V,K)

given by
Altn(T )(f)(v1, . . . , vn) = f(T (v1), . . . , T (vn)).

One can easily check that this map is well-defined, i.e., that Altn(T )(f) lies in
Altn(V,K) for all f ∈ Altn(W,K).
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Note that we have Altn(id) = id and given two linear maps T1 : V1 → V2

and T2 : V2 → V3, we have

Altn(T2 ◦ T1) = Altn(T1) ◦Altn(T2).

This gives that Altn(⋆) is a contravariant functor.

Theorem 3.3.24. The characteristic polynomial of a linear endomorphism T :
V → V is given by

det(T − x) =

n∑

j=0

(−1)j tr(Altn−j(T ))xj

where n = dimK V and tr denotes the trace map.

We leave the proof of this theorem to the reader. We note that if dimK V = n
and T : V → V is a linear map, then necessarily Altn(T ) : K → K is a linear
map and so must be multiplication by a constant. Using the theorem we have

det(T ) =
n∑

i=0

(−1)i tr(Altn−i(T ))0i

= tr(Altn(T )).

Since Altn(T ) is a constant, we see that tr(Altn(T )) = Altn(T ) and thus this
constant is precisely det(T ). In particular, we see that Altn(T ) acts on K by
multiplication by det(T ).

We now restrict to the case that V = Rn, {e1, . . . , en} is the standard basis
of Rn, and {ε1, . . . , εn} is the dual basis of Alt1(Rn). We will encompass the
case that V = Cn into this framework as we will view C as a 2-dimensional
R-vector space and so view Cn as R2n as a R-vector space. Since we will be
interested in C∞ functions instead of holomorphic ones, this is the appropriate
framework in which to work anyways. We write Altn(V,K) as simply Altn(V )
now since K = R from here on.

Let U ⊂ Rn be an open set unless otherwise noted.

Definition 3.3.25. A differential m-form on U is a smooth map ω : U →
Altm(Rn).

The set of differential m-forms clearly forms a R-vector space. We denote
this vector space by Ωm(U). One also inherits the wedge product which can be
defined on differential forms point-wise, i.e.,

(ω1 ∧ ω2)(x) = ω1(x) ∧ ω2(x).

Example 3.3.26. Let m = 0 so that Alt0(Rn) = R. Thus, we have that Ω0(U)
is the vector space of all smooth real-valued functions on U , i.e.,

Ω0(U) = C∞(U,R).
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Before we proceed any further we recall some material from multivariable
calculus. The reader that feels the need for further review or desires to read
proofs of the stated results is advised to consult [11].

Let F : U → Rm be a function. Recall that we say F is differentiable at
x ∈ U if there exists a linear transformation L : Rn → Rm so that

lim
h→0

|F (x+ h)− F (x)− L(h)|
|h| = 0.

We denote the linear transformation L by DxF . Note that this depends on
where the derivative is taken and so we include x in the notation. However,
when it is the case that one gets the same map DxF for all values of x we
simply write DF . As this is a linear transformation, we can also view DxF as a
m×n-matrix. We will change our viewpoint depending on the situation. Some
useful properties are summarized in the following proposition.

Proposition 3.3.27. Let F : U → Rm be a differentiable map.

1. If F is a constant map then DxF = 0 for all x ∈ U .

2. If F is a linear map then DF = F .

3. If F = (F1, . . . , Fm) is differentiable at a ∈ U , then ∂Fi

∂xj
(a) exists for all

1 ≤ i ≤ m, 1 ≤ j ≤ n and DaF is the m× n-matrix given by
(
∂Fi

∂xj
(a)
)
.

From this we see that given ω ∈ Ωm(U), we can differentiate ω at any x ∈ U
to obtain a linear map Dxω : Rn → Rm.

Recall that we determined in Theorem 3.3.23 that a basis of Altm(Rn) is
given by

{εσ(1) ∧ · · · ∧ εσ(n)}σ∈S(m,n−m).

For I = (σ(1), . . . , σ(n)), we write εI for εσ(1) ∧ · · · ∧ εσ(n) to make the notation
more bearable. Given any x ∈ U and ω ∈ Ωm(U) we have ω(x) ∈ Altm(Rn), we
can write

ω(x) =
∑

I

ωI(x)εI

where I runs over all tuples (σ(1), . . . , σ(n)) for σ ∈ S(m,n − m) and ωI ∈
C∞(U,R) for all such I. Using this we see that Dxω is the

(
n
m

)
× n-matrix(

∂ωI

∂xj
(x)
)
. In other words, it is the linear map defined by

Dxω(ej) =
∑

I

∂ωI
∂xi

(x)εI .

Thus, from this we see that for each x ∈ U we have Dxω is a linear map

Dxω : Rn → Altm(Rn).

Furthermore, the map x 7→ Dxω is a smooth map from U to the vector space
of linear maps from Rn to Altm(Rn).
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Definition 3.3.28. The exterior derivative dm : Ωm(U) → Ωm+1(U) is the
linear operator

dmx ω(v1, . . . , vm+1) =

m+1∑

j=1

(−1)j−1Dxω(vj)(v1, . . . , v̂j , . . . , vm+1).

This definition is sufficiently complicated that it merits further descrip-
tion. First, note that saying dmω ∈ Ωm+1(U) means that it is a map U →
Altm+1(Rn). Thus, for each x ∈ U we have that dmx ω ∈ Altm+1(Rn) and as
such is a map from Rn × · · · × Rn → R where there are (m + 1)-copies of Rn.
This explains the left-hand side of the definition. For the right-hand side, first
observe that since ω ∈ Ωm(U), we have that ω : U → Altm(Rn) and so Dxω is
a map Rn → Altm(Rn). Thus, Dxω(vj) is a map from Rn×· · ·×Rn to R where
there are m-copies of Rn. This explains each of the terms in the definition.
Of course, we still must show the exterior derivative is well-defined, i.e., that
dmω is in Ωm+1(U). Let x ∈ U . It is clear from the definition that dmx ω is
(m+ 1)-linear, so it only remains to check that it is alternating. Suppose that
vi = vi+1 for some i. Then we have:

dmx ω(v1, . . . , vm+1) =

m+1∑

j=1

(−1)j−1Dxω(vj)(v1, . . . , v̂j , . . . , vm+1)

= (−1)i−1Dxω(vi)(v1, . . . , v̂i, . . . , vm+1) + (−1)iDxω(vi+1)(v1, . . . , v̂i+1, . . . , vm+1)

= 0

where we have used that each Dxω(vj) is alternating and that vi = vi+1. Thus,
dm is well-defined.

Note that for convenience we write merely dω when m = 0. This will save
considerably on notation.

Recall the projection maps xi : Rn → R defined by xi(a1, . . . , an) = ai. Each
of these projection maps lies in Ω0(U) = C∞(U,R). Thus, each dxi ∈ Ω1(U).
Observe that for v =

∑n
i=1 aiei and any x ∈ U we have

dxxj(v) =

n∑

i=1

aidxxj(ei)

= ajdxxj(ej)

= aj .

Thus, dxj ∈ Ω1(U) is the constant map U → Alt1(Rn) given by x 7→ εj , i.e.,
dxxj = εj for 1 ≤ j ≤ n and all x ∈ U . This allows us to write the basis of
Altm(Rn) in terms of the images under the exterior derivative of the projection
maps. In particular, we will often write εI as dxI .

Consider now the case of Cn considered as a R-vector space. When dealing
with C, it is common to use z as the variable and write z = x + iy. Thus,
coordinates on Cn can be given as z1 = x1 + iy1, . . . , zn = xn + iyn. We know
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from our work to this point and the fact that Cn ∼= R2n as R-vector spaces that
Alt1(Cn,R) has a basis consisting of 2n-linear maps ε1, . . . , ε2n. From what we
have just shown, these can be identified with the images dx1, dy1, . . . , dxn, dyn.
The complex conjugation map sending z = x + iy to z = x − iy is a linear
map. It is not hard to show that the projection map zi : Cn → C given
by zi(a1, . . . , an) = ai is a n-linear map. One can also easily show that the set
{dz1, . . . , dzn, dz1, . . . , dzn} spans the same set over R as {dx1, dy1, . . . , dxn, dyn}
and so it is customary to take this as our basis in the case we are working with
Cn. One should note here that this depends heavily on the fact that we are
working over R and only are considering smooth functions. One could easily
develop this theory over C with holomorphic functions. In this case the conju-
gation projections would play no role as they are not holomorphic and so would
not enter into the theory.

Let f ∈ C∞(U,R) = Ω0(U). Then we can write df ∈ Ω1(U) as

dxf(v) =
1∑

j=1

(−1)j−1Dxf(vj) = Dxf(v).

If we write v =
∑n
i=1 aiei, then we have

Dxf(v) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)


a1

...
an




=

n∑

i=1

∂f

∂xi
(x)ai

=

n∑

i=1

∂f

∂xi
(x)εi(v).

Thus, we have

dxf = Dxf =

n∑

i=1

∂f

∂xi
(x)dxi.

Exercise 3.3.29. Show that

εi ∧ εI =

{
0 k ∈ I
(−1)rεJ k /∈ I

where r is defined by ir < k < ir+1 and J = (i1, . . . , ir, k, ir+1, . . . , im).

The following result allows us to calculate exterior derivatives quickly and
easily by relating the mth exterior derivative to a wedge product of a basis
element and a 0th exterior derivative.

Lemma 3.3.30. Let ω ∈ Ωm(U) and write

ω(x) =
∑

I

ωI(x)dxI .
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Then
dmx ω =

∑

I

dxωI ∧ dxI .

Proof. It is enough to show the statement for ω(x) = ωI(x)dxI since the exterior
derivative is a linear map. Recall that we have from our calculation above that
for v =

∑n
i=1 aiei,

Dxω(v) =

n∑

i=1

aiDxiω(ei)

=

(
n∑

i=1

ai
∂ωI
∂xi

(x)

)
dxI

= (dxωI(v))dxI ,

i.e,
Dxω(v) = (dxωI(v))dxI .

Thus we have

(dxωI ∧ dxI)(v1, . . . , vm+1) =
m+1∑

j=1

(−1)j−1dxωI(vj)dxI(v1, . . . , v̂j , . . . , vm+1)

=

m+1∑

j=1

(−1)j−1Dxω(vj)(v1, . . . , v̂j , . . . , vm+1)

= dmx ω(v1, . . . , vm+1).

Example 3.3.31. Consider the function f(x, y) ∈ Ω0(R2) given by

f(x, y) = cos(xy) + x2y.

We have

df =
∂f

∂x
dx+

∂f

∂y
dy

= (−y sin(xy) + 2xy)dx+ (−x sin(xy) + x2)dy ∈ Ω1(R2).

Thus, in the notation above we have

ω1(x, y) = −y sin(xy) + 2xy

and
ω2(x, y) = −x sin(xy) + x2.

Observe we have
d1(df) = dω1 ∧ dx + dω2 ∧ dy.
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Now

dω1 = (−y2 cos(xy) + 2y)dx+ (− sin(xy)− xy cos(xy) + 2x)dy

and
dω2 = (− sin(xy)− xy cos(xy) + 2x)dx + (−x2 cos(xy))dy.

Using the fact that dx ∧ dx = dy ∧ dy = 0 we have

dω1 ∧ dx = (− sin(xy)− xy cos(xy) + 2x)dy ∧ dx

and
dω2 ∧ dy = (− sin(xy)− xy cos(xy) + 2x)dx ∧ dy.

Now use the fact that dx ∧ dy = −dy ∧ dx to see that

d1(df) = 0

The fact that dm+1(dmω) = 0 holds in far greater generality than given in
the previous example. Without this fact we would be unable to develop a theory
of cohomology.

Proposition 3.3.32. For m ≥ 0 the composition

Ωm(U)
dm

−→ Ωm+1(U)
dm+1

−→ Ωm+2(U)

is identically 0, i.e., the collection Ω∗(U) = {Ωm(U), dm} forms a chain com-
plex.

Proof. First, suppose that ω(x) = ωI(x)dxI ∈ Ωm(U). We have

dmx ω = dxωI ∧ dxI

=

(
n∑

i=1

∂ωI
∂xi

(x)dxi

)
∧ dxI

=

n∑

i=1

∂ωI
∂xi

(x)(dxi ∧ dxI).

Recall that dxi ∧ dxi = 0 and dxi ∧ dxj = −dxj ∧ dxi. Using these relations we
have

dm+1(dmω) =

n∑

i,j=1

∂2ωI
∂xj∂xi

dxj ∧ (dxi ∧ dxI)

=
∑

i<j

(
∂2ωI
∂xj∂xi

− ∂2ωI
∂xi∂xj

)
dxj ∧ dxi ∧ dxI

= 0

using the equality of mixed partial derivatives.
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Suppose now that we have ω(x) =
∑

I ωI(x)dxI ∈ Ωm(U). Then

dmω =
∑

I

d(ωIdxI)

and

dm+1(dmω) =
∑

I

dm+1(dmωIdxI)

=
∑

I

0

= 0.

Observe that we have seen that given ω1 ∈ Ωm1(U) and ω2 ∈ Ωm2(U), that
we can define ω1 ∧ ω2 ∈ Ωm1+m2(U) by setting

(ω1 ∧ ω2)(x) = ω1(x) ∧ ω2(x).

This also shows that given f ∈ C∞(U,R) = Ω0(U), we have

(fω1 ∧ ω2)(x) = f(x)ω1(x) ∧ ω2(x)

= (f(x) ∧ ω1(x)) ∧ ω2(x)

= f(x) ∧ (ω1(x) ∧ ω2(x))

= f(x)(ω1(x) ∧ ω2(x))

and so fω1 ∧ ω2 = f(ω1 ∧ ω2). Similarly we have f(ω1 ∧ ω2) = ω1 ∧ fω2. Thus,
we have fω1 ∧ω2 = ω1 ∧ fω2. This observation allows us to prove the following
proposition.

Proposition 3.3.33. Let ω1 ∈ Ωm1(U) and ω2 ∈ Ωm2(U). Then

dm1+m2(ω1 ∧ ω2) = dm1ω1 ∧ ω2 = (−1)m1ω1 ∧ dm2ω2.

Proof. We again use linearity of the exterior derivative to reduce to the case
that ω1 = fdxI and ω2 = fdxJ . Then we have

ω1 ∧ ω2 = fg(dxI ∧ dxJ ).

Thus,

dm1+m2(ω1 ∧ ω2) = d(fg) ∧ dxI ∧ dxJ
= ((df)g + f(dg)) ∧ dxI ∧ dxJ
= (df)g ∧ dxI ∧ dxJ + f(dg) ∧ dxI ∧ dxJ
= df ∧ dxI ∧ gdxJ + (−1)m1fdxI ∧ dg ∧ dxJ
= dm1ω1 ∧ ω2 + (−1)m1ω1 ∧ dm2ω2.
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Theorem 3.3.34. The map dm : Ωm(U)→ Ωm+1(U) for m ≥ 0 is the unique
linear operator satisfying

1. f ∈ Ω0(U), then df =
∑n
i=1

∂f
∂xi

dxi;

2. dm+1 ◦ dm = 0;

3. for ωi ∈ Ωmi(U), dm1+m2(ω1 ∧ ω2) = dm1ω1 ∧ ω2 + (−1)m1ω1 ∧ dm2ω2.

We have shown that the exterior derivatives satisfy the above theorem. We
leave the proof of uniqueness to the reader.

We are finally ready to define the de Rham cohomology groups. Those
familiar with cohomology will have recognized the chain complex of differential
forms and the necessary properties we have been pursuing up to this point.

Definition 3.3.35. The mth de Rham cohomology group of U is the quotient
space

Hm
dR(U) =

ker(dm : Ωm(U)→ Ωm+1(U))

im(dm−1 : Ωm−1(U)→ Ωm(U))
.

We now check that this more general definition arising from the chain com-
plex of differential forms agrees with what we defined in § 3.1. Restrict to the
case that U ⊂ R2 for this. Let f(x, y) ∈ Ω0(U). Then we have

df =
∂f

∂x
dx+

∂f

∂y
dy

= grad(f) · (dx, dy).

Let ω ∈ Ω1(U). Write ω = fdx+ gdy. Then

d1ω = df ∧ dx+ dg ∧ dy

=

(
∂f

∂x
dx+

∂f

∂y
dy

)
∧ dx+

(
∂g

∂x
dx+

∂g

∂y
dy

)
∧ dy

=
∂f

∂y
dy ∧ dx+

∂g

∂x
dx ∧ dy

=

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy

= curl(f)(dx ∧ dy).

For ω ∈ Ω2(U), we can write ω = f(dx ∧ dy). We have

d1ω = df ∧ dx ∧ dy

=

(
∂f

∂x
dx +

∂f

∂y
dy

)
∧ dx ∧ dy

= 0.

Note that we can use the fact that d1 ◦ d = 0 to recover the standard fact that
curl(gradf) = 0.
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Exercise 3.3.36. Work out the situation for U ⊂ R3 and use the fact that
d2 ◦ d1 = 0 to show the standard fact that Div(curlF) = 0.

We refer to the forms ω ∈ Ωm(U) with dmω = 0 as closed m-forms and to
the forms in dm−1(Ωm−1(U)) as the exact m-forms. In this terminology, the
cohomology group Hm

dR(U) measures the failure of the closed forms to be exact.
Note that a closed form ω ∈ Ωm(U) defines an element [ω] ∈ Hm

dR(U). We
see that [ω1] = [ω2] precisely if ω1 − ω2 ∈ dm−1(Ωm−1(U)), i.e., there is a
ω′ ∈ Ωm−1(U) so that ω1 − ω2 = dm−1ω′.

It is clear that we have Hm
dR(U) = 0 for m < 0 and that H0

dR(U) is the kernel
of the map

d : C∞(U,R)→ Ω1(U),

i.e., the space of maps f with ∂f
∂xi

= 0 for i = 1, . . . , n. Thus, H0
dR(U) is the

space of locally constant maps and as in § 3.1 we have the following result.

Proposition 3.3.37. The number of connected components of U is precisely
the dimension of H0

dR(U) as a R-vector space.

Exercise 3.3.38. Let U1, . . . , Ur be open sets in Rn with Ui ∩ Uj = ∅ for all
i 6= j. Show that

Hk
dR(U1 ∪ · · · ∪ Ur) = Hk

dR(U1)⊕ · · · ⊕Hk
dR(Ur).

Let ωi ∈ Ωmi(U). We can define an associative, bilinear, and anti-commutative
map called the cup product

∪ : Hm1

dR (U)×Hm2

dR (U)→ Hm1+m2

dR (U)

by setting
[ω1] ∪ [ω2] = [ω1 ∧ ω2].

We must check that this is well-defined. Observe that given closed forms ω1 and
ω2, we have that

dm1+m2(ω1 ∧ ω2) = dm1ω1 ∧ ω2 + (−1)m1ω1 ∧ dm2ω2

= 0 + 0 = 0.

Thus, we have that if ω1 and ω2 are closed, so is ω1 ∧ω2. Now let ω1 + dm1−1η1
and ω2 + dm2−1η2 be different representatives of [ω1] and [ω2] respectively. We
have

(ω1+d
m1−1η1)∧(ω2+d

m2−1η2) = ω1∧ω2+ω1∧dm2−1η2+d
m1−1η1∧ω2+d

m1−1η1∧dm2−1η2.

Observe that

dm1+m2−1(η1 ∧ ω2 + (−1)m1ω1 ∧ η2 + η1 ∧ dm2−1η2)

= dm1+m2−1(η1 ∧ ω2) + (−1)m1dm1+m2−1(ω1 ∧ η2) + dm1+m2−1(η1 ∧ dm2−1η2)

= dm1−1η1 ∧ ω2 + (−1)m1−1η1 ∧ dm2ω2 + (−1)m1dm1ω1 ∧ η2
+ (−1)2m1ω1 ∧ dm2−1η2 + dm1−1η1 ∧ dm2−1η2 + η1 ∧ dm2 ◦ dm2−1η2

= dm1−1η1 ∧ ω2 + ω1 ∧ dm2−1η2 + dm1−1η1 ∧ dm2−1η2.
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Thus we have

[ω1 + dm1−1η1] ∪ [ω2 + dm2−1η2] = [ω1 ∧ ω2 + dm1+m2−1(η1 ∧ ω2 + (−1)m1ω1 ∧ η2 + η1 ∧ dm2−1η2)]

= [ω1 ∧ ω2]

= [ω1] ∪ [ω2]

and so the cup product is well-defined.
Note that the cup product makes H∗

dR(U) into a graded algebra. The exis-
tence of a cup product is a feature of general cohomology theory as we will see
later.

Let U1 ⊂ Rn1 and U2 ⊂ Rn2 be open sets and let φ : U1 → U2 be a smooth
map. Recall that given a linear map T : V1 → V2, for each m ≥ 0 we associated
to T a linear map

Altm(T ) : Altm(V2)→ Altm(V1).

From this we showed that the map V 7→ Altm(V ) is a contravariant functor.
We would like to have the same type of result in this case. Thus, we need
to define a linear map H∗

dR(φ) and show it has the required properties. We
begin by showing that U 7→ Ω∗(U) is a contravariant functor. Our first step in
constructing the linear map Hm

dR(φ) is to construct an induced map on the level
of differential forms. We start with the case m = 0 so we need an induced map

Ω0(φ) : C∞(U2,R)→ C∞(U1,R).

Let f ∈ C∞(U2,R). Observe that we have

U1
φ−→ U2

f−→ R,

so it is natural to define Ω0(φ)(f) = f ◦ φ.
Consider now the general case. Let ω ∈ Ωm(U2). Thus, ω is a smooth map

from U2 to Altm(Rn2). We define a map

U1 → Altm(Rn2)

x 7→ ω(φ(x)).

We now need to define a map from Altm(Rn2) to Altm(Rn1). The map Dxφ :
Rn1 → Rn2 induces a map

Altm(Dxφ) : Altm(Rn2)→ Altm(Rn1).

Thus, we define the map Ωm(φ) : Ωm(U2)→ Ωm(U1) by

Ωm(φ)(ω)x = Altm(Dxφ) ◦ ω(φ(x)).

We call Ωm(φ) the pullback map of φ. One should note that often Ωm(φ) is
written as simply φ∗ and the m is then to be understood from context.

We now must check that Ωm(φ) has the desired properties. Note that the
chain rule gives that for φ : U1 → U2 and ψ : U2 → U3 we have

Dx(ψ ◦ φ) = Dφ(x)(ψ) ◦Dx(φ).
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Thus, for ω ∈ Ωm(U3) and x ∈ U1 we have

Ωm(ψ ◦ φ)(ω)x = Altm(Dx(ψ ◦ φ)) ◦ ω(ψ ◦ φ(x))

= Altm(Dφ(x)(ψ) ◦Dx(φ)) ◦ ω(ψ ◦ φ(x))

= Altm(Dx(φ)) ◦Altm(Dφ(x)(ψ)) ◦ ω(ψ ◦ φ(x))

where we have used that Altm(T ◦ S) = Altm(S) ◦Altm(T ). We know that

Altm(Dφ(x)(ψ)) : Altm(Rn3)→ Altm(Rn2)

and so Altm(Dφ(x)(ψ)) ◦ ω(ψ ◦ φ(x)) ∈ Altm(Rn2). Thus we have

Ωm(ψ ◦ φ)(ω)x = Altm(Dx(φ))(Altm(Dφ(x)(ψ)) ◦ ω(ψ ◦ φ(x)))

= Ωm(φ) ◦ Ωm(ψ)(ω)x

as desired. Similarly one can check that Ωm(id) = idΩm(U).

Exercise 3.3.39. 1. Show that Ω0(ψ ◦ φ) = Ω0(φ) ◦ Ωm(ψ).

2. If φ : U1 → U2 is the inclusion map, then Ωm(φ)(ω) = ω ◦ φ for any m.

Example 3.3.40. Let φ : U1 → U2 be as above and consider the map dxi ∈
Ω1(U2), i.e., the map that sends x ∈ U2 to εi ∈ Alt1(Rn2). Recall that given a
map T : V1 → V2, the induced map on the spaces of alternating forms is given
by

Altm(T )(f)(v1, . . . , vm) = f(T (v1), . . . , T (vm)).

We apply this to our situation to see that for x ∈ U1 and v =
∑n1

i=1 aiei ∈ Rn1 ,
we have

Ω1(φ)(dxi)x(v) = (dxi)φ(x)(Dxφ(v)) = εi(Dxφ(v))

where we use that dxi is constant. We have

Dxφ(v) =

n2∑

k=1




n1∑

j=1

∂φk
∂xj

(x)aj


 ek

where φ = (φ1, . . . , φn2). Thus,

Ω1(φ)(dxi)x(v) = εi(Dxφ(v))

= εi




n2∑

k=1




n1∑

j=1

∂φk
∂xj

(x)aj



 ek





=

n1∑

j=1

∂φi
∂xj

(x)aj

=

n1∑

j=1

∂φi
∂xj

(x)εj(v)

= dxφi(v).
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So we have
Ω1(φ)(dxi) = dφi.

Theorem 3.3.41. Let Ui ∈ Rni be open sets for i = 1, 2 and φ : U1 → U2 be a
smooth map. Then we have

1. Ωm1+m2(φ)(ω ∧ τ) = Ωm1(φ)(ω) ∧ Ωm2(φ)(τ) for ω ∈ Ωm1(U2) and τ ∈
Ωm2(U2);

2. Ω0(φ)(f) = f ◦ φ for f ∈ Ω0(U2);

3. dm1Ωm1(φ)(ω) = Ωm1+1(dm1ω).

Conversely, if Tm : Ωm(U2)→ Ωm(U1) is a collection of linear maps satisfying
the above properties, then Tm = Ωm(φ).

Proof. We leave the case of m1m2 = 0 as an exercise, so assume m1 > 0 and
m2 > 0. Let x ∈ U1 and let v1, . . . , vm1+m2 be vectors in Rn1 . Then we have

Ωm1+m2(φ)(ω ∧ τ)(v1, . . . , vm1+m2) = (ω ∧ τ)φ(x)(Dxφ(v1), . . . , Dxφ(vm1+m2))

=
∑

sgn(σ)
[
ωφ(x)(Dxφ(vσ(1)), . . . , Dxφ(vσ(m1)))

]

·
[
τφ(x)(Dxφ(vσ(m1+1)), . . . , Dxφ(vσ(m1+m2)))

]

=
∑

sgn(σ)Ωm1(φ)(ω)x(vσ(1), . . . , vσ(m1))Ω
m2(φ)(τ)x(vσ(m1+1), . . . , vσ(m1+m2))

= (Ωm1(φ)(ω)x ∧Ωm2(φ)(τ)x)(v1, . . . , vm1+m2),

which gives the first statement.
We have already shown the second statement, so it only remains to prove

the third. First we consider the case that f ∈ Ω0(U2). We wish to show that

dΩ0(φ)(f) = Ω1(φ)(df).

Recall that we have

df =

n2∑

j=1

∂f

∂xj
dxj =

n2∑

j=1

∂f

∂xj
∧ dxj .
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We can use the first two properties now to conclude that

Ω1(φ)(df) =

n2∑

j=1

(
Ω0(φ)

(
∂f

∂xj

)
∧Ω1(φ)(dxj)

)

=

n2∑

j=1

(
∂f

∂xj
◦ φ ∧ Ω1(φ)(dxj)

)

=

n2∑

j=1

(
∂f

∂xj
◦ φ ∧

(
n1∑

i=1

∂φj
∂xi

dxi

))

=

n2∑

j=1

n1∑

i=1

(
∂f

∂xj
◦ φ
)(

∂φj
∂xi

)
dxi

=

n1∑

i=1




n2∑

j=1

(
∂f

∂xj
◦ φ
)
∂φj
∂xi



 dxi

=

n1∑

i=1

(
∂(f ◦ φ)

∂xi

)
dxi

= d(f ◦ φ)

= d(Ω0(φ)(f)).

This gives the third statement for the case m = 0. For the general case we again
use linearity to reduce to the case ω = fdxI = f ∧ dxI . Recall that we have
dm1ω = df ∧ dxI . Thus,

Ωm+1+1(φ)(dm1ω) = Ωm1+1(φ)(df ∧ dxI)
= Ω1(φ)(df) ∧Ωm1(φ)(dxI )

= d(Ω0(φ)(f)) ∧ Ωm1(φ)(dxI ).

Observe we have

dm1Ωm1(φ)(dxI ) = dm1(Ω1(φ)(dxi1 ) ∧ · · · ∧ Ω1(φ)(dxim1
))

=

m1∑

j=1

(−1)j−1Ω1(φ)(dxi1 ) ∧ · · · ∧ d1(Ω1(φ)(dxij )) ∧ · · · ∧ Ω1(φ)(dxim1
)

= 0

since Ω1(φ)(dxi) = dφi and d1 ◦ d = 0. Thus,

Ωm1+1(φ)(dm1ω) = d(Ω0(φ)(f)) ∧ Ωm1(φ)(dxI )

= dm1(Ω0(φ)(f) ∧ Ωm1(φ)(dxI ))

= dm1(Ωm1(φ)(ω)).

We leave the proof of the uniqueness to the following exercise.
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Exercise 3.3.42. 1. Prove the first statement in Theorem 3.3.41 in the case
that m1m2 = 0.

2. Prove the uniqueness claimed in Theorem 3.3.41.

Example 3.3.43. Let φ : (a, b) → U be a smooth curve with U ⊂ Rn. Write
φ = (φ1, . . . , φn). Let ω ∈ Ω1(U) be given by

ω = f1dx1 + · · · fndxn.
Then we have

Ω1(φ)(ω) =

n∑

i=1

Ω0(φ)(fi) ∧ Ω1(φ)(dxi)

=

n∑

i=1

Ω0(φ)(fi)Ω
1(φ)(dxi)

=

n∑

i=1

Ω0(φ)(fi)d
1(Ω0(φ)(xi))

=

n∑

i=1

(fi ◦ φ)d1(Ω0(φ)(xi))

=

n∑

i=1

(fi ◦ φ)dφi

=

n∑

i=1

(fi ◦ φ)
dφi
dt
dt

= 〈f(φ(t)), φ′(t)〉dt
where in this case we write 〈 , 〉 for the inner product on Rn. One should compare
this with the integrand for a line integral.

Exercise 3.3.44. Let φ : U1 → U2 be a smooth map. Show that

Ωn(φ)(dx1 ∧ · · · ∧ dxn) = det(Dxφ)(dx1 ∧ · · · ∧ dxn).

We can now define the linear map Hm
dR(φ) for φ : U1 → U2 a smooth map

where Ui ⊂ Rni are open sets. For [ω] ∈ Hm
dR(U2), set

Hm
dR(φ)([ω]) = [Ωm(φ)(ω)].

As usual, we must show this map is well-defined. First we must show that if ω
is closed, then Ωm(φ)(ω) is closed as well. This is shown in the third part of
Theorem 3.3.41. Now let ω + dm−1η be another representative of [ω]. We have

Hm
dR(φ)([ω + dm−1η]) = [Ωm(φ)(ω + dm−1η)]

= [Ωm(φ)(ω) + Ωm(φ)(dm−1η)]

= [Ωm(φ)(ω) + dm−1(Ωm−1(φ)(η))]

= [Ωm(φ)(ω)]

= Hm
dR(φ)(ω)
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and so Hm
dR(φ) is well-defined. Observe that for [ω1] ∈ Hm1

dR (U2), [ω2] ∈ Hm2

dR (U2)
we have

Hm1+m2

dR (φ)([ω1] ∪ [ω2]) = [Ωm1+m2(φ)(ω1 ∧ ω2)]

= [Ωm1(φ)(ω1) ∧ Ωm2(φ)(ω2)]

= [Ωm1(φ)(ω2)] ∪ [Ωm2(φ)(ω2)]

= Hm1

dR (φ)([ω1]) ∪Hm2

dR (φ)([ω2])

and so H∗
dR(φ) is a homomorphism of graded algebras from H∗

dR(U2) to H∗
dR(U1).

We finish this section by proving a more general version of Theorem 3.1.5
by constructing a chain homotopy between the identity map and 0.

Theorem 3.3.45. (Poincare’s Lemma) Let U ⊂ Rn be a star-shaped open set.
Then Hm

dR(U) = 0 for m > 0 and H0
dR(U) = R.

Proof. For simplicity we assume U is star-shaped with respect to 0. We claim
there is a linear map

Ψm : Ωm(U)→ Ωm−1(U)

so that
dm−1Ψm + Ψm+1dm = id

when m > 0 and
Ψ1d = id−e

where e(ω) = ω(0) for ω ∈ Ω0(U). Granting the existence of this map, observe
that we have for a closed form ω ∈ Ωm(U),

dm−1Ψm(ω) = ω

since Ψm+1(dmω) = Ψm+1(0) = 0. Thus, [ω] = [dm−1Ψm(ω)] = [0] for any
closed form ω with m > 0.

For m = 0 we have
ω − ω(0) = Ψ1(dω) = 0

since we are assuming ω is a closed form. Thus, ω is a constant. Hence, if we
can show the claim we are done.

We begin by constructing a map

Ψ̃m : Ωm(U × R)→ Ωm−1(U).

Let ω ∈ Ωm(U × R). We can write

ω =
∑

I

fI(x, t)dxI +
∑

J

gJ(x, t)dt ∧ dxJ

where I = (i1, . . . , im) and J = (j1, . . . , jm−1). Define

Ψ̃m(ω) =
∑

J

(∫ 1

0

gJ(x, t)dt

)
dxJ .
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Note that we have

dm−1Ψ̃m(ω) =
∑

J,k

(∫ 1

0

∂gJ
∂xk

(x, t)dt

)
dxk ∧ dxJ

and since

dmω =
∑

I,i

∂fI(x, t)

∂xi
dxi ∧ dxI +

∑

J,j

∂gJ(x, t)

∂xj
dxj ∧ dt ∧ dxJ ,

we have

Ψ̃m+1(dmω) =
∑

I

(∫ 1

0

∂fI
∂t

(x, t)dt

)
dxI −

∑

J,j

(∫ 1

0

∂gJ
∂xj

dt

)
dxj ∧ dxJ .

Thus,

dm−1Ψ̃m(ω) + Ψ̃m+1(dmω) =
∑

I

(∫ 1

0

∂fI
∂t

(x, t)dt

)
dxI

=
∑

I

fI(x, 1)dxI −
∑

I

fI(x, 0)dxI .(3.1)

Define ψ(t) to be a smooth function so that

ψ(t) = 0 if t ≤ 0

ψ(t) = 1 if t ≥ 1

0 ≤ψ(t) ≤ 1 otherwise

Set

φ : U × R→ U

φ(x, t) = ψ(t)x.

This is well-defined because U is star-shaped.
Define

Ψm(ω) = Ψ̃(Ωm(φ)(ω))

with Ψ̃m defined as above. Write ω =
∑

I hI(x)dxI . Observe that we have

Ω1(dxi) = dφi

= d((ψ(t)x)i)

= xiψ
′(t)dt+ ψ(t)dxi.
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Thus,

Ωm(φ)(ω) = Ωm(φ)(
∑

I

hI(x)dxI )

=
∑

I

Ωm(φ)(hI(x)dxI )

=
∑

I

Ω0(φ)(hI(x)) ∧ Ωm(φ)(dxI )

=
∑

I

(hI(ψ(t)x)(dψ(t)xi1 + ψ(t)dxi1 ) ∧ · · · ∧ (dψ(t)xim + ψ(t)dxim )).

In our notation, we have

∑

I

fI(x, t)dxI =
∑

I

hI(ψ(t)x)ψ(t)mdxI .

Applying equation (3.1) to this case we have

dm−1Ψm(ω) + Ψm+1(dmω) = dm−1Ψ̃m(Ωm(φ)(ω) + Ψ̃m+1(dmΩm(φ)(ω))

=
∑

I

fI(x, 1)dxI −
∑

I

fI(x, 0)dxI

=
∑

I

hI(ψ(1)x)ψ(1)mdxI −
∑

I

hI(ψ(0)x)ψ(0)mdxI

=
∑

I

hI(x)dxI

= ω.

If m = 0, we have that dm−1 = 0 and so our equation above reads

Ψ1(dω) =
∑

I

hI(ψ(1)x)dxI −
∑

I

hI(ψ(0)x)dxI

= ω − ω(0),

as claimed. This completes the proof of the result.

3.4 Calculations and Applications of de Rham

Cohomology in Rn

In this section we will develop more general ways to calculate de Rham coho-
mology groups. In particular, we will prove the exactness of the Mayer-Vietoris
sequence, a very powerful tool for computing examples. Up to this point we
have only been able to calculate Hm

dR(U) for U a star-shaped open set in Rn.
This calculation will turn out to be very useful in more complicated examples
as we will shortly see.
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Note that throughout this section U and V denote open sets in Euclidean
space unless noted otherwise.

Before we proceed, we need to introduce partitions of unity. These are
important for working with smooth functions and we will encounter them often
in this section.

Let U ⊂ Rn be any set, not necessarily open. Let f : U → R be a function.
The support of f in U is the set

suppU (f) = Cl({x ∈ U : f(x) 6= 0}).

If U happens to be open then U − suppU (f) is the largest open subset of U on
which f vanishes.

We state the following standard fact from analysis without proof. One can
see Chapter 1, § 8 of [6] for a proof of this fact.

Theorem 3.4.1. Let U ⊂ Rn be open and U = {Ui}i∈I be an open cover of U .
There exist smooth functions

fi : U → [0, 1]

satisfying

1. suppU (fi) ⊂ Ui for every i ∈ I;

2. Every x ∈ U has a neighborhood V on which only finitely many of the fi
do not vanish;

3. For every x ∈ U ,
∑

i∈I fi(x) = 1.

The functions {fi}i∈I are called a partition of unity. The terminology arises
from the third property listed in the theorem.

The following theorem is a precursor to the Mayer-Vietoris sequence.

Theorem 3.4.2. Let U1, U2 ⊂ Rn be open sets. Set U = U1 ∪ U2. Write

ik : Uk →֒ U

and
jk : U1 ∩ U2 →֒ Uk

be he natural inclusion maps for k = 1, 2. We have the following short exact
sequence

0 −→ Ωm(U)
im−→ Ωm(U1)⊕ Ωm(U2)

jm

−→ Ωm(U1 ∩ U2) −→ 0

where im(ω) = (Ωm(i1)(ω),Ωm(i2)(ω)) and jm(ω1, ω2) = Ωm(j1)(ω1)−Ωm(j2)(ω2).

Proof. Recall that given open sets V1, V2 and a smooth map φ : V1 → V2, we
defined

Ωm(φ) : Ωm(V2)→ Ωm(V1)

113



by

Ωm(φ)(ω) =
∑

I

(fI ◦ φ)dφi1 ∧ · · · ∧ dφim

for
ω =

∑

I

fIdxI .

We have also shown that if φ is an inclusion map of open sets, then φi(x) = xi
and so

dφi1 ∧ · · · ∧ dφim = dxi1 ∧ · · · ∧ dxim .
Thus, for φ an inclusion map we have

Ωm(φ)(ω) =
∑

I

(fI ◦ φ)dxI .

We can now apply these results to our inclusions ik and jk.
Suppose there is a ω ∈ Ωm(U) so that im(ω) = 0, i.e., (Ωm(i1)(ω),Ωm(i2)(ω)) =

(0, 0). Thus, we must have

Ωm(ik)(ω) =
∑

I

(fI ◦ ik)dxI = 0.

However, this is the case if and only if fI ◦ ik = 0 for all I since the dxI form a
basis. Thus, fI ◦ i1 = 0 = fI ◦ i2 for all I and so fI = 0 on U . Thus, ω = 0 and
so im is injective.

The next step is to show that

ker(jm) = im(im).

Let ω ∈ Ωm(U). Define j : U1 ∩ U2 →֒ U to be the natural inclusion map.
Observe that j = ik ◦ jk for k = 1, 2. We have

jm(im(ω)) = jm((Ωm(i1)(ω),Ωm(i2)(ω))

= Ωm(j1)(Ω
m(i1)(ω))− Ωm(j2)(Ω

m(i2)(ω))

= Ωm(j)(ω)− Ωm(j)(ω)

= 0.

Thus, we have that im(im) ⊂ ker(jm).
Let (ω1, ω2) ∈ Ωm(U1) ⊕ Ωm(U2) so that jm(ω1, ω2) = 0. Write ω1 =∑
I fIdxI and ω2 =

∑
I gIdxI . Since jm(ω1, ω2) = 0, we must have Ωm(j1)(ω1) =

Ωm(j2)(ω2). Thus, we must have

∑

I

(fI ◦ j1)dxI =
∑

I

(gI ◦ j2)dxI ,

i.e.,
fI ◦ j1 = gI ◦ j2
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for all I. This statement is equivalent to fI(x) = gI(x) for all x ∈ U1 ∩ U2.
Define

hI(x) =

{
fI(x) x ∈ U1

gI(x) x ∈ U2.

Note that hI(x) is well-defined since fI and gI agree on U1∩U2 and it is clearly
a smooth function. We have im(

∑
I hIdxI) = (ω1, ω2). Thus, ker(jm) ⊂ im(im)

and so we have equality.
It remains to show that jm is surjective. Let p1, p2 be a partition of unity

of U with support {U1, U2}. Let f : U1 ∩ U2 → R be a smooth function. We
extend f to a function on U1 and a function on U2 via the partition of unity.
Set

f2(x) =

{
−f(x)p1(x) x ∈ U1 ∩ U2

0 x ∈ U2 − suppU (p1).

This is smooth because suppU (p1) ∩ U2 ⊂ U1 ∩ U2. Similarly, define

f1(x) =

{
f(x)p2(x) x ∈ U1 ∩ U2

0 x ∈ U1 − suppU (p2).

We have f(x) = f1(x)− f2(x) for all x ∈ U1 ∩ U2.
Now for ω =

∑
I fIdxI ∈ Ωm(U1 ∩ U2), we can apply the construction

to each fI : U1 ∩ U2 → R giving functions fI,k : Uk → R and differential
forms ωk =

∑
I fI,kdxI ∈ Ωm(Uk) for k = 1, 2. So by construction we have

jm(ω1, ω2) = ω and so jm is indeed surjective.

From this the proof of the Mayer-Vietoris sequence follows easily.

Theorem 3.4.3. (Mayer-Vietoris sequence) Let U1, U2 ⊂ Rn be open sets,
U = U1 ∪U2, and im, jm defined as in Theorem 3.4.2. There exists a long exact
sequence of vector spaces

· · · −→ Hm
dR(U)

Hm
dR(im)−→ Hm

dR(U1)⊕Hm
dR(U2)

Hm
dR(jm)−→ Hm

dR(U1∩U2)
∂m

−→ Hm+1
dR (U) −→ · · · .

Proof. We have that i∗ and j∗ are chain maps and so we can apply Theorem
3.4.2 to get a short exact sequence of chain complexes. Theorem 3.2.3 along
with Exercise 3.2.7 finish the result.

Exercise 3.4.4. Work out the map ∂m explicitly in this case.

Exercise 3.4.5. Let U1 and U2 be disjoint open sets in Rn. Then

i : Hm
dR(U1 ∪ U2)

≃−→ Hm
dR(U1)⊕Hm

dR(U2).

Example 3.4.6. We return to the example of R2 − 0 that was examined in §
3.1. Set

U1 = R2 − {(x, y) : x ≥ 0, y = 0}
and

U2 = R2 − {(x, y) : x ≤ 0, y = 0}.
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Note that U1 and U2 are each star-shaped. Furthermore, we have

U1 ∪ U2 = R2 − 0

and
U1 ∩ U2 = {(x, y) : y > 0} ∪ {(x, y) : y < 0} = R2

+ ⊔ R2
−.

Note each term of the disjoint union in U1 ∩ U2 is star-shaped and so we have

Hm
dR(U1 ∩ U2) = Hm

dR(R2
+ ⊔ R2

−)

= Hm
dR(R2

+)⊕Hm
dR(R2

−)

=

{
R⊕ R m = 0
0 m 6= 0.

Thus, we are set up perfectly to apply Mayer-Vietoris. Applying this we
have for m > 0

0
jm

−→ Hm
dR(U1 ∩ U2)

∂m

−→ Hm+1
dR (R2 − 0) −→ 0

and so
Hm

dR(U1 ∩ U2) ∼= Hm+1
dR (R2 − 0).

Thus, for m ≥ 2 we have
Hm

dR(R2 − 0) = 0.

Consider now the case when m = 1. In this case Mayer-Vietoris gives the
exact sequence

0 −→ R
i0−→ R⊕ R

j0−→ R⊕ R
∂0

−→ H1
dR(R2 − 0) −→ 0.

The fact that ker(i0) = 0 gives im(i0) = R. Thus, we have ker(j0) = R and so
we must have

∂0 : R⊕ R/ im(j0) ∼= H1
dR(R1 − 0),

i.e.,
H1

dR(R2 − 0) ∼= R.

Thus, using that we already know H0
dR(R2 − 0) we have shown that

Hm
dR(R2 − 0) ∼=





R m = 0
R m = 1
0 m > 1.

Proposition 3.4.7. Let U ⊂ Rn be an open set and assume that U is cov-
ered by finitely many star-shaped open sets U1, . . . , Ur. Then Hm

dR(U) is finitely
generated.
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Proof. We proceed by induction on r. If r = 1 the result is clear by Theorem
3.3.45. Suppose we have the result for all k ≤ r − 1. Set V = U1 ∪ · · · ∪ Ur−1

so we have U = V ∪Ur. The result is clear for m = 0 so we assume m ≥ 1. We
have using Mayer-Vietoris

· · · −→ Hm−1
dR (V ∩ Ur) ∂m

−→ Hm
dR(U)

im−→ Hm
dR(V )⊕Hm

dR(Ur) −→ · · · .

We know that
Hm

dR(U)/ ker(im) ∼= im(im).

However, we have that ker(im) ∼= im(∂m) and so we can write

Hm
dR(U) ∼= im(im)⊕ im(∂m).

Our induction hypothesis gives that

V ∩ Ur = (U1 ∩ Ur) ∩ · · · ∩ (Ur−1 ∩ Ur)

and so Hm−1
dR (V ∩ Ur), Hm

dR(V ), and Hm
dR(Ur) are all finitely generated. In par-

ticular, ∂m(Hm−1
dR (V ∩Ur)) and im(Hm

dR(U)) are finitely generated as a subspace
of a finitely generated space is finitely generated and the image of a finitely gen-
erated space is finitely generated. Thus, Hm

dR(U) must be finitely generated as
well.

For cohomology to actually be useful for anything one needs to have topologi-
cal spaces that “look alike” to have the same cohomology groups and topological
spaces that do not to have different cohomology groups. In other words, it is
important that we can distinguish between topological spaces if we know each
spaces’ cohomology groups. In order to see we can do this, we need to define
the correct notion of equivalence between topological spaces.

Definition 3.4.8. Let X and Y be topological spaces and let

fi : X → Y

be continuous maps for i = 0, 1. We say f0 is homotopic to f1 if there exists a
continuous map

F : X × [0, 1]→ Y

so that
F (x, 0) = f0(x)

and
F (x, 1) = f1(x)

for all x ∈ X . We write f0 ≃ f1 or f0 ≃F f1 if we want to keep track of the
homotopy F .

The way one should view this definition is to view F (x, t) as a family of
continuous maps ft(x) = F (x, t) that continuously deforms f0 into f1.
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Lemma 3.4.9. Homotopy is an equivalence relation.

Proof. Clearly f ≃ f via F (x, t) = f(x) for all t.
Suppose f ≃F g. Define G(x, t) = F (x, 1 − t). Then g ≃G f .
Finally, suppose f ≃F g and g ≃G h. Define

H(x, t) =

{
F (x, 2t) 0 ≤≤ 1/2
G(x, 2t− 1) 1/2 ≤ t ≤ 1.

Then we have f ≃H h.

Example 3.4.10. Let fi : U → V be continuous maps for i = 0, 1 with U ⊂ Rn

and V ⊂ Rm open sets with V star-shaped with respect to a point y. Define

Fi : U × [0, 1]→ V

by
Fi(x, t) = (1− t)fi(x) + ty

for i = 0, 1. It is clear the maps Fi(x, t) are continuous and since V is star-
shaped with respect to y they are well-defined as well. Thus, we have each map
fi is homotopic to the constant map sending all of X to the point y. Since
homotopy is an equivalence relation, we see that f0 ≃ f1. The map Fi is called
the straight-line homotopy. We see that any continuous maps into a star-shaped
region are homotopic.

Lemma 3.4.11. Let X,Y , and Z be topological spaces and let fi : X → Y ,
gi : Y → Z be continuous maps for i = 0, 1. If f0 ≃F f1 and g0 ≃G g1, then
g0 ◦ f0 ≃ g1 ◦ f1.

Proof. The required homotopy is given by H(x, t) = G(F (x, t), t).

Definition 3.4.12. A continuous map f : X → Y is said to be a homotopy
equivalence if there exists a continuous map g : Y → X so that g ◦ f ≃ idX and
g ◦ f ≃ idY . We call g a homotopy inverse to f . We say X and Y are homotopy
equivalent if there is a homotopy equivalence between them. In particular, we
say X is contractible if there is a homotopy equivalence between X and a one
point space.

Since homotopy is an equivalence relation, we can use the above definition
to partition topological spaces into homotopy equivalence classes.

Exercise 3.4.13. Show that X is contractible if and only if idX is homotopic
to a constant map.

Lemma 3.4.14. If X and Y are homeomorphic they are necessarily homotopy
equivalent.

Proof. This fact is obvious from the definition.
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Lemma 3.4.15. Let U ⊂ Rn be an open star-shaped region. Then U is con-
tractible.

Proof. Let x ∈ U be the point with which U Is star-shaped with respect to. Let
f be the map f : U → {x} that sends everything to x and let g : {x} →֒ U be
the natural inclusion. Observe that f ◦ g = id{x}. It only remains to show that
h = g ◦ f ≃ idU . Define

F (y, t) = (1− t)x+ ty.

Since U is star-shaped with respect to x we have

F : U × [0, 1]→ U

and

F (y, 0) = g ◦ f
F (y, 1) = idU .

Thus, U is contractible.

Example 3.4.16. Consider the spaces Rn − 0 and Sn−1. We claim they are
homotopy equivalent. Define g : Rn − 0 → Sn−1 by setting g(x) = x

|x| and

define f : Sn−1 →֒ Rn − 0 to be the natural inclusion map. Observe that we
have g ◦ f : Sn−1 → Sn−1 is actually equal to the identity map, so certainly
homotopic to it.

Define G(x, t) : (Rn − 0) × [0, 1] → Rn − 0 by G(x, t) = (1 − t)x + t
(
x
|x|

)
.

This gives (f ◦ g)(x) = x
|x| is homotopy equivalent to idRn−0. Thus, we have

Rn − 0 and Sn−1 are homotopy equivalent.

Note that Rn − 0 is not homeomorphic to Sn−1. For example, Sn−1 is
compact and Rn − 0 is not compact. Thus, we see that spaces can be homo-
topy equivalent without being homeomorphic. Thus, the homotopy equivalence
classes are larger than the equivalence classes one obtains by considering spaces
as equivalent if they are homeomorphic.

While homotopy provides a way to separate topological spaces into equiva-
lence classes that hopefully will turn out to be more useful than separating them
by homeomorphism, it is phrased in terms of continuous maps where we have
been working with smooth maps. The next few results will show that working
with only smooth maps is “good enough” for what we want to do.

Lemma 3.4.17. Let A ⊂ Rn ⊂ V ⊂ U ⊂ Rn where U and V are open in Rn and
A is closed in U . Let h : U →W be a continuous map into an open set W ⊂ Rm

with smooth restriction to V . For any continuous function ǫ : U → (0,∞) there
exists a smooth map f : U →W satisfying

1. |f(x)− h(x)| ≤ ǫ(x) for every x ∈ U ;
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2. f(x) = h(x) for every x ∈ A.

Proof. If W 6= Rm, we can replace ǫ(x) by

ǫ1(x) = min(ǫ(x), (1/2)ρ(h(x),Rm −W ))

where
ρ(y,Rm −W ) = inf{|y − z| : z ∈ Rm −W}.

Now if f : U → Rm satisfies the first condition with ǫ1 instead of ǫ, we obtain
f(U) ⊂W . Thus, without loss of generality we may assume W = Rm.

The fact that h and ǫ are continuous allows us to find for each point x0 ∈
U −A an open neighborhood Ux0 ⊂ U −A of x0 so that

|h(x)− h(x0)| < ǫ(x)

for all x ∈ Ux0 . Consider the open cover of U consisting of V and {Ux0}x0∈U−A.
We know there is a partition of unity with respect to this open cover, call it
{px0}. Using the properties of a partition of unity we define a smooth function

f(x) = p0(x)h(x) +
∑

x0∈U−A

px0(x)h(x0).

Note we also have

h(x) = p0(x)h(x) +
∑

x0∈U−A

px0(x)h(x).

Thus,

f(x)− h(x) =
∑

x0∈U−A

px0(x)(h(x0)− h(x)).

Since suppU (px0) ⊂ Ux0 ⊂ U −A, we have the second part of the theorem. As
for the first part, we have

|f(x)− h(x)| ≤
∑

x0∈U−A

px0(x)|h(x0)− h(x)|

≤
∑

x0∈U−A

px0(x)ǫ(x)

=

(
∑

x0∈U−A

px0(x)

)
ǫ(x)

= ǫ(x)

where we have used that necessarily x ∈ Ux0 in order for px0(x) 6= 0.

Proposition 3.4.18. Let U, V be open in Rn and Rm respectively. Then we
have:

1. Every continuous map h : U → V is homotopic to a smooth map.
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2. If two smooth maps fj : U → V , j = 0, 1 are homotopic, then there exists
a smooth map F : U × R → V with F (x, j) = fj(x) for j = 0, 1 and all
x ∈ U .

Proof. We begin with the first statement. By Lemma 3.4.17 we can approximate
h by a smooth map f : U → V . Choose f so that V contains the line segment
from h(x) to f(x) for every x ∈ U . The straight-line homotopy then gives h ≃ f .
This gives the first part.

Let G be a homotopy from f0 to f1. Let ψ : R → [0, 1] be a continuous
function with ψ(t) = 0 for t ≤ 1/3, ψ(t) = 1 for t ≥ 2/3. Define

H : U × R→ V

by
H(x, t) = G(x, ψ(t)).

We have h(x, t) = f0(x) for t ∈ (−∞, 1/3] and H(x, t) = f1(x) for t ∈ [2/3,∞)
so H Is smooth on (−∞, 1/3]∪ [2/3,∞). Appealing to Lemma ?? again we can
approximate H by a smooth map

F : U × R→ V

so that F and H have the same restriction on U × {0, 1}. Thus, for x ∈ U and
k = 0, 1 we have F (x, k) = H(x, k) = fk(x) as desired.

Thus, we have shown that when working with homotopies, it is enough to
work in the setting of smooth maps.

Theorem 3.4.19. Let f, g : U → V be smooth maps with f ≃F g. The induced
maps

Ωm(f),Ωm(g) : Ωm(V )→ Ωm(U)

are chain-homotopic.

Proof. Let ω ∈ Ωm(U × R). Recall that we can write

ω =
∑

I

fI(x, t)dxI +
∑

J

gJ(x, t)dt ∧ dxJ .

Let φk : U →֒ U × R be the inclusion map given by φk(x) = (x, k) for k = 0, 1.
Then we have

Ωm(φk)(ω) =
∑

I

fI(x, k)dxI .

Note that we have used here that d(φk)I = dxI since φk is an inclusion map
and Ωm(φk)(dt ∧ dxJ ) = 0 since the t-component of φk is constant.

Recall we constructed a linear map

Ψ̃m : Ωm(U × R)→ Ωm−1(U)
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so that

(3.2) (dm−1Ψ̃m + Ψ̃dm)(ω) = Ωm(φ1)(ω)− Ωm(φ0)(ω).

Consider the composition

U
φk−→ U × R

F−→ V.

Then we have F ◦ φ0 = f and F ◦ φ1 = g. Define

Ψm : Ωm(V )→ Ωm−1(U)

by
Ψm = Ψ̃m ◦ Ωm(F ).

We claim that
dmΨm + Ψm−1dm = Ωm(g)− Ωm(f).

To see this, we begin by applying equation (3.2) to Ωm(F )(ω):

(dm−1Ψ̃m + Ψ̃dm)(Ωm(F )(ω)) = Ωm(φ1)(Ω
m(F )(ω))− Ωm(φ0)(Ω

m(F )(ω))

= Ωm(F ◦ φ1)(ω)− Ωm(F ◦ φ0)(ω)

= Ωm(g)(ω)− Ωm(f)(ω).

Now observe that since F is a chain map we can write this as

dm−1Ψm(ω) + Ψ̃m+1(dmΩm(F )(ω)) = dmΨm(ω) + Ψ̃m+1Ωm(F )(dmω)

= dmΨm(ω) + Ψm+1dmω.

Thus, we have a chain homotopy between Ωm(g) and Ωm(f).

Note that this results shows that if f ≃ g, then the induced maps on coho-
mology are equal. So, given a continuous map φ : U → V we can find a smooth
map f : U → V so that f ≃ φ and by the previous result the induced map

Hm
dR(f) : Hm

dR(V )→ Hm
dR(U)

is independent of the choice of f . Thus, given a continuous map φ : U → V , we
define

Hm
dR(φ) : Hm

dR(V )→ Hm
dR(U)

by Hm
dR(φ) = Hm

dR(f) where f is any smooth map from U to V with f ≃ φ.

Theorem 3.4.20. Let U, V,W be open sets in Euclidean spaces.

1. If φ0, φ1 : U → V are homotopic continuous maps, then

Hm
dR(φ0) = Hm

dR(φ1) : Hm
dR(V )→ Hm

dR(U).
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2. If φ : U → V and ψ : V →W are continuous, then

Hm
dR(ψ ◦ φ) = Hm

dR(φ) ◦Hm
dR(ψ) : Hm

dR(W )→ Hm
dR(U).

3. If the continuous map φ : U → V is a homotopy equivalence, then

Hm
dR(φ) : Hm

dR(V )→ Hm
dR(U)

is an isomorphism.

Proof. Let f : U → V be a smooth map with f ≃ φ0. Since homotopy is
an equivalence relation and φ0 ≃ φ1, we must have f ≃ φ1 as well. Thus,
Hm

dR(φ0) = Hm
dR(f) = Hm

dR(φ1). This gives part (1).
Part (2) is known if φ and ψ happen to be smooth. Otherwise, choose f ≃ φ

and g ≃ ψ with f and g smooth. Then we have

ψ ◦ φ ≃ g ◦ f

and so

Hm
dR(ψ ◦ φ) = Hm

dR(g ◦ f) = Hm
dR(f) ◦Hm

dR(g) = Hm
dR(φ) ◦Hm

dR(ψ).

This gives part (2).
Finally, we prove part (3). Let ψ : V → U be a homotopy inverse to φ. Part

(2) gives that Hm
dR(ψ) is an inverse to Hm

dR(φ) and so we have an isomorphism
of vector spaces.

Corollary 3.4.21. Let f : U → V be a homeomorphism. Then Hm
dR(f) :

Hm
dR(V )→ Hm

dR(U) is an isomorphism of vector spaces.

Corollary 3.4.22. Let U ⊂ Rn be a contractible open set. One has that
H0

dR(U) ∼= R and Hm
dR(U) = 0 for m > 0.

Proof. Recall that U being contractible is equivalent to idU being homotopic to
a constant map. Let f be such a constant map, say f(x) = x0 for all x ∈ U .
Let F (x, t) be the homotopy between idU and f . Note that F (x, t) defines a
continuous curve in U that connects x0 and x. Thus, U is path-connected, hence
connected. Thus, H0

dR(U) ∼= R.
If m > 0, we know that

Ωm(f) : Ωm(U)→ Ωm(U)

is 0 because Ωm(f)(ω)x = Altm(Dxf)(ω(f(x))) and since f is constant, Dxf =
0. Thus, by Theorem 3.4.20 we have

Hm
dR(idU ) = Hm

dR(f) = 0.

Since Hm
dR(idU ) = idHm

dR(U), it must be that Hm
dR(U) = 0.
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The following proposition will be very important in subsequent calculations.
It allows us to “move up” in the sense of calculating the higher cohomology
groups of Euclidean spaces with a closed set removed if we know the cohomology
of a smaller Euclidean space with the same closed set removed. In particular,
it will allow us to calculate the cohomology of Rn − 0 for n ≥ 2 using that we
already have the calculation in the case n = 2.

Proposition 3.4.23. Let A ( Rn be a closed set. Then we have

Hm+1
dR (Rn+1 −A) ∼= Hm

dR(Rn −A) m ≥ 1

H1
dR(Rn+1 −A) ∼= H0

dR(Rn −A)/R

H0
dR(Rn+1 −A) ∼= R

where we have identified Rn with Rn × {0} ⊂ Rn+1.

Proof. We view Rn+1 as Rn × R and define open subsets of Rn+1 by

U1 = Rn × (0,∞) ∪ (Rn −A)× (−1,∞)

and
U2 = Rn × (−∞, 0) ∪ (Rn −A)× (−∞, 1).

We have
U1 ∪ U2 = Rn+1 −A

and
U1 ∩ U2 = (Rn −A)× (−1, 1).

The reader is urged to draw some examples of this to be sure to understand
what the sets U1 and U2 look like.

Define φ : U1 → U1 by setting

φ(x1, . . . , xn, xn+1) = (x1, . . . , xn, xn+1 + 1).

For x ∈ U1 we have that the line segment from x to φ(x) is contained inside U1

and so idU1 ≃ φ. Given any φ(x) we have that φ(x) ∈ Rn × (0,∞) and since
Rn × (0,∞) is star-shaped with respect to y0 = (0, . . . , 0, 1), we can connect
φ(x) to y0 by a straight line. Thus, φ(x) is homotopic to the constant map
sending everything in U1 to y0. Combining these homotopies we have idU1 is
homotopic to a constant map and so U1 is contractible. Similarly we have that
U2 is contractible and so

Hm
dR(Uk) =

{
R m = 0
0 m > 0

for k = 1, 2.
Define π : U1 ∩ U2 → Rn − A to be the natural projection map. Define

i : Rn−A→ U1∩U2 by i(x) = (x, 0). Then π◦i = idRn−A and i◦π(x, y) = (x, 0),
which is homotopic to idU1∩U2 by straight line homotopy. Thus, we have

U1 ∩ U2 ≃ Rn −A
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and so
Hm

dR(U1 ∩ U2) ∼= Hm
dR(Rn −A).

Suppose now that m ≥ 1. Since U1 and U2 are contractible, Mayer-Vietoris
gives

Hm
dR(U1 ∩ U2) ∼= Hm+1

dR (U1 ∪ U2),

i.e.,
Hm+1

dR (Rn+1 −A) ∼= Hm
dR(Rn −A).

Mayer-Vietoris also gives the exact sequence

0 −→ H0
dR(Rn+1−A)

H0
dR(i)−→ H0

dR(U1)⊕H0
dR(U2)

H0
dR(j)−→ H0

dR(Rn−A)
∂0

−→ H1
dR(Rn+1−A) −→ 0.

Recall that H0
dR(U) are the locally constant functions defined on U . Since U1

and U2 are connected, an element of H0
dR(U1) ⊕ H0

dR(U2) is a pair of constant
functions a1, a2. The image of (a1, a2) under the map H0

dR(j) is a1 − a2 ∈
H0

dR(U1 ∩ U2). Thus,

ker(∂0) = im(H0
dR(j)) = (a1 − a2)R ∼= R.

Thus,
H1

dR(Rn+1 −A) ∼= H0
dR(Rn −A)/R.

Finally, we have that dimR(im(H0
dR(i))) = dimR(ker(H0

dR(j))) = 1 and so

H0
dR(Rn+1 −A) ∼= R.

We can now easily calculate the cohomology of punctured Euclidean space.

Theorem 3.4.24. For n ≥ 2 we have the following

Hm
dR(Rn − 0) ∼=

{
R m = 0, n− 1
0 m 6= 0, n− 1.

Proof. We have already shown the case of n = 2 in Example 3.4.6. The general
case now follows by induction using Proposition 3.4.23.

We also note that in the case of n = 1 we have

Hm
dR(R1 − 0) ∼=

{
R⊕ R m = 0
0 m 6= 0.

We can now use this allow with Theorem 3.4.24 to conclude that Euclidean
spaces of different dimensions are not homeomorphic. Though Theorem 3.4.25
certainly would be believable to anyone that had read through Chapter 2, it is
not something that is easy to prove! It is a good illustration of the power of
cohomology to try and prove it using only the basic tools established in Chapter
2.
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Theorem 3.4.25. If m 6= n then Rm is not homeomorphic to Rn.

Proof. Suppose there is such a homeomorphism, say φ : Rn → Rm. Without
loss of generality we may assume φ(0) = 0 as we can change φ by a homotopy
to make it so if not. Thus, φ : Rn − 0 → Rm − 0 is a homeomorphism. This
implies that all the cohomology groups of Rn − 0 and Rm − 0 must be equal.
However, this contradicts Theorem 3.4.24 unless m = n.

Definition 3.4.26. Let X be a topological space. Given a map f : X → X we
call x ∈ X a fixed point of f if f(x) = x.

For brevity we denote the closed unit ball Cl(B(0, 1)) ⊂ Rn by Dn.

Theorem 3.4.27. (Brouwer’s fixed point theorem) Every continuous map f :
Dn → Dn has a fixed point for n ≥ 1.

Fixed point theorems are very useful in many areas of mathematics. For
example, one has well-known applications of this theorem to economics and
game theory. In fact, recently a paper has been posted that uses this theorem
to study methods of counter terrorism! For a fun “party-fact” consequence of
this theorem, suppose that you have a cup of coffee and you swirl it around.
If you assume that all of the particles on the surface of the coffee remain on
the surface, then no matter how much you swirl the coffee around at least one
particle will end up in the same place it started!

Before we can prove Theorem 3.4.27, we need the following lemma.

Lemma 3.4.28. There are no continuous maps g : Dn → Sn−1 with g|Sn−1 =
idSn−1 .

Proof. The case n = 1 is clear so we assume n ≥ 2. Define f : Rn− 0→ Rn− 0
by f(x) = x

|x| . Recall that we have seen before that f ≃ idRn−0 by the straight

line homotopy. Suppose there is such a g. Then for 0 ≤ t ≤ we have

F (x, t) = g(tf(x))

is continuous and

F (x, 0) = g(0) = constant map

F (x, 1) = g(f(x)) = g

(
x

|x|

)
=

x

|x|
where we have used that g|Sn−1 = idSn−1 . Thus, F gives a homotopy between
f and a constant map, i.e., we see that idRn−0 ≃ f ≃ a constant map. Thus,
Rn − 0 is contractible. This is a contradiction as Hn−1

dR (Rn − 0) ∼= R. Thus,
there can be no such g.

We now prove Theorem 3.4.27.

Proof. Suppose that f(x) 6= x for all x ∈ Dn. Thus, x and f(x) determine a
line and so we can define g(x) ∈ Sn−1 to be the intersection of the ray starting
at f(x) going through x and Sn−1 as pictured:
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f(x)

x

g(x)

We can write g(x) = x+tu where u = x−f(x)
|x−f(x)| and t = −〈x, u〉+

√
1− |x|2 + 〈x, u〉2

where we again write the inner product on Euclidean space as 〈 , 〉. However, this
gives a continuous map g : Dn − Sn−1 with g|Sn−1 = idSn−1 . This contradicts
Lemma 3.4.28 and so it must be that f has a fixed point.

It is interesting to note that Brouwer was a proponent of only proving the-
orems with constructive proofs and felt that proofs by contradiction should be
avoided at all costs. It is ironic then that his most famous theorem is demon-
strated by contraction.

Definition 3.4.29. Let U ⊂ Rn, V ⊂ Rm be open sets. A smooth map
f : U → V that is bijective and has a smooth inverse function is called a
diffeomorphism.

The following result is another corollary of Proposition 3.4.23.

Corollary 3.4.30. Let A ( Rn be a closed set. Let

F : Rn+1 −A→ Rn+1 −A

be the diffeomorphism given by

F (x1, . . . , xn, xn+1) = (x1, . . . , xn,−xn+1).

The induced linear map

Hm+1
dR (F ) : Hm+1

dR (Rn+1 −A)→ Hm+1
dR (Rn+1 −A)

is multiplication by −1 for m ≥ 0.

Proof. It was shown in the proof of Proposition 3.4.23 that for m ≥ 1 we have

∂m : Hm
dR(U1 ∩ U2)

≃−→ Hm+1
dR (U1 ∪ U2)

is an isomorphism and

∂0 : H0
dR(U1 ∩ U2) −→ H1

dR(U1 ∪ U2)
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is a surjection. Thus, to show that Hm
dR(F ) is multiplication by −1, it is enough

to show that
Hm

dR(F ) ◦ ∂m([ω]) = −∂m([ω])

for m ≥ 0 and [ω] ∈ Hm
dR(U1 ∩ U2).

Recall we have the following exact sequence:

0 −→ Ωm(U1 ∪ U2)
im−→ Ωm(U1)⊕ Ωm(U2)

jm

−→ Ωm(U1 ∩ U2) −→ 0.

Thus, given ω ∈ Ωm(U1 ∩ U2), there exist ω1, ω2 so that

ω = jm(ω1, ω2)

= Ωm(j1)(ω1)− Ωm(j2)(ω2).

Furthermore, recall that

∂m([ω]) = [(im+1)−1(dmΩm(U1)⊕Ωm(U2)((j
m)−1(ω)))]

= [(im+1)−1(dmΩm(U1)ω1, d
m
Ωm(U2)ω2)]

= [τ ]

where τ ∈ Ωm+1(U1 ∪ U2) is so that Ωm+1(ik)(τ) = dmΩm(Uk)ωk for k = 1, 2.

Observe we have the following commutative diagrams (where F0 and F1 are
the restrictions of F ):

Rn+1 −A F // Rn+1 −A Rn+1 −A F // Rn+1 −A

U1
F1 //

i1

OO

U2

i2

OO

U2
F2 //

i2

OO

U1

i1

OO

U1 ∩ U2

j1

OO

F0 // U1 ∩ U2

j2

OO

U1 ∩ U2

j2

OO

F0 // U1 ∩ U2.

j1

OO

These diagrams given the following diagrams in differential forms for all r ≥ 0:

Ωr(Rn+1 − A)

Ωr(i1)

��

Ωr(Rn+1 −A)

Ωr(i2)

��

Ωr(F )oo

Ωr(U1)

Ωr(j1)

��

Ωr(U2)

Ωr(j2)

��

Ωr(F1)oo

Ωr(U1 ∩ U2) Ωr(U1 ∩ U2)
Ωr(F0)oo
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Ωr(Rn+1 − A)

Ωr(i2)

��

Ωr(Rn+1 −A)
Ωr(F )oo

Ωr(i1)

��
Ωr(U2)

Ωr(j2)

��

Ωr(U1)
Ωr(F2)oo

Ωr(j1)

��
Ωr(U1 ∩ U2) Ωr(U1 ∩ U2).

Ωr(F0)oo

Thus, we have

−Ωm(F0)(ω) = −Ωm(F0)(Ω
m(j1)(ω1)− Ωm(j2)(ω2))

= Ωm(F0) ◦ Ωm(j2)(ω2)− Ωm(F0) ◦ Ωm(j1)(ω1)

= Ωm(j1) ◦ Ωm(F1)(ω2)− Ωm(j2) ◦ Ωm(F2)(ω1),

Ωm+1(i1) ◦ Ωm+1(F )(τ) = Ωm+1(F1) ◦ Ωm+1(i2)(τ)

= Ωm+1(F1)(d
m
Ωm(U2)ω2)

= dmΩm(U1)(Ω
m(F1)(ω2)),

and

Ωm+1(i2) ◦ Ωm+1(F )(τ) = Ωm+1(F2) ◦ Ωm+1(i1)(τ)

= Ωm+1(F2)(d
m
Ωm(U1)ω1)

= dmΩm(U2)(Ω
m(F2))(ω1).

Combining these results with the definitions we have

∂m(−[Ωm(F0)(ω)]) = ∂m([Ωm(j1) ◦ Ωm(F1)(ω2)− Ωm(j2) ◦ Ωm(F2)(ω1)])

= [(im+1)−1dmΩm(U1)⊕Ωm(U2)(Ω
m(F1)(ω2),Ω

m(F2)(ω1))]

= [(im+1)−1(Ωm+1(i1) ◦ Ωm+1(F )(τ),Ωm+1(i2) ◦ Ωm+1(F )(τ))]

= [Ωm+1(F )(τ)].

Thus,

∂m ◦Hm
dR([ω]) = ∂m([Ωm(F0)(ω)])(3.3)

= −[Ωm+1(F )(τ)]

= −[Ωm+1 ◦ ∂m(ω)]

= −Hm+1
dR (F ) ◦ ∂m([ω]).

Note that for π : U1 ∩ U2 → Rn − A the projection map as before, we have
π ◦ F0 = π and so

Hm
dR(Rn −A)

Hm
dR(π)−→ Hm

dR(U1 ∩ U2)
Hm

dR(F0)−→ Hm
dR(U1 ∩ U2)
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is identical to just Hm
dR(π). However, we saw in the proof of Proposition 3.4.23

that Hm
dR(π) is an isomorphism, and so Hm

dR(F0) must be the identity map on
Hm

dR(U1 ∩ U2). Thus, in equation (3.3) we have

∂m([ω]) = −Hm+1
dR (F ) ◦ ∂m([ω]),

which is exactly what we were trying to show.

Let A ∈ GLn(R). One has an associated linear endomorphism from Rn to
Rn. Moreover, A also defines a diffeomorphism

fA : Rn − 0 −→ Rn − 0

in the natural way.

Lemma 3.4.31. For each n ≥ 2 the induced map

Hn−1
dR (fA) : Hn−1

dR (Rn − 0) −→ Hn−1
dR (Rn − 0)

is multiplication by detA
| detA| .

Proof. Let Er,s be the matrix with a 1 in the rth row and sth column and 0’s
elsewhere. Consider the matrix

B = (1n + cEr,s)A

for c ∈ R and r 6= s. The matrix B is thus obtained from A by replacing the
rth row by the sum of the rth row and c times the sth row.

We have fA ≃ fB via the map

F (x, t) = (1n + ctEr,s)Ax.

Thus, Hn−1
dR (fA) = Hn−1

dR (fB). Note that we also have detA = detB. Ob-
serve that by doing a series of such operations we can put A into the form
diag(1, 1, . . . , 1, detA) where diag denotes a diagonal matrix. Thus, it is enough
to prove the theorem for diagonal matrices of this form.

Consider the matrix diag(1, . . . , 1, d). The map given by

F (x, t) = diag

(
1, . . . , 1,

|d|kd
|d|

)
x

gives a homotopy between the map given by

diag

(
1, . . . , 1,

d

|d|

)

and
diag(1, . . . , 1, d)

and so we reduce to considering

diag(1, . . . , 1,±1).

Thus, Hn−1
dR (fA) is either the identity map or is the map Hn−1

dR (F ) given in
Corollary 3.4.30 depending upon detA

| detA| , as claimed.
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Given a point x ∈ Sn, the tangent space to Sn at x is defined to be those
y ∈ Rn+1 so that 〈x, y〉 = 0. We denote the tangent space of Sn at x by TxS

n.
A vector field on Sn is a continuous map v : Sn → Rn+1 so that v(x) ∈ TxSn
for every x ∈ Sn.

Theorem 3.4.32. The sphere Sn has a tangent vector field v with v(x) 6= 0 for
all x ∈ Sn if and only if n is odd.

Proof. Suppose there is such a vector field. We can extend it to Rn+1 − 0 by
setting

w(x) = v

(
x

|x|

)
.

We have that w(x) 6= 0 and 〈w(x), x〉 = 0 since w(x) ∈ Tx(Sn). Define

F (x, t) = (cos πt)x+ (sinπt)w(x).

This is clearly continuous and we have

F (x, 0) = x

F (x, 1) = −x.

Furthermore, we claim F (x, t) lies in Rn+1−0 for all x ∈ Rn+1−0 and 0 ≤ t ≤ 1.
To see this, observe that we have 〈F (x, t), x〉 = (cosπt)〈x, x〉. So if cosπt 6= 0,
then 〈F (x, t), x〉 6= 0 because x 6= 0. If cosπt = 0, then we must have t = 1/2
and then F (x, 1/2) = w(x) 6= 0. Thus, we have a homotopy between the identity
and the antipodal map. In particular, we must have that the antipodal map f
induces the identity map on Hn

dR(Rn+1 − 0) ∼= R. However, Lemma ?? gives
that Hn

dR(f) is multiplication by (−1)n+1. This forces n to be odd.
Conversely, suppose that n is odd. Write n = 2m− 1. Define

v(x1, x2, . . . , x2m−1, x2m) = (−x2, x1, . . . ,−x2m, x2m−1).

This is a vector field that satisfies v(x) 6= 0 for all x ∈ Sn.

This theorem has many interesting consequences. For example, one can
apply this theorem to anything that can be represented as a vector field on the
surface of the Earth. For instance, there is at least one point on the Earth at
this moment where there is no wind at all!

The following theorem is purely a point-set topology result. The only tool
needed that we did not include in Chapter 2 is the notion of partitions of unity.
We could actually strengthen the result by replacing Rn by any metric space
and Rm by any locally convex topological space.

Theorem 3.4.33. (Urysohn-Tietze) If A ⊂ Rn is closed and f : A → Rm is
continuous, then there exists a continuous map g : Rn → Rm with g|A = f .
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Proof. For x ∈ Rn, define

ρ(x,A) = inf
y∈A
|x− y|.

Given any z ∈ Rn − A we can define an open neighborhood Uz ⊂ Rn − A of z
given by

Uz =

{
x ∈ Rn : |x− z| < 1

2
ρ(z,A)

}
.

The collection of these open sets gives an open cover of Rn − A. Thus, we can
use this open cover to define a partition of unity {pz}. Define g by

g(x) =

{
f(x) x ∈ A∑

z∈Rn−A pz(x)f(a(x0)) x ∈ Rn −A

where for z ∈ Rn −A we choose a(z) ∈ A so that

|z − a(z)| < 2ρ(z,A).

This is a smooth function on Rn−A because for any x there is a neighborhood
V of x so that pz vanishes on V for all but finitely many z, so g is a finite sum.
However, we still must check that g is continuous on the boundary of A.

Given x ∈ Uz and y on the boundary of A we have

|y − z| ≤ |y − x|+ |x− z|

< |x− y|+ 1

2
ρ(z,A)

≤ |x− y|+ 1

2
|y − z|.

Thus,
|y − z| < 2|x− y|

for all x ∈ Uz. Since we have

|z − a(z)| < 2ρ(z,A)

≤ 2|z − y|

we have for x ∈ Uz that

|y − a(z)| ≤ |y − z|+ |z − a(z)|
< 3|z − y|
< 6|x− y|.

For x ∈ Rn −A we have

g(x)− g(y) =
∑

z∈Rn−A

pz(x)(f(a(z)) − f(y))
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and

(3.4) |g(x)− g(y)| ≤
∑

z

pz(x)|f(a(z))− f(y)|

where the sum is over those z so that x ∈ Uz.
Now for ǫ > 0, choose δ > 0 so that |f(b) − f(y)| < ǫ for every b ∈ A with

|b − y| < 6δ. If x ∈ Rn − A and |x − y| < δ, then for z with x ∈ Uz we have
|y − a(z)| < 6δ and |f(a(z))− f(y)| < ǫ. Thus, using equation (3.4) we have

|g(x)− g(y)| ≤
∑

z

pz(x)ǫ = ǫ

and so g is continuous on the boundary of A as well.

Corollary 3.4.34. Let A ⊂ Rn, B ⊂ Rm be closed sets and φ : A → B
a homeomorphism. There is a homeomorphism h : Rn+m → Rn+m so that
h(x, 0m) = (0n, φ(x)) for all x ∈ A.

Proof. Theorem 3.4.33 allows us to extend φ to a continuous map g : Rn → Rm.
Define a map

h1 : Rn × Rm → Rn × Rm

by
h1(x, y) = (x, y + g(x)).

One can easily check that this is a homeomorphism as it is clearly continuous
and the inverse map is given by

h−1
1 (x, y) = (x, y − g(x)).

We can also extend φ−1 to a continuous map

f : Rm → Rn

and define a homeomorphism

h2 : Rn × Rm → Rn × Rm

by
h2(x, y) = (x+ f(x), y).

Set h = h−1
2 ◦ h1. Then for x ∈ A we have

h(x, 0m) = h−1
2 (x, g(x))

= h−1
2 (x, φ(x))

= (x − f(φ(x)), φ(x))

= (0, φ(x))

as claimed.
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Corollary 3.4.35. If φ : A → B is a homeomorphism between closed sets in
Rn, then φ extends to a homeomorphism φ′ : R2n → R2n.

Proof. Combine the homeomorphism of Corollary 3.4.34 with the homeomor-
phism that switches the factors.

Theorem 3.4.36. Let A ( Rn, B ( Rn be closed sets and assume A is home-
omorphic to B via φ. Then

Hm
dR(Rn −A) ∼= Hm

dR(Rn −B)

for all m ≥ 0.

Proof. We begin by applying Proposition 3.4.23 inductively to conclude that for
all m > 0 and all r ≥ 0 we have

Hm+r
dR (Rn+r −A) ∼= Hm

dR(Rn −A)

Hr
dR(Rn+r −A) ∼= H0

dR(Rn −A)/R

and similarly for B. Now we apply Corollary 3.4.35 to see that φ′|R2n−A gives
a homeomorphism between R2n −A and R2n −B. Thus, we have

Hm
dR(Rn −A) ∼= Hm+n

dR (R2n −A)

∼= Hm+n
dR (R2n −B)

∼= Hm
dR(Rn −B)

for all m > 0 and

H0
dR(Rn −A)/R ∼= Hn

dR(R2n −A)

∼= Hn
dR(R2n −B)

∼= H0
dR(Rn −B)/R.

Note that this result shows that if A and B are homeomorphic closed sets in
Rn then Rn −A and Rn −B have the same number of connected components.

Example 3.4.37. Let X ⊂ R3 be a subset that is homeomorphic to S1. Such
a subset is called a knot; two examples are pictured below.

Figure 3.1: Trefoil knot
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Figure 3.2: Listing knot

We can use Theorem 3.4.36 to calculate Hm
dR(R3 −X). This theorem shows

it is enough to calculate Hm
dR(R3 − S1).

We can write
R2 − S1 = Int(D2) ⊔ (R2 −D2)

and so
Hm

dR(R2 − S1) = Hm
dR(Int(D2))⊕Hm

dR(R2 −D2).

We know that Int(D2) is star-shaped and R2 −D2 is homeomorphic to R2 − 0.
Thus we have

Hm
dR(Int(D2)) ∼=

{
R m = 0
0 m > 0

and

Hm
dR(R2 −D2) ∼=






R m = 0
R m = 1
0 m ≥ 2.

Thus,

Hm
dR(R2 − S1) ∼=






R2 m = 0
R m = 1
0 m ≥ 2.

We now apply Proposition 3.4.23 to see that

Hm
dR(R3 −X) ∼=

{
R 0 ≤ m ≤ 2
0 m > 2.

Exercise 3.4.38. Do the analogous calculation for X ⊂ Rn homeomorphic to
Sk for 1 ≤ k ≤ n− 2.

The following theorem, at least in the case of a curve in the plane, was so
obvious that for many years no one bothered to write down a precise statement,
let along a proof. In the case of a smooth closed curve in the plane it is an easy
result in vector calculus as one can employ an argument using normal vectors.
However, if one considers the curve given by the von Koch snowflake fractal, it
is easy to see such an argument will not work in general.

Theorem 3.4.39. (Jordan-Brouwer separation theorem) Let n ≥ 2 and X ⊂
Rn be homeomorphic to Sn−1. Then

1. The space Rn−X has two connected components. One of the components
is bounded and the other is unbounded.
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2. The set of boundary points for the connected components is given by X.

Proof. First, observe that since X is homeomorphic to Sn−1 it is necessarily
compact. Since we are in Euclidean space, this gives that X is closed. Applying
Theorem 3.4.36 we see that Rn − X has two connected components because
Rn−Sn−1 has two connected components, namely, Int(Dn) = {x ∈ Rn : |x| < 1}
and W = {x ∈ Rn : |x| > 1}.

Let r = maxx∈X |x|. This is well defined because the map x 7→ |x| is a
continuous function and X is compact. The set rW = {x ∈ Rn : |x| > r} is a
connected set and so much be contained in one of the connected components of
Rn −X . The component that contains rW is then clearly unbounded. We also
see that the other component must be contained in the set {x ∈ Rn : |x| ≤ r}
and so is bounded. This gives the first part of the theorem.

Let x ∈ X and let U be an open set containing x in Rn. We want to show
that U intersects each of the connected components of Rn − X so that it is a
boundary point. Let A = X − (X ∩ U). This is a closed subset of X and so is
homeomorphic to a proper closed subset of Sn−1, call it B. It is easy to see that
Rn−B is connected (it is path-connected in particular), so we must have Rn−A
is connected as well. Let U1 and U2 be the connected components of Rn − X
with U2 the unbounded component. Given any x1 ∈ U1 and x2 ∈ U2, there is
a continuous path γ : [0, 1] → Rn − A so that γ(0) = x1 and γ(1) = x2. It is
then clear that γ−1(X) is nonempty and so the curve given by γ must intersect
X . This gives that γ−1(X) is a nonempty closed subset of [0, 1]. Thus, we have
that γ−1(X) has a largest, y2, and smallest element, y1 (possibly equal). Note
that y1, y2 ∈ (0, 1). We have that γ(y1) and γ(y2) both lie in X ∩ U since the
curve lies in Rn − A. We have that γ([0, y1)) ⊂ U1 and γ((y2, 1]) ⊂ U2 and so
there is a t ∈ [0, y1) so that

γ(t1) ∈ U1 ∩ U
and a t2 ∈ (y2, 1] so that

γ(t2) ∈ U2 ∩ U.
Thus, we have the result.

Exercise 3.4.40. Let A ⊂ Rn be homeomorphic to Dk for k ≤ n. Show that
Rn −A is connected.

Theorem 3.4.41. Let U ⊂ Rn be an open set and f : U → Rn an injective con-
tinuous map. The image f(U) is open in Rn and f maps U homeomorphically
to f(U).

Proof. To show that f : U → f(U) is a homeomorphism, it is enough to show
that f takes open sets in U to open sets in f(U). Thus, it is enough to show
that f(U) is open in Rn since then the same argument will work for any open
set in U .

Let B(x0, δ) = {x ∈ Rn : |x − x0| < δ} be a basis element contained in U .
Let S = ∂B(x0, δ) be the boundary and Int(B(x0, δ)) the interior. Since U can
be covered by such discs, it is enough to show that f(Int(B(x0, δ))) is open.
The case n = 1 follows from calculus so we assume n ≥ 2.
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Note that S is homeomorphic to Sn−1, as is f(S). Let U1 and U2 be the
connected components of Rn − f(S) with U1 bounded and U2 unbounded. The
previous exercise gives that Rn−f(B(x0, δ)) is connected and since it is disjoint
from f(S), it must be contained in U1 or U2. Now f(D) is necessarily bounded
as it is compact in Rn, so we must have Rn − f(B(x0, δ)) is unbounded and
so contained in U2. Thus, f(S) ∪ U1 ⊂ Rn − U2 ⊂ f(B(x0, δ)). Thus, U1 ⊂
f(Int(B(x0, δ))). Since Int(B(x0, δ)) is connected, we have that f(Int(B(x0, δ)))
is connected and so is equal to U1. Thus, it is open as claimed.

Corollary 3.4.42. Let U ⊂ Rn have the subspace topology and suppose that U
is homeomorphic to an open set in Rn. Then U is open in Rn.

Corollary 3.4.43. Let U ⊂ Rn and V ⊂ Rm be nonempty open sets. If U is
homeomorphic to V , then m = n.

Proof. Assume without loss of generality that m < n. Let V ⊂ Rm ( Rn, so V
is a subset of Rn as well. The previous corollary then gives that V is open in
Rn. However, this contradicts V being contained in Rm.

Proposition 3.4.44. Let X ⊂ Rn be homeomorphic to Sn−1 with n ≥ 2. Let
U1 and U2 be the bounded and unbounded connected components of Rn−X. We
have

Hm
dR(U1) ∼=

{
R m = 0
0 m > 0

and

Hm
dR(U2) ∼=

{
R m = 0, n− 1
0 m 6= 0, n− 1.

Proof. The case of m = 0 follows immediately from Theorem 3.4.39. Assume
m > 0. Set U = Rn −Dn. Then we have isomorphisms

Hm
dR(U1)⊕Hm

dR(U2) ∼= Hm
dR(Rn −X)

∼= Hm
dR(Rn − Sn−1)

∼= Hm
dR(Int(Dn))⊕Hm

dR(U)
∼= Hm

dR(U).

The natural inclusion map ι : U →֒ Rn− 0 is a homotopy equivalence where the
inverse is given by

f(x) =

( |x|+ 1

|x|

)
x.

These are homotopic to the identity by the straight line homotopy. Thus, we
have

Hm
dR(ι) : Hm

dR(Rn − 0) −→ Hm
dR(U)

is an isomorphism. So we have

Hm
dR(U) ∼=

{
R m = 0, n− 1
0 m 6= 0, n− 1.
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Thus, if m 6= 0, n− 1 then we have

Hm
dR(U1) = Hm

dR(U2) = 0.

In general we have that dimR Hm
dR(Ui) is 0 or 1. Thus, it is enough to show that

Hn−1
dR (U2) ∼= R.

Assume that 0 ∈ U1. If not, we can translate under straight line homotopy
to make it so. Furthermore, assume that U1 ∪X ⊂ Dn. If this is not the case,
we can contract the space under straight line homotopy to make it so. We then
have a commutative diagrams of inclusions

Rn − 0

U

ι

;;xxxxxxxxx
// U2

OO

Thus, we have

Hn−1
dR (Rn − 0) ∼= R

≃

vvnnnnnnnnnnnn

��
Hn−1

dR (U) Hn−1
dR (U2)oo

Since Hn−1
dR (U) ∼= R and this isomorphism factors through Hn−1

dR (U2), it must
be the case that Hn−1

dR (U2) 6= 0 and so must be isomorphic to R as claimed.

We end this section by calculating the de Rham cohomology of Rn with r
holes.

Theorem 3.4.45. Let K1, . . . ,Kr be disjoint compact sets in Rn with ∂Kj

homeomorphic to Sn−1 for j = 1, . . . , r. Then for U = Rn −⋃rj=1Kj we have

Hm
dR(U) ∼=






R m = 0
Rr m = n− 1
0 m 6= 0, n− 1.

Proof. We proceed by induction on r. The case of r = 1 is given by Proposition
3.4.44. Assume the result is true for

U1 = Rn −
r−1⋃

j=1

Kj .

Set U2 = Rn−Kr. Since theKj are disjoint we have U1∪U2 = Rn. Furthermore,
U1 ∩ U2 = U . We now apply Mayer-Vietoris.
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Let m = 0. Then we have

0 −→ R −→ R⊕ R −→ H0
dR(U) −→ 0

by the induction hypothesis and our previous calculations. Thus, H0
dR(U) ∼= R

as claimed.
Suppose now that m > 0. If m = n− 1, we have

0 −→ Rr−1 ⊕ R −→ Hn−1
dR (U) −→ 0

by induction and our previous calculations. If m 6= 0, n− 1 then we have

0 −→ Hm
dR(U) −→ 0.

Thus, we have the result.

3.5 Smooth R-Manifolds

Though we have done many interesting things in this chapter in regards to open
subsets of Euclidean space, it is often the case that objects we are interested in
studying are not open subsets of Euclidean space. For example, curves are not
open subsets but are extremely interesting. In fact, even the sphere which we
have looked at often is not an open subset so requires further theory. In this
section we set the basic definitions and properties of smooth manifolds. These
are spaces that locally look like Euclidean space so will allow us to apply the
differential theory we have developed to study them.

Definition 3.5.1. Let M be a Hausdorff space with a countable basis. We call
M a topological manifold if there exists n ≥ 0 so that for each x ∈ M there is
an open neighborhood U of x and a homeomorphism ϕ : U → Rn. The number
n is referred to as the dimension of M and we will refer to M as a n-manifold
if we need to specify the dimension.

Recall that for any x ∈ Rn and ǫ > 0, the open ball B(x, ǫ) ⊂ Rn is diffeo-
morphic to Rn. Thus, it is equivalent to the above definition to have a home-
omorphism ϕ : U → B(x, ǫ). In fact, it is enough to have a homeomorphism
ϕ : U →W for W open in Rn.

Definition 3.5.2. Let M be a topological manifold of dimension n.

1. A chart (U,ϕ) on M is a homeomorphism ϕ : U →W where U ∈ TM and
W ∈ TRn .

2. A local parameterization around the point x ∈ M is a homeomorphism
φ : W → U where W ∈ TRn and U ∈ TM is a neighborhood of x.

3. A system A = {ϕi : Ui →Wi : i ∈ I} of charts is called an atlas provided
{Ui}i∈I covers M .
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4. We say the atlas A is smooth when all of the maps

ϕji := ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

are smooth. These maps are called transition functions.

We illustrate the transition functions as follows:

M
Ui Uj

ϕi ϕj

ϕji

Definition 3.5.3. A smooth structure on a topological manifoldM is a maximal
atlas A = {(Ui, ϕi) : i ∈ I}, i.e., it is an atlas satisfying that if (U,ϕ) is a chart
such that ϕ ◦ ϕ−1

i and ϕi ◦ ϕ−1 are smooth for all i ∈ I, then (U,ϕ) ∈ A.

One should note that given any atlas A, there is a unique smooth structure
A containing A. Namely, set

A = {(U,ϕ) : ϕ ◦ ϕ−1
i and ϕi ◦ ϕ−1 are smooth for all ϕi ∈ A}.

Thus, we do not need to give the entire smooth structure in general as we can
specify an atlas and then know that there is a unique smooth structure that
contains it. In general when we refer to a chart we mean a chart in the smooth
structure.

Definition 3.5.4. A smooth manifold is a pair (M,A) consisting of a topological
manifold M and a smooth structure A on M .

As we will only be interested in smooth manifolds, from this point on when
we write “manifold” or n-manifold it should be understood that we are working
with smooth manifolds. We will drop the atlas A from the notation for M much
as we do not include TM in the notation when working with a topological space
M . The smooth structure should be clear from the context.

Exercise 3.5.5. Show that if M is a compact manifold it is not possible to give
a smooth atlas on M consisting of only one chart.

Example 3.5.6. The sphere Sn is a n-manifold. To see this, we define an atlas
with 2(n+ 1) charts (U±j , ϕ±j) where

U+j = {(x1, . . . , xn+1) ∈ Sn : xj > 0}
U−j = {(x1, . . . , xn+1) ∈ Sn : xj < 0}
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and

ϕ±j : U±j → B(0, 1) ⊂ Rn

(x1, . . . , xn+1) 7→ (x1, . . . , x̂j , . . . , xn+1).

The inverse maps are given by

ϕ−1
±j (y1, . . . , yn) = (y1, . . . , yj−1,±

√
1− (y2

1 + · · ·+ y2
n), yj, . . . , yn).

This gives that we have the necessary charts. It remains to see that the transition
functions are smooth. This is straightforward and left as an exercise.

Example 3.5.7. Recall that in § 2.9 we defined RPn as a quotient space. We
can also view this as a quotient of Sn by setting RPn to be the set of equivalence
classes [x] = {x,−x} for x ∈ Sn. One should check that this is equivalent to
the definition given in § 2.9. We have the quotient map

π : Sn → RPn

given by π(x) = [x]. Thus, U is open in RPn if and only if π−1(U) is open in
Sn. We can use this along with the previous example to put a smooth structure
on RPn. Note that we have π(U±j) are all open in RPn and π(U+j) = π(U−j)
for all j. Thus, we can set

Uj = π(U±j).

Observe that π−1(Uj) = U+j ∪ U−j and U+j ∩ U−j = ∅. We have that

π : U+j → Uj

is a homeomorphism. We can define

ϕj := ϕ+j ◦ π−1 : Ui → B(0, 1) ⊂ Rn.

The Uj cover RPn and the ϕj are smooth maps giving charts. Thus, RPn is a
n-manifold.

Example 3.5.8. Consider the figure in R2 given by M = {(sin 2t, sin t) : 0 ≤
t ≤ 2π}. This is not a smooth manifold as there is no chart around 0.

Exercise 3.5.9. Given a topological space M , it is possible to put different
smooth structures on M . For example, if M = R we can use a single chart
given by U = R and ϕ = id to put a smooth structure on R. One also has that
U = R and ϕ : U → R defined by ϕ(x) = x3 is a chart giving a smooth structure
on R. Show that these are not equivalent smooth structures.

Exercise 3.5.10. Let M be a m-manifold and N a n-manifold. Show that
M ×N is a (m+ n)-manifold.

Definition 3.5.11. LetN be a subset of a n-manifoldM . We say N is a smooth
submanifold of dimension k if for every x ∈ N there is a chart ϕ : U → W on
M with W ∈ TRn so that x ∈ U and ϕ(U ∩N) = W ∩Rk where Rk ⊂ Rn is the
standard subspace topology.
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As with manifolds, we will only be interested in smooth submanifolds so
when we use the term “submanifold”, it is understood that it is smooth.

Example 3.5.12. For k ≤ n we have Rk is a submanifold of Rn of dimension
k.

Example 3.5.13. The sphere Sn is a submanifold of Rn+1 of dimension n− 1.

Let M and N be smooth manifolds of dimensions m and n respectively. Let
f : M → N be a continuous map. Let x ∈M . We say f is smooth at x if there
exist charts ϕ1 : U1 → W1 and ϕ2 : U2 → W2 with x ∈ U1, f(x) ∈ U2 so that
ϕ2 ◦ f ◦ ϕ−1

1 : ϕ1(f
−1(U2)) → W2 is smooth in a neighborhood of ϕ1(x). In

terms of a diagram, we have

U1

ϕ1

��

f // U2

h2

��
W1

ϕ2◦f◦ϕ
−1
1 // W2.

Basically what we are saying is that when we map down to Euclidean space the
map there should be smooth. If f is smooth at every x ∈ M we say that f is
smooth.

Note that since transition functions are by definition smooth, the definition
of smooth given above does not depend on the charts chosen in the smooth
structures for M and N . Thus, once a smooth structure A has been chosen for
M , we know which functions on M are smooth functions.

Definition 3.5.14. Let M and N be manifolds and f : M → N a homeo-
morphism. We say f is a diffeomorphism if f is smooth and has a smooth
inverse.

One should note here that by definition the charts in our smooth structure
are diffeomorphisms. This is important to note in terms of rectifying our def-
inition of smooth manifold with those given in books that begin by assuming
that M is a subset of Euclidean space. In that definition, it is assumed from
the start that the charts are diffeomorphisms. Clearly such a definition does
not work in our case as there is a priori no notion of smoothness without first
specifying a smooth structure.

Exercise 3.5.15. Let T be the torus defined in § 2.9.

1. Show that T is diffeomorphic to S1 × S1 and so conclude that T is a
2-manifold.

2. Show directly from the definition that T is a 2-manifold.
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Consider a point x ∈ Rn and let v = (v1, . . . , vn) be a vector. We can view
v as an operator on functions f that are differentiable in a neighborhood of x,
in particular, we set v(f) to be the directional derivative of f at x in the the
direction of v, i.e.,

v(f) = v1
∂f

∂x1

∣∣∣∣
x

+ · · ·+ vn
∂f

∂xn

∣∣∣∣
x

.

One can easily check that this operation satisfies

v(f + cg) = v(f) + cv(g)

and
v(fg) = f(x)v(g) + g(x)v(f)

for any c ∈ R and any functions f and g that are differentiable at x. Such
operators are familiar in algebra and are known as linear derivations. In general
we have the following definition.

Definition 3.5.16. Let S be a ring and M a S-module. A map d : S →M is
a derivation if it satisfies

d(fg) = fd(g) + gd(f)

for all f, g ∈ S. If S happens to be a R-algebra, we say a derivation d is a
R-linear derivation, or just linear derivation if it is a map of R-modules.

Exercise 3.5.17. Fit the above specific example of a linear derivation into the
general definition just give.

Observe that the operation of taking a derivative at a point is purely a local
operation, so it can be characterized by “zooming in” at the point in question.
Before we state exactly what this means in our situation, we recall the following
definition from algebra.

Definition 3.5.18. Let I be a nonempty set with a partial order ≤. For each
i ∈ I, let Gi be an additive abelian group. Suppose for every pair i, j ∈ I with
i ≤ j there is a map ρij : Ai → Aj so that

1. ρjk ◦ ρij = ρik whenever i ≤ j ≤ k and

2. ρii = 1 for all i ∈ I.

Let H be the disjoint union of all the Gi. Define an equivalence relation ∼ on H
by setting g ∼ h if and only if there exists a k with i, j ≤ k and ρik(g) = ρjk(h)
for g ∈ Gi, h ∈ Gj . The set of equivalence classes is called the direct limit of
the Gi and is denoted lim−→i

Gi.

Now consider a manifold M of dimension n and let x ∈ M . For an open
set U ⊂ M that contains x, let C∞(U) denote the set of smooth real-valued
functions defined on U . These are groups under addition and we can put a
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natural order on the open sets by inclusion, which gives maps between the
spaces by restriction, i.e., if U ⊂ V , we have ρVU : C∞(V ) → C∞(U). This
allows us to consider the direct limit of the spaces C∞(U). Set

C∞
x = lim−→

U

C∞(U).

We will return to this notion in Chapter 5 when we introduce stalks. As this
definition can be a bit unwieldy to work with, we boil it down into more familiar
terms. Let f and g be C∞ functions defined on open sets U and V of x. We
say that f and g have the same germ at x if there is an open neighborhood
W ⊂ U ∩ V containing x on which f and g agree. This gives an equivalence
relation on the space of C∞ functions on neighborhoods of x. In fact, this set
of equivalence classes is precisely the space C∞

x . We will denote the germ of f
at x by fx. Note that any germ fx at x has a well-defined value at the point x,
namely, choose any g ∈ C∞(U) that represents the germ and set fx(x) = g(x).

Definition 3.5.19. A tangent vector v at the point x ∈M is a linear derivation
of the algebra C∞

x . We denote the set of tangent vectors to M at x by Tx(M)
and call it the tangent space.

Given v, w ∈ Tx(M), a germ fx, and a constant c ∈ R, we can define

(v + w)(fx) = v(fx) + w(fx)

and
(cv)(fx) = c(v(fx)).

This makes the tangent space Tx(M) into a R-vector space.
Let mx denote the subset of C∞

x of germs that vanish at x. It is easy to
check that mx is an ideal. We write mk

x to denote the kth power of the ideal.
We then have the following very useful result.

Proposition 3.5.20. The tangent space Tx(M) is naturally isomorphic to
(mx/m

2
x)

∨.

Proof. First, let v ∈ Tx(M). Observe that v is a function on mx. Furthermore,
using the fact that v is a linear derivation gives that v vanishes on mx and so
we have a natural map from Tx(M) into (mx/m

2
x)

∨.
Now let φ ∈ (mx/m

2
x)

∨. Let fx(x) denote the germ with the constant value
f(x). We define a tangent vector associated to φ by setting

vφ(fx) = φ((fx − fx(x))m2
x)

for fxC
∞
x . Of course we must check that this is actually a tangent vector. The

fact that the map is linear is straight forward and can be checked as an exercise.
We show that it is a derivation. Let fx and gx be germs at x. We have

vφ(fxgx) = φ((fxgx − fx(x)gx(x))m2
x)

= φ(((fx − fx(x))(gx − gx(x)) + fx(x)(gx − gx(x)) + (fx − fx(x))gx(x))m2
x)

= φ((fx − fx(x))(gx − gx(x))m2
x) + fx(x)φ((gx − gx(x))m2

x) + gx(x)φ((fx − fx(x))m2
x)

= fx(x)vφ(gx) + gx(x)vφ(fx).
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Since we now have a mapping from Tx(M) to (mx/m
2
x)

∨ and vice versa, it only
remains to check that they are inverses. We leave this as an exercise.

The reason that this proposition is particularly useful is that it allows us a
convenient way of showing that the dimension of the tangent space as a R-vector
space is the same as the dimension of the manifold. Before proving that, we
need the following result from multivariable calculus.

Lemma 3.5.21. Let k ≥ 2, U a convex open set in Rn around x, and g ∈
Ck(U). Then for each y ∈ U , we have

g(y) = g(x)+
n∑

i=1

∂g

∂xi

∣∣∣∣
x

(xi(y)−xi(x))+
∑

i,j

(xi(y)−xi(x))(xj(y)−xj(x))
∫ 1

0

(1−t) ∂2g

∂xi∂xj

∣∣∣∣
x+t(y−p)

dt.

In particular, if g ∈ C∞(U), then the second summation determines an element
of m2

x since the integral as a function of y is C∞(U).

One can see [13] for a proof of this lemma. We apply it to prove the following.

Theorem 3.5.22. Let M be a smooth manifold of dimension n and let x ∈M .
Then

dimR(mx/m
2
x)

∨ = n.

Proof. Let x ∈ M and let (U, φ) be a chart around x. Let y1, . . . , yn be the
coordinate functions, i.e., yi = xi ◦φ. Let fx be a germ at x and let f ∈ C∞(U)
be a representative of fx. We apply the result in Lemma 3.5.21 to the function
f ◦ φ−1 and then compose with φ to obtain:

f =

n∑

i=1

∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(x)

(yi − yi(x)) +
∑

i,j

(yi − yi(x))(yj − yj(x))h

in a neighborhood of x with h a smooth function. Thus we have

fx =

n∑

i=1

∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(x)

(yi − yi(x)) (mod m2
x).

Thus, we see that the cosets (yi − yi(x))m2
x spans mx/m

2
x. Thus we see that

dimR(mx/m
2
x)

∨ ≤ n. We now must show that these are linearly independent.
Suppose that we have

n∑

i=1

ai(yi − yi(x)) ∈ m2
x.

We must show that the ai are all 0. Observe that we have

n∑

i=1

ai(yi − yi(x)) ◦ φ−1 =

n∑

i=1

(xi − xi(φ(x))).
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Thus, we have
n∑

i=1

ai(xi − xi(φ(x))) ∈ m2
φ(x).

However, this implies that

∂

∂xj

∣∣∣∣
φ(x)

(
n∑

i=1

ai(xi − xi(φ(x))

)
= 0.

However, we know these are linearly independent because we are just working
in Euclidean space now, so it must be that the ai are all 0 as claimed.

Corollary 3.5.23. Let M be a smooth manifold of dimension n and let x ∈M .
Then

dimR Tx(M) = n.

Let f be a differentiable function on a neighborhood of x. We can view
tangent vectors as acting on such functions by setting

v(f) = v(fx).

Thus, we see that v(f) = v(g) if there is an open neighborhood of x on which f
and g agree. We now define some convenient tangent vectors.

Definition 3.5.24. Let (U, φ) be a chart around a point x ∈M with coordinate
functions y1, . . . , yn. For each i, define a tangent vector (∂/∂yi)|x ∈ Tx(M) by
setting (

∂

∂yi

∣∣∣∣
x

)
(f) =

∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(x)

for each function f that is smooth in some neighborhood of x. We often use the

notation ∂f
∂yi

∣∣∣
x

to denote
(

∂
∂yi

∣∣∣
x

)
(f).

Exercise 3.5.25. 1. Show that (∂/∂yi)|x are tangent vectors. Furthermore,
show they are a basis of Tx(M) and are the dual basis to {yi − yi(x)} of
mx/m

2
x.

2. If v ∈ Tx(M), show that

v =
n∑

i=1

v(yi)
∂

∂yi

∣∣∣∣
x

.

3. Applying the definition about to the coordinate functions x1, . . . , xn on
Rn show that one obtains the normal partial derivative operators ∂

∂xi
.

Exercise 3.5.26. Recall from Exercise 3.5.10 that if M is a m-manifold and
N a n-manifold, then M ×N is a (m+ n)-manifold. Show that

T(x,y)(M ×N) ∼= Tx(M)⊕ Ty(N).
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Given a map f : M → N between manifolds, we now define an induced linear
map between the tangent spaces. Let f : M → N be a smooth map between
manifolds and let x ∈M . We wish to define an element Dxf(v) ∈ Tf(x)(N) for
each v ∈ Tx(M). Since Dxf(v) will be a tangent vector, to define it we need to
specify its action on functions that are smooth in a neighborhood of f(x). Let
g be such a function. Define Dxf(v)(g) by setting

Dxf(v)(g) = v(g ◦ f).

Exercise 3.5.27. Check that this map lands in Tf(x)(N).

Exercise 3.5.28. Let (U, φ) and (V, ψ) be charts around x and f(x) respectively
with coordinates given by yi = xi ◦ φ and zi = xi ◦ ψ. Show that

Dxf

(
∂

∂yj

∣∣∣∣
x

)
=

n∑

i=1

∂(zi ◦ f)

∂yj

∣∣∣∣
x

∂

∂zi

∣∣∣∣
f(x)

.

Exercise 3.5.29. Let (U, φ) be a chart around x and y1, . . . , ym coordinates.
Show that {Dxyi|x} is a basis of Tx(M)∨ dual to the basis {∂/∂yi|x} of Tx(M).
Thus, if f : M → R is a smooth function, apply the above result to show that

df =

m∑

i=1

∂f

∂yi
dyi,

as in the case of open sets in Euclidean space.

Exercise 3.5.30. Let M1, M2, and M3 be manifolds with f : M1 → M2 and
g : M2 → M3 smooth maps. Prove the chain rule for the corresponding maps
on tangent spaces, namely,

Dx(g ◦ f) = Df(x)g ◦Dxf.

There is a notion called the tangent bundle that packages all of the tangent
spaces together at once while still separating them so that they do not intersect.
While we will not need the tangent bundle for our purposes, it is an important
concept so we include a couple of brief results. One should note that the tangent
bundle is a special case of a vector bundle.

Definition 3.5.31. Let M be a m-manifold. Define the tangent bundle TM of
M by

T (M) =
⋃

x∈M

Tx(M).

It turns out that the tangent bundle is intrinsic to the manifold itself. This
will be shown in Exercise 3.5.34 below.

The tangent bundle of the circle can be pictured as follows where the first
picture is the circle in blue with tangent spaces illustrated in red and the second
one is the tangent bundle:
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Our first step is to show that T (M) is a 2m-manifold. Observe that there
is a natural projection π : T (M) → M given by π(v) = x if v ∈ Tx(M). Let

(U,ϕ) be a chart around x ∈ M with ϕ : U
≃−→ Rm and coordinate functions

x1, . . . , xn. Set V = π−1(U) ⊂ T (M) and define ψ : V → R2m by ψ(v) =
(x1(π(v)), . . . , xm(π(v)), dx1(v), . . . , dxm(v)). Now, let {(Ui, ϕi)}i∈I be an atlas
on M and set Vi = π−1(Ui). Then given U ⊂ T (M) we say that U is open
in T (M) if and only if ψi(U ∩ Vi) is open in R2m for all i ∈ I. This defines a
topology on T (M) and (Vi, ψi)i∈I defines a smooth structure on T (M).

Exercise 3.5.32. Check that the definition given above for open sets in T (M)
satisfies the required properties to give a topology. Check that the transition
maps are smooth so that (Vi, ψi)i∈I gives a smooth structure on T (M).

Note that one can equivalently write

T (M) = {(x, v) : x ∈M, v ∈ Tx(M)}.

Given a smooth map f : M → N one has a natural global derivative map
Df : T (M)→ T (N) defined by

Df(x, v) = (f(x), Dxf(v)).

Exercise 3.5.33. Show that Df is a smooth map.

Exercise 3.5.34. Show that if f : M → N is a diffeomorphism, then T (M) is
diffeomorphic to T (N).

In many cases two manifolds may locally look the same, even if they do not
globally. As many of the concepts, such as smoothness, are defined locally, it is
important to have a notion of when two manifolds look alike locally.

Definition 3.5.35. Let f : M → N be a smooth map between n-manifolds.
We say f is a local diffeomorphism at x ∈ M if there exists an open neighbor-
hood U of x and an open neighborhood V of f(x) so that f |U : U → V is a
diffeomorphism. If f is a local diffeomorphism at each point x ∈M we say f is
a local diffeomorphism.
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It is important to note that being a local diffeomorphism is a local property,
not a global one. In other words, it is entirely possible for f to be a local
diffeomorphism but not a diffeomorphism. For example, consider M = R and
N = S1 with f defined by f(t) = (cos t, sin t). Then f is a local diffeomorphism
but not a global one.

Recall the inverse function theorem from classical analysis.

Theorem 3.5.36. Let U, V ⊂ Rn be open sets. Let f : U → V be a smooth
map with Dxf an isomorphism. Then f is a local diffeomorphism.

We will not prove this theorem here as it is a well-known result in analysis.
One can see [11] for a proof if it is not a familiar result. We can generalize this
theorem to the setting of smooth n-manifolds.

Exercise 3.5.37. Show that if f is a local diffeomorphism at x then Dxf is an
isomorphism.

The more remarkable property is that if Dxf is an isomorphism then f is
a local diffeomorphism at x. This is nice because checking an isomorphism of
vector spaces should be easier than that a function is a local diffeomorphism.

Theorem 3.5.38. (Inverse Function Theorem) Let M and N be n-manifolds.
If f : M → N is a smooth map so that Dxf : Tx(M) → Tf(x)(N) is an
isomorphism, then f is a local diffeomorphism at x.

Proof. We will use charts along with Theorem 3.5.36 to prove the result. Let
(U,ϕ) and (V, ψ) be charts around x and f(x) respectively. Observe that since
Dxf is an isomorphism by assumption and Dxϕ and Df(x)ψ are isomorphisms
by construction, if we set F = ψ ◦ f ◦ ϕ−1 then the fact that the following
diagram commutes gives that Dϕ(x)F is an isomorphism.

Tx(M)
Dxf //

Dxϕ

��

Tf(x)(N)

Df(x)ψ

��
Rn

Dϕ(x)F // Rn.

We now apply Theorem 3.5.36 to see that there exist open neighborhoods
W1 and W2 of ϕ(x) and ψ(f(x)) respectively so that F is a diffeomorphism from
W1 to W2. We can shrink U , V , W1 and W2 if necessary so that ϕ : U → W1

and ψ : V → W2 are diffeomorphisms. Thus, we obtain the commutative dia-
gram:
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U
f //

ϕ

��

V

ψ

��
W1

F // W2.

Thus, we have that f |U is a diffeomorphism from U to V as desired.

The classical inverse function theorem tells us that if Dxf is an isomorphism
then locally f looks like the identity map. In other words, W1 is an open neigh-
borhood of x ∈ Rn andW2 an open neighborhood of f(x) in Rn, then there exist
charts φ1 : W1 →W and φ2 : W2 →W so that the following diagram commutes:

W1

φ1

��

f // W2

φ2

��
W

id // W.

To see what this means in our setting, we compose the charts given in the
proof of Theorem 3.5.38 with the charts φ1 and φ2 to obtain

U
f //

φ1◦ϕ

��

V

φ2◦ψ

��
W

id // W.

In terms of a picture, we have:

U

f

xU1 V1

V

f(x)

W

φ1 ◦ ϕ φ2 ◦ ϕ

0

Thus, in a neighborhood of x we have that f looks like the identity map.
Note that what is really going on is that when we want to talk about things
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locally, it is enough to work in a chart. This is the entire point of the definition
of a smooth manifold. So the Inverse Function Theorem is saying that we can
choose charts so that in these charts the function looks like the identity. This
makes working locally, i.e., with these charts, particularly easy.

The Inverse Function Theorem only applies if dimM = dimN . The natural
question to ask is what can we say if dimM < dimN or dimM > dimN? If
f : M → N is a smooth map from a m-manifold to a n-manifold, we have that
Dxf : Tx(M) → Tf(x)(N) is a linear map from a vector space of dimension m
to a vector space of dimension n. If m < n, the best we can hope for is that
Dxf is an injection. Similarly, if m > n, the best we can hope is that Dxf is a
surjection. We begin with the case that m < n.

Definition 3.5.39. Let f : M → N be a smooth map. If Dxf is an injection
we say that f is an immersion at x. If f is an immersion at every point in M
we say f is an immersion.

The most basic example of an immersion is the canonical immersion Rm →
Rn for n > m given by (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0). As the Inverse
Function Theorem shows us that if Dxf is an isomorphism then f locally looks
like the identity map, the Local Immersion Theorem tells us that if f is an
immersion at x then f locally looks like the canonical immersion.

Theorem 3.5.40. (Local Immersion Theorem) Let f : M → N be an immer-
sion at x. Then there are charts (U,ϕ) and (V, ψ) around x and f(x) respectively
so that the following diagram commutes:

U
f //

ϕ

��

V

ψ

��
W1

canonical immersion // W2.

Proof. Let (U1, ϕ) and (V1, ψ1) be charts around x and f(x) so that the follow-
ing diagram commutes:

U1
f //

ϕ

��

V1

ψ1

��
Rm

g // Rn.

We have that Dϕ(x)g : Rm → Rn is injective. Our goal is to “expand” g
so that we can apply the Inverse Function Theorem. Note that we can choose
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bases of Rm and Rn so that Dϕ(x)g is given by the n×m matrix
(
Im

0

)
. Define

G : Rm × Rn−m → Rn

(a, b) 7→ g(a) + (0, b).

We have that G is clearly a smooth map and Dϕ(x)G = In so the Inverse
Function Theorem gives that G is a local diffeomorphism. Observe that g =
G ◦ (canonical immersion). Thus, there exists W1 ⊂ Rm, W2 ⊂ Rm,
and W3 ⊂ Rn so that the following diagram commutes:

U
f //

ϕ ∼=

��

V

ψ1∼=

��
W1

g //

G

∼=

!!C
CC

CC
CC

C W3

W2

canonical immersion

=={{{{{{{{

where U and V are open subsets of U1 and V1 chosen to ensure that the maps ϕ
and ψ1 are diffeomorphisms. Thus, if we set ψ = G−1 ◦ ψ1 we have that (V, ψ)
is a chart around f(x) so that the following diagram commutes:

U
f //

ϕ

��

V

ψ

��
W1

canonical immersion // W2.

It is important to note that this is a local result. As the notion of immersion
is an “injectivity” condition, it is natural to inquire if the image of an immersion
is a submanifold. Unfortunately this is not true in general.

Exercise 3.5.41. Show that the map from S1 to R2 that takes the circle to the
figure eight is an immersion but clearly the figure eight is not a submanifold of
R2.

The previous exercise shows that we should require our maps to be injective
if we hope to have the image being a submanifold. Even if the map is an injective
immersion this is not enough.

Exercise 3.5.42. Show that the image of map f from R to R2 defined by
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R f

is not a submanifold of R2.

The previous exercise shows we also need a notion of things that are far
apart staying far apart. Fortunately, if we add such a condition and injectivity
to our immersion this will be enough!

Definition 3.5.43. A map f : M → N is called proper if the preimage of a
compact set is compact. A map that is a proper injective immersion is said to
be an embedding.

Theorem 3.5.44. Let f : M → N be an embedding. Then f maps M diffeo-
morphically onto a submanifold of N .

Proof. Our first goal is to show that f(M) is a submanifold of N . Recall that
this means for every f(x) ∈ f(M), there is a chart (V, ψ) in N around f(x) with

ψ : V
≃−→W2 ⊂ Rn so that ψ(f(M)∩V ) = W2∩Rm where Rm sits inside of Rn

via the canonical immersion. Let (U,ϕ) be a chart around x in M . We claim it
is enough to show that f(U) is open in f(M). If f(U) is open in f(M), then we
have that since f(M) has the subspace topology in N there is a V ′ open in N so

that f(U) = f(M) ∩ V ′. If (V, ψ) is any chart around f(x) with ψ : V
≃−→ W2,

then we can take for our chart (V ∩V ′, ψ|V ∩V ′) with ψ|V ∩V ′ : V ∩V ′ ≃−→W ′
2 and

see immediately that ψ|V ∩V ′(f(M)∩ V ∩ V ′) = W ′
2 ∩Rm by applying Theorem

3.5.40 and possibly shrinking our open sets. Thus, in order to see f(M) is a
submanifold of N it only remains to show that f(U) is open for any chart (U,ϕ)
around x.

Suppose that there exists a chart (U,ϕ) so that f(U) is not open in f(M).
Then there exists a sequence {yn}n∈N with yn ∈ f(M) − f(U) so that {yn}
converges to y ∈ f(U). Let xn ∈M so that f(xn) = yn and x ∈M with f(x) =
y. The fact that f is injective gives that these preimage points are unique. We
have that {y}∪{yn}n∈N is compact along with the fact that f is proper gives that
{x} ∪ {xn}n∈N is compact as well. Thus, there is a subsequence {xnk

}k∈N that
must converge, say to z ∈ M . However, this gives that {f(xnk

)}k∈N converges
to f(z) and {f(xn)}n∈N converges to f(x). Again using that f is injective we
have that x = z. Since U is open, for large enough n we must have xn ∈ U .
However, this contradicts the fact that f(xn) = yn /∈ f(U). Thus, it must be
that f(U) is open. Thus, we have that f(M) is a submanifold.

It only remains to show that f : M → f(M) is a diffeomorphism. By
assumption we have that f is smooth and bijective. This gives an inverse map
f−1 : f(M) → M . However, since we know that f is a local diffeomorphism,
this implies f−1 is a local diffeomorphism and so is smooth. Thus, we have
a smooth bijective map from M to f(M) with a smooth inverse, thus it is a
diffeomorphism.
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The next case to handle is when f : M → N is a smooth map and dimM >
dimN . In this caseDxf is a linear map from Tx(M) to Tf(x)(N) with dimR Tx(M) >
dimR Tf(x)(N) so the best we can hope for in this case is for Dxf to be surjective.

Definition 3.5.45. Let f : M → N be a smooth map so that Dxf is surjective.
We say f is a submersion at x. If f is a submersion at each point x ∈ M , we
simply say f is a submersion.

The canonical submersion is given by the map

Rm → Rn

(x1, . . . , xm) 7→ (x1, . . . , xn).

As in the case of immersions, it turns out that locally this is the only submersion.

Theorem 3.5.46. (Local Submersion Theorem) Let f : M → N be a submer-
sion at x. Then there are charts (U,ϕ) and (V, ψ) around x and f(x) respectively
so that the following diagram commutes:

U
f //

ϕ

��

V

ψ

��
W1

canonical submersion // W2.

Proof. The proof of this theorem is very similar to the proof of the Local Im-
mersion Theorem. We begin by choosing charts (U1, ϕ1) and (V, ψ) around

x and f(x) respectively with ϕ1 : U1
≃−→ Rm and ψ : V

≃−→ Rn. Let
g = ψ ◦ f ◦ ϕ−1

1 . Observe that Dϕ1(x)g is surjective, so by change of bases
we may assume that Dϕ1(x)g is given by the n × m matrix (In|0). Define
G : Rn → Rn by G(a) = (g(a), an+1, . . . , am) where a = (a1, . . . , am). Then we
have that Dϕ1(x)G = Im and so G is a local diffeomorphism at ϕ1(x). Observe
that g = G ◦ (canonical submersion). Thus, there exist open sets W1, W2, W3

so that the following diagram commutes (after possibly shrinking U and V ):

U
f //

ϕ1 ∼=

��

V

ψ∼=

��
W1

g //

G

∼=

!!C
CC

CC
CC

C W3

W2

canonical submersion

=={{{{{{{{

Thus, if we set ϕ = G ◦ ϕ1 we have the result.
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We saw above that by requiring an immersion to be injective and proper we
could conclude that the image is a submanifold. In the case of a submersion,
we are interested in the preimage of points. In particular, given f : M → N ,
we would like to be able to determine when f−1(y) is a submanifold of M for
y ∈ N . Such results are incredibly important when studying algebraic curves
for instance. We will see such an example after the result.

Definition 3.5.47. Let f : M → N be a smooth map. We say y ∈ N is a
regular value of f if Dxf : Tx(M)→ Ty(N) is surjective for every x ∈ f−1(y).

Theorem 3.5.48. Let f : M → N be smooth and y ∈ N a regular value of f .
Then f−1(y) is a submanifold of M with dimension m− n.

Proof. Let y ∈ N be a regular value and x ∈ f−1(y). (Note the result is trivially
true if y /∈ f(M).) We need to show that there is a chart (U,ϕ) around x in M

with ϕ : U
≃−→W1 ⊂ Rm so that ϕ(U ∩ f−1(y)) = W1 ∩ Rm−n.

Since y is a regular value of f , we see that f is a submersion at x and so
Theorem 3.5.46 gives charts (U,ϕ) and (V, ψ) around x and y respectively as in
Theorem 3.5.46. Observe that U ∩ f−1(y) is an open set in f−1(y) containing
x. We must show that ϕ(U ∩ f−1(y)) = W1 ∩ Rm−n. We may assume that
ψ(y) = 0. Observe that we have

f−1(y)∩U = {ϕ−1(0, . . . , 0, xn+1, . . . , xm) : (0, . . . , 0, xn+1, . . . , xm) ∈ W1∩Rm−n}.

Thus, ϕ(f−1(y) ∩ U) = W1 ∩ Rm−n and we have the result.

Corollary 3.5.49. Let f : M → N be smooth and set Z = f−1(y) for y ∈ N
a regular value. Then for any x ∈ Z the kernel of Dxf : Tx(M) → Ty(N) is
Tx(Z).

Proof. Note that since f(Z) = y, we have Dxf |Z = 0. The face that y is a
regular value gives Dxf : Tx(M)→ Ty(N) is onto and so

dimR ker(Dxf) = dimR Tx(M)− dimR Ty(N)

= dimM − dimN

= dimZ.

Thus, Tx(Z) is a subspace of the kernel that has the same dimension as the
kernel and so they must be equal.

Example 3.5.50. Consider the map f : Rn+1 → R given by f(x1, . . . , xn+1) =
x2

1 + · · · + x2
n+1. It is clear that this is a smooth map. Observe that for a =

(a1, . . . , an+1) we have Daf = (2a1, . . . , 2an+1). Thus, for a 6= 0 we have that
Daf is surjective and so f is a submersion away from 0. In particular, this
shows that Sn = f−1(1) is a n-submanifold of Rn+1. This shows how useful
this theorem can be as it eliminates having to define charts in many cases.
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Example 3.5.51. Let E be the elliptic curve defined by y2 = x3−x along with
the usual point at infinity. Let f : R2 → R be defined by f(x, y) = y2 − x3 + x.
Observe that for a = (a1, a2) we have Daf = (−3a2

1 + 1, 2a2). The only points
where Daf will not be surjective are when 3a2

1 = 1 and 2a2 = 0. Thus, we must
have a2 = 0 and a1 = ±1/

√
3. Observe that E(R) = f−1(0). We easily see that

the points (±1/
√

3, 0) do not lie in E(R) and so E(R) is a 1-submanifold of R2.
A graph of E(R) is given as follows:

Definition 3.5.52. Let M be a manifold that has a group structure as well. If
the multiplication and inversion maps are smooth we call M a Lie group.

The theory of Lie groups is a subject unto itself so we only give an example.

Example 3.5.53. Let Mn(R) denote the set of n×n matrices with entries in R.

It is easy to see that this is diffeomorphic to Rn
2

by just listing out the entries
of the matrix as a tuple. Let Skewn(R) denote the subset of skew-symmetric
matrices, i.e., the matrices A in Mn(R) so that tA = −A. This is a manifold

of dimension n(n−1)
2 (see Exercise 3.5.54.) Define f : M2n(R) → Skew2n(R) by

f(A) = tAιnA where ιn =

(
0n −1n
1n 0n

)
. It is clear that this map is well-defined

and smooth. We would like to show that Sp2n(R) = f−1(ιn) is a submanifold
of M2n(R). First we calculate the derivative of f at a matrix A ∈ M2n(R). We
have

DAf(B) = lim
h→0

f(A+ hB)− f(A)

h

= lim
h→0

t(A+ hB)ιn(A+ hB)− tAιnA

h

= lim
h→0

tAιnA+ h(tAιnB) + h(tBιnA) + h2(tBιnB)− tAιnA

h

= tAιnB + tBιnA

= tAιnB − t(tAιnB).

In order to apply Theorem 3.5.48 we must show that DAf is surjective for
each A ∈ Sp2n(R), i.e., for each C ∈ Skew2n(R) there exists B ∈ M2n(R) so
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that tAιnB+ tBιnA = C. Observe that since C ∈ Skew2n(R) we can write C =
1
2C− 1

2 ( tC). In particular, if we can find B so that tAιnB = 1
2C we will have the

surjectivity. Note that ιn is invertible, in particular, ι−1
n =

(
0n 1n
−1n 0n

)
. This

shows that A is invertible as well with A−1 = ι−1
n

tAιn. Thus, set B = (tAιn)C
and we have the result. Thus, Sp2n(R) is a submanifold of M2n(R) of dimension

(2n)2 − 2n(2n−1)
2 = n(2n− 1).

Exercise 3.5.54. Show that Skewn(R) is a manifold of dimension n(n−1)
2 . In

particular, show it is a submanifold of Mn(R).

Exercise 3.5.55. Show that matrix multiplication and inversion is smooth on
Sp2n(R) and so Sp2n(R) is a Lie group.

Exercise 3.5.56. Let On(R) be the set of orthogonal matrices, i.e., the A ∈
Mn(R) so that tAA = 1n. Show that On(R) is a Lie group of dimension n(n+1)

2 .

These examples show that Theorem 3.5.48 is a very powerful tool for con-
structing manifolds. It is natural to ask given a smooth map f : M → N , are
there regular values of f? If so, are there many of them? Fortunately there are
always a large number of regular values. This is given by Sard’s theorem, which
we state here but omit the proof of. One can find a proof in Chapter 1 of [6].

Theorem 3.5.57. (Sard’s Theorem) Let f : M → N be a smooth map of
manifolds. The set of points of N that are not regular values constitutes a set
of measure 0.

Corollary 3.5.58. The regular values of any smooth map f : M → N are
dense in Y . In fact, if fi : Mi → N is a countable collection of smooth maps,
then the points in N that are simultaneously regular values for all fi are dense
in N .

We end this section by stating Whitney’s embedding theorem. This will
allow us to assume M ⊂ R2m+1 for any manifold M . This is useful in many
contexts but certainly is not an obvious result. For instance, projective space
does not obviously embed into a Euclidean space. A proof of Whitney’s embed-
ding theorem can be found in [1].

Theorem 3.5.59. (Whitney’s Embedding Theorem) Let M be a m-manifold.
Then there exists an embedding of M into R2m+1.

In fact, Whitney was able to show that M embeds into R2m, but this result
is much more difficult than the one stated. For our purposes the important
point is just to note that such an embedding exists. It is also useful to note that
the stronger version of the theorem is optimal. In particular, it states that the
Klein bottle embeds into R4. One can see that the Klein bottle does not embed
in R3 which shows the result is optimal. Another easy example would be to see
that S1 embeds into R2 but not into R1.
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3.6 Differential Forms on Smooth Manifolds

In this section we define differential forms on smooth manifolds and the corre-
sponding de Rham cohomology groups. This will set the stage for § 3.7 when
we study integration on smooth manifolds and prove Stokes’ theorem in this
setting. As in § 3.5, when we refer to a manifold M we will always mean a
smooth manifold unless otherwise noted.

Recall that for U ⊂ Rm an open set, the space of differential forms Ωk(U)
consists of smooth functions ω : U → Altk(Rm), i.e., for each x ∈ U we had
ω(x) ∈ Altk(Rm). We want to generalize this to the setting of manifolds. Let
M be a m-manifold and let

ω : M → Altk(T (M))

be a function with ω(x) ∈ Altk(Tx(M)) for each x ∈ M . Let (W,ψ) be a local
parameterization of M , i.e., ψ : W → U is a diffeomorphism between an open
set W ⊂ Rn and an open set U in M . For any y ∈ W , this gives an isomorphism

Dyψ : Rm
≃−→ Tψ(y)(M),

which in turn gives an isomorphism

Altk(Dyψ) : Altk(Tψ(y)(M))
≃−→ Altk(Rm).

Define

Ωk(ψ)(ω) = ψ∗(ω) : W −→ Altk(Rm)

y 7→ Altk(Dyψ)(ω(ψ(y))).

For clarity,

W
ψ // U

ω // Altk(Tψ(y)(M))
Altk(Dyψ) // Altk(Rm)

y � // ψ(y)
� // ω(ψ(y))

� // Altk(Dyψ)(ω(ψ(y))).

Observe that ψ∗(ω) is a function on Euclidean spaces so we have a notion
of smoothness here from classical analysis. We can use this to define the notion
of a differential form on M .

Definition 3.6.1. Let ω : M → ∐
x∈M Altk(Tx(M)) be as above. We say ω is

a smooth differential form on M if ψ∗(ω) is smooth for every local parameteri-
zation (W,ψ). We denote the set of smooth differential forms by Ωk(M).

We will refer to smooth differential forms as just differential forms.
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It is useful to note here that the map ψ∗ is the generalization of the map
Ωk(ψ) given in § 3.3 when ψ was then a map between open sets in Euclidean
space. The only difference is in the present case our map moves through an open
set in M where before all the open sets were in Euclidean space. From now on
we write Ωk(ψ) as simply ψ∗ as it is assumed by this point one has sufficient
experience with the notions to be able to understand k from context. One can
go through and write everything with Ωk(ψ) instead of ψ∗ if one prefers, but
one should keep in mind that when reading other sources this will be denoted
ψ∗ there as well.

Exercise 3.6.2. Show that Ω0(M) consists of smooth functions.

Exercise 3.6.3. Check that (ψ1 ◦ ψ2)
∗(ω) = ψ∗

2(ψ∗
1(ω)).

Lemma 3.6.4. Let M be a manifold and {(Wi, ψi)}i∈I a family of local param-
eterizations so that ∪i∈Iψi(Wi) = M . If ψ∗

i (ω) is smooth for each i, then ω is
smooth.

Proof. Let (W,ψ) be any local parameterization and let y ∈ W . Since the
sets ψi(Wi) cover M there is an i so that ψ(y) ∈ ψi(Wi). Let f := ψ−1

i ◦ ψ :
ψ−1(ψi(W ))→Wi. We have that f is a smooth map between open sets in Rm.
Observe that if we restrict ψ to ψ−1(ψi(Wi)), then we have ψ = ψi ◦ f . Thus,
using the exercise above we have in a neighborhood of y that

ψ∗(ω) = (ψi ◦ f)∗(ω)

= f∗(ψ∗
i (ω)).

However, by assumption f∗ and ψ∗
i are smooth so we get that ψ∗ is smooth and

thus ω is smooth.

Note that this result says that we do not have to check smoothness for every
local parameterization, it is enough to check it for a collection of parameteriza-
tions that cover the manifold.

Our next step is to define the exterior derivative in this setting. As with
everything else, we define the exterior derivative

dk : Ωk(M)→ Ωk+1(M)

via local parameterizations. Let ω ∈ Ωk(M) and (W,ψ) be a local parameteri-
zation around x ∈M . Set

dkxω = Altk+1((Dyψ)−1) ◦ dkx(ψ∗ω)

where ψ(y) = x. First, one should check that this indeed maps Ωk(M) to
Ωk+1(M). This follows from the definitions of the maps involved. We need to
check that this definition is independent of the choice of local parameterization
used. Let (W1, ψ) be a local parameterization for x ∈ M with ψ(y) = x.
Any other local parameterization can be given by ψ ◦ f where f : W2 → W1

is a diffeomorphism, W2 ⊂ Rm open. Let x1, . . . , xk+1 ∈ Tx(M) and choose
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v1, . . . , vk+1 ∈ Rm with Dy(ψ ◦ f)(vi) = xi. Let y′ ∈ W2 so that f(y′) = y and
define w1, . . . , wk+1 in Rm so that Dy′f(vi) = wi. We must show

dkyψ
∗(ω)(w1, . . . , wk+1) = dky′(ψ ◦ f)∗(ω)(v1, . . . , vk+1).

From a previous exercise we have that

(ψ ◦ f)∗ = f∗ ◦ ψ∗.

We also have from Theorem 3.3.34 that

dkf∗(τ) = f∗dk(τ)

where here we want τ = ψ∗(ω). Observe that we have

dky′(ψ ◦ f)∗(ω)(v1, . . . , vk+1) = dky′(f
∗ ◦ ψ∗)(ω)(v1, . . . , vk+1)

= dky′f
∗(ψ∗(ω))(v1, . . . , vk+1)

= f∗(dkyψ
∗(ω))(v1, . . . , vk+1)

= Altk+1(Dy′f)(dkyψ
∗(ω))(v1, . . . , vk+1)

= dkyψ
∗(ω)(Dy′f(v1), . . . , Dy′f(vk+1))

= dkyψ
∗(ω)(w1, . . . , wk+1).

Exercise 3.6.5. Check that dk+1 ◦ dk = 0 for all k ≥ 0.

Exercise 3.6.6. Show that if M is diffeomorphic to N , then Ωk(M) ∼= Ωk(N)
for all k ≥ 0.

Thus, we have produced a chain complex

· · · −→ Ωk−1(M)
dk−1

−→ Ωk(M)
dk

−→ Ωk+1(M) −→ · · · .

Note that Ωk(M) = 0 for k > dimM as then Altk(TxM) = 0 for all x ∈M . As
was shown in § 3.2, a chain complex gives rise to cohomology groups.

Definition 3.6.7. Let M be a manifold. The kth de Rham cohomology group
of M is defined by

Hk
dR(M) = Hk(Ω∗(M)).

Exercise 3.6.8. Show that H0
dR(M) consists of locally constant functions.

Note that Exercise 3.6.6 shows that ifM is diffeomorphic toN then Hk
dR(M) ∼=

Hk
dR(N) as one would expect. It is also important to note that if U ⊂ Rn is an

open set, if we view U as a n-manifold this definition of de Rham cohomology
agrees with what was defined earlier.

Let f : M → N be a smooth map. For each k ≥ 0 this induces a map
f∗ : Ωk(N)→ Ωk(M) via

Ωk(f)(τ)(x) = f∗(τ)(x) := Altk(Dxf)(τ(f(x)))
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for k > 0 and
Ω0(f)(τ)(x) = f∗(τ)(x) := τ(f(x)).

For this to be well defined one must check that the image of f∗ actually lies
in Ωk(M). We leave this verification as an exercise to the curious reader. It
basically amounts to showing it is smooth by choosing a local parameterization.
As in § 3.2, this induces a map on cohomology Hk

dR(f) : Hk
dR(N) → Hk

dR(M)
defined by

Hk
dR(f)([τ ]) = [f∗(τ)].

We can define a wedge product as before since the wedge product on the
alternating spaces was done in full generality in § 3.2. Thus, we define ∧ :
Ωk(M)×Ωl(M)→ Ωk+l(M) by (ω∧ τ)(x) = ω(x)∧ τ(x). As before, we extend
this to the cohomology groups in the natural way.

Exercise 3.6.9. Show that for ω ∈ Ωk(M) and τ ∈ Ωl(M) we have

dk+l(ω ∧ τ) = dkω ∧ τ + (−1)kω ∧ dlτ
ω ∧ τ = (−1)klτ ∧ ω.

This shows that we have a contravariant functor from the category of man-
ifolds with the morphisms being smooth maps to the category of graded anti-
commutative R-algebras.

Let M = U1 ∪ U2 with U1 and U2 open sets. As in § 3.4 we have natural
inclusion maps ik : Uk →֒ U1 ∪ U2 and jk : U1 ∩ U2 →֒ Uk. Following the same
argument as given in the proof of Theorem 3.4.2 we have the following result.

Theorem 3.6.10. With the set-up as above we have that the following sequence
is exact for each l ≥ 0:

0 −→ Ωl(M)
il−→ Ωl(U1)⊕ Ωl(U2)

jl

−→ Ωl(U1 ∩ U2) −→ 0

where il(ω) = (i∗1(ω), i∗2(ω)) and jl(ω1, ω2) = j∗2 (ω2)− j∗1 (ω1).

Recall that the only real difficulty in showing the exactness of the sequence
in Theorem 3.6.10 is the exactness at the last factor. As in the case of open sets
in Euclidean space, we see that given ω ∈ Ωl(U1 ∩ U2) and a partition of unity
{ρU1 , ρU2} subordinate to {U1, U2}, the element (−ρU2ω, ρU1ω) maps to ω.

As before, we use this exact sequence to produce a long exact sequence in
cohomology.

Theorem 3.6.11. (Mayer-Vietoris Sequence) With M , U1, and U2 as above
we have a long exact sequence in cohomology

· · · −→ Hl
dR(M)

Hl
dR(il)−→ Hl

dR(U1)⊕Hl
dR(U2)

Hl
dR(jl)−→ Hl

dR(U1∩U2)
∂l

−→ Hl+1
dR (U) −→ · · · .

Exercise 3.6.12. Show that for ω ∈ Ωl(U1 ∩ U2), the map ∂l is given by
∂l([ω]) = [dl(ρU2ω)] on U1 and ∂l([ω]) = [dl(ρU1ω)] on U2 where {ρU1 , ρU2} is a
partition of unity subordinate to {U1, U2}.
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Example 3.6.13. We compute the de Rham cohomology of the circle. We
choose open U1 and U2 in S1 as in the following picture:

U1

U2

We have S1 = U1∪U2 and H0
dR(U1)⊕H0

dR(U2) ∼= R⊕R and H0
dR(U1∩U2) ∼=

R⊕R since we have that dimR H0
dR(M) is the number of connected components

of M as before. We have

0 −→ H0
dR(S1) −→ R⊕ R −→ R⊕ R −→ H1

dR(S1) −→ 0

where we have used that H1
dR(U1) ∼= H1

dR(U2) = 0 because U1 and U2 are
diffeomorphic to R and H1

dR(R) = 0 by Poincare’s Lemma. This shows that
H1

dR(S1) ∼= R and so we have

Hk
dR(S1) ∼=

{
R k = 0, 1
0 k ≥ 2.

As in the case of open subsets of Rn, one has the following result in the case
of manifolds as well. The proofs are virtually identical to the ones given before.
The interested reader can fill in the details by working via charts.

Theorem 3.6.14. Homotopic maps induce the same map in cohomology. In
particular, two manifolds with the same homotopy type have the same de Rham
cohomology.

Example 3.6.15. Let T be the torus. We have seen that this is a 2-manifold.
We now calculate the cohomology groups of T . We must make the assumption
that H2

dR(T ) ∼= R for this calculation to work out. We will see in the next
section that this is a special case of a much more general result, namely that if
M is a compact connected oriented m-manifold, then Hm

dR(M) ∼= R. The torus
is such a manifold, so we use this result in our calculation.

Let U be a little more than the upper half of the torus and V be a little
more than the bottom half. This can be pictured as follows if we let the top of
the torus be where the left and right edges identify.
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U1 U2

We have that U1 and U2 are diffeomorphic and are given by an annulus.
This is clearly seen to be homotopic to S1, so we know the cohomology of U1

and U2. We have that U1∩U2 looks like an annulus inside another annulus. It is
clear that U1 ∩U2 can be written as the disjoint union of open sets W1 and W2,
each homotopic to S1. Thus, we have Hk

dR(U1 ∩ U2) ∼= Hk
dR(W1) ⊕Hk

dR(W2) ∼=
Hk

dR(S1)⊕HkdR(S1). Note that since T is connected, we have that H0
dR(T ) ∼= R.

We can now apply Mayer-Vietoris to calculate Hk
dR(T ):

0→ R→ R⊕ R→ R⊕ R→ H1
dR(T )→ R⊕ R→ R⊕ R→ H2

dR(T )→ 0.

We have that Im(H0
dR(i0)) ∼= R and so necessarily ker(H0

dR(j0)) ∼= R. This gives
that Im(H0

dR(j0)) ∼= (R⊕ R)/R ∼= R. Thus, ker(∂0) ∼= R and so Im(∂0) ∼= (R⊕
R)/R ∼= R. Thus we see dimR H1

dR(T ) ≥ 1. We also obtain that ker(H1
dR(i1)) ∼=

R.
Now observe that since ∂1 is surjective and H2

dR(T ) ∼= R, we have ker(∂1) ∼=
R. Thus, Im(H1

dR(j1)) ∼= R as well. Then this gives that ker(H1
dR(j1)) ∼= R,

which in turn gives Im(H1
dR(i1)) ∼= R. Thus, we have H1

dR(T )/ ker(H1
dR(i1)) ∼=

Im(H1
dR(i1)), i.e., H1

dR(T )/R ∼= R. So we must have H1
dR(T ) ∼= R⊕ R.

Exercise 3.6.16. Calculate the cohomology groups of the “doughtnut with two
holes.”

Our next step is to discuss differential forms and de Rham cohomology with
compact support. Recall that the support of a continuous function f on a
topological space X is Cl({x ∈ X : f(x) 6= 0}). We can now go through and
define the differential forms with compact support Ωkc (M) to be the space of
differential forms onM that have compact support. Many of the same properties
hold. In particular, {Ωkc (M)}k≥0 forms a complex so that we can define the

de Rham cohomology groups with compact support Hk
dR,c(M) = Hk(Ω∗

c(M)).
There is one major difference in the case of compact support. Let f : M → N
be smooth function and let ω ∈ Ωkc (N). In this situation the map Ωkc (f) is a
map Ωkc (N) → Ωk(M). In particular, there is no reason that Ωkc (f)(ω) should
have compact support even if ω ∈ Ωkc (N).

Exercise 3.6.17. Let f : M × R → M be the projection map. Show that the
of a function with compact support under f does not necessarily have compact
support.

This shows that Ωkc is not a functor on the category of smooth manifolds
and smooth maps. We need to adjust things if we wish this to be a functor.
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There are two ways to accomplish this. The first way is to observe that Ωkc is a
contravariant functor under proper maps. In particular, if we require f : M → N
to be a proper map, then everything works out fine. This is not the approach
we will take. The second way is to observe that we can make Ωkc into a covariant
functor under inclusions of open sets. In particular, if i : U →֒M is the inclusion
map of an open set U ∈ TM into M , then ikc : Ωkc (U)→ Ωkc (M) is the map that
sends ω ∈ Ωkc (M) to a differential form on M by setting ω(x) = 0 if x ∈M −U .
The reason we choose this second method is that it is the natural way to frame
Poincare duality.

Exercise 3.6.18. Show that if ω ∈ Ωk(M) and τ ∈ Ωlc(M), then ω ∧ τ ∈
Ωk+lc (M).

Exercise 3.6.19. Show that H0
dR,c(R) = 0.

Exercise 3.6.20. Show that

Hk
dR,c(point) ∼=

{
R k = 0
0 otherwise.

Our next step is to give the Mayer-Vietoris sequence in the setting of com-
pactly supported differential forms. As before, let M = U1∪U2 with U1 and U2

open sets. Let jk : U1 ∩ U2 →֒ Uk and ik : Uk →֒ U1 ∪ U2 be the inclusion maps
as before. We obtain inclusions

U1

i1

&&LLLLLLLLLLL

U1 ∩ U2

j1

;;vvvvvvvvv

j2 ##H
HH

HH
HH

HH
M = U1 ∪ U2.

U2

i2

88rrrrrrrrrrr

Using the convariance of the functor Ωkc under inclusion maps we obtain a se-
quence

Ωkc (U1 ∩ U2)
jk
c // Ωkc (U1)⊕ Ωkc (U2)

ikc // Ωkc (M)

ω � // (jk1,cω,−jk2,cω)

(ω1, ω2)
� // ik2,cω2 + ik1,cω1.
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Theorem 3.6.21. The sequence of forms with compact support

0 −→ Ωkc (U1 ∩ U2)
jk
c−→ Ωkc (U1)⊕ Ωkc (U2)

ikc−→ Ωkc (M) −→ 0

is exact.

We leave the proof of this theorem as an exercise. The only real difference
from the previous proof is that in this case the form ω ∈ Ωkc (M) is the image of
the form (ρU1ω, ρU2ω) ∈ Ωkc (U1)⊕ Ωkc (U2).

We again obtain a long exact sequence in cohomology.

Theorem 3.6.22. With M = U1 ∪ U2 as above we have a long exact sequence
in cohomology

· · · −→ Hk
dR,c(U1∩U2)

Hk
dR,c(j

k
c )

−→ Hk
dR,c(U1)⊕Hk

dR,c(U2)
Hk

dR,c(i
k
c )

−→ Hk
dR,c(M)

∂k

−→ Hk+1
dR,c(U1∩U2) −→ · · · .

One can explicitly write down the map ∂kc here as follows. Let [ω] ∈
Hk

dR,c(U1 ∪ U2) and write ω = ω1 + ω2 with ωi ∈ Ωkc (M) and supp(ωi) ⊂ Ui.

Observe that we have [dkω] = [dkω1 + dkω2]. However, since ω is a closed form
we have that [dω] = 0. Thus, on U1 ∩ U2 we have dkω1 and −dkω2 are closed
form and [dkω1] and [−dkω2] agree on U1 ∩ U2. Thus, either of these closed
forms represents ∂kc ([ω]).

One should note that if M is compact, then Hk
dR,c(M) = Hk

dR(M). In
particular, we know the compactly supported cohomology groups of S1 and T
since we calculated Hk

dR(S1) and Hk
dR(T ) above. However, if M is not compact

the cohomology groups may not be equal. For example, the above exercise gives
that H0

dR,c(R) ∼= 0 where H0
dR(R) ∼= R.

In order to effectively use Mayer-Vietoris to compute compactly supported
cohomology we need an analogue of the Poincare Lemma. We have the following
theorem.

Theorem 3.6.23. (Poincare Lemma for Compact Support) For n ≥ 1 we have

Hk
dR,c(R

n) ∼=
{

R k = n
0 otherwise.

Proof. We begin by showing

Hk
dR,c(R

n × R) ∼= Hk−1
dR,c(R

n)

for all k ≥ 1. Let ω ∈ Ωkc (R
n × R). As before, we can write

ω =
∑

I

fI(x, t)dxI +
∑

J

gJ(x, t)dt ∧ dxJ

where this time we have that fI and gJ are compactly supported smooth func-
tions on Rn × R. Define

Ψk : Ωkc (R
n × R)→ Ωk−1

c (Rn)
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by setting

Ψk(ω) =
∑

J

(∫

R

gJ(x, t)dt

)
dxJ .

Observe that we have

dk−1Ψkω =
∑

J,j

∫

R

∂gJ(x, t)

∂xj
dt ∧ dxj ∧ dxJ .

We also have

dkω =
∑

I

∂fI(x, t)

∂t
dt ∧ dxI −

∑

J,j

∂gJ(x, t)

∂xj
dt ∧ dxj ∧ dxJ

and so
Ψk+1(dkω) = −dk−1Ψkω.

To see this, we have used that fI has compact support and so

∫

R

∂fI(x, t)

∂t
dt = lim

a→∞
f(x, a)− lim

b→−∞
f(x, b) = 0.

Thus, we see that Ψk is a chain map and so induces a map of cohomology
Hk

dR,c(Ψ
k) : Hk

dR,c(R
n × R)→ Hk−1

dR,c(R
n). (Adjust the proof of Lemma 3.2.1 to

see this is true.)
Let τ = ψ(t)dt be a compactly supported 1-form so that

∫
R
ψ = 1. Define

Φk : Ωkc (R
n) → Ωk+1

c (Rn × R) by sending ω to τ ∧ ω. Note that the map Φk

commutes with the exterior derivative so induces a map on cohomology as well.
We also have that Ψk+1 ◦ Φk is the identity map on Ωkc (R

n). It is not the case
that Φk ◦ Ψk+1 is the identity map, but we will show that it is homotopic to
the identity so on the level of cohomology is the identity map, which gives that
Hk

dR,c(R
n × R) ∼= Hk−1

dR,c(R
n).

We now construct a chain homotopy Ξ. In particular, we will show that on
Ωkc (R

n × R) we have

(3.5) 1− ΦkΨk+1 = ±(dkΞk+1 − Ξk+2dk+1).

Set A(t) =
∫ t
−∞

τ . Define Ξk : Ωkc (R
n × R)→ Ωk−1

c (Rn × R) by sending ω to

∑

J

[(∫ t

−∞

gJ(x, y)dy

)
dxJ −A(t)

(∫

R

gJ(x, t)dt

)
dxJ

]
.

Observe that since all of our operators are linear, it is enough to check equation
(3.5) on differential forms of the form fI(x, t)dxI and gJ(x, t)dt ∧ dxJ that
add up to ω. We begin with a form fI(x, t)dxI . First, we have that (1 −
ΦkΨk+1)(fI(x, t)dxI) = fI(x, t)dxI , as can easily be seen from the definitions
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of Φk and Ψk+1. We now must calculate (dkΞk+1−Ξk+2dk+1)(fI(x, t)dxI ). We
have that Ξk+1(fI(x, t)dxI) = 0 by definition, so we have

(dkΞk+1 − Ξk+2dk+1)(fI(x, t)dxI) = −(Ξk+2dk+1)(fI(x, t)dxI )

= −Ξk+2(dk+1(fI(x, t) ∧ dxI))
= −Ξk+2(d0(fI(x, t)) ∧ dxI + fI(x, t) ∧ dk−1dxI)

= −Ξk+2

(
n∑

i=1

∂fI(x, t)

∂xi
dxi ∧ dxI +

∂fI(x, t)

∂t
dt ∧ dxI + 0

)

= −
((∫ t

∞

∂fI(x, y)

∂y

)
dxI −A(t)

(∫

R

∂fI(x, t)

∂t
dt

)
dxI

)

= −fI(x, t)dxI

where we have used again that fI is compactly supported. This gives the result
for differential forms of the type fI(x, t)dxI .

Now we consider differential forms of the type gJ(x, t)dt ∧ dxJ . In this case
we have

(1 − ΦkΨk+1)(gJ(x, t)dt ∧ dxJ ) = gJ(x, t)dt ∧ dxJ − τ ∧
(∫

R

gJ(x, t)dt

)
dxJ .

We now compute (dkΞk+1 − Ξk+2dk+1)(gJ (x, t)dt ∧ dxJ ):

dkΞk+1(gJ (x, t)dt ∧ dxJ ) = dk
((∫ t

−∞

gJ(x, y)dy

)
∧ dxJ −A(t)

(∫

R

gJ(x, t)dt

)
∧ dxJ

)

= dk
(∫ t

−∞

gJ(x, y)dy

)
∧ dxJ − dk

(
A(t)

∫

R

gJ(x, t)dt

)
∧ dxJ

=

n∑

i=1

∂

∂xi

(∫ t

−∞

gJ(x, y)dy

)
dxi ∧ dxJ +

∂

∂t

(∫ t

−∞

gJ(x, y)dy

)
dt ∧ dxJ

− τ ∧
(∫

R

gJ(x, t)dt

)
dxJ −A(t)

n∑

i=1

∂

∂xi

(∫

R

gJ(x, t)dt

)
dxi ∧ dxJ

=

n∑

i=1

∂

∂xi

(∫ t

−∞

gJ(x, y)dy

)
dxi ∧ dxJ + gJ(x, t)dt ∧ dxJ

− ψ(t)

(∫

R

gJ(x, t)dt

)
∧ dxJ −A(t)

n∑

i=1

∂

∂xi

(∫

R

gJ(x, t)dt

)
dxi ∧ dxJ
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−Ξk+2dk+1(gJ(x, t)dt ∧ dxJ ) = −Ξk+2 (d(gJ (x, t)) ∧ dt ∧ dxJ )

= −Ξk+2

(
n∑

i=1

∂gJ(x, t)

∂xi
dxi ∧ dt ∧ dxJ +

∂gJ(x, t)

∂t
dt ∧ dt ∧ dxJ

)

= −Ξk+2

(
n∑

i=1

∂gJ(x, t)

∂xi
dxi ∧ dt ∧ dxJ

)

=

n∑

i=1

Ξk+2

(
∂gJ(x, t)

∂xi
dt ∧ dxi ∧ dxJ

)

=

n∑

i=1

[(∫ t

−∞

∂gJ(x, y)

∂xi
dy

)
dxi ∧ dxJ −A(t)

(∫

R

∂gJ(x, t)

∂xi
dt

)
dxi ∧ dxJ

]

Thus, we see that

(dkΞk+1 − Ξk+2dk+1)(gJ (x, t)dt ∧ dxJ ) = gJ(x, t)dt ∧ dxJ − τ ∧
(∫

R

gJ(x, t)dt

)
dxJ

= (1 − ΦkΨk+1)(gJ(x, t)dt ∧ dxJ )

as claimed. Thus, we have the result that

Hk
dR,c(R

n × R) ∼= Hk−1
dR,c(R

n)

for k ≥ 1.
We can now finish the result by induction. We wish to calculate Hk

dR,c(R
n).

We begin by showing H1
dR,c(R) ∼= R. Since we already know that H0

dR,c(R) = 0,
this will give the result for n = 1. Consider the integration map

∫

R

: Ω1
c(R)→ R.

This map is clearly surjective. Let f ∈ Ω0
c(R) be a 0-form and df = ∂f

∂xdx be
the image. Since f has compact support, we can find an interval [a, b] so that
supp(f) ( [a, b]. Thus, we have

∫

R

∂f

∂x
dx =

∫ b

a

∂f

∂x
dx

= f(b)− f(a)

= 0− 0

= 0.

This shows that
∫

R
vanishes on the exact 1-forms. Suppose now that g(x)dx

lies in the kernel of
∫

R
. Then we have that

f(x) =

∫ x

−∞

g(t)dt

168



has compact support and df = g(x)dx. Thus, we have that the kernel of
∫

R
is

exactly the exact 1-forms and so we have

H1
dR,c(R) ∼= R.

This combined with the isomorphism Hk
dR,c(R

n × R) ∼= Hk
dR,c(R

n) gives that

Hn
dR,c(R

n) ∼= R for all n ≥ 0. Similarly, using the fact that H0
dR,c(R

k) = 0 for
all k ≥ 1 combined with the isomorphism and induction gives the rest of the
result.

In the next section we will define integration on manifolds. It is via inte-
gration that many of the results calculating the compactly supported de Rham
cohomology of manifolds are proven.

3.7 Integration on Manifolds

In this section we generalize integration from Rn to a certain type of manifold.
Before we work on manifolds, we recall some notions for integration in Rn and
open subsets of Rn.

Let x1, . . . , xn be the standard coordinates on Rn. The Riemann integral of
a function f on Rn is defined by

∫

Rn

fdx1 · · · dxn =
∑

∆xi→0

f∆x1 · · ·∆xn.

One learns in analysis class that the Riemann integral can be generalized to
Lebesgue integration which allows a larger class of sets and functions to be in-
cluded in the definition. We now frame integration on Rn in terms of differential
forms.

Let ω ∈ Ωnc (Rn). We have seen that we can uniquely write

ω(x) = f(x)dx1 ∧ · · · ∧ dxn
for f a compactly supported smooth function on Rn with values in R. Note that
strictly speaking we have not shown this for compactly supported differential
forms, but all of the arguments given clearly work in this case as well. We define

∫

Rn

ω =

∫

Rn

fdx1 ∧ · · · ∧ dxn =

∫

Rn

fdµn

where dµn denotes Lebesgue measure on Rn.
Let U ⊂ Rn be an open set and let ω ∈ Ωnc (U). We can again write

ω(x) = f(x)dx1 ∧ · · · ∧ dxn
for f ∈ Ω0

c(U). We can smoothly extend f , and so ω, to Rn by setting f(x) = 0
for x ∈ Rn − suppU (f). Thus, we can define

∫

U

ω =

∫

Rn

ω

where in the second integral it is understood that ω is extended by 0 off of U .
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Lemma 3.7.1. Let U and V be open sets in Rn with φ : U → V a diffeomor-
phism. Assume that det(Dxφ) has constant sign δ = ±1 for all x ∈ U . (Note
that det(Dxφ) is simply the Jacobi determinant.) Then for ω ∈ Ωnc (V ) we have

∫

U

φ∗ω = δ

∫

V

ω.

Proof. Let ω ∈ Ωnc (V ) and write ω = fdx1∧· · ·∧dxn = f ∧dx1∧· · ·∧dxn with
f ∈ Ω0

c(V ). We have

φ∗(ω)(x) = φ∗(f ∧ dx1 ∧ · · · ∧ dxn)(x)

= φ∗(f)(x) ∧ φ∗(dx1) ∧ · · · ∧ φ∗(dxn)

= f(φ(x)) ∧ dφ∗(x1) ∧ · · · ∧ dφ∗(xn)

= f(φ(x)) det(Dxφ)dx1 ∧ · · · ∧ dxn

where we have used Exercise 3.3.44. Now observe that δ = det(Dxφ)
| det(Dxφ)| and so we

have
∫

U

φ∗(ω) =

∫

U

δf(φ(x))| det(Dxφ)|dx1 ∧ · · · ∧ dxn

= δ

∫

U

f(φ(x))| det(Dxφ)|dµn

= δ

∫

V

f(x)dµn

= δ

∫

V

ω.

Definition 3.7.2. Let φ : U → V be a diffeomorphism between open sets in
Rn. If det(Dxφ) > 0 for all x ∈ U we say that φ is orientation-preserving.

Note that integrals on open subsets of Rn are not invariant under diffeomor-
phisms, but are invariant under orientation-preserving diffeomorphisms.

Definition 3.7.3. Let M be a m-manifold with atlas {(Ui, ϕi)}i∈I . We say
that {(Ui, ϕi)} is oriented if the transition functions ϕj ◦ϕ−1

i are all orientation
preserving. We say M is orientable if there is an oriented atlas on M .

Proposition 3.7.4. A manifold M of dimension m is orientable if and only if
there exists ω ∈ Ωm(M) with ω(x) 6= 0 for all x ∈M .

Proof. As in the proof of Lemma 3.7.1, we use Exercise 3.3.44 to note that
φ : Rm → Rm is orientation preserving if and only if φ∗(dx1 ∧ · · · ∧ dxm) is a
positive multiple of dx1 ∧ · · · ∧ dxm at every point.

Suppose that M has an oriented atlas {(Ui, ϕi)}i∈I . Then we know that

(ϕj ◦ ϕ−1
i )∗(dx1 ∧ · · · ∧ dxn) = fi,jdx1 ∧ · · · ∧ dxn
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for some positive function fi,j . In particular, we can write

ϕ∗
j (dx1 ∧ · · · ∧ dxm) = ϕ∗

i (fi,j) ∧ ϕ∗
i (dx1 ∧ · · · ∧ dxm).

Thus, if we set ωj = ϕ∗
j (dx1 ∧ · · · ∧ dxm) and ωi = ϕ∗

i (dx1 ∧ · · · ∧ dxm), then we
have

ωj = (fi,j ◦ ϕi)ωi
where fi,j ◦ ϕi is everywhere positive.

Let {ρi} be a partition of unity with respect to the cover {Ui} of M . Set
ω =

∑
i ρiωi. Let x ∈M . Then we have that for all i where ωi is defined at x,

then ωi are all positive multiples of each other. Since ρi ≥ 0 and not all ρi can
vanish at any point, we must have ω(x) 6= 0 for all x ∈M .

Now suppose that there is a ω ∈ Ωm(M) so that ω(x) 6= 0 for all x ∈ M .
Let ϕi : Ui → Rm be a chart. Then there exists a nowhere vanishing real-
valued smooth function fi on Ui so that ϕ∗

i (dx1 ∧ · · · ∧ dxm) = fiω. Thus, we
must have that fi is either positive everywhere or negative everywhere. If fi
happens to be negative everywhere, we can replace ϕi by ψi = φ ◦ ϕi where
φ : Rm → Rm is given by φ(x1, . . . , xm) = (−x1, x2, . . . , xm). Observe that
ψ∗
i (dx1 ∧ · · · ∧dxm) = ϕ∗

i ◦φ∗(dx1 ∧ · · · ∧dxm) = −ϕ∗
i (dx1 ∧ · · · ∧dxm) = −fiω,

we see that it is fine to assume that fi is everywhere positive for all i. Thus, we
have that any transition function

ϕji : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

will pull dx1 ∧ · · · ∧ dxm back to a positive multiple of itself. Thus, {(Ui, ϕi)} is
an oriented atlas.

Definition 3.7.5. Let M be a m-manifold and ω ∈ Ωm(M) a non-vanishing
differential form. We call such a form an orientation form on M .

Definition 3.7.6. Let ω1 and ω2 be orientation forms on M . We say ω1 is
equivalent to ω2 if there exists f ∈ Ω0(M) = C∞(M,R) so that ω1 = fω2 and
f(x) > 0 for all x ∈M . An equivalence class of orientation forms on M is called
an orientation of M . We denote it by [M ].

One should note that if M if connected, since f must have a constant sign
on M we must have that there are only two possible orientations for M . Let
ω be an orientation form on M . Let v1, . . . , vm be a basis of TxM . We say
the basis is positively oriented if ω(x)(v1, . . . , vm) > 0 and negatively oriented if
ω(x)(v1, . . . , vm) < 0.

Example 3.7.7. Let M = Rm. Recall that the differential form dx1∧· · ·∧dxm
is constant and non-zero. Thus, this gives an orientation form on Rm. We
call this the standard orientation of Rm. Under this orientation form the basis
e1 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) is positively oriented. To see this, recall
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that

dx1 ∧ · · · ∧ dxm(e1, . . . , em) = det



dx1(e1) · · · dx1(em)

...
. . .

...
dxm(e1) · · · dxm(em)




= det 1m

= 1

where we write 1m for the m by m identity matrix and we have used that
dxi(a1, . . . , am) = aj .

Let ω ∈ Ωmc (M), {(Ui, ϕi)} an oriented atlas giving the orientation [M ] on
M . Suppose that there exists i ∈ I so that the support of ω lies in Ui. Then it
is natural to define the integral of ω over M as

∫

[M ]

ω =

∫

Rn

(ϕ−1
i )∗(ω).

If the support of ω does not happen to lie in a single chart, we must define the
integral in terms of a partition of unity. Let {ρi} be a partition of unity with
respect to the cover {Ui}. Define

∫

[M ]

ω =
∑

i

∫

Rn

(ϕ−1
i )∗(ρiω).

One should note that this is well-defined by the orientability assumption. We
will write

∫
M
ω for

∫
[M ]

ω when the orientation of M is fixed. Note we also write∫
Ui
ρiω for

∫
Rn(ϕ−1

i )∗(ρiω) to ease notation.

Proposition 3.7.8. The definition of
∫
M ω is independent of the choice of atlas

in the orientation as well as the choice of partition of unity.

Proof. Let {(Vj , ψj)} be another atlas in the orientation and {ρ′} a partition of
unity with respect to the cover {Vj}. Note that since

∑
j ρ

′ = 1 we have

∑

i

∫

Ui

ρiω =
∑

i,j

∫

Ui

ρiρ
′
jω.

Now ρiρ
′
jω has support on Ui ∩ Vj and so we have

∫

Ui

ρiρ
′
jω =

∫

Vj

ρiρ
′
jω.

Thus,

∑

i

∫

Ui

ρiω =
∑

i,j

∫

Vj

ρiρ
′
jω

=
∑

j

∫

Vj

ρ′jω

where we have used that
∑
ρi = 1. This gives the result.
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Definition 3.7.9. Let f : M → N be a diffeomorphism. Let M be oriented
by ωM and N oriented by ωN . We say that f is orientation preserving if the
orientation form f∗(ωN ) is equivalent to ωM . If the orientation form f∗(ωN ) is
equivalent to −ωM we say f is orientation reversing.

Lemma 3.7.10. Let M and N be orientable m-manifolds.

1. The integral
∫
[M ]

ω changes sign when the orientation of M is reversed.

2. If ω ∈ Ωmc (M) has support contained in an open set U ⊂M , then

∫

M

ω =

∫

U

ω

where U has the orientation induced from M .

3. If f : M → N is an orientation preserving diffeomorphism , then we have

∫

N

ω =

∫

M

f∗(ω)

for ω ∈ Ωmc (N).

Proof. This follows immediately from the fact that the results are true for open
subsets of Euclidean space along with the fact that we can use a partition of
unity to restrict to the case that the support of ω is contained in a coordinate
patch. One should fill in the details as an exercise.

One might note at this point that we are only able to integrate a m-form on
a m-manifold. However, we can integrate other forms over submanifolds. Let
N ⊂M be an oriented n-submanifold. Let i : N →֒M be the natural inclusion
map. Let ω ∈ Ωlc(M). We have a natural “restriction” of ω to N defined by
i∗(ω). For instance, if ω is a 0-form, i.e., a smooth function real-valued function
on M , then we have i∗(ω) is exactly the restriction of the function ω to N . If
ω happens to be a n-form that has support that intersects N in a compact set,
then we can define the integral of ω over N by setting

∫

N

ω =

∫

N

i∗(ω).

It is understood that if we are integrating a form over a submanifold that we
mean the pullback of the form under the inclusion map so we generally drop
the i∗ from the notation.

Example 3.7.11. Let ω = f1dx1 + f2dx2 + f3dx3 be a smooth 1-form on R3.
We wish to integrate this one form over a simple smooth curve C given by
γ : I → R3 where I = (a, b) ⊂ R. Assume that ω has compact support when
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restricted to C, in particular, assume that ω is supported on γ([c, d]) for some
[c, d] ⊂ (a, b). Thus, we have that γ serves as local coordinates and so we have

∫

C

ω =

∫

Rn

γ∗(ω)

=

∫ d

c

γ∗(ω).

Write γ(t) = (γ1(t), γ2(t), γ3(t)). Recall from Example 3.3.43 that we have

γ∗(ω) =

3∑

j=1

fj(γ(t))
dγj
dt
dt.

In particular, we see that in this case we have that
∫
C
ω is exactly the line

integral of F = (f1, f2, f3) over the curve C as defined in calculus, i.e.,

∫

C

ω =

∫

C

F · dγ.

Example 3.7.12. Let ω ∈ Ω2
c(R

3) be given by

ω = f1dx2 ∧ dx3 + f2dx3 ∧ dx1 + f3dx1 ∧ dx2.

Let S be a surface in R3 given by the graph of a function G : R2 → R with
x3 = G(x1, x2). We now put the integral

∫
S ω into a familiar form from calculus

class. The map h : R2 → S given by

h(x1, x2) = (x1, x2, G(x1, x2))

gives a parameterization of S. We have

h∗(dx1 ∧ dx2) = h∗(dx1) ∧ h∗(dx2) = dx1 ∧ dx2,

h∗(dx2 ∧ dx3) = h∗(dx2) ∧ h∗(dx3) = dx2 ∧ dG

= dx2 ∧
(
∂G

∂x1
dx1 +

∂G

∂dx2
dx2

)

= − ∂G
∂x1

(dx1 ∧ dx2)

h∗(dx3 ∧ dx1) = − ∂G
∂x2

(dx1 ∧ dx2).

Thus, we have

∫

S

ω =

∫

R2

h∗ω

=

∫

R2

(f1, f2, f3) ·
(
− ∂G
∂x1

,− ∂G
∂x2

, 1

)
dx1 ∧ dx2.
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To rectify this with calculus, observe that if we set n(x1, x2, x3) =
(
− ∂G
∂x1

,− ∂G
∂x2

, 1
)

then we have that n(x1, x2, x3) is perpendicular to S at each point (x1, x2, x3) ∈
S. Let u = n

|n| be the unit normal vector. Set F = (f1, f2, f3). Let dA =

|n|dx1 ∧ dx2 be a 2-form. This form is normally referred to as the area form of
the surface S. Our equation then reads

∫

S

ω =

∫

R2

(F · u)dA,

which is the familiar integral of a function on a surface from calculus.

We would also like to give a generalization of Stokes’ theorem to the setting
of oriented manifolds. Of course, in order to make sense of Stokes’ theorem we
need to introduce manifolds with boundary. Let Hm be the subset of Rm given
by

Hm = {(x1, . . . , xm) : xm ≥ 0}.
It is clear that the boundary of Hm is given by

∂Hm = {(x1, . . . , xm−1, 0)}.
This is clearly diffeomorphic to Rm−1 under the map sending (x1, . . . , xm−1) ∈
Rm−1 to (x1, . . . , xm−1, 0) ∈ ∂Hm.

Definition 3.7.13. A manifold of dimension m with boundary is given by an
atlas {(Ui, ϕi)}i∈I where Ui is homeomorphic to either Rm or Hm.

For each point x ∈ ∂M , the tangent space Tx(∂M) has codimension 1 in
TxM . Thus, there are precisely two unit vectors in TxM that are perpendicular
to Tx(∂M). Let ψ : W → M be a local parameterization with ψ(0) = x and
W open in Hm. We have that the map (D0ψ)−1 : TxX → Rm carries one
of the unit vectors to the unit vector at 0 in Rm pointing into Hm and the
other to the unit vector at 0 in Rm pointing outward from Hm. Lemma 3.7.14
shows that this does not depend on the choice of local parameterization. We
denote the unit vector in Tx(X) that maps to the outward pointing unit normal
vector by nx and refer to it as the outward normal vector. The orientation
on ∂M is given by declaring the sign of a basis v1, . . . , vm−1 of Tx(∂M) to be
the sign of ω(x)(nx, v1, . . . , vk−1). For n = 1 we declare the orientation of the
0-dimensional manifold to be the sign of nx. Note what is happening here is
that the orientation on M induces two possible orientations on ∂M and we are
fixing which one we will work with. Recall from calculus class that one always
said a curve enclosing an area in R2 was a positively oriented curved if the area
was to the left as one traversed the curve. That is essentially what is happening
here, just in more generality. This orientation is the correct one so that Stokes’
theorem has the familiar statement from calculus class.

Lemma 3.7.14. Let f : Hn → Hn be a diffeomorphism with everywhere positive
Jacobian determinant. The map f induces a map f̃ of the boundary of Hn with
itself. The induced map, as a diffeomorphism of Rn−1 also has positive Jacobian
determinant everywhere.
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Proof. Let x be an interior point of Hn. The Inverse Function Theorem shows
that the preimage of x must itself lie on the interior of Hn as well. Thus, we
see that f must map the boundary to the boundary. It remains to check that f̃
has positive Jacobian determinant.

Consider the case n = 2. Write

x1 = f1(y1, y2)

x2 = f2(y1, y2).

We have that f̃ is given by
x1 = f1(y1, 0).

As the Jacobian determinant of f is assumed to be positive, we have

∣∣∣∣∣

∂f1
∂y1

(y1, 0) ∂f1
∂y2

(y1, 0)
∂f2
∂y1

(y1, 0) ∂f2
∂y2

(y1, 0)

∣∣∣∣∣ > 0.

For a point on the boundary we have f2(y1, 0) = 0 for all y1. In particular, this
gives that ∂f2

∂y1
(y1, 0) = 0 for all y1. The fact that f maps Hn to itself we must

have ∂f2
∂y2

(y1, 0) > 0. Therefore, we have

∂f1
∂y1

(y1, 0) > 0,

which is what we wanted to show.

Recall that ∂Hm is diffeomorphic to Rm−1. We have an orientation on
∂Hm via the induced orientation from Hm as described above, but we also have
an orientation arising from the diffeomorphism with Rk−1. However, it is not
always the case that these two orientations agree. Let e1, . . . , em be the standard
basis for Rm. We saw above that this is a positively oriented basis with respect
to the standard orientation. Furthermore, e1, . . . , em−1 is a positively oriented
basis for Rm−1 with respect to the standard orientation there. The outward
normal vector to ∂Hm is given by −em = (0, . . . , 0,−1). Thus, in the boundary
orientation of ∂Hm induced from the orientation on Hm the sign of the basis
e1, . . . , em−1 is the sign of the ordered basis −em, e1, . . . , em−1 in the standard
orientation of Hm. One can easily calculate that the sign is given by (−1)m.
Thus, we see that the induced orientation on ∂Hm differs from the standard
orientation on Rm−1 by the factor (−1)m.

Theorem 3.7.15. (Stokes’ Theorem) Let M be a compact oriented m-manifold
with boundary. If ω ∈ Ωm−1

c (M) and ∂M is given the induced orientation, then

∫

M

dm−1ω =

∫

∂M

ω.
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Proof. First, observe that since each integral is linear, we may assume that the
support of ω lies in the image of a single local parameterization (W,ψ) with W
open in Rm or Hm. We treat each case separately.

First, suppose that W is open in Rm. In this case we see the support of ω
does not intersect ∂M and so

∫
∂M ω = 0. Furthermore, we have

∫

M

dm−1ω =

∫

W

ψ∗(dm−1ω)

=

∫

W

dm−1(ψ∗(ω)).

Write τ = ψ∗(ω). As τ ∈ Ωm−1
c (W ), we can write

τ =

m∑

i=1

fidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

for some fi ∈ Ω0
c(W ). Thus, we have

dm−1τ =

m∑

i=1

∂fi
∂xi

dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

=
m∑

i=1

(−1)i−1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxm.

This gives

∫

Rm

dm−1τ =

m∑

i=1

(−1)i−1

∫

Rm

∂fi
∂xi

dx1 ∧ · · · ∧ dxm

=

m∑

i=1

(−1)i−1

∫

Rm

∂fi
∂xi

dµm.

We know from analysis that the Lebesgue integral can be computed by a series
of integrals over R in any order. We integrate the ith term first with respect to
dxi. Up to multiplication by (−1)i−1 the ith term is given by

∫

Rm

∂fi
∂xi

dµm =

∫

Rm−1

(∫ ∞

−∞

∂fi
∂xi

dxi

)
dx1 · · · d̂xi · · · dxm

=

∫

Rm−1

(
lim
t→∞

fi(x1, . . . , t, . . . , xm)− lim
s→−∞

fi(x1, . . . , s, . . . , xm)

)
dx1 · · · d̂xi · · · dxm

= 0

where we have used that fi has compact support. Since this holds for i =
1, . . . ,m, we have

∫
M
dm−1ω = 0 and so the result holds for U open in Rm.

Now suppose that W ⊂ Hk is open. The argument given above works up
until the very last step, and even here the only issue is with the dxm term. In
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particular, we have

∫

M

dm−1ω = (−1)m−1

∫

Rm

∂fm
∂xm

dµm.

We can rewrite this integral as

(−1)m−1

∫

Rm

∂fm
∂xm

dµm = (−1)m−1

∫

Rm−1

(∫ ∞

0

∂fm
∂xm

dxm

)
dx1 · · · dxm−1.

We now use the fact that f is compactly supported to conclude that

∫

M

dm−1ω = (−1)m−1

∫

Rm−1

−fm(x1, . . . , xm−1, 0)dx1 · · · dxm−1

= (−1)m
∫

Rm−1

fm(x1, . . . , xm−1, 0)dµm−1.

Now consider the integral

∫

∂M

ω =

∫

∂Hm

τ.

Observe that since we have xm = 0 on ∂Hm we have dxm = 0 on ∂Hm as well
and so the form

fidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm = 0

except in the case that i = m. Thus, the restriction of τ to ∂Hm is given by

τ |∂Hm = fm(x1, . . . , xm−1, 0)dx1 ∧ · · · ∧ dxm−1.

Recalling that the diffeomorphism between ∂Hm and Rm−1 changes the orien-
tation by (−1)m, we have

∫

∂M

ω =

∫

∂Hm

fm(x1, . . . , xm−1, 0)dx1 ∧ · · · ∧ dxm−1

= (−1)m
∫

Rm−1

fm(x1, . . . , xm−1, 0)dµm−1.

Thus, we have the result in this case as well.

Exercise 3.7.16. Show that the map

∫

M

: Ωmc (M)→ R

descends to a map on cohomology.

We will finish this chapter on differential topology by proving a version of
Poincare duality and observing a couple of corollaries of it. Before we can give
Poincare duality, we need the notion of a good cover of a manifold.
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Definition 3.7.17. Let M be a m-manifold. Let U = {Ui} be an open cover of
M . We say that U is a good cover if all nonempty finite intersections of elements
in U are diffeomorphic to Rm, i.e., for any Ui1 , . . . , Uin with Ui1 ∩ · · · ∩Uin 6= ∅
we have that Ui1 ∩ · · · ∩Uin is diffeomorphic to Rm. If there exists a good cover
U of M so that U consists of finitely many open sets we saw the cover is of finite
type.

Theorem 3.7.18. Every manifold has a good cover. If the manifold happens
to be compact then the cover may be chosen to be finite.

We omit a proof of this theorem. It is not a particularly difficult result, but
it uses the result that one can put a Riemannian metric on a manifold and that
every point in a Riemannian manifold has a geodesically convex neighborhood.
Neither are particularly difficult results, but other than for this result we will
not encounter them so for brevity we omit them. To see a proof of this theorem
one can consult Theorem 5.1 of [2].

The Mayer-Vietoris sequence allows us to prove the following result.

Proposition 3.7.19. Let M be a m-manifold of finite type. The de Rham
cohomology groups of M are all finite dimensional.

Proof. First, observe that the Mayer-Vietoris sequence gives the exact sequence

· · · −→ Hk−1
dR (U1 ∩ U2)

∂k−1

−→ Hk
dR(U1 ∪ U2)

Hk
dR(ik)−→ Hk

dR(U1)⊕Hk
dR(U2) −→ · · · .

From this we have

Hk
dR(U1 ∪ U2) ∼= ker(Hk

dR(ik))⊕ im(Hk
dR(ik)) ∼= im(∂k−1)⊕ im(Hk

dR(ik)).

Thus, we have that if Hk
dR(U1), Hk

dR(U2), and Hk−1
dR (U1 ∩ U2) are all finite

dimensional, then Hk
dR(U1 ∪ U2) must be as well.

First suppose that M is diffeomorphic to Rm. Poincare’s lemma then gives
the result. We now proceed by induction on the number of sets in the cover of
M . Suppose the cohomology of any manifold covered by at most n − 1 open
sets is finite dimensional. Let M be a manifold covered by {U1, . . . , Un}. We
have that (U1 ∪ · · · ∪ Un−1) ∩ Un has a good cover by the n − 1 open sets
U1 ∩ Un, . . . , Un−1 ∩ Un. Our induction hypothesis gives that U1 ∪ · · · ∪ Un−1,
Un, and (U1 ∪ · · · ∪ Un−1) ∩ Un all have finite dimensional cohomology groups.
Now the remark above using the Mayer-Vietoris sequence gives the result.

Exercise 3.7.20. Show that if M is of finite type then the groups Hk
dR,c(M)

are all finite dimensional.

Let M be of finite type. The Betti numbers of M are defined by

bi(M) = dimR Hi
dR(M).

The Euler characteristic of M is defined to be

χ(M) =
m∑

i=0

(−1)ibi(M).
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It turns out that χ(M) can be computed by studying vector fields. This result
is the Poincare-Hopf theorem. This would take us too far afield to prove or even
state precisely, but is worth mentioning.

We briefly recap a few linear algebra facts now. Let V be a R-vector space.
Recall the dual space to V is given by V ∨ = HomR(V,R). Let 〈 , 〉 : V ⊗W → R
be a pairing of vector spaces. We say the pairing is nondegenerate if 〈v, w〉 = 0
for all v ∈ V implies w = 0 and 〈v, w〉 = 0 for all w ∈ W implies that v = 0.
Another way to view this is that the pairing is nondegenerate if the map v 7→
〈v, ∗〉 defines an injection of V into W∨ and the map w 7→ 〈∗, w〉 defines an
injection of W into V ∨.

Lemma 3.7.21. Let V and W be finite dimensional R vector spaces. The
pairing

〈 , 〉 : V ⊗W → R

is nondegenerate if and only if the map v 7→ 〈v, ∗〉 defines an isomorphism

V
≃−→W∨.

We leave the proof of this lemma as an exercise. It is either familiar from
linear algebra or good linear algebra practice.

Exercise 3.7.16 shows that integration descends to a map on cohomology.
Let [ω] ∈ Hk

dR(M) and [τ ] ∈ Hm−k
dR,c (M) for M a m-manifold. Then we have

[ω]∧ [τ ] = [ω ∧ τ ] ∈ Hm
dR,c(M). Combining this with Exercise 3.6.18 we see that

we have a map ∫

M

: Hk
dR(M)⊗Hm−k

dR,c (M)→ R.

Theorem 3.7.22. (Poincare Duality) The map
∫
M

: Hk
dR⊗Hm−k

dR,c (M) → R
given by integrating the wedge product is a nondegenerate pairing if M is an
orientable manifold of finite type. Equivalently, we have that if M is an ori-
entable manifold of finite type then

Hk
dR(M) ∼= (Hm−k

dR,c (M))∨.

Before we can prove this theorem we need two lemmas. The first is the Five
Lemma, a proof of which can be found in any book on homological algebra.

Lemma 3.7.23. Given a commutative diagram of abelian groups and group
homomorphisms

· · · // A1
f1 //

α

��

A2
f2 //

β

��

A3
f3 //

γ

��

A4
f4 //

δ

��

A5
//

ǫ

��

· · ·

· · · // B1
g1 // B2

g2 // B3
g3 // B4

g4 // B5
// · · ·

in which the rows are exact, if the maps α, β, δ, and ǫ are isomorphisms, then
so is γ.
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Lemma 3.7.24. The map

∫

M

: Hk
dR(M)⊗Hm−k

dR,c (M)→ R.

induces a sign-commutative diagram

· · · ∂k−1
// Hk

dR(U ∪ V )
ik //

fk
1

��

Hk
dR(U)⊕Hk

dR(V )
jk

//

fk
2

��

Hk
dR(U ∩ V )

∂k
//

fk
3

��

· · ·

· · · // Hm−k
dR,c (U ∪ V )∨

(im−k
c )∨ // Hm−k

dR,c (U)∨ ⊕Hm−k
dR,c (V )∨

(jm−k
c )∨ // Hm−k

dR,c (U ∩ V )∨
(∂m−k−1

c )∨ // · · · .

where to ease notation we write ik for Hk
dR(ik) and similarly for the other maps

on cohomology. Note here that sign-commutative means the diagram commutes
up to a possible difference in sign when one goes around a square along the
different paths.

Proof. This proof is mainly just writing down what each of the maps does. The
first step is to determine the vertical maps and the horizontal maps in the last
row. The vertical maps are easy to write down. Given [ω] ∈ Hk

dR(U ∪ V ) we
need to associate a linear functional to [ω]. Define fk1 ([ω]) ∈ Hm−k

dR,c (U ∪ V )∨ by
setting

fk1 ([ω])([τ ]) =

∫

U∪V

[ω ∧ τ ].

The map fk3 is defined analogously. The map fk2 is defined by

fk2 ([ω1], [ω2])([τ1], [τ2]) =

∫

U

[ω1 ∧ τ1] +
∫

V

[ω2 ∧ τ2].

The Mayer-Vietoris sequence for compactly supported de Rham cohomology
gives the long exact sequence

· · · −→ Hk
dR,c(U∩V )

Hk
dR,c(jk

c )−→ Hk
dR,c(U)⊕Hk

dR,c(V )
Hk

dR,c(i
k
c )−→ Hk

dR,c(U∪V )
∂k

−→ Hk+1
dR,c(U∩V ) −→ · · · .

Recall that given a long exact sequence of vector spaces

· · · −→ An
gn−→ An+1

gn+1−→ An+2 −→ · · ·

one has a long exact sequence of the dual spaces

· · · −→ A∨
n+2

g∨n+1−→ A∨
n+1

g∨n−→ A∨
n −→ · · ·

where the maps g∨n are given by setting g∨n (φ) = φ ◦ gn. This gives the maps
along the bottom row of the diagram.
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We will prove the result for the square with the ik and (im−k
c )∨ maps and

the square with the ∂k and (∂m−k−1
c )∨ maps, leaving the square with the jk

and (jm−k
c )∨ maps as an exercise. Let [ω] ∈ Hk

dR(U ∪ V ). Then we have

fk2 (ik([ω]))([τ1], [τ2]) =

∫

U

[i∗U (ω) ∧ τ1] +
∫

V

[i∗V (ω) ∧ τ2]

=

∫

U

[ω ◦ iU ∧ τ1] +

∫

V

[ω ◦ iV ∧ τ2].

We have that the map im−k
c takes ([τ1], [τ2]) to [τ1 ◦ iU + τ2 ◦ iV ]. Thus we have

(im−k
c )∨(fk1 ([ω]))([τ1], [τ2]) = fk1 ([ω])([τ1 ◦ iU ] + [τ2 ◦ iV ])

=

∫

U∪V

[ω ∧ τ1 ◦ iU ] + [ω ∧ τ2 ◦ iV ]

∫

U

[ω ◦ iU ∧ τ1] +
∫

V

[ω ◦ iV ∧ τ2].

Thus, we have the result for the first square.
The square with the ∂k and (∂m−k−1

c )∨ is given by

Hk
dR(U ∩ V )

∂k
//

fk
3

��

Hk+1
dR (U ∪ V )

fk+1
1

��
Hm−k

dR,c (U ∩ V )∨
(∂m−k−1

c )∨ // Hm−k−1
dR,c (U ∪ V )∨.

Now let [ω] ∈ Hk
dR(U ∩ V ). Recall that ∂k([ω]) satisfies that ∂k([ω])|U =

[−dk(ρV ω)] and ∂k([ω])|V = [dk(ρUω)]. Since [ω] ∈ Hk
dR(U ∩ V ), we have that

∂k([ω]) has support contained in U ∩ V , we can write for [τ ] ∈ Hm−k−1
dR,c (U ∪ V )

fk+1
1 (∂k[ω])([τ ]) =

∫

U∪V

[∂k(ω) ∧ τ ]

=

∫

U∩V

[−dk(ρV ω) ∧ τ ].

Observe that we have dk(ρV ω) = dρV ∧ ω + ρV ∧ dkω. Since [dkω] = 0 by
definition of the cohomology group, and [ρV ∧dkω] = [ρV ]∧ [dkω], we have that
[dk(ρV ω)] = [dρV ∧ ω]. Thus, we obtain

fk+1
1 (∂k[ω])([τ ]) = −

∫

U∩V

[d(ρV )ω ∧ τ ].

Recall that the map ∂m−k−1
c : Hm−k−1

dR,c (U ∪ V ) → Hm−k
dR,c (U ∩ V ) is given by

[τ ] 7→ [dm−k−1(ρV τ)]. As above, we have that [dm−k−1(ρV τ)] = [d(ρV )τ ].
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Thus, for ω ∈ Hk
dR(U ∩ V ) we have

(∂m−k−1
c )∨(fk3 ([ω]))([τ ]) =

∫

U∩V

[ω ∧ ∂m−k−1
c τ ]

=

∫

U∩V

[ω ∧ d(ρV )τ ]

= (−1)k
∫

U∩V

[d(ρV )ω ∧ τ ].

This gives the sign-commutativity of this square as well.

We can now prove Poincare duality.

Proof. (Proof of Theorem 3.7.22) Note that Lemma 3.7.23 along with Lemma
3.7.24 shows that if we know Poincare duality for U , V , and U ∩V then we will
have it for U ∪ V . We use induction on the cardinality of the good cover of M .
If M is diffeomorphic to Rm, then Poincare duality follows from the fact that
Poincare’s lemma gives

Hk
dR(Rm) ∼=

{
R k = 0
0 otherwise

and

Hk
dR,c(R

m) ∼=
{

R k = m
0 otherwise.

Thus, we have Poincare duality in this case. Suppose now that Poincare duality
holds for any manifold having a good cover with n−1 sets. Let M be a manifold
that has a good cover with n sets, say {U1, . . . , Un}. We know that (U1 ∪ · · · ∪
Un−1)∩Un has a good cover with n− 1 sets, namely, {U1∩Un, . . . , Un−1 ∩Un}.
Thus, our induction hypothesis gives that Poincare duality holds for U1 ∪ · · · ∪
Un−1, Un, and (U1∪· · · ∪Un−1)∩Un. Thus, as was mentioned at the beginning
of the proof this gives that it holds for U1 ∪ · · · ∪ Un as well. Hence, we have
the result by induction for any manifold of finite type.

Corollary 3.7.25. Let M be a connected oriented m-manifold of finite type.
Then we have

Hm
dR,c(M) ∼= R.

In particular, if M is compact, oriented, and connected then

Hm
dR(M) ∼= R.

Proof. We have by Poincare duality that (HmdR,c(M))∨ ∼= H0
dR(M) ∼= R since

we are assuming M is connected. However, we know that a finite dimensional
R-vector space V satisfies V ∼= V ∨, and so we have the first statement. If M
happens to be compact, then Hm

dR,c(M) ∼= Hm
dR(M), which gives the second

statement.
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Note that this result justifies the statement that was used in calculating the
cohomology of the torus T , namely that H2

dR(T ) ∼= R.
Let M and N be compact connected oriented m-manifolds and f : M → N

a smooth map. We define the degree of f , denoted deg(f), via the diagram

Hm
dR(N)

∼=

��

Hm
dR(f) // Hm

dR(M)

∼=

��
R

deg(f) // R.

In other words, deg(f) is defined to be the real number so that

∫

M

f∗(ω) = deg(f)

∫

N

ω.

Lemma 3.7.26. The degree of f depends only on the homotopy class of f :
M → N .

Proof. This is clear as the map Hk
dR(f) depends only on the homotopy class of

f .

Exercise 3.7.27. Show directly from the definition that the nth power map on
S1 has degree n.

We conclude this chapter with a proof of the fundamental theorem of algebra.

Theorem 3.7.28. (Fundamental Theorem of Algebra) Let f(x) = xn+an−1x
n−1+

· · ·+ a1x+ a0 be a polynomial with complex coefficients. If n ≥ 1 then f has a
root in C.

Proof. Suppose that f has no roots. For r ≥ 0, define

gr : S1 −→ S1

z 7→ f(rz)

|f(rz)| .

Note that this is a smooth map and is well-defined by our assumption. Given
r, s ≥ 0, we have that gr is homotopic to gs by setting

Ft(z) =
f((1− t)rz + tsz)

|f((1 − t)rz + tsz)| .

Thus, we have that for all r ≥ 0 that deg(gr) = deg(g0). However, g0(z) = 1
and so deg(gr) = 0.

Let r ≥ 0 and consider now the map G : S1 × [0, 1]→ S1 defined by

Gt(z) =
(rz)n + t(f(rz)− (rz)n)

|(rz)n + t(f(rz)− (rz)n)| .
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This is well-defined as long as (rz)n + t(f(rz) − (rz)n) 6= 0. Observe that we
have

|(rz)n + t(f(rz)− (rz)n)| ≥ |rz|n − |t(an−1(rz)
n−1 + · · ·+ a1(rz) + a0)|

≥ rn − |an−1(rz)
n−1 + · · ·+ a1(rz) + a0|

≥ rn − |an−1|rn−1 − · · · − a1r − a0.

We know that the limit of rn−|an−1|rn−1−· · ·− |a1|r−|a0| as r →∞ diverges
to ∞, so certainly there exists a large r so that |(rz)n + t(f(rz) − (rz)n)| 6= 0.
Thus, choosing such a r the map Gt(z) is well-defined and gives a homotopy
between gr and the map z 7→ zn. Thus, deg(gr) = n. This contradicts the fact
that n > 0.

Though a priori we only have that deg(f) is a real number, it turns out that
if M and N are compact m-manifolds, M connected, and f smooth then deg(f)
is in fact an integer. Let f : M → N be smooth with M compact, connected,
and oriented and N compact and oriented. Let y ∈ N be a regular value of f
and x ∈ f−1(y). The local index is defined by

Ind(f ;x) =

{
1 if Dxf : TxM → TyN preserves orientation
−1 otherwise.

Exercise 3.7.29. Let y ∈ N be a regular value for the smooth map f : M → N
between m-manifolds with M compact. Show that f−1(y) consists of finitely
many points x1, . . . , xn. Moreover, show that there exist disjoint open neigh-
borhoods Vi of xi in M and an open neighborhood U of y in N so that
f−1(U) = ∪ni=1Vi and f maps each Vi diffeomorphically onto U . The Inverse
Function Theorem may be of some help here.

Theorem 3.7.30. With M , N , and f as above, for every regular value y ∈ N
we have

deg(f) =
∑

x∈f−1(y)

Ind(f ;x).

In particular, we have that deg(f) ∈ Z.

Proof. Let x1, . . . , xn be the elements in f−1(y). Let U and V1, . . . , Vn be as
in Exercise 3.7.29. We may assume that U is connected, and so each Vi is
necessarily connected as well. We have that the diffeomorphism f |Vi : Vi → U is
either positively or negatively oriented. This is determined by whether Ind(f ;xi)
is 1 or −1. Let ω ∈ Ωm(N) with supp(ω) ⊂ U and

∫
N ω = 1. We necessarily

have that supp(f∗(ω)) ⊂ f−1(U) = ∪ni=1Vi. Thus, we can write

f∗(ω) =

n∑

i=1

ωi
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with ωi ∈ Ωm(M) and supp(ωi) ⊂ Vi. Note that ωi|Vi = (f |Vi)
∗(ω|U ). Then we

have

deg(f) = deg(f)

∫

N

ω

=

∫

M

f∗(ω)

=

n∑

i=1

∫

M

ωi

=
n∑

i=1

∫

Vi

(f |Vi)
∗(ω|U )

=

n∑

i=1

Ind(f ;xi)

∫

U

ω|U

=

n∑

i=1

Ind(f ;xi)

where we have used that supp(ω) ⊂ U and so
∫
U ω|U =

∫
N ω = 1.

Exercise 3.7.31. Use Theorem 3.7.30 to give an alternative computation of
the degree of the nth power map in Exercise 3.7.27.

186



Chapter 4

Singular Homology and

Cohomology

In this chapter we provide the basics of singular homology and cohomology. We
begin with a section on simplicial homology as it is a bit easier of an introduction
to the material. For the most part we follow the presentation of [5].

4.1 Simplicial Homology

In this section we give definitions of the simplicial homology groups as well as
some basic examples. The simplicial homology groups are easier to compute
with for simple examples, so this allows us to get our hands on some computa-
tions almost immediately. However, showing basic properties such as the fact
that if X and Y are homotopic then they have the same homology groups re-
quires us to work in the setting of singular homology. Before we can define the
homology groups, we need to construct the relevant chain complex.

Our first step is to define a n-simplex. The standard n-simplex is defined by

∆n =

{
(t0, . . . , tn) ∈ Rn+1 :

n∑

i=0

ti = 1, ti ≥ 0 for i = 0, . . . , n

}
.

For example, ∆2 ⊂ R3 is given by
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������������
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������������
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Note that there are arrows around the edges of ∆2. It will be important
for us to keep track of an ordering. A general n-simplex is the smallest convex
set in Rn+1 containing n + 1 points v0, . . . , vn so that vn − v0, . . . , v1 − v0 are
linearly independent. The points vi are the vertices of the simplex. We denote
the simplex by [v0, . . . , vn]. Note that by writing the simplex in this way we
are including an ordering of the vertices. This determines an orientation on the
boundary edges: [vi, vj ] is positively oriented if j > i. Note that specifying such
an ordering gives a canonical linear homomorphism from ∆n to [v0, . . . , vn] by
sending (t0, . . . , tn) to

∑
i tivi. For the point p =

∑
i tivi ∈ [v0, . . . , vn], we call

(t0, . . . , tn) the barycentric coordinates of p.

Example 4.1.1. A 0-simplex is simply a point. The 1-simplex [v0, v1] is the
line between v0 and v1 oriented from v0 to v1. The 2-simplex [v0, v1, v2] is the
triangle

v0 v1

v2

The 3-simplex [v0, v1, v2, v3] is the tetrahedron

v0

v1

v2

v3

Observe that given a n-simplex [v0, . . . , vn], if we remove a vertex we are left
with a (n− 1)-simplex. We give this the orientation induced by the orientation
of the original n-simplex. Such a (n− 1)-simplex is called a face of [v0, . . . , vn].
For instance, given the 2-simplex [v0, v1, v2], we have faces [v0, v1], [v0, v2], and
[v1, v2]. The union of all the faces is referred to as the boundary of [v0, . . . , vn]
and denoted ∂[v0, . . . , vn]. The interior of the simplex [v0, . . . , vn] is given by
Int([v0, . . . , vn]) = [v0, . . . , vn]− ∂[v0, . . . , vn].

Definition 4.1.2. Let X be a topological space. A ∆-complex structure on X
is a collection of maps σi : ∆n → X with n depending on i so that

1. The restriction σi|Int(∆n) is injective and each point of X is in the image
of exactly one such restriction.
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2. Each restriction of σi to a face of ∆n is one of the maps σj : ∆n−1 → X .
(Note here we identify a face of ∆n with ∆n−1 via the canonical linear
homomorphism between them that preserves the orientation.)

3. A set U ⊂ X is open if and only if σ−1
i (U) is open in ∆n for each σi.

We call X with a ∆-complex structure a ∆-complex.

Example 4.1.3. We can decompose the torus into two triangles, three edges,
and one vertex as in the following picture.

vv

vv

V

U

aa

b

b

c

This gives T as a ∆-complex with six σi’s.

Example 4.1.4. We can decompose RP2 into two triangles, 3 edges, and 2
vertices as in the following picture.

v

v

V

U

aa

b

b

c

w

w

This gives RP2 as a ∆-complex with seven σi’s.

Exercise 4.1.5. Decompose the Klein bottle into simplices and show it is a
∆-complex as above.

Exercise 4.1.6. The torus with two holes can be formed as a quotient space
via the following picture.

a

a

b

b
c

c

d

d
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Decompose this into simplices and show the torus with two holes is a ∆-complex.
(Hint: There should be six triangles.)

We can now define the simplicial homology groups. Let X be a ∆-complex.
Let G be an abelian group. It is typical to focus on G = Z here, but there is
really no need to specify G.

Definition 4.1.7. The n-chains of X are elements of the free abelian group
∆n(X ;G) generated over G by the maps σi : ∆n → X . In other words, a
n-chain is a formal sum

∑
i giσi.

In order to form homology groups, we need to put the ∆n(X ;G) into a chain
complex. Define the boundary homomorphism

dn : ∆n(X ;G)→ ∆n−1(X ;G)

by setting

dn(σi) =

n∑

j=0

(−1)jσi|[v0,...,v̂j ,...,vn]

and then extending linearly to all other elements in ∆n(X ;G). First, observe
that each element σi|[v0,...,v̂j ,...,vn] lies in ∆n−1(X ;G), so the map is well-defined.
The negative signs are inserted in order to keep track of orientations.

Example 4.1.8. We look at the easiest cases.

1. Recall the 1-simplex [v0, v1]. In this case d1([v0, v1]) = [v1]− [v0].

2. Recall the 2-simplex [v0, v1, v2]. In this case we have d2([v0, v1, v2]) =
[v1, v2]− [v0, v2] + [v0, v1].

Exercise 4.1.9. Write out the map d3 on the 3-simplex [v0, v1, v2, v3].

Lemma 4.1.10. The composition

∆n(X ;G)
dn−→ ∆n−1(X ;G)

dn−1−→ ∆n−2(X ;G)

is exactly 0.

Proof. We have

dn−1 ◦ dn(σ) = dn−1

(
n∑

i=0

(−1)iσ|[v0,...,v̂i,...,vn]

)

=
∑

j<i

(−1)j(−1)iσ|[v0,...,v̂j ,...,v̂i,...,vn]

= +
∑

j>i

(−1)j(−1)iσ|[v0,...,v̂i,...,v̂j ,...,vn].

Now observe that the second sum is the negative of the first sum, as you should
check, and so they cancel out.
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Thus, we have a chain complex

· · · −→ ∆n(X ;G)
dn−→ ∆n−1(X ;G)

dn−1−→ ∆n−2(X ;G) −→ · · · −→ ∆1(X ;G)
d1−→ ∆0(X ;G)

d0−→ 0.

In particular, we have im(dn+1) ⊂ ker(dn) and so we can form simplicial homol-
ogy groups by setting

H∆
n (X ;G) = ker(dn)/ im(dn+1).

The elements of ker(dn) are referred to as n-cycles and the elements of im(dn+1)
as n-boundaries. Note that is it customary that if G = Z, we simply write
H∆
n (X) for H∆

n (X ; Z).

Example 4.1.11. Let X = S1. This is a ∆-complex with one vertex v and one
edge e as pictured.

e

v

This gives that ∆0(X ;G) = Gv ∼= G and ∆1(X ;G) = Ge ∼= G. Note that
since there are no n-simplices for n ≥ 2, we have ∆n(X ;G) = 0 for all n ≥ 2.
The boundary map d1 : ∆1(X ;G) → ∆0(X ;G) is given by d1(e) = v − v =
0. Thus, we have that H∆

1 (X ;G) = ker(d1)/ im(d2) ∼= G and H∆
0 (X ;G) =

ker(d0)/ im(d1) ∼= G. In particular, we see that if we take G = Z we get

H∆
k (X) ∼=

{
Z k = 0, 1
0 otherwise.

Example 4.1.12. Let X = T . As we saw above, this is a ∆-complex with
two 2-simplices U and V , three 1-simplices a, b, and c, and one 0-simplex v.
Immediately from this we see that ∆n(X ;G) = 0 for all n ≥ 3. Let G = Z.
Observe that d1(a) = d1(b) = d1(c) = v− v = 0, so the map d1 is exactly 0. We
know that ∆0(X) is generated by v, and so we have

H∆
0 (X) = ker(d0)/ im(d1)

= ker(d0)

= Zv
∼= Z.

We have that d2(U) = a + b − c = d2(V ). Thus, we see that im(d2) =
Z(a+ b− c) ∼= Z. As a basis for ∆1(X) we take {a, b, a+ b− c} so that we easily
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see that

H∆
1 (X) = ker(d1)/ im(d2)

= (Za+ Zb+ Z(a+ b− c))/Z(a+ b − c)
∼= Za⊕ Zb
∼= Z⊕ Z.

Finally, since ∆3(X) = 0, we know that H∆
2 (X) = ker(d2). Note that

d2(mU + nV ) = (m + n)(a + b − c). This is equal to zero precisely when
m = −n. Thus, we have that ker(d2) = Z(U − V ) ∼= Z. Thus, H∆

2 (X) ∼= Z.
To summarize, we have

H∆
k (X) ∼=






Z k = 0, 2
Z⊕ Z k = 1
0 otherwise.

Exercise 4.1.13. Compute the homology groups H∆
k (T ; Z/2Z).

Exercise 4.1.14. Show that the simplicial homology groups of RP2 are given
by

H∆
k (RP2) ∼=





Z k = 0
Z/2Z k = 1
0 otherwise.

One should note here that for each of the examples, there was a choice
of ∆-complex for the space X . It is natural to ask if the homology groups
depend upon this choice. Moreover, if X and Y are homeomorphic, are the
homology groups isomorphic? What if X and Y are only homotopic? These
are all important questions, but it turns out it is easier to work with singular
homology to answer such questions. We will study singular homology and then
show that the singular homology groups agree with the simplicial homology
groups for any ∆-complex X .

4.2 Definitions and Basic Properties of Singular

Homology

In this section we will define and prove many of the basic properties of singular
homology. We will also show how the singular homology groups agree with those
calculated in the previous section.

Let X be a topological space. A singular n-simplex of X is a continuous map
σ : ∆n → X . Note that we do not require this to be a nice embedding at all,
only that the map is continuous. Given an abelian group G, we let Cn(X ;G)
denote the free abelian group over G generated by singular n-simplices of X ,
i.e. Cn(X ;G) consists of elements of the form

∑
i giσi. This is huge group as

we do not put requirements such as used to define a ∆-complex on Cn(X ;G).
We refer to elements of Cn(X ;G) as singular n-chains (or simply n-chains.)
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We define the boundary maps dn : Cn(X ;G) → Cn−1(X ;G) as in § 4.1,
namely,

dn(σ) =

n∑

i=1

(−1)iσ|[v0,...,v̂i,...,vn].

In this we are identifying ∆n−1 with [v0, . . . , v̂i, . . . , vn] and so σ|[v0,...,v̂i,...,vn] is
a (n− 1)-simplex. Again we see that the boundary maps form a chain complex
and so we can define singular homology groups by

Hi(X ;G) = ker(dn)/ im(dn+1).

Proposition 4.2.1. Let {Xi}i∈I be the path-components of X. Then we have

Hi(X ;G) ∼=
⊕

i∈I

Hi(Xi;G).

Proof. First, observe that since ∆n is path-connected for all n and any singular
n-simplex is continuous, we have that σ(∆n) must be path-connected as well.
Thus, we have that Cn(X ;G) =

⊕
i∈I Cn(Xi;G). Furthermore, the definition

of the boundary map shows that it respects this decomposition. Thus, we have
that ker(dn) and im(dn+1) also decompose into direct sums, which gives the
result.

Proposition 4.2.2. We have that H0(X ;G) splits into a direct sum of copies
of G, one for each path component of X.

Proof. In light of Proposition 4.2.1, it is enough to show that if X is path-
connected then H0(X ;G) ∼= G.

We know that d0 is the zero map, so H0(X ;G) = C0(X ;G)/ im(d1). Define

ε : C0(X ;G)→ G

by setting

ε

(
∑

i

giσi

)
=
∑

i

gi.

This map is clearly surjective and a homomorphism, so it remains to show that
ker(ε) = im(d1).

Let σ : ∆1 → X be a singular 1-simplex. We have

ε(d1(σ)) = ε(σ|[v1] − σ|[v0])

= 1− 1

= 0.

This gives that im(d1) ⊂ ker(ε). Suppose now that ε (
∑

i giσi) = 0, i.e.,
∑

i gi =
0. We know that the σi’s are singular 0-simplices, so they are points ofX . Let x0

be a point in X . Choose a path γi : I → X from x0 to σi(v0), which is possible
since X is assumed to be path-connected. Let σ0 be the singular 0-simplex with
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image x0. Then we have that γi is a singular 1-simplex, γi : [v0, v1] → X . We
have d1(γi) = σi − σ0. Thus,

d1

(
∑

i

giγi

)
=
∑

i

giσi −
∑

i

giσ0

=
∑

i

giσi

where we have used that
∑
i giσ0 = σ0

∑
i gi = 0. Thus, we see that if

∑
i giσi ∈

ker(ε), then it is a boundary and so we have ker(ε) = im(d1) as claimed.

In the particularly easy case that X is a single point, we can calculate all
the homology groups.

Proposition 4.2.3. If X is a single point then

Hk(X ;G) ∼=
{

0 k > 0
G k = 0.

Proof. We already know the result in the case k = 0. Observe that for each k
we have a unique singular n-simplex σn since X is a single point. In particular,
we have that Cn(X ;G) ∼= G for n ≥ 0. We have dn(σn) =

∑n
i=0(−1)iσn−1.

Thus, we get that dn = 0 if n is odd and σn−1 if n is even, n ≥ 0. Thus, our
chain complex becomes

· · · −→ G
≃−→ G

0−→ G
≃−→ G

0−→ G −→ 0.

This gives the result. Note here that we have used that the map gσn 7→ gσn−1

from Cn(X ;G) to Cn−1(X ;G) is an isomorphism to get the chain complex.

Exercise 4.2.4. It is often desirable to have all the homology groups of a point
vanish. One can accomplish this by using reduced homology. To define the
reduced homology groups, use the chain complex

· · · −→ C2(X ;G)
d2−→ C1(X ;G)

d1−→ C0(X ;G)
ε−→ G −→ 0.

Check that this gives a chain complex. The resulting homology groups are
referred to as the reduced homology and denoted H̃k(X ;G). Show that for a

spaceX one has H̃k(X ;G) ∼= Hk(X ;G) for k > 0 and H0(X ;G) ∼= H̃0(X ;G)⊕G.

We would now like to show that homotopic spaces X and Y have isomor-
phic homology groups. As the set-up mirrors what we have done before for
cohomology in Chapter 3, we leave many of the verifications to exercises. Let
f : X → Y be a map between topological spaces. There is an induced map
f∗ : Cn(X ;G) → Cn(Y ;G) defined by f∗(σ) = f ◦ σ and then extending lin-
early.

Exercise 4.2.5. Check that the induced maps f∗ satisfy f∗dn = dnf∗.
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· · · // Cn+1(X ;G)

f∗

��

dn+1 // Cn(X ;G)

f∗

��

dn // Cn−1(X ;G)

f∗

��

// · · ·

· · · // Cn+1(Y ;G)
dn+1 // Cn(Y ;G)

dn // Cn−1(Y ;G) // · · · .

Thus, we have that the collection {f∗} gives a chain map, i.e, the following
diagram commutes:

Exercise 4.2.6. Show that the maps f∗ descend to maps on the homology
groups.

Exercise 4.2.7. Show that if f : X → Y and g : Y → Z are maps, then
(f ◦ g)∗ = f∗ ◦ g∗.

Exercise 4.2.8. Show that id is the identity map, then id∗ = id. Be sure you
understand what id means on each side of the equation!

Theorem 4.2.9. If maps f, g : X → Y are homotopic then the induced maps
on cohomology are equal.

Proof. Our first step is to decompose ∆n×I into (n+1)-simplices. For example,
if we consider the case of a 1-simplex we have

v0 v1

w0 w1

I

So in this case we see that we can break ∆1 × I into the 2-simplices [v0, v1, w1]
and [v0, w0, w1]. The case of a 2-simplex can be given by

v0 v1

v2

w0
w1

w2

I

In this case we see that we can break ∆2× I into the 3-simplices [v0, v1, v2, w2],
[v0, v1, w1, w2], and [v0, w0, w1, w2]. More generally, let [v0, . . . , vn] = ∆n × {0}
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and [w0, . . . , wn] = ∆n × {1} with wi chosen so that wi and vi have the same
image under the projection ∆n × I → ∆n. Our goal is to show that the union
of the (n+1)-simplices [v0, . . . , vi, wi, . . . , wn] give ∆n× I. It is easy to see this
is the case in the two examples we gave above.

For i between 0 and n − 1 define a map φi : ∆n → I by φi(t0, . . . , tn) =
ti+1+· · ·+tn where this is defined in terms of barycentric coordinates. Note that
we define φn to be 0 and φ−1 to be 1. Observe that the graph of φi is precisely the
n-simplex [v0, . . . , vi, wi+1, . . . , wn]. For instance, in our example above with the
1-simplex we have φ0(t0, t1) = t1, which shows that [v0, v1] maps onto [v0, w1]
and φ1(t0, t1) = 0 so [v0, v1] maps onto [v0, v1]. Note that φi(t0, . . . , tn) ≤
φi−1(t0, . . . , tn) and so the graph of φi lies below the graph of φi−1. The region
between these graphs is precisely the (n+1)-simplex [v0, . . . , vi, wi, . . . , wn]. We
obtain that [v0, . . . , vi, wi, . . . , wn] is a true (n+1)-simplex since wi does not lie
on the graph of φi. We have that

0 = φn(t0, . . . , tn) ≤ φn−1(t0, . . . , tn) ≤ · · · ≤ φ0(t0, . . . , tn) ≤ φ−1(t0, . . . , tn) = 1.

This shows that we get all of ∆n × I.
We can now define a chain homotopy between f∗ and g∗. Let σ be a singular

n-simplex and define σ × id : ∆n × I → X × I. Let F : X × I → Y be a
homotopy between f and g. Define P : Cn(X ;G)→ Cn+1(Y ;G) by setting

Pn(σ) =

n∑

i=1

(−1)iF ◦ (σ × id)|[v0,...,vi,wi,...,wn].

We will show that
dn+1Pn − g∗ + f∗ = Pn+1dn

which gives that Pn is the chain homotopy we seek. Observe we have

dn+1Pn(σ) = dn+1

(
n∑

i=1

(−1)iF ◦ (σ × id)|[v0,...,vi,wi,...,wn]

)

=
∑

j≤i

(−1)j(−1)iF ◦ (σ × id)|[v0,...,v̂j ,...,vi,wi,...,wn]

+
∑

j≥i

(−1)j+1(−1)iF ◦ (σ × id)|[v0,...,vi,wi,...,ŵj ,...,wn].

Observe that in the case that i = j, the terms in the two sums cancel except for
the terms F ◦ (σ × id)|[v̂0,w0,...,wn] and −F ◦ (σ × id)|[v0,...,vn,ŵn]. However, we
have that F ◦(σ× id)|[v̂0,w0,...,wn] = g◦σ = g∗(σ) and −F ◦(σ× id)|[v0,...,vn,ŵn] =
−f ◦ σ = f∗(σ). Thus, we have that

dn+1Pn(σ)− g∗(σ) + f∗(σ) =
∑

j<i

(−1)j(−1)iF ◦ (σ × id)|[v0,...,v̂j ,...,vi,wi,...,wn]

+
∑

j>i

(−1)j+1(−1)iF ◦ (σ × id)|[v0,...,vi,wi,...,ŵj ,...,wn].
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However, we have

Pn+1(dnσ) =
∑

i<j

(−1)j(−1)iF ◦ (σ × id)|[v0,...,vi,wi,...,v̂j ,...,wn]

+
∑

i>j

(−1)j(−1)i−1F ◦ (σ × id)|[v0,...,v̂j ,...,vi,wi,...,wn],

which is precisely dn+1Pn − g∗ + f∗ as desired.
Thus, we have a chain homotopy between f∗ and g∗. As before, we see that

if [σ] ∈ Hn(X ;G), then we have

f∗([σ]) − g∗([σ]) = dn+1(Pn([σ])) + Pn+1(dn([σ]))

= dn+1(Pn([σ]))

= 0.

Thus, we see the maps agree on homology as claimed.

Corollary 4.2.10. If X and Y are homotopy equivalent, then Hn(X ;G) ∼=
Hn(Y ;G) for all n.

Example 4.2.11. We can combine Corollary 4.2.10 along with Proposition
4.2.3 to see that

Hk(R
m;G) ∼=

{
0 k 6= 0
G k = 0.

since Euclidean space is contractible to a point by straight-line homotopy.

Let X be a topological space and A a subspace of X . We would like to
be able to relate the groups Hn(X ;G), Hn(A;G), and Hn(X/A;G) where X/A
is the quotient space as defined in Example 2.9.5 of § 2.9. In general it is
very difficult to compute homology groups straight from the definition, so we
would like to be able to relate the homology groups of X to subspaces to help us
actually compute the homology groups. At first glance one might conjecture that
Hn(X/A;G) ∼= Hn(X ;G)/Hn(A;G). However, this is not the case in general.
Actually, it is good that this does not happen because if it did, our theory
would be useless. For instance, we can consider X as a subspace of the cone
of X : CX = (X × I)/(X × {0}). The cone of X is contractible and so has
trivial homology groups, which would give that all the homology groups of X
as trivial as well since X embeds into its cone. In order to get a handle on how
the homology groups of X and A are related, we define the relative homology
groups.

Let A be a subspace of X . Set Cn(X,A;G) = Cn(X ;G)/Cn(A;G). It is
clear from the definition that dn restricts to a map from Cn(A;G) to Cn−1(A;G),
and so we have a map dn : Cn(X,A;G)→ Cn−1(X,A;G). We again have that
dn−1 ◦ dn = 0 and so we have a chain complex

· · · −→ Cn(X,A;G)
dn−→ Cn−1(X,A;G)

dn−1−→ Cn−2(X,A;G) −→ · · ·
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which allows us to define the relative homology groups as

Hn(X,A;G) = Hn(C∗(X,A;G)).

Observe that elements of Hn(X,A;G) are represented by n-chains σ ∈ Cn(X ;G)
so that dn−1(σ) ∈ Cn−1(A;G). Furthermore, a relative cycle σ ∈ Cn(X,A;G) is
trivial in Hn(X,A;G) if and only if it is a relative boundary, i.e., σ = dn+1α+β
for some α ∈ Cn+1(X ;G) and some β ∈ Cn(A;G). This allows us to view the
group Hn(X,A;G) as really the homology of X modulo the homology of A.

Exercise 4.2.12. Let i : A → X be the inclusion map and j : X → X/A the
projection map. Show that for each n ≥ 0 we have an exact sequence

0 −→ Cn(A;G)
i∗−→ Cn(X ;G)

j∗−→ Cn(X,A;G) −→ 0.

As in the case of cohomology, we would like to have a long exact sequence
of homology. Observe that we have the following commutative diagram:

...

��

...

��

...

��
0 // Cn+1(A;G)

dn+1

��

i∗ // Cn+1(X ;G)

dn+1

��

j∗ // Cn+1(X,A;G) //

dn+1

��

0

0 // Cn(A;G)

dn

��

i∗ // Cn(X ;G)

dn

��

j∗ // Cn(X,A;G) //

dn

��

0

0 // Cn−1(A;G)

��

i∗ // Cn−1(X ;G)

��

j∗ // Cn−1(X,A;G) //

��

0

...
...

...

We have already seen that the maps i∗ and j∗ descend to maps on cohomol-
ogy, so it remains to define a connecting homomorphism

∂n : Hn(X,A;G)→ Hn−1(A;G)

so that we have the following long exact sequence in homology

· · · ∂n+1−→ Hn(A;G)
i∗−→ Hn(X ;G)

j∗−→ Hn(X,A;G)
∂n−→ Hn−1(A;G)

i∗−→ · · · .

Let [σ] ∈ Hn(X,A;G) and let σ ∈ Cn(X,A;G) be a representative. We know
that j∗ : Cn(X ;G)→ Cn(X,A;G) is surjective, so there exists a τ ∈ Cn(X ;G)
so that j∗(τ) = σ. We have that dn(τ) ∈ Cn−1(X ;G) and the fact that the
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diagram above commutes, we have j∗(dn(τ)) = dn(j∗(τ)) = dn(σ) = 0 because
σ ∈ ker(dn) by assumption of it being a cycle. Thus, using the exactness of
the (n− 1)-row we see that there exists u ∈ Cn−1(A;G) so that i∗(u) = dn(τ).
Define ∂n([σ]) = [u].

Exercise 4.2.13. Check that ∂n is well-defined. Namely, show that u is a cycle
and that the definition of ∂n does not depend on any of the choices made.

Exercise 4.2.14. Show that this definition of ∂n yields a long exact sequence
of homology groups as given above.

Theorem 4.2.15. Given a topological space X and a subspace A, one has the
following long exact sequence of homology groups

· · · ∂n+1−→ Hn(A;G)
i∗−→ Hn(X ;G)

j∗−→ Hn(X,A;G)
∂n−→ Hn−1(A;G)

i∗−→ · · · .

Exercise 4.2.16. Show that for any x0 ∈ X one has Hk(X, {x0}) ∼= H̃k(X) for
all k ≥ 0.

Exercise 4.2.17. Let A be a nonempty space of X . Show that the boundary
operator ∂1 : H1(X,A;G) → H0(A;G) sends H1(X,A;G) into the subgroup

H̃0(A;G) of H0(A;G) and show the following sequence is exact:

· · · j∗−→ H1(X,A;G)
∂1−→ H̃0(A;G)

i∗−→ H̃0(X ;G)
j∗−→ H0(X,A;G) −→ 0.

Let f : X → Y be a continuous map and let A ⊂ X and B ⊂ Y be
subspaces. Moreover, suppose that f(A) ⊂ B. We denote this by writing
f : (X,A) → (Y,B). We have already seen that f induces a map on chains
f∗ : Cn(X ;G)→ Cn(Y ;G) by sending σ to f ◦σ. Observe that if σ ∈ Cn(A;G),
then the assumption that f(A) ⊂ B gives that f∗(σ) = f ◦σ ∈ Cn(B;G). Thus,
f∗ maps Cn(A;G) into Cn(B;G) and so f∗ gives a map on the relative chains

f∗ : Cn(X,A;G)→ Cn(Y,B;G).

Furthermore, one can easily check that this descends to a map on the relative
homology groups

f∗ : Hn(X,A;G)→ Hn(Y,B;G).

Proposition 4.2.18. If two maps f, g : (X,A)→ (Y,B) are homotopic through
maps of pairs (X,A) and (Y,B), then

f∗ = g∗ : Hn(X,A;G)→ Hn(Y,B;G).

Proof. One uses the same argument as in the proof of Theorem 4.2.9. The same
map P works here as well.

Exercise 4.2.19. Let B ⊂ A ⊂ X be subspaces. Show that one has an exact
sequence

0 −→ Cn(A,B;G) −→ Cn(X,B;G) −→ Cn(X,A;G) −→ 0.
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Use this to show that one has a long exact sequence in homology

· · · −→ Hn(A,B;G) −→ Hn(X,B;G) −→ Hn(X,A;G) −→ Hn−1(A,B;G) −→ · · · .

We recover the long exact sequence in Theorem 4.2.15 by setting B to be a
single point.

The following theorem shows that given subspaces Z ⊂ A ⊂ X , we can
“excise” the subset Z and the relative homology groups are not changed. It is
known as the Excision Theorem.

Theorem 4.2.20. (Excision Theorem) Let Z ⊂ A ⊂ X with Cl(Z) ⊂ Int(A).
Then natural inclusion (X − Z,A− Z) →֒ (X,A) induces isomorphisms

Hk(X − Z,A− Z;G) ∼= Hk(X,A;G)

for all k.

We will not prove this theorem as it is fairly long and involved. It essentially
amounts to showing that one can compute homology groups by using simplices
that are small. For instance, if X is a metric space, for any ǫ > 0 one can insist
all the simplices lie in cubes of size ǫ. One can find a proof of this theorem in
Chapter 2 of [5].

Corollary 4.2.21. Let A,B be subspaces of X so that X ⊂ Int(A) ∪ Int(B).
The inclusion (B,A ∩B) →֒ (X,A) induces isomorphisms

Hk(B,A ∩B;G) ∼= Hk(X,A;G).

Proof. We reduce this to Theorem 4.2.20. Set Z = X − B. Then we have
A ∩B = A− Z. The condition that X ⊂ Int(A) ∪ Int(B) implies that Cl(Z) ⊂
Int(A).

We can now relate the relative homology groups Hn(X,A;G) to the reduced

homology groups H̃n(X/A;G), at least in the case that A is closed, nonempty
and is a deformation retract of an open neighborhood in X . We call such a pair
(X,A) a good pair.

Proposition 4.2.22. Let (X,A) be a good pair with V an open neighborhood
of A that deformation retracts to A. Then the quotient map j induces isomor-
phisms Hn(X,A;G) ∼= H̃n(X/A;G) for all n.

Proof. Observe that we have the following commutative diagram
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Hn(X,A;G) //

��

Hn(X,V ;G)

��

Hn(X −A, V −A;G)oo

��
Hn(X/A,A/A;G) // Hn(X/A, V/A;G) Hn(X/A−A/A, V/A −A/A;G)oo

where the horizontal maps are induced from inclusions and the vertical ones from
projection. Since A is a deformation retract of V , we have that Hn(V,A;G) ∼=
Hn(A,A;G) = 0. Thus, using Exercise 4.2.19 we see that Hn(X,A;G) ∼=
Hn(X,V ;G). Furthermore, we see that Hn(X/A,A/A;G) ∼= Hn(X/A, V/A;G)
by the exact same argument since V/A retracts to A/A. Thus, both of the left
horizontal arrows are isomorphisms. We obtain that the horizontal right two
arrows are isomorphisms from Theorem 4.2.20.

Observe that the projection map j : X → X/A is a homeomorphism when we
restrict to X−A, namely, j : X−A→ X/A−A/A is a homeomorphism. Thus,
the right vertical arrow is an isomorphism. One can now use the commutativity
of the diagram to see that the left-most vertical arrow is an isomorphism as
well. Thus, we have that

Hn(X,A;G) ∼= Hn(X/A,A/A;G).

However, we know that A/A is a single point so Exercise 4.2.16 gives that

Hn(X/A,A/A;G) ∼= H̃n(X/A;G) as desired.

Corollary 4.2.23. We have

H̃k(S
n;G) ∼=

{
G k = n,
0 k 6= n.

Proof. Let X = Dn = {x ∈ Rn : |x| ≤ 1} and A = Sn−1 so that A = ∂X .
Observe that X/A ∼= Sn. (Be sure you understand why!) The fact that Dn is

contractible gives H̃k(D
n;G) = 0 for all k. We apply the long exact sequence

given in Exercise 4.2.17 to obtain

0 −→ Hk(D
n, Sn−1;G) −→ Hk−1(S

n−1;G) −→ 0,

for k > 1 and

0 −→ H1(D
n, Sn−1;G) −→ H̃0(S

n−1;G) −→ 0.

Thus we have that

Hk(D
n, Sn−1;G) ∼= H̃k−1(S

n−1;G)

for all k where we have used the homology and reduced homology groups agree
for k > 0. We have that (Dn, Sn−1) is a good pair, so Proposition 4.2.22 gives
that

Hk(D
n, Sn−1;G) ∼= H̃k(S

n;G).
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Combining these results we see that

H̃k(S
n;G) ∼= H̃k−1(S

n−1;G).

Observing that S0 consists of two points, we obtain the result by using Propo-
sitions 4.2.1 and 4.2.3 and induction.

Exercise 4.2.24. Use this to give alternative proofs of Lemma 3.4.28 and The-
orem 3.4.27.

Example 4.2.25. We can construct explicit generators of the groups Hn(D
n, ∂Dn)

and H̃n(S
n) that will be useful to know. First we deal with Hn(Dn, ∂Dn). Ob-

serve that we can replace the pair by (∆n, ∂∆n) since they are homotopy equiv-
alent. We claim that the identity map id : ∆n → ∆n when viewed as a singular
n-simplex is a cycle generating Hn(∆n, ∂∆n). We proceed by induction. The
case n = 0 is clear. Let Λ ⊂ ∆n be the union of all but one of the (n − 1)
dimensional faces of ∆n. Observe that we have an isomorphism

Hn(∆
n, ∂∆n)

≃−→ Hn−1(∂∆n,Λ)

that arises from considering the triple in Exercise 4.2.19 as (∆n, ∂∆n,Λ) and
using that Hn(∆

n,Λ) = 0 since ∆n deformation retracts onto Λ and so (∆n,Λ)
is homotopy equivalent to (Λ,Λ). We also have an isomorphism

Hn−1(∆
n−1, ∂∆n−1)

≃−→ Hn−1(∂∆n).

To obtain this isomorphism, observe that the inclusion ∆n−1 →֒ ∂∆n of the
face not contained in Λ induces a homeomorphism of quotients ∆n−1/∂∆n−1 ∼=
∂∆n/Λ. One then uses that the pairs being considered are good pairs along
with Proposition 4.2.22 to obtain the isomorphism. We now have the result by
induction since the cycle id is sent under the first isomorphism to ∂ id, which
equals ± id in Cn−1(∂∆n,Λ).

We can now regard Sn as two n-simplices ∆n
1 and ∆n

2 with the boundaries
identified in the obvious way. We can then view the difference ∆n

1 − ∆n
2 as a

singular n-chain that is a cycle. We claim this generates H̃n(S
n) for n > 0.

Using the long exact sequence for the pair (Sn,∆n
2 ) we obtain an isomorphism

H̃n(Sn)
≃−→ Hn(S

n,∆n
2 ).

We can also use the same argument given above with quotients to obtain an
isomorphism

Hn(∆
n
1 , ∂∆n

1 )
≃−→ Hn(S

n,∆n
2 ).

Under these isomorphisms, the cycle ∆n
1 −∆n

2 in the group H̃n(S
n) corresponds

to the cycle ∆n
1 in the group Hn(∆

n
1 , ∂∆n

1 ), which represents a generator of this

group. Thus, we have that ∆n
1 −∆n

2 is a generator of the group H̃n(S
n).
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When studying topology, there is always the issue of picking the “right”
spaces to study. For instance, if we try and be too general it will be difficult to
prove any interesting theorems. Of course, we would like to be as general as is
reasonably possible to encompass as many spaces as we can. In studying singular
homology, the “right” spaces are generally CW-complexes. A CW-complex is
built up inductively. We call a set a n-cell if it is homeomorphic to Un =
{x ∈ Rn : |x| < 1}. Let Y be a Hausdorff space and X a closed subspace of Y .
Suppose that Y −X consists of a disjoint union of n-cells {eni }i∈I . Furthermore,
assume that for each i ∈ I there is a continuous map fi : Dn → Cl(en) so that
fi maps Un homeomorphically onto en and fi(S

n−1) ⊂ X . If I is a finite set, we
say Y is obtained from X by attaching n-cells. If I is not finite, we require that
Y has the weak topology determined by the maps fi and the inclusion X →֒ Y .
The weak topology condition means that A ⊂ Y is closed if and only if A ∩X
is closed and the sets f−1

i (A) are closed for all i ∈ I.

Definition 4.2.26. A structure of a CW-complex is prescribed on a Hausdorff
space X by an ascending chain of closed subspaces

X0 ⊂ X1 ⊂ · · ·

that satisfy:

1. X0 has the discrete topology

2. For n > 0, Xn is obtained from Xn−1 by attaching a collection of n-cells
as described above.

3. X is the union of X i for i ≥ 0.

4. The space X and the subspacesX i all have the weak topology: A subset A
is closed if and only if A∩Cl(en) is closed for all n-cells en for n = 0, 1, . . . .

We call the subset X0 of X the vertices. The subset Xn is the n-skeleton of X .
We say X is finite or infinite according to whether the number of cells is finite
or infinite. If X = Xn we say X is finite dimensional and call n the dimension
of X .

Definition 4.2.27. A subset A of a CW-complex X is called a subcomplex if
A is the union of cells of X , and if for any cell en we have that en ⊂ A implies
that Cl(en) ⊂ A.

In fact, if A is a subcomplex of X then the sets An = A ∩ Xn define a
CW-complex structure on A. It is a fact that if A ⊂ X is a subcomplex of a
CW-complex X , then (X,A) is a good pair. One can see Appendix A of [5] for
a proof of this fact and many others about the basic topology of CW-complexes.

Definition 4.2.28. A continuous map f : X → Y of CW-complexes is called
cellular if f(Xn) ⊂ Y n for n ≥ 0.
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Example 4.2.29. Let X = Sn. Then X is a CW-complex with one e0 and one
en. For instance, the case n = 2 is given by identifying the boundary of the open
unit disc U2 to a point, which gives the sphere. In particular, for 0 ≤ k < n,
Xk consists of a single point and Xn = Sn and the map that attaches en to
Xn−1 is by mapping the boundary of Dn to a point.

Example 4.2.30. Let X be a 1-dimensional CW-complex. Then X consists of
vertices and edges, 0-cells and 1-cells. This is a graph.

Example 4.2.31. The ∆-complexes given in § 4.1 are CW-complexes. Note
that for n ≥ 1, Int(∆n) is homeomorphic to Un. Thus, we have that the torus,
RP2, and the Klein bottle are all CW-complexes.

Example 4.2.32. Consider RPn. Observe that RP0 is just a point. We also
have that RP1 is the circle. For instance, one can see this via the map

[x : y] 7→
(

x√
x2 + y2

,
y√

x2 + y2

)
.

We can use these base skeletons to build RPn. We proceed by induction. Sup-
pose that we have constructed RPn−1. We can build RPn from RPn−1 by
adjoining a single n-cell. We define the map

fn : Dn → RPn

by setting
fn(x1, . . . , xn) = [x1 : · · · : xn :

√
1− |x|2]

where x = (x1, . . . , xn). It now straight-forward to check that fn maps Dn −
Sn−1 homeomorphically onto RPn−RPn−1 and maps Sn−1 onto RPn−1, though
not homeomorphically. Thus, we have that RPn is a CW-complex with one cell
of each dimension, i.e., RPn = e0 ∪ e1 ∪ · · · ∪ en.

Exercise 4.2.33. Show that CPn is a CW-complex with decomposition CPn =
e0 ∪ e2 ∪ e4 ∪ · · · ∪ e2n.

We have the excision property for subcomplexes of CW-complexes as well.

Corollary 4.2.34. If the CW-complex X is the union of subcomplexes A and
B, then the inclusion map (B,A ∩B)→ (X,A) induces isomorphisms

Hn(B,A ∩B;G) ∼= Hn(X,A;G)

for all n.

Proof. We know that all CW-pairs are good pairs, and so we can use Proposition
4.2.22 to pass to the quotient spaces B/A ∩ B and X/A. These spaces are
homeomorphic since X = A ∪B, and so we have the result.
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The wedge sum is a useful operation when studying CW-complexes. Let X
and Y be topological spaces and let x0 ∈ X , y0 ∈ Y . We define the wedge sum
X ∨ Y of X and Y with respect to x0 and y0 to be the quotient of the disjoint
union of X and Y obtained by identifying x0 and y0. More generally, we can
define a wedge sum of an arbitrary collection of spaces Xi with respect to points
xi ∈ Xi for i ∈ I by forming the quotient space of the disjoint union of the Xi

by identifying the xi to a single point. We denote this space by ∨i∈IXi.

Example 4.2.35. The wedge sum S1 ∨ S1 is a figure eight.

Example 4.2.36. Consider the set X0 = {e01, e02, e03}. Attach two 1-cells e11 and
e12 to form X1 as in the following picture:

e01

e02

e03

e11
e12

Consider the quotient space X1/X0. Note we identify all the vertices to one
point, say v. We have the picture:

v

e11 e12

Note that X1/X0 is homeomorphic to S1 ∨ S1.
More generally, if Xn is a n-skeleton formed from Xn−1 by attaching n-cells,

then Xn/Xn−1 is homeomorphic to the wedge sum of copies of Sn, one copy
for each n-cell attached.

We will return to CW-complexes in § 4.4. We finish this section by proving
that the simplicial and singular homology groups agree for a ∆-complexX . This
will give us the singular homology groups of the examples calculated in § 4.1. Let
X be a ∆-complex and A a subcomplex, i.e., A is a ∆-complex formed via the
union of simplicies in X . We can define relative simplicial homology groups by
setting ∆k(X,A;G) = ∆k(X ;G)/∆n(A;G). As in the singular case this gives a
chain complex and so we define the relative simplicial homology groups via that
chain complex. We obtain a long exact sequence of simplicial homology groups
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as in Theorem 4.2.15. There is a natural map ∆k(X,A;G)→ Ck(X,A;G). Note
we include the case A = ∅ to recover the natural map ∆k(X ;G) → Ck(X ;G).
This natural map induces a map on homology H∆

k (X,A;G) → Hk(X,A;G).
Note that a ∆-complex X is certainly a CW-complex as well.

Theorem 4.2.37. The homomorphisms H∆
k (X,A;G) → Hk(X,A;G) are iso-

morphisms for all k and all ∆-complex pairs (X,A).

Proof. We begin with the case that X is finite dimensional and A is empty. We
have the following commutative diagram of exact sequences:

H∆
n+1(X

k, Xk11) //

��

H∆
n (Xk−1) //

��

H∆
n (Xk) //

��

H∆
n (Xk, Xk11) //

��

H∆
n−1(X

k−1)

��
Hn+1(X

k, Xk−1) // Hn(Xk−1) // Hn(X
k) // Hn(X

k, Xk−1) // Hn−1(X
k−1).

Note that we drop the G from the notation here to save space, but the result
follows with coefficients as well.

We have that ∆n(X
k, Xk−1;G) is zero for n 6= k and is a free abelian group

generated by the k-simplices when k = n. Thus, we have that H∆
n (Xk, Xk−1;G)

is zero for n 6= k and is free abelian generated by the k-cycles for n = k. Con-
sider the map Ψ :

∐
i(∆

k
i , ∂∆k

i ) −→ (Xk, Xk−1) given by the maps ∆k → X
for each k-simplex. We have that Ψ gives a homeomorphism of the spaces∐
i ∆

k
i /
∐
i ∂∆k

i with Xk/Xk−1, and so induces an isomorphism of singular ho-
mology groups. This shows that Hn(X

k, Xk−1;G) is zero for n 6= k. For
n = k we have that it is free abelian with basis the relative cycles given
by characteristic maps of the k-simplices of X since Hk(∆

k, ∂∆k;G) is gen-
erated by the identity map ∆k −→ ∆k (check this). Thus, we have the map
H∆
k (Xk, Xk−1;G) −→ Hk(X

k, Xk−1;G) is an isomorphism. This gives that the
first and fourth vertical maps in the commutative diagram above are isomor-
phisms. We may assume the second and fifth vertical maps are isomorphisms
by induction, so the Five Lemma gives that the middle one is an isomorphism
as well. This gives the result in this case.

Suppose now that X is infinite dimensional. One has that a compact set
in X can only meet finitely many open simplices of X . One can see Appendix
A of [5] for a proof of this fact. We will encounter it again when we continue
our study of CW-complexes. In the case of a ∆-complex it is even easier and
should be proved as an exercise. Let [z] ∈ Hn(X ;G) with z a representative in
Cn(X ;G). By definition this is a linear combination of finitely many singular
simplices with compact images, so it must be contained in Xk for some k. Since
we already have that H∆

n (Xk;G) → Hn(X
k;G) is an isomorphism for all n,

we have that z is homologous to a simplicial cycle. Thus, we have that the
map H∆

n (X ;G)→ Hn(X ;G) is surjective. Now suppose that [σ] ∈ H∆
n (X ;G) is

represented by σ ∈ ∆n(X ;G) and it is the boundary of a singular chain inX . We
know this chain must have compact image, and so is contained in Xk for some
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k. Thus, σ represents an element in the kernel of H∆
n (Xk;G) → Hn(X

k;G),
which is trivial. Thus, σ must be a simplicial boundary and we are done.

One can do the case when A 6= ∅ by the same method as above if one
replaces the commutative diagram with the corresponding commutative diagram
of relative homology and simplicial homology groups.

An efficient way for computing the homology groups of a CW complex is via
cellular homology, which we introduce after a few basic definitions and facts.

The following corollary of Proposition 4.2.22 will also be necessary in com-
puting the homology of CW complexes.

Corollary 4.2.38. Let Xk be a collection of topological spaces and ∨kXk the
wedge sum. The inclusion maps ik : Xk −→ ∨kXk induce an isomorphism

⊕k(ik)∗ :
⊕

k

H̃n(Xk) −→ H̃n(∨kXk)

assuming that the wedge sum is formed with respect to base points xk so that
(Xk, {xk}) is a good pair.

Proof. Consider the pair (
∐
kXi,

∐
k{xk}). We have that

Hn

(
∐

k

Xk,
∐

k

{xk}
)
∼=
⊕

k

Hn(Xk, {xk})

∼=
⊕

k

H̃n(Xk).

On the other hand, Proposition 4.2.22 gives that

Hn

(
∐

k

Xk,
∐

k

{xk}
)
∼= H̃n(∨kXk).

Combining these gives the result.

Lemma 4.2.39. Let X be a CW complex.

1. Hn(X
k, Xk−1) = 0 for n 6= k and is free abelian for n = k with a basis in

one to one correspondence with the n-cells of X.

2. Hn(X
k) = 0 for n > k. In particular, if X is finite dimensional then

Hn(X) = 0 for n > dimX.

3. The inclusion map i : Xk → X induces an isomorphism i∗ : Hn(X
k) →

Hn(X) if n < k.

Proof. 1. Observe that (Xk, Xk−1) is a good pair and Xk/Xk−1 is a wedge
sum of k-spheres. We now use Corollary 4.2.38 combined with our previous
calculations of the homology of spheres to get the result.
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2. Consider the long exact sequence arising from the pair (Xk, Xk−1). In
this exact sequence we have

Hn+1(X
k, Xk−1) −→ Hn(X

k−1) −→ Hn(X
k) −→ Hn(X

k, Xk−1).

If n 6= k, k−1, then the outer two groups are 0 and so we have Hn(X
k−1) ∼=

Hn(X
k) for all n 6= k, k − 1. Thus, if n > k then we have Hn(X

k) ∼=
Hn(X

k−1) ∼= · · · ∼= Hn(X
1) ∼= Hn(X0) = 0. This proves the second part.

3. Note that we can use what we have just shown in the case that X is
finite dimensional to conclude that if n < k then Hn(X

k) ∼= Hn(X
k+1) ∼=

· · · ∼= Hn(X
k+m) for all m ≥ 0, which gives the third result if X is finite

dimensional. In the case that X is not finite dimensional, we use the same
argument we’ve used before to observe that any singular n-chain in X
has compact image so sits inside Xm for some m. Thus, a n-cycle in X
is homologous to a cycle in Xk if k > n by the finite dimensional case.
Thus, the induced map i∗ : Hn(X

k) → Hn(X) is surjective. Similarly, if
a n-cycle in Xk bounds a chain in X , this chain lies in Xm for some m
with m ≥ k, so by the finite dimensional case the cycle bounds a chain in
Xk if k > n.

We can now build the cellular chain complex which can be very useful in
computing homology groups of CW complexes. Consider the following diagram:

0

0

''PPPPPPPPPPPPPP Hn(X
n+1)

≃ //

66mmmmmmmmmmmmmmm
Hn(X)

Hn(Xn)

jn

''OOOOOOOOOOO

in

77ooooooooooo

· · · // Hn+1(X
n+1, Xn)

∂n+1

77nnnnnnnnnnnn jn∂n+1 // Hn(X
n, Xn+1)

∂n ((QQQQQQQQQQQQ

jn−1∂n // Hn−1(X
n−1, Xn−2) // · · ·

Hn−1(X
n−1)

jn−1

55lllllllllllll

0

66mmmmmmmmmmmmmmm

Observe that the composition of two of the maps in the horizontal part of
the diagram consists of at two successive maps in one of the diagonal exact
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sequences, so must be zero. Thus, the horizontal row gives a chain complex.
This complex is known as the cellular chain complex. We denote the homology
groups of this chain by HCW

n (X).

Theorem 4.2.40. One has HCW
n (X) ∼= Hn(X) for all n.

Proof. To ease the notation write dCW
n for jn−1 ◦ ∂n. Observe that we have

Hn(X) ∼= Hn(X
n)/ ker(in) ∼= Hn(X

n)/ im(∂n+1).

The fact that jn is injective gives that im(∂n+1) maps isomorphically onto
im(jn∂n+1) = im(dCW

n+1). Furthermore, we see that Hn(X
n) maps isomorphi-

cally onto im(jn) = ker(∂n). We have that jn−1 is injective, so ker(∂n) =
ker(dCW

n ). Thus, the map jn induces an isomorphism between the quotient
Hn(X

n)/ im(∂n+1) and ker(dCW
n )/ im(dCW

n+1), which gives the result.

Corollary 4.2.41. If X is a CW complex with k n-cells, then Hn(X) is gen-
erated by at most k elements. In particular, if there are no n-cells in X then
Hn(X) = 0.

Proof. We know that Hn(X
n, Xn−1) is a free abelian group generated by the n-

cells. Thus, we must have that the kernel of dCW
n is generated by at most these

k n-cells. Thus, HCW
n (X) ∼= Hn(X) is generated by at most k elements.

Corollary 4.2.42. Let X be a CW complex that has no two of its cells in
adjacent dimensions. Then Hn(X) is free abelian with basis in one to one cor-
respondence with the n-cells of X. In particular, this gives

Hk(CPn) =

{
Z for k = 0, 2, 4, · · · , 2n
0 otherwise.

Proof. This is clear because in this case all of the maps dCW
n must be 0.

Another nice application we have is to the Euler characteristic of a finite
CW complex. Define the Euler characteristic of a finite CW complex X to be

χ(X) =
∑

n

(−1)ncn

where cn is the number of n-cells of X . Note that this is a generalization of
the familiar formula for 2-complexes that reads χ(X) is the number of vertices
- number of edges + number of faces. In fact, we can now see that χ(X) can
be defined completely in terms of the homology of X and so is a homotopy
invariant of the space.

Theorem 4.2.43. For X a finite CW complex one has

χ(X) =
∑

n

(−1)n rank(Hn(X)).

209



Proof. This result is a purely algebraic result. Let

0 −→ Ck
dk−→ Ck−1 −→ · · · −→ C1

d1−→ C0 −→ 0

be a descending chain complex of finitely generated abelian groups. Defining
Zn, Bn, and Hn(C∗) as always, we have short exact sequences

0 −→ Zn −→ Cn −→ Bn−1 −→ 0

and
0 −→ Bn −→ Zn −→ Hn(C∗) −→ 0.

We now apply the fact that if

0 −→ A −→ B −→ C −→ 0

is a short exact sequence of finitely generated abelian groups, then rank(B) =
rank(A) + rank(C) to obtain that

rank(Cn) = rank(Zn) + rank(Bn−1)

= rank(Bn) + rank(Hn(C∗)) + rank(Bn−1).

If we multiply this equation by (−1)n and sum over all n we obtain

∑

n

(−1)n rank(Cn) =
∑

n

(−1)n rank(Hn(C∗)).

Now just apply this purely algebraic result to the complex Cn = Hn(X
n, Xn−1)

to get the result.

4.3 The Universal Coefficient Theorem

In § 4.2 we saw that working with homology with coefficients in an arbitrary
abelian group did not add any difficulties in proving theorems. It can be the
case that using arbitrary coefficients can make working examples a little trickier,
but essentially it did not appear anything new was gained or lost by switching
from G to Z or vice versa. In this section we justify that statement by relating
the homology groups Hk(X,A;G) to Hk(X,A) ⊗ G. Note when a subscript is
not added to the tensor product it is understood to be a tensor product over
Z. One of the main reasons for interest in such a result for us is to prepare us
for the same result when we introduce cohomology. In that context a universal
coefficient theorem will be important when we compare different cohomology
theories.

Let X be a topological space and G an abelian group. Recall that Cn(X ;G)
is the free abelian group over G generated by the chains σ : ∆n → X . In
particular, given a chain τ ∈ Cn(X ;G), we can write τ =

∑
i giσi for σi : ∆n →

X singular n-simplices. From this it is clear that we have

Cn(X ;G) ∼= Cn(X)⊗G
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where the map is given by
∑
i giσi maps to

∑
i σi ⊗ gi. From this we see that

we can write our chain complex

· · · −→ Cn(X ;G)
dn−→ Cn−1(X ;G)

dn−1−→ Cn−2(X ;G) −→ · · ·

as

· · · −→ Cn(X)⊗G dn⊗1−→ Cn−1(X)⊗G dn−1⊗1−→ Cn−2(X)⊗G −→ · · · .

Thus, the homology groups we defined relative to Cn(X ;G) can also be given
as the homology groups of this chain complex, namely,

Hn(X ;G) = Hn(C∗(X)⊗G).

The group G is referred to as the coefficients of the homology group. We can
view the relative homology groups in this way as well, in particular, Cn(X,A;G) ∼=
Cn(X,A)⊗G.

Before we relate Hn(X,A;G) to Hn(X,A) ⊗ G, we consider the induced
homomorphisms Hn(X,A;G) → Hn(X,A;H) when we have a homomorphism
between the groups G and H . Let φ : G → H be a group homomorphism.
Clearly, we have an induced homomorphism on chains given by

1⊗ φ : Cn(X,A)⊗G −→ Cn(X,A)⊗H.

These maps descend to maps on homology, though to avoid confusion we add
some details here. (Note that we do not have that Hn(X,A;G) ∼= Hn(X,A)⊗G!)
Let [τ ] ∈ Hn(X,A;G) and let τ =

∑
i σi⊗gi ∈ Cn(X,A)⊗G be a representative

of [τ ]. We have that (1⊗φ)(τ) =
∑
i σi ⊗φ(gi) ∈ Cn(X,A)⊗H . It is therefore

natural to define

φ♯ : Hn(X,A;G)→ Hn(X,A;H)

[τ ] 7→ [(1 ⊗ φ)(τ)].

There are two things to check. The first is that the image of this map is actually
a cycle, and the second is that it does not depend on the choice of representative
for [τ ]. To see the image is a cycle, observe that

(dn ⊗ 1)

(
∑

i

σi ⊗ φ(gi)

)
=
∑

i

dn(σi)⊗ φ(gi)

= (1 ⊗ φ)

(
∑

i

dn(σi)⊗ gi
)

= (1 ⊗ φ)(0)

= 0

where we have used that
∑

i dn(σi) ⊗ gi = 0 because τ is a cycle and that
φ is a homomorphism so takes 0 to 0. Thus, we have that the image lies in
Hn(X,A;H).
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Exercise 4.3.1. Check that if one chooses different representatives of [τ ] that
they are mapped to the same thing in Hn(X,A;H).

For this induced map to be useful it is important that the map is “natural”,
i.e., it commutes with the induced maps we have already defined. Namely, given
a continuous map f : (X,A)→ (Y,B) and a group homomorphism φ : G→ H ,
it is important that the following diagram commutes:

Hn(X,A;G)
f∗ //

φ♯

��

Hn(Y,B;G)

φ♯

��
Hn(X,A;H)

f∗ // Hn(Y,B;H).

However, this follows immediately from the definitions. It is also important that
the induced map φ♯ behaves well with respect to the boundary homomorphism
∂n. In particular, we have that the following diagram commutes:

Hn(X,A;G)
∂n //

φ♯

��

Hn−1(A;G)

φ♯

��
Hn(X,A;H)

∂n // Hn−1(A;H).

Again, one only needs to write down the definitions of the maps to see that this
is true.

This induced map has many important uses in homology theory. For exam-
ple, let R be a ring and suppose that G is a R-module. We write the action of
R on G as left multiplication. Thus, for each r ∈ R we have an endomorphism
of G given by g 7→ rg. Using what we have just shown, each r ∈ R induces a
map r♯ of Hn(X,A;G).

Exercise 4.3.2. Show that the induced maps r♯ give the group Hn(X,A;G) the
structure of a R-module. Furthermore, show that the commutative diagrams
above show that f∗ and ∂n are homomorphisms of R-modules.

A particularly nice case is when R is a field and G is a vector space over
R. In this case one has that Hn(X,A;G) is a vector space over R as well and
the maps f∗ and ∂n are linear transformations. What makes this situation
particularly nice is that one can then use all the tools of linear algebra to study
the homology groups.

We now return to studying the relation between Hn(X,A;G) and Hn(X,A)⊗
G. In order to do this we introduce some definitions and results from general
homological algebra.
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Definition 4.3.3. Let A,B, and C be abelian groups with

0 −→ A
i−→ B

j−→ C −→ 0

an exact sequence. We say the exact sequence splits if there is an isomorphism
B ∼= A⊕ C that makes the following diagram commute
where the maps A→ A⊕C is the natural inclusion map and the map A⊕C → C

B

∼=

��

j

##F
FF

FF
FF

FF

0 // A

i

;;xxxxxxxxx

""F
FF

FF
FF

FF C // 0

A⊕ C

;;xxxxxxxxx

is the natural projection map.

Exercise 4.3.4. Show that if A,B, and C are free abelian groups then every
short exact sequence is split. In fact, given a short exact sequence, show it is
enough for C to be free for the short exact sequence to split.

Lemma 4.3.5. Let A,B, and C be abelian groups and

0 −→ A
i−→ B

j−→ C −→ 0

a split short exact sequence. Given any abelian group G, the sequence

0 −→ A⊗G i⊗1−→ B ⊗G j⊗1−→ C ⊗G −→ 0

is a split exact sequence.

Proof. First, observe that the tensor product operation is right exact, namely,
we get that

A⊗G i⊗1−→ B ⊗G j⊗1−→ C ⊗G −→ 0

is exact for any exact sequence

0 −→ A
i−→ B

j−→ C −→ 0.

To get the injectivity of the first map, observe that

(A⊕ C)⊗G ∼= (A⊗G)⊕ (C ⊗G)

and so clearly the inclusion map

A⊗G→ (A⊗G)⊕ (C ⊗G)

is injective. This gives the injectivity since the sequence is split. It is also clear
now that the sequence

0 −→ A⊗G i⊗1−→ B ⊗G j⊗1−→ C ⊗G −→ 0

is split.
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Let {Cn, dn} be a descending chain complex of free abelian groups, i.e., a
chain complex given as

· · · −→ Cn+1
dn+1−→ Cn

dn−→ Cn−1 −→ · · ·

with each Cn a free abelian group. Set Zn = ker(dn) ⊂ Cn and Bn =
im(dn+1) ⊂ Cn. We can define the homology group of Cn as

Hn(C∗) = Zn/Bn.

We have the following commutative diagram

...

��

...

��

...

��
0 // Zn

dn

��

// Cn
dn //

dn

��

Bn−1

dn−1

��

// 0

0 // Zn−1

��

// Cn−1
dn−1 //

��

Bn−2

��

// 0

...
...

...

where each horizontal row is exact. Observe that each row is split because Bn
is free as it is a subgroup of the free abelian group Cn. Let G be any abelian
group. Lemma 4.3.5 combined with the above commutative diagram gives us
an exact sequence of chain complexes

0 −→ Z∗ ⊗G −→ C∗ ⊗G −→ B∗−1 ⊗G −→ 0.

This gives a long exact sequence of homology groups

· · · −→ Hn+1(B∗⊗G) −→ Hn(Z∗⊗G) −→ Hn(C∗⊗G) −→ Hn(B∗⊗G) −→ · · · .

However, we know that dn ⊗ 1 maps all elements of Zn ⊗G and Bn ⊗G to 0,
so Hn(Z∗ ⊗ G) = Zn ⊗G and Hn(B∗ ⊗ G) = Bn−1 ⊗G. Thus, the long exact
sequence becomes

(4.1) · · · −→ Bn ⊗G −→ Zn ⊗G −→ Hn(C∗ ⊗G) −→ Bn−1 ⊗G −→ · · · .

The connecting homomorphism ∂n+1 : Hn+1(B∗⊗G)→ Hn(Z∗⊗G) is the map
in ⊗ 1 : Bn ⊗ G → Zn ⊗ G where in is the inclusion map. One should check
this as an exercise. We break up the long exact sequence (4.1) into short exact
sequences

(4.2) 0 −→ coker(in ⊗ 1) −→ Hn(C∗ ⊗G) −→ ker(in−1 ⊗ 1) −→ 0.
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Consider the short exact sequence defining Hn(C∗), namely,

0 −→ Bn
in−→ Zn

jn−→ Hn(C∗) −→ 0.

As was stated above, it is a fact from commutative algebra that tensoring with
G is right exact so we have the exact sequence

Bn ⊗G in⊗1−→ Zn ⊗G jn⊗1−→ Hn(C∗)⊗G −→ 0.

In particular, we see that

Hn(C∗)⊗G ∼= (Zn ⊗G)/ ker(jn ⊗ 1)
∼= (Zn ⊗G)/ im(in ⊗ 1)

= coker(in ⊗ 1).

Thus, we can rewrite the short exact sequence (4.2) as

0 −→ Hn(C∗)⊗G −→ Hn(C∗ ⊗G) −→ ker(in−1 ⊗ 1) −→ 0.

It remains to study ker(in−1 ⊗ 1). This requires a little more background and
work.

Definition 4.3.6. Let H be an abelian group. A free resolution F∗ = {Fi, fi}
of H is an exact sequence

· · · −→ F2
f2−→ F1

f1−→ F0
f0−→ H −→ 0

where each Fi is a free abelian group.

We know that if we tensor the free resolution of H with an abelian group G
the resulting sequence is not necessarily exact. We define

Hn(F∗ ⊗G) = ker(fn ⊗ 1)/ im(fn+1 ⊗ 1).

This group only depends upon G and H and not the free resolution F∗ used as
we will see in Lemma 4.3.8. First, we need the following result on chain maps
of free resolutions.

Lemma 4.3.7. Let E∗ a free resolution of an abelian group G and F∗ be a
free resolution of an abelian group H. Then every homomorphism φ : G → H
extends to a chain map from E∗ to F∗, i.e., the following diagram commutes
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· · · // E2

φ2

��

e2 // E1

φ1

��

e1 // E0

φ0

��

e0 // G //

φ

��

0

· · · // F2
f2 // F1

f1 // F0
f0 // H // 0.

Moreover, any two such chain maps extending φ are chain homotopic.

Proof. We construct the maps φi inductively. It is enough to define φi on a basis
of Ei since Ei is free. Let x ∈ E0 be a basis element. Since f0 is surjective,
there exists a y ∈ F0 so that f0(y) = φ(e0(x)). Define φ1(x) = y. This defines
φ0. We would like to define φ1 in the same manner. Let x now be a basis
element in E1. We want to find y ∈ F1 so that f1(y) = φ0(e1(x)). We see
that such a y will exist if φ0(e1(x)) ∈ im(f1) = ker(f0). However, we have that
φ0(e1(x)) ∈ ker(f0) because φ0(e1(X)) = φ(e0(e1(x))) = φ(0) = 0. Thus, we
can define φ1 as desired. The rest of the maps are defined in the same manner.

Now suppose there is another chain map φ′ : E∗ → F∗ extending φ. Consider
the maps ψi : Ei → Fi defined by ψi = φi − φ′i. This is a chain map extending
the zero map from G to H . It is enough to show that ψi is chain homotopic
to 0, i.e., to construct maps Ti : Ei → Fi+1 so that ψi = fi+1Ti + Ti−1ei.
We construct the maps Ti inductively much as the maps φi were constructed.
For i = 0, set T−1 : G → F0 to be the zero map. The relation we need in
this case is ψ0 = f1T0. Define T0 as follows. Let x ∈ E0 a basis element.
Note that there is a y ∈ F1 so that f1(y) = ψ0(x) because im(f1) = ker(f0) and
f0(ψ0(x)) = ψ(e0(x)) = 0 since ψ is the zero map. Thus, we can define T0(x) = y
and this gives the desired relation. Now we show the inductive step. We need
to define Ti so that it takes a basis element x ∈ Ei to a basis element y ∈ Fi+1so
that fi+1(y) = ψi(x) − Ti−1ei(x). This is possible if ψi(x) − Ti−1ei(x) lies in
im(fi+1) = ker(fi), i.e, if fi(ψi − Ti−1ei) = 0. However, using the relations
fiψi = ψi−1ei and ψi−1 = fiTi−1 + Ti−2ei−1 (which holds by our induction
hypothesis), we have

fi(ψi − Ti−1ei) = fiψi − fiTi−1ei

= ψi−1ei − fiTi−1ei

= (ψi−1 − fiTi−1)ei

= Ti−1ei−1ei

= 0.

Thus, we have the result.

Lemma 4.3.8. Let E∗ and F∗ be two free resolutions of H. For each n there
is a canonical isomorphism

Hn(E∗ ⊗G) ∼= Hn(F∗ ⊗G).

Proof. Let E∗ and F∗ be two free resolutions of H . We tensor these free reso-
lutions with G to obtain chain complexes E∗⊗G and F∗⊗G with maps φn⊗ 1
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giving the chain map between them. These maps descend to maps on homology

φ∗ : Hn(E∗ ⊗G)→ Hn(F∗ ⊗G).

Note that the maps on homology are independent of the chain maps φ∗ as if
one has a different sent of chain maps, we have that they are chain homotopic,
which in homology means they agree.

Suppose that we have a composition H1
φ−→ H2

ψ−→ H3 with free reso-
lutions F∗, F

′
∗, and F ′′

∗ respectively. The induced maps on homology satisfy
(ψφ)∗ = ψ∗φ∗. One can see this by choosing the chain map F∗ → F ′′

∗ to be
the composition of chain maps F∗ → F ′

∗ → F ′′
∗ . Now if φ is an isomorphism

and ψ the inverse of φ, then we have ψ∗φ∗ = (ψφ)∗ = 1∗ = 1 and likewise for
φ∗ψ∗. Now take φ to be the identity with two different free resolutions. Then
we obtain a canonical isomorphism

1∗ : Hn(E∗ ⊗G)→ Hn(F∗ ⊗G).

Since the group Hn(F∗ ⊗ G) depends only on H and G, we denote it as
Torn(H,G). One always has a free resolution given by

0 −→ F1 −→ F0 −→ H −→ 0

for any abelian group G. In particular, choose a set of generators for H and let
F0 be the free abelian group with basis in one to one correspondence with the
generators of H . Then we have a surjective map F0 → H . Let F1 be the kernel
of this map. We have that F1 is free abelian since it is a subgroup of F0, which
gives the resolution. This free resolution shows that Torn(H,G) = 0 for n > 1.
Thus, we write Tor(H,G) for Tor1(H,G) as it is the group of interest. In fact,
Tor(H,G) measures the common torsion of G and H , which is where the “Tor”
comes from.

Note that in this current definition, we have that Tor0(H,G) = 0 because
tensoring is right exact. This is not entirely what we would like, so instead we
set Torn(H,G) to be the homology groups of the sequence

· · · −→ F2 ⊗G −→ F1 ⊗G −→ F0 ⊗G −→ 0,

where we remove the H ⊗G term. This does not effect the groups Torn(H,G)
for n ≥ 1, but it sets Tor0(H,G) = H⊗G, which is more suitable for our theory.

We have the following theorem, known as the universal coefficient theorem
for homology.

Theorem 4.3.9. Let C∗ be a chain complex of free abelian groups. Then for
all n ≥ 0 there are short exact sequences

0 −→ Hn(C∗)⊗G −→ Hn(C∗ ⊗G) −→ Tor(Hn−1(C∗), G) −→ 0
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that are split. Moreover, the maps in the short exact sequence are natural with
respect to chain maps and coefficient homomorphisms, i.e., given a chain map
C∗ → D∗, the chain map induces a map between the short exact sequences
with commuting squares and given a homomorphism φ : G→ H between abelian
groups, φ induces a chain map between the short exact sequences with commuting
squares.

Proof. Note that we have already proven that we have such an exact sequence, it
is simply the short exact sequence (4.2) combined with the fact that coker(in⊗
1) ∼= Hn(C∗) ⊗ G and ker(in−1 ⊗ 1) ∼= Tor(Hn−1(C∗), G). Checking that the
maps are natural is just a matter of running through the definitions.

It remains to check that the short exact sequences split. Recall that we have
already seen that the short exact sequence

0 −→ Zn −→ Cn −→ Bn−1 −→ 0

splits. In particular, this implies there is a projection map p : Cn → Zn that
restricts to the identity on Zn. Furthermore, we can use p to give an extension of
the quotient map Zn → Hn(C∗) to a map Cn → Hn(C∗). Thus, as we vary n we
obtain a chain map from the chain C∗ to the chain of homology groups H∗(C∗)
where we regard H∗(C∗) as a chain with trivial boundary maps. Tensoring this
with G we obtain a chain map C∗ ⊗G→ H∗(C∗)⊗G. We now take homology
groups and using that H∗(C∗) is a chain with trivial boundary maps we obtain
the induced homomorphisms

Hn(C∗;G)→ Hn(C) ⊗G.

These homomorphisms give the splitting when combined with the following
exercise and the fact that these homomorphisms are trivial on cycles by the
definition of p.

Exercise 4.3.10. Let A,B, and C be abelian groups and

0 −→ A
i−→ B

j−→ C −→ 0

be an exact sequence.

1. Show that the exact sequence is split if and only if there is a homomor-
phism p : B → A so that p ◦ i : A→ A is the identity map.

2. Show that the exact sequence is split if and only if there is a homomor-
phism s : C → B so that j ◦ s : C → C is the identity map.

Corollary 4.3.11. Let X be a topological space, A a subspace of X, and G an
abelian group. Then for each n ≥ 0 there is a split exact sequence

0 −→ Hn(X,A)⊗G −→ Hn(X,A;G) −→ Tor(Hn−1(X,A), G) −→ 0.

Moreover, these sequences are natural with respect to maps (X,A)→ (Y,B) and
coefficient homomorphisms φ : G→ H.
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For this corollary to be useful, it is important that we can actually calculate
the groups Tor(Hn−1(X,A), G) for abelian groups G. We have the following
calculations.

Proposition 4.3.12. Let A,B,C,D, and Ai for i ∈ I be abelian groups.

1. Tor (
⊕

iAi, B) ∼=
⊕

iTor(Ai, B).

2. Tor (Z/nZ, A) ∼= ker(A
n−→ A).

3. Tor(A,B) = 0 if A or B is torsion-free.

4. For each short exact sequence

0 −→ B −→ C −→ D −→ 0,

there is naturally associated an exact sequence

0 −→ Tor(A,B) −→ Tor(A,C) −→ Tor(A,D) −→ A⊗B −→ A⊗C −→ A⊗D −→ 0.

5. Tor(A,B) ∼= Tor(B,A).

6. Tor(A,B) ∼= Tor(T (A), B) where T (A) is the torsion subgroup of A.

Proof. 1. We can choose a free resolution of
⊕

iAi to be a direct sum of free
resolutions of the Ai, which gives this result immediately.

2. Consider the free resolution

0 −→ Z
n−→ Z −→ Z/nZ −→ 0

of Z/nZ. If we tensor this with A we obtain

0 −→ A
n−→ A −→ Z/nZ⊗A −→ 0.

Thus, we have that Tor(Z/nZ, A) = ker(A
n−→ A) as claimed.

3. We prove the third statement here in the case that A or B is free and then
return to prove the general case momentarily. Assuming A is free, it has
a free resolution with Fi = 0 for i ≥ 0 and so Tor(A,B) = 0 for all B. If
B is free, then tensoring a free resolution of A with B preserves exactness
and so Tor(A,B) = 0 in this case as well.

4. Let
0 −→ F1 −→ F0 −→ A −→ 0

be a free resolution of A. We tensor with the given short exact sequence
to obtain a commutative diagram
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0 // F1 ⊗B

��

// F1 ⊗ C

��

// F1 ⊗D

��

// 0

0 // F0 ⊗B // F0 ⊗ C // F0 ⊗D // 0.

We have that the rows are exact because tensoring an exact sequence with
a free group preserves exactness. We can now extend this diagram to the
diagram

0

��

0

��

0

��
0 // F1 ⊗B

��

// F1 ⊗ C

��

// F1 ⊗D

��

// 0

0 // F0 ⊗B

��

// F0 ⊗ C //

��

F0 ⊗D //

��

0

0 0 0

This gives a short exact sequence of chain complexes. The associated long
exact sequence is the desired sequence.

5. We now apply the exact sequence just shown to the free resolution

0 −→ F1 −→ F0 −→ B −→ 0.

We know that Tor(A,F1) and Tor(A,F0) both vanish because F1 and F0

are free, so the sequence reduces to

0 −→ Tor(A,B) −→ A⊗ F1 −→ A⊗ F0 −→ A⊗B −→ 0.

We can combine this with the definition of Tor(B,A) to obtain the diagram

0 // Tor(A,B) // A⊗ F1
//

∼=

��

A⊗ F0
//

∼=

��

A⊗B //

∼=

��

0

0 // Tor(B,A) // F1 ⊗A // F0 ⊗A // B ⊗A // 0.

Since all of the squares commute, we have that the induced map from
Tor(A,B) to Tor(B,A) is an isomorphism by the five lemma.

We also are now able to prove the rest of 3 in the torsion free case. Let

0 −→ F1 −→ F0 −→ A −→ 0
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be a free resolution of A. Suppose that B is torsion free and
∑
xi⊗ bi lies

in the kernel of f1⊗1 : F1⊗B → F0⊗B. Then we have that
∑
f1(xi)⊗bi

can be reduced to 0 after a finite number of applications of the defining
relations for a tensor product. Only a finite number of elements of B
are involved in this process. These lie in a finitely generated subgroup
B0 ⊂ B, so

∑
xi ⊗ bi lies in the kernel of f1 ⊗ 1 : F1 ⊗ B0 → F1 ⊗ B0.

This kernel must be 0 because Tor(A,B0) = 0 as B0 is finitely generated
and torsion free, hence free. Thus, we have Tor(A,B) = 0 as claimed.

6. To obtain this last statement we just apply the six term exact sequence
already shown to the short exact sequence

0 −→ T (A) −→ A −→ A/T (A) −→ 0

and use the fact that A/T (A) is torsion free.

Exercise 4.3.13. Show that Tor(Z/mZ,Z/nZ) ∼= Z/ gcd(m,n)Z. Use this to
show that for finitely generated A and B, Tor(A,B) is the tensor product of the
torsion subgroups of A and B and so is the common torsion of the groups.

As vector spaces are often easier to work with than modules, it is often easier
to calculate the homology of a space with coefficients in a field. For example, it
is usually easier to work with coefficients in Q or Z/pZ than with coefficients in
Z. We often lose information in doing this, but sometimes what remains is still
enough to work with.

Corollary 4.3.14. We have Hn(X ; Q) ∼= Hn(X)⊗Q. Thus, if Hn(X) is finitely
generated, the dimension of Hn(X ; Q) as a Q-vector space over Q equals the rank
of Hn(X).

Proof. This follows immediately from Corollary 4.3.11 and the fact that Q is
torsion free.

Corollary 4.3.15. Let p be a prime and assume that Hn(X) and Hn−1(X) are
finitely generated. Then we have that Hn(X ; Z/pZ) consists of

1. a Z/pZ summand for each Z summand of Hn(X);

2. a Z/pZ summand for each Z/pkZ summand of Hn(X) with k ≥ 1;

3. a Z/pZ summand for each Z/pkZ summand of Hn−1(X) with k ≥ 1.

Proof. This amounts to just writing down the exact sequence in Corollary 4.3.11.

We also have the following local to global type result for checking the van-
ishing of a homology group.

Proposition 4.3.16. We have H̃n(X) = 0 if and only if H̃n(X ; Q) = 0 and

H̃n(X ; Z/pZ) = 0 for all n and all primes p.
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Proof. We know that if H̃n(X) = 0 for all n then the homology groups H̃n(X ; Q)

and H̃n(X ; Z/pZ) vanish for all n and all primes p by Corollary 4.3.11. For the
other direction, it is enough to show that if A is an abelian group and A⊗Q = 0
and Tor(A,Z/pZ) = 0 for all primes p, then A = 0. Consider the short exact
sequence

0 −→ Z
p−→ Z −→ Z/pZ −→ 0.

The six term exact sequence of Proposition 4.3.12 gives

0 −→ Tor(A,Z/pZ) −→ A
p−→ A −→ A⊗ Z/pZ −→ 0.

If Tor(A,Z/pZ) = 0 for all p, we see that the map on A given by multiplication
by p is injective for all p. This shows that A must be torsion free.

Similarly, the short exact sequence

0 −→ Z −→ Q −→ Q/Z −→ 0

yields the exact sequence

0 −→ Tor(A,Q/Z) −→ A −→ A⊗Q −→ A⊗Q/Z −→ 0.

Since A is torsion free, we must have Tor(A,Q/Z) = 0 by Proposition 4.3.12,
and so we have that the map A→ A⊗ Q is injective, hence A = 0.

4.4 Singular Cohomology

In defining relative homology with coefficients in a group G of a space X with
respect to a subspace A there were three steps that were taken. The first was
that we formed a chain complex C∗ = {Cn(X,A), dn}. The second step was
to tensor this chain complex with the group G to obtain a new chain complex
C∗(X,A;G) = C∗(X,A) ⊗ G. Finally, we took the homology groups of this
chain complex. In order to define cohomology groups, we replace tensoring with
G in the second step by applying the functor Hom( , G) instead.

Let X be a topological space and G an abelian group. Define Cn(X,A;G) =
Hom(Cn(X,A), G). The elements of Cn(X,A;G) are referred to as the singular
n-cochains with coefficients in G. Note that φ ∈ Cn(X,A;G) is a map that
sends each chain σ : ∆n → X to a point in G. The coboundary maps dn :
Cn(X,A;G) → Cn+1(X,A;G) are the dual maps to the boundary maps dn+1,
i.e., they are the composition dn(φ) = φ ◦ dn+1. In particular, given φ ∈
Cn(X,A;G), we define

dn(φ)(σ) =
∑

i

(−1)iφ(σ|[v0,...,v̂i,...,vn+1])

for σ ∈ Cn+1(X,A;G). We immediately get that dn+1 ◦ dn = 0 because they
are the dual maps to the maps d∗. Thus, we obtain a chain complex

0 −→ C0(X,A;G) −→ · · · −→ Cn(X,A;G)
dn

−→ Cn+1(X,A;G) −→ · · · .
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From this we can form the singular cohomology groups

Hn(X,A;G) = Hn(C∗(X,A;G)).

Exercise 4.4.1. Show that H0(X,A;G) ∼= Hom(H0(X,A), G).

Let f : (X,A) → (Y,B) be a continuous map. Recall we have an induced
map

f∗ : Cn(X,A;G)→ Cn(Y,B;G)

given by composition, namely, for σ : ∆n → X a chain in Cn(X,A;G), we define
f∗(σ) by f ◦ σ : ∆n → Y . From this we obtain an induced map

f∗ : Cn(Y,B;G)→ Cn(X,A;G)

by setting f∗ = f∨
∗ , i.e., f∗(φ) = φ ◦ f∗. Thus, we obtain an induced map f∗ on

the cohomology groups.
Consider a short exact sequence

0 −→ A −→ B −→ C −→ 0.

In general we know that the functor Hom( , G) is not an exact functor and
applying this to the short exact sequence yields an exact sequence

0 −→ Hom(C,G) −→ Hom(B,G) −→ Hom(A,G).

However, if the original short exact sequence happens to be split then we will
obtain a short exact sequence

0 −→ Hom(C,G) −→ Hom(B,G) −→ Hom(A,G) −→ 0.

Recalling that

0 −→ Cn(A) −→ Cn(X) −→ Cn(X,A) −→ 0

is a split exact sequence, we obtain a split exact sequence of cochain complexes

0 −→ Cn(X,A;G) −→ Cn(X ;G) −→ Cn(A;G) −→ 0.

Thus, we obtain a long exact sequence of cohomology groups as well

· · · −→ Hn−1(A;G)
∂n−1

−→ Hn(X,A;G)
j∗−→ Hn(X ;G)

i∗−→ Hn(A;G)
∂n

−→ Hn+1(X,A;G) −→ · · · .

We define the reduced cohomology groups by using the augmented chain
used to define the reduced homology groups. As in the case of homology,

H̃
n
(X,A;G) ∼= Hn(X,A;G) if n > 0 and in the case n = 0 we have a split

short exact sequence

0 −→ G −→ H0(X,A;G) −→ H̃
0
(X,A;G) −→ 0.
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Our next step is a universal coefficient theorem in the case of cohomology.
This will relate the cohomology groups of X with coefficients in G to the ho-
mology groups. This will be useful right from the start of the theory so we do
not delay in proving it. We proceed generally here as we did in § 4.3.

Consider a descending chain complex C∗ = {Cn, dn} of free abelian groups.
Set Cn = Hom(Cn, G). As above, we obtain a cochain complex C∗ = {Cn, dn}
and we can form the cohomology groups Hn(C∗;G) of this cochain complex.
We define a product between Hn(C∗) and Hn(C∗;G). Let [x] ∈ Hn(C∗) and
[φ] ∈ Hn(C∗;G) with x ∈ Cn a representative of [x] and φ ∈ Hom(Cn, G) a
representative of [φ]. Define

〈[φ], [x]〉 = φ(x) ∈ G.
Exercise 4.4.2. Show that the product 〈[φ], [x]〉 is independent of the choice
of representatives. Furthermore, show that it is additive in each variable sepa-
rately, i.e.,

〈[φ1 + φ2], [x]〉 = 〈[φ1], [x]〉 + 〈[φ2], [x]〉
〈[φ], [x1 + x2]〉 = 〈[φ], [x1]〉+ 〈[φ], [x2]〉.

This product allows us to define a homomorphism

α : Hn(C∗;G)→ Hom(Hn(C∗), G)

by setting
(α([φ]))(x) = 〈[φ], [x]〉

for [φ] ∈ Hn(C∗;G) and [x] ∈ Hn(C∗). This map is a natural map. In particular,
we have the following results.

Exercise 4.4.3. Let f : C∗ → D∗ be a chain map. Show that the following
diagram commutes:

Hn(D∗;G)
α //

f∗

��

Hom(Hn(D∗), G)

f∗

��
Hn(C∗;G)

α // Hom(Hn(C∗), G).

Exercise 4.4.4. Let

0 −→ C∗ −→ D∗ −→ E∗ −→ 0

be a split short exact sequence of chain complexes. Show that the following
chain complex is also exact

0 −→ Hom(E∗, G) −→ Hom(D∗, G) −→ Hom(C∗, G) −→ 0

and the following diagram commutes
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Hn(C∗;G)
α //

∂n

��

Hom(Hn(C∗), G)

∂∨

n+1

��
Hn+1(E∗;G)

α // Hom(Hn+1(E∗), G).

Exercise 4.4.5. Let φ : G→ H be a homomorphism of abelian groups. Show
there is a natural induced map

φ♯ : Hn(C∗;G) −→ Hn(C∗;H).

Moreover, show the following diagram commutes

Hn(C∗;G)
α //

φ♯

��

Hom(Hn(C∗), G)

φ

��
Hn(C∗, H)

α // Hom(Hn(C∗), H).

As we needed some homological algebra to state the universal coefficient
theorem for homology, we need some additional homological algebra in this case
as well. The dual notion to a free abelian group is that of a divisible group.

Definition 4.4.6. An abelian group G is said to be divisible if given any g ∈ G
and any nonzero integer n, there exists h ∈ G so that nh = g.

The typical example of a divisible group is Q.

Exercise 4.4.7. Show that quotients of divisible groups are divisible and direct
sums of divisible groups are divisible.

We have used that any abelian group is isomorphic to a quotient of a free
abelian group when studying free resolutions in § 4.3. We have the corresponding
result for divisible groups.

Proposition 4.4.8. Any group is isomorphic to a subgroup of a divisible group.

Proof. Let G be an abelian group. We know there is a free abelian group F so
that G ∼= F/R for some subgroup R of F . We can consider F as a subgroup of
a divisible group. For instance, let {xi} be a basis for F . The rational vector
space D with basis {xi} is divisible and F is a subgroup of this group. Then G
is isomorphic to a subgroup of the divisible group D/R.

Let H be an abelian group and consider a free resolution of H :

· · · −→ F2
f2−→ F1

f1−→ F0
f0−→ H −→ 0.
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We can take the dual of this long exact sequence with respect to an abelian
group G to obtain a chain complex

0 −→ Hom(H,G)
f∨

0−→ Hom(F0, G)
f∨

1−→ Hom(F1, G) −→ · · · .

The cohomology groups of this chain are denoted by Ext(H,G), i.e.,

Extn(H,G) = Hn(Hom(F∗, G)).

One can show, much as was done with the Tor groups, that the group Ext(H,G)
is independent of the choice of free resolution used. Furthermore, using that we
can always write a free resolution of H as

0 −→ F1 −→ F0 −→ H −→ 0,

we have again that Extn(H,G) = 0 for n > 1. Thus, write Ext(H,G) =
Ext1(H,G).

Exercise 4.4.9. Show that Ext0(H,G) ∼= Hom(H,G).

Proposition 4.4.10. Let A, B, C, and D be abelian groups.

1. If A is free then Ext(A,B) = 0.

2. If B is divisible then Ext(A,B) = 0.

3. Ext(Z/nZ, B) ∼= B/nB.

4. Given an exact sequence

0 −→ B −→ C −→ D −→ 0,

we have an exact sequence

0→ Hom(D,A)→ Hom(C,A)→ Hom(B,A)→ Ext(D,A)→ Ext(C,A)→ Ext(B,A)→ 0.

Proof. The proof of this proposition follows the same lines as those used to
prove Proposition 4.3.12 and so is left as an exercise.

Definition 4.4.11. An abelian group G is called injective if given any injection
ι : B → A and any homomorphism φ : B → G, there exists a homomorphism
ψ : A→ G so that the following diagram commutes:

G

0 // B

φ

OO

ι // A.

ψ
``AAAAAAAA
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Proposition 4.4.12. An abelian group is injective if and only if it is divisible.

Proof. First, suppose that G is injective. Let g ∈ G and n ∈ Z. Define a
homomorphism φ : nZ → G by sending n 7→ g. We have that nZ →֒ Z, and
since G is injective there is an extension ψ of φ from nZ to Z. Thus, using the
commutativity of the diagram we have g = φ(n) = nφ(1), and so G is divisible.

Suppose now that G is divisible. Let A, B, ι, and φ be as in the definition
given for an injective group. We may assume that B is a subgroup of A and ι is
the inclusion map. Consider the set of pairs (Gi, ιi) where Gi is a subgroup of A
that contains B and ιi : Gi → G is a homomorphism so that ιi|B = φ. This set
is nonempty as the pair (B, φ) satisfies the hypotheses. Write (Gi, ιi) < (Gj , ιj)
if Gi ⊂ Gj and ιj |gi = ιi. We can apply Zorn’s lemma to conclude there
exists a maximal pair, (Gmax, ιmax). We claim Gmax = A. If not, there exists
a ∈ A − Gmax. Since G is divisible, we can extend ιmax to the subgroup of A
generated by Gmax and a. This contradicts the maximality of Gmax.

Proposition 4.4.13. If G is a divisible group then the homomorphism

α : Hn(C∗;G)→ Hom(Hn(C∗), G)

is an isomorphism for any chain complex C∗.

Proof. We have already shown such a homomorphism exists, it only remains to
show it is bijective. We sketch this, leaving the details to the interested reader.
Let φ ∈ Hom(Hn(C∗), G). Then we can view φ as a homomorphism φ : Zn → G
that vanishes on Bn. The fact that Zn injects into Cn and that G is divisible
allows us to lift φ to a homomorphism ψ : Cn → G. Thus, we have a map
ψ ∈ Hom(Cn, G) that extends the map φ. To prove surjectivity, it only remains
to check that ψ is a cocycle, which we leave as an exercise. We leave injectivity
as an exercise as well.

We now have the following universal coefficient theorem for cohomology
groups.

Theorem 4.4.14. Let C∗ be a descending chain complex of free abelian groups
and let G be an arbitrary abelian group. There exists a split exact sequence

0 −→ Ext(Hn−1(C∗), G)
β−→ Hn(C∗;G)

α−→ Hom(Hn(C∗), G) −→ 0.

Note that the map β is natural with respect to coefficient homomorphisms and
chain maps. The splitting is natural with respect to coefficient homomorphisms,
but not with respect to chain maps.

Applying this to the case of interest where C∗ = C∗(X,A), we have the
following.

Corollary 4.4.15. For any pair (X,A) and any abelian group G, there exists
a split exact sequence

0 −→ Ext(Hn−1(X,A), G)
β−→ Hn(X,A;G)

α−→ Hom(Hn(X,A), G) −→ 0.
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The homomorphisms α and β are natural with respect to homomorphisms in-
duced by continuous maps of pairs and coefficient homomorphisms. The splitting
can be chosen to be natural with respect to coefficient homomorphisms, but not
with respect to homomorphisms induced by continuous maps.

As cohomology is obtained by dualizing the construction for homology, we
can recover many of the results from homology for cohomology. For example,
we have the excision property.

Theorem 4.4.16. Let Z ⊂ A ⊂ X with Cl(Z) ⊂ Int(A). The inclusion (X −
Z,A− Z) →֒ (X,A) induces an isomorphism

Hn(X,A;G)
≃−→ Hn(X − Z,A− Z;G).

Proof. Let (X,A) be a pair and Z ⊂ A. Recall that for each n we have a split
short exact sequence

0 −→ Cn(X −Z,A−Z) −→ Cn(X,A) −→ Cn(X,A)/Cn(X −Z,A−Z) −→ 0.

We pass to the long exact sequence in homology groups to see that

Hn(X − Z,A− Z)
≃−→ Hn(X,A)

if and only if
Hn(C∗(X,A)/C∗(X − Z,A− Z)) = 0

for all n. This is precisely what is proven when proving the excision theorem
for homology groups.

Instead of passing to the long exact sequence in homology, apply the func-
tor Hom( , G) to the split exact sequence above to obtain the following exact
sequence

0→ Hom(Cn(X,A)/Cn(X−Z,A−Z), G)→ Cn(X,A;G)→ Cn(X−Z,A−Z;G)→ 0.

If we now take cohomology groups, we see that

Hn(X,A;G) ∼= Hn(X − Z,A− Z;G)

if and only if Hn(Hom(C∗(X,A)/C∗(X −Z,A−Z), G)) = 0 for all n. However,
we can apply Corollary 4.4.15 along with the fact that we know Hn(C∗(X,A)/C∗(X−
Z,A−Z)) = 0 for all n by excision for homology to conclude that we must have
Hn(Hom(C∗(X,A)/C∗(X − Z,A− Z), G)) = 0 for all n.
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Chapter 5

Sheaves and Čech

Cohomology

In this chapter we will introduce sheaves and Čech cohomology and see how
de Rham and singular cohomology are special cases of Čech cohomology. We
will also introduce algebraic sheaves, Serre’s GAGA theorems, and give a brief
introduction to the theory of algebraic curves. We will end with a short expos-
itory section on the Hodge conjecture. Most of the material in this chapter can
be found in [4], [7], or [12].

NOTE: When I have time I will go back and introduction sheaf cohomology
theory generally using “fine” sheaves and then insert the proofs of the com-
parison isomorphisms between singular, de Rham, and Čech cohomologies on a
smooth manifold.

5.1 Sheaves

We begin by introducing presheaves as they are the natural precursor to sheaves
and are a bit easier to grasp and work with. In our settings most all the
presheaves we work with will also be sheaves, but in general this is not the case
so it is important to understand the distinction. Throughout this section X
stands for a topological space.

Definition 5.1.1. Let X be a topological space. A presheaf of groups F on X
is a collection of groups {F(U)}U∈TX along with a collection of group homo-
morphisms ρUV : F(U)→ F(V ) for each V ⊂ U satisfying

1. F(∅) is the trivial group with one element,

2. ρUU = id on F(U),

3. if W ⊂ V ⊂ U , then ρUW = ρVW ◦ ρUV .
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The maps ρUV are referred to as the restriction maps. The elements of F(U) are
referred to as the sections of F over U . The elements in F(X) are referred to
as the global sections. Global sections are often denoted as Γ(X,F) as well.

One can define a presheaf of rings in the same manner, one just requires the
F(U) to be rings and the restriction maps to be ring homomorphisms. Clearly
any presheaf of rings is also a presheaf of groups just by restricting to the group
operation.

Example 5.1.2. Let X be a real manifold and set C∞
X (U) to be the set of

functions f : U → R that are C∞. This presheaf is known as the presheaf of
C∞ functions and is a presheaf of rings. We denote it by C∞

X .

Example 5.1.3. Let X be a complex manifold and set OX(U) to be the set of
holomorphic functions f : U → C. This presheaf of rings is known as the sheaf
of holomorphic functions and is denoted OX .

Example 5.1.4. Let X be a complex manifold and set O∗
X(U) to be the set

of nowhere vanishing holomorphic functions f : U → C×. This is a presheaf of
groups with the operation being multiplication of functions and is denoted O∗

X .

Example 5.1.5. Let X be a complex manifold and set MX(U) to be the set
of meromorphic functions f : U → C. This is a presheaf of rings known as the
the sheaf of meromorphic functions and is denotedMX .

Example 5.1.6. Let X be a complex manifold and setM(n)
X (U) to be the set

of meromorphic n-forms on X . This is a presheaf of rings known as the sheaf

of meromorphic n-forms and is denoted M(n)
X .

Example 5.1.7. Let X be a real manifold and set ΩnX(U) to be the set of C∞

differential n-forms on U as studied in Chapter 3. This is a presheaf of groups
known as the sheaf of C∞ differential n-forms on X and denoted ΩnX .

Example 5.1.8. Let X be a complex manifold and set ΩnX,hol(U) to be the set
of holomorphic differential n-forms on U . The difference between these and the
ones studied in Chapter 3 is that we require the forms to be holomorphic and not
just C∞. This gives a presheaf of groups known as the holomorphic differential
n-forms on X . We can also define a presheaf Ω

n

X,hol by setting Ω
n

X,hol(U) to be
the complex conjugates of the forms in ΩnX,hol(U).

Example 5.1.9. Recall that in § 3.3 we saw that if we are given a complex
manifold X of dimension n we can consider it as a real manifold of dimension
2n. (Technically we just saw this for X = Cn, but it is clear it generalizes to
any complex manifold.) In this case, we can take dz1, . . . , dzn, dz1, . . . , dzn as
a basis for the space of C∞ differential 1-forms. We write Ωp,qX for the presheaf
of C∞ differential (p+ q)-forms that are generated by p of the forms dzi and q
of the forms dzj . For example, Ωp,qX (U) consists of sums of the form

ω =
∑

I,J

fI,JdzI ∧ dzJ
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where fI,J is a C∞ function, I runs over sets of the form (i1, . . . , ip) and J runs
over sets of the form (j1, . . . , jq).

Example 5.1.10. Let G be a group and X any topological space. Define a
presheaf GX on X by setting GX(U) to be the set of all functions f : U → G.
We place no restrictions at all on the functions. The group structure on GX(U)
is point-wise multiplication of functions. This presheaf is known as the constant
presheaf GX .

Example 5.1.11. Let X be a topological space and for each x ∈ X assign a
group Gx. Define S by setting

S(U) =
∏

x∈U

Gx.

This is a presheaf on X . One particular case of this of interest is called the
skyscraper sheaf. We obtain this by assigning a single group at a single point x
and then the trivial group to all other points. We denote this presheaf by Gx.
Thus, one has

Gx(U) =

{
{0} if x /∈ U
G if x ∈ U .

In particular, we will use the presheaf Cx which is C around the point x and 0
everywhere else.

Example 5.1.12. Let X be a Riemann surface. A divisor on X is function
D : X → Z whose support is a discrete subset of X . The divisors on X form a
group under pointwise addition denoted by Div(X). We writeD ≥ 0 if D(x) ≥ 0
for all x. Write D > 0 if D ≥ 0 and D 6= 0. For divisors D1 and D2 we write
D1 ≥ D2 if D1 −D2 ≥ 0. One generally denotes a divisor as

D =
∑

x∈X

D(x) · x.

One has a presheaf of divisors by setting Div(U) to be the divisors on U .
Let f : X → C be a function that is meromorphic at x ∈ X . By choosing

local coordinates around x, we can expand f in a Laurent expansion so that
near x one has

f(z) =
∑

n

cn(z − x)n.

We define the order of f at x by

ordx(f) = min{n : cn 6= 0}.

We define the divisor associated to f by setting

div(f) =
∑

x∈X

ordx(f) · x.
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Let D be a divisor on X . Let OX [D](U) be the set of meromorphic functions
on U that satisfy the condition

ordx(f) ≥ −D(x)

for all x ∈ U . This is a presheaf of groups on X . Note that OX [D](U) are the
functions with poles no worse than D on U . The global sections of this sheaf are
often denoted by L(D). For instance, this shows up in the classical statement
of the Riemann-Roch theorem.

Example 5.1.13. Let X be a Riemann surface and D a divisor on X . We can
consider the sheaf ΩX,hol[D] where ΩX,hol[D](U) consists of 1-forms on U that
have poles bounded by D.

Example 5.1.14. Let X be a Riemann surface and D a divisor on X . We can
consider the sheaf of meromorphic 1-forms with poles bounded by D, i.e., the

sheafM(1)
X [D] given by where the sectionsM(1)

X [D](U) are 1-forms ω ∈M(1)
X (U)

that satisfy div(ω)(x) ≥ −D(x) for all x ∈ U . The global sections of this sheaf
are denoted in the classical literature as L(1)(D).

Example 5.1.15. Let X be a Riemann surface and D a divisor on X . In this
case there is a particular skyscraper sheaf we will be interested in. Given any
x ∈ X , one can choose local coordinates around x. Assign to each x the group
of Laurent polynomials in the local coordinates that whose top term has degree
strictly less than −D(x). In other words, this is the group of Laurent tails
truncated at −D(x). We denote the skyscraper sheaf with these groups at each
point by TX [D].

Given two divisors D1 and D2 with D1 ≤ D2, we can form a skyscraper
sheaf TX [D1/D2] as follows. For each point x, associate the group of Laurent
polynomials that have top term with degree strictly less than −D1(x) and lowest
term has degree at least −D2(x).

Exercise 5.1.16. Show that OX [0] is the presheaf of holomorphic functions on
X .

Note that all of the presheaves given, and presheaves in general, arise from
the fact that if F(U) is defined to be functions with some property, it is the case
that when one restricts to a smaller domain the property remains valid. For a
presheaf to be a sheaf, we require that this can be reversed. Namely, if U is an
open set with an open covering {Ui} and the property holds for all Ui, then it
must hold on U as well.

Definition 5.1.17. Let F be a presheaf on X . We say F is a sheaf on X if for
any open set U and any open covering {Ui} of U , whenever there are elements
si ∈ F(Ui) that agree on overlaps, namely, one has

ρUi

Ui∩Uj
(si) = ρ

Uj

Ui∩Uj
(sj)
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for every i, j, then there exists a unique s ∈ F(U) so that

ρUUi
(s) = si

for each i.

Exercise 5.1.18. Let U be an open set with open covering {Ui}i∈I . If F is a
sheaf and there is a section s ∈ F(U) so that ρUUi

(s) = 0 for all i ∈ I, show that
s = 0.

Definition 5.1.19. Let F be a sheaf. We say a sheaf G is a subsheaf of F if
G(U) is a subgroup of F(U) for every U and the restriction maps of the sheaf
G are induced by those of F .

It is straightforward to check that the presheaves defined above are all ac-
tually sheaves except the constant sheaf. This is not a sheaf as being constant
is not a local property for a function. For example, if X is the disjoint union
of two open sets U and V , a function can be constant on U and constant on V
without being globally constant if it happens to take different values on U and
V . This shows in particular that a constant presheaf on a space X is never a
sheaf unless the group is trivial or the space enjoys the property that any two
open sets have to intersect. However, we can associate a sheaf to the constant
sheaf by setting G(U) to be the set of f : U → G that are locally constant, i.e.,
for any point x ∈ U there is an open neighborhood V of x with V ⊂ U and f |V
a constant function. The locally constant sheaves we will encounter most often
are Z, R and C.

Example 5.1.20. Let X be a compact Riemann surface, i.e., X is a compact
complex manifold of dimension 1. Then OX(X) = C since the only holomorphic
functions a compact Riemann surface are constant.

Exercise 5.1.21. Let X be a connected topological space. Show that G(X) =
G for any group G.

Exercise 5.1.22. Let F be a sheaf on a space X and let Y be an open subset
of X . Show that the restriction sheaf F|Y defined by

F|Y (U) = F(U)

for any U open in Y defines a sheaf on Y .

Exercise 5.1.23. Let F and G be sheaves on a space X . Define the direct sum
F ⊕ G by

F ⊕ G(U) = F(U)⊕ G(U)

for an open set U ⊂ X . Define the restriction maps for F⊕G using the restriction
maps for F and G. Show that F ⊕ G is a sheaf on X .

In order for sheaves to be useful, we will need a notion of maps between
sheaves. This is a fairly straightforward thing to define as we want any morphism
to respect the structures we already have.
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Definition 5.1.24. Let F and G be sheaves on a space X . A sheaf homomor-
phism from F to G is a collection of homomorphisms

φU : F(U)→ G(U)

for each open set U so that the following diagram commutes

F(U)
φU //

ρU
V

��

G(U)

ρU
V

��
F(V )

φV // G(V )

for V ⊂ U any open set.

One can generally obtain inclusion maps of sheaves whenever F(U) ⊂ G(U)
for all open sets U . When we have an inclusion map of sheaves F →֒ G we write
F ⊂ G. In terms of the examples above, we have the following inclusions.

Example 5.1.25. Regardless of the space X , we have the following inclusions
of constant sheaves:

Z ⊂ R ⊂ C.

Example 5.1.26. For X a real manifold, we have

R ⊂ C∞
X .

Example 5.1.27. For X a complex manifold, we have

C ⊂ OX ⊂MX .

We also have
OX ⊂ C∞

X .

Example 5.1.28. For X a Riemann surface, if D1 ≤ D2 are divisors on X ,
then

OX [D1] ⊂ OX [D2].

Furthermore, we also have

TX [D2] ⊂ TX [D1]

and
TX [D1/D2] ⊂ TX [D1].

Example 5.1.29. For X a real manifold, the differentiation maps dn are sheaf
maps from ΩnX to Ωn+1

X .
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Example 5.1.30. Let X be a Riemann surface and x ∈ X a point. We can
define a sheaf map by evaluation

evalx : C∞
X → Cx

which on any open set U containing x sends the C∞ function f defined on U
to be the constant f(x). On an open set not containing x the sheaf map is the
zero map.

Example 5.1.31. Let X be a Riemann surface and D a divisor on X . Let
f ∈ OX [D](U). Then the Laurent series for f near x ∈ U has terms with
degrees at least −D(x), i.e., we can write for z near x

f(z) =
∑

n≥−D(x)

cn(z − x)n.

For x ∈ U we can define a map

evalx : OX [D](U)→ Cx(U)

by sending f to c−D(x). If x /∈ U , we define evalx to be the zero map. This
gives a sheaf homomorphism from OX [D] to Cx.

Example 5.1.32. Let X be a Riemann surface and U an open set in X . Let f
be a holomorphic function on U . Then g(z) = e2πif(z) is a holomorphic function
on U that is nonvanishing on U . This gives a map

OX(U) −→ O∗
X(U)

for each U ⊂ X open. This commutes with restriction so gives the exponential
map exp(2πi−) of sheaves:

exp(2πi−) : OX −→ O∗
X .

Exercise 5.1.33. Let X be a Riemann surface and fix a divisor D on X . Let
f ∈MX(X). Show that multiplication by f gives a sheaf homomorphism

OX [D] −→ OX [D − div(f)].

Exercise 5.1.34. Let X be a Riemann surface and fix a divisor D on X . Let
ω be a nonzero global meromorphic 1-form on X . Show that the multiplication
by ω map gives a sheaf isomorphism

OX [D]→ Ω1
X,hol[D − div(ω)].

Example 5.1.35. We also have several truncation maps. Let D be a divisor
on a Riemann surface X . One clearly obtains a truncation map

αD :MX → TX [D]
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by truncating any meromorphic function.
Similarly, if D1 ≤ D2 are divisors, given a Laurent tail divisor in TX [D1], we

can truncate this at −D2(x) for each x ∈ X and obtain a sheaf homomorphism

tD1

D2
: TX [D1]→ TX [D2].

Finally, given a meromorphic function with poles bounded by D2, we may
truncate the Laurent series at −D1 and obtain a sheaf map

αD1/D2
: OX [D2]→ TX [D1/D2].

Let X be a topological space and F , G sheaves on X . Let φ : F → G be a
sheaf homomorphism. We can define a kernel presheaf ker(φ) by setting

ker(φ)(U) = ker(φU ).

Exercise 5.1.36. Check that ker(φ) is a presheaf.

Proposition 5.1.37. The presheaf ker(φ) is a sheaf on X.

Proof. Let U be an open set with open covering {Ui}. Let si ∈ ker(φ)(Ui)
be sections so that the si agree on overlaps. The fact that F is a sheaf and
ker(φ)(Ui) ⊂ F(Ui) gives that there exists s ∈ F(U) so that ρUUi

(s) = si. It
remains to show that s ∈ ker(φ)(U), i.e., φU (s) = 0.

Let ti = ρUUi
(φU (s)). Since φ is a sheaf homomorphism it commutes with

restriction maps, so we have

ti = ρUUi
(φU (s))

= φUi (ρ
U
Ui

(s))

= φUi (si)

= 0

since each si ∈ ker(φUi). Now we use the fact that G is a sheaf to see that φU (s)
must be 0 as well.

One can define presheaves U 7→ im(φU ) and U 7→ coker(φU ) as well. How-
ever, unlike the kernel sheaf, it turns out that these are not sheaves! One can
associate a sheaf to them, as we will see later.

The definition for injective and surjective for sheaf homomorphisms is not
the one that first comes to mind, but is the correct one when one remembers
that properties of sheaves should reflect locally properties. Namely, we do not
require that φU be injective (resp. surjective) for each U , only that for small
enough U we have φU is injective (resp. surjective.) In particular, we define
injective and surjective as follows.

Definition 5.1.38. Let φ : F → G be a sheaf homomorphism. We say φ is
injective if for every x ∈ X and every open set U containing x, there is an open
subset V ⊂ U containing x so that φV is injective. We say φ is surjective if for
every x ∈ X and every open set U containing x and every section f ∈ G(U),
there is an open V ⊂ U containing x so that ρUV (f) is in the image of φV .
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Example 5.1.39. Let X = C−{0} = C×. Let g(z) = 1/z ∈ O∗
X(X). It is well

known from complex analysis there is no function f so that e2πif(z) = 1/z for
all z ∈ X . Thus, we see the exponential map is not surjective for the set U = X .
However, at any point x ∈ C× there is a branch of the logarithm defined in a

neighborhood V of x and so f(z) = − ln(z)
2πi maps under the exponential map to

1/z. Thus, as a sheaf map the exponential map is a surjective map.

This type of issue does not arise when talking about injectivity.

Proposition 5.1.40. Let φ : F → G be a sheaf homomorphism. The following
are equivalent:

1. φ is injective;

2. φU is injective for every open set U ⊂ X;

3. The kernel sheaf for φ is the identically 0 sheaf.

Proof. It is clear that the second and third statements are equivalent and that
the second statement implies the first. Thus, it only remains to show that if φ
is injective then φU is injective for every open set U ⊂ X . Let U be an open
set and let s ∈ F(U) so that φU (s) = 0. Using the fact that F is a sheaf, it is
enough to show that ρUV (s) = 0 in F(V ) for each subset V in an open covering
of U .

Let x ∈ U . Since φ is injective, there exists an open set Vx ⊂ U containing
x so that φVx is injective. Let sx = ρUVx

(s). Since the Vx cover U , it is enough
to show that sx is 0 for each x. However, we have

φVx(sx) = φVx(ρUVx
(s))

= ρUVx
(φU (s))

= ρUVx
(0)

= 0.

However, since φVx is injective this gives the result.

Another way to deal with injectivity and surjectivity of sheaf homomor-
phisms is to work with stalks, which we introduce now.

Definition 5.1.41. Let I be a nonempty set with a partial order ≤. For each
i ∈ I, let Gi be an additive abelian group. Suppose for every pair i, j ∈ I with
i ≤ j there is a map ρij : Ai → Aj so that

1. ρjk ◦ ρij = ρik whenever i ≤ j ≤ k and

2. ρii = 1 for all i ∈ I.
Let H be the disjoint union of all the Gi. Define an equivalence relation ∼ on H
by setting g ∼ h if and only if there exists a k with i, j ≤ k and ρik(g) = ρjk(h)
for g ∈ Gi, h ∈ Gj . The set of equivalence classes is called the direct limit of
the Gi and is denoted lim−→i

Gi.
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Definition 5.1.42. Let F be a presheaf on a space X . Let x ∈ X . Define the
stalk Fx of F at x to be the direct limit of the groups F(U) for all open sets U
containing x via the restriction maps ρ.

One should view the stalk Fx as zooming in to see what is happening at the
point x. An element of Fx is represented by a pair 〈U, s〉 where U is an open
neighborhood of x and s is an element of F(U). We denote such an equivalence
class by sx. Two such pairs 〈U, s〉 and 〈V, t〉 define the same element in Fx if
there is an open neighborhood W ⊂ U ∩ V so that s|W = t|W . This generalizes
the classical notion of germs of functions from complex analysis. One should
think of this as kind of like a Taylor series, you just use local information
(derivatives) to get information about the function in the form of a power series.

Example 5.1.43. Let X be a complex manifold of dimension n. Let x ∈ X .
Then OX,x is the ring of convergent power series in n variables.

Exercise 5.1.44. Show that the stalks of a locally constant sheaf G are all
isomorphic to the group G.

Let φ : F → G be a sheaf homomorphism. Thus, for open sets U ⊂ V we
have a commuting diagram

F(U)
φU //

ρU
V

��

G(U)

ρU
V

��
F(V )

φV // G(V )

This shows that for any x ∈ X the map φ induces a map of stalks

φx : Fx −→ Gx.

We set supp(φ) to be the set of x ∈ X so that φx is not the zero map.

Theorem 5.1.45. The sheaf homomorphism φ : F → G is injective if and only
if φx : Fx → Gx is injective for all x ∈ X. Similarly, φ is surjective if and only
if φx is surjective for every x ∈ X.

Proof. First, suppose that φ is injective so that ker(φ) = 0. Thus, we have that
each map φU is injective. Upon passing to the direct limit we see that φx must
be injective for each x ∈ X as well. Conversely, suppose that φx is injective for
each x ∈ X . Let U be an open set and let s ∈ F(U) be such that φU (s) = 0.
Thus, for every x ∈ U we have that φU (s)x = 0 in the stalk Gx. Since we have
that φx is injective, we must have sx = 0 in the stalk Fx for each x ∈ U . The
statement that sx = 0 means that there exists an open neighborhood Wx ⊂ U
of x so that ρUWx

(s) = 0. The fact that U is covered by such neighborhoods
along with the fact that ker(φ) is a sheaf gives that s = 0 and so φU is injective.
Since U was arbitrary, this gives that φ is injective.
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Suppose now that φ is surjective. Let x ∈ X and let tx ∈ Gx. Let tx be
represented by the pair 〈U, t〉. Since φ is surjective, there is an open neighbor-
hood V ⊂ U of x so that φV is surjective. Thus, there is a s ∈ F(V ) so that
φV (s) = t. In particular, we have that φx maps 〈V, s〉 to 〈V, t〉, which clearly
represents tx. Thus, φx is surjective as well. Conversely, suppose that φx is
surjective for each x ∈ X . Let t ∈ G(U) and let tx be the image of t in Gx. The
fact that φx is surjective implies there exists a sx ∈ Fx so that φx(sx) = tx. Let
〈V, s〉 represent sx and set W = U ∩ V . Then 〈W, s〉 represents sx and we have
φW (s) = t ∈ G(W ). Thus, we have that φ is surjective since we have found an
element in F(W ) mapping to t ∈ G(W ) for a small enough open set W .

Definition 5.1.46. We say a sequence of sheaf homomorphisms

0 −→ K −→ F φ−→ G −→ 0

is a short exact sequence of sheaves if the sheaf map φ is surjective and K =
ker(φ).

We have the following corollary immediately from Theorem 5.1.45.

Corollary 5.1.47. A sequence of sheaf homomorphisms

0 −→ K −→ F φ−→ G −→ 0

is a short exact sequence of sheaves if and only if the sequence of stalks

0 −→ Kx −→ Fx φx−→ Gx −→ 0

is a short exact sequence of abelian groups for each x ∈ X.

Example 5.1.48. Let X be a real manifold. The sequence

0 −→ R −→ C∞
X

d−→ Ω1
X −→ 0

is a short exact sequence of sheaves. We have seen that for any open set U
the space Ω1

X(U) is generated by dxi’s, and so clearly d is a surjective map of
sheaves. The kernel is precisely the locally constant functions, which gives the
exact sequence.

Example 5.1.49. Let X be a complex manifold. The sequence

0 −→ C −→ OX d−→ Ω1
X,hol −→ 0

is a short exact sequence of sheaves for the same reasons as the last example
was short exact.

Example 5.1.50. Let X be a Riemann surface. The sequence

0 −→ Z −→ OX
exp(2πi−)−→ O×

X −→ 0

is a short exact sequence of sheaves.
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Exercise 5.1.51. Let X be a Riemann surface and let D be a divisor on X .
Show that the sequence

0 −→ OX [D − x] −→ OX [D]
evalx−→ Cx −→ 0

is a short exact sequence of sheaves.
Show that the sequence

0 −→ OX [D] −→MX
αD−→ TX [D] −→ 0

is a short exact sequence of sheaves.
If D1 ≤ D2 are divisors, then the sequence

0 −→ OX [D1] −→ OX [D2]
αD1/D2−→ TX [D1/D2] −→ 0

is a short exact sequence of sheaves.
Finally, show that the sequence

0 −→ TX [D1/D2] −→ TX [D1] −→ TX [D2] −→ 0

is a short exact sequence of sheaves where the map from TX [D1] to TX [D2] is
the truncation map.

Definition 5.1.52. A sheaf homomorphism φ : F → G is an isomorphism if it
has an inverse, i.e., if there exists a sheaf homomorphism ψ : G → F so that
φ ◦ ψ = id and ψ ◦ φ = id.

Proposition 5.1.53. A sheaf homomorphism φ : F → G is a sheaf isomorphism
if and only if it is injective and surjective.

Proof. First, suppose that φ has an inverse ψ. By definition one has that ψU
is the inverse of ψU for each U , and so each φU must be bijective. Thus, φ is
bijective.

Now suppose that φ is bijective. If we show that each φU is an isomorphism,
then we can define ψ to be the collection of inverse maps and we will be done.
Let U be an open set. Since φ is injective we know that each φU is also injective
by Proposition 5.1.40. So it only remains to show that φU is surjective.

Let g ∈ G(U). Since φ is surjective, for each x ∈ X there is an open set Ux so
that φUx is surjective. Thus, there exists fx ∈ F(Ux) so that φUx(fx) = ρUUx

(g).
We claim that the sections fx agree on overlaps. Let W = Ux ∩ Uy for x 6= y.
Observe that we have

φW (ρUx

W (fx)) = ρVx

W (φVx(fx))

= ρVx

W (ρUVx
(g))

= ρUW (g).

Similarly, we obtain that φW (ρ
Uy

W (fy)) = ρUW (g) and so

φW (ρUx

W (fx)) = φW (ρ
Uy

W (fy)).
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However, we can now use that φW is injective to conclude that

ρUx

W (fx) = ρ
Uy

W (fy)

for all x, y ∈ X . Thus, the sections agree on overlaps and so we can use the fact
that F is a sheaf to glue them together into a section f ∈ F(U).

It only remains to show that φU (f) = g. We can again use that we have
sheafs to reduce to checking this locally on each Ux. But this is clear because
we have

ρUUx
(φU (f)) = φUx(ρUUx

(f))

= φUx(fx)

= gx

= ρUUx
(g).

Thus, φU (f) and g agree on each Ux and so must be equal by the fact that G is
a sheaf.

Exercise 5.1.54. Show φ : F → G is a sheaf isomorphism if and only if
φx : Fx → Gx is an isomorphism for all x ∈ X .

Exercise 5.1.55. Let F and G be sheaves of abelian groups on X . For any open
U ⊂ X show that the set Hom(F|U ,G|U ) of morphisms of restricted sheaves has
the structure of an abelian group. Show that the presheaf U 7→ Hom(F|U ,G|U )
is a sheaf. It is referred to as the sheaf of local morphisms of F into G, or “sheaf
homs” for short. It is denoted by Hom(F ,G).

As we saw with the constant presheaf, there are times one has a presheaf of
interest that is not a sheaf. It turns out that one can always associate a sheaf
to a presheaf.

Definition 5.1.56. Let F be a presheaf on a space X . For any open set U in
X , define F̃(U) to be the set of functions s : U →∐

x∈U Fx so that

1. for each x ∈ U , s(x) ∈ Fx,

2. for each x ∈ U , there is a neighborhood V of x, contained in U , and an
element t ∈ F(V ) so that for all y ∈ V , the germ ty is equal to s(y).

Exercise 5.1.57. Check that F̃ is actually a sheaf on X .

Exercise 5.1.58. Show that the sheafification of the constant presheaf gives
the locally constant sheaf as defined above.

One should think of F̃ as the sheaf that best approximates the presheaf F .
In particular, one has the following theorem that follows almost immediately
from the definition.
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Theorem 5.1.59. Let F be a presheaf. There is a natural morphism θ : F → F̃
of presheaves that satisfies the universal property that given any morphism φ :
F → G of presheaves where G is a sheaf, there is a unique sheaf homomorphism
ψ : F̃ → G so that φ = ψ ◦ θ. Furthermore, the pair (F̃ , θ) is unique up to
unique isomorphism.

Exercise 5.1.60. Let φ : F → G be a morphism of presheaves so that φU is
injective for each U . Show that the induced map φ̃ : F̃ → G̃ is injective. In
particular, use this to show that if F and G happen to be sheaves then the sheaf
im(φ) associated to the presheaf U 7→ im(φU ) can be naturally identified with
a subsheaf of G.

We end this section with a particular type of sheaf that we will need in
subsequent sections.

Definition 5.1.61. A sheaf F on X is fine if for each locally finite cover U =
{Ui} of X by open sets there exists for each i an endomorphism φi of F so that

1. supp(φi) ⊂ Ui
2.
∑
i φi = id .

We call {φi} a partition of unity for F with respect to the cover U .

Example 5.1.62. Let X be a smooth manifold (real or complex) and consider
the sheaf F = C∞

X . Let U be a cover and let {φi} be a partition of unity with

respect to this cover. We define sheaf maps φ̃i by setting

φ̃i(f) = (φi|U ) · f
for f ∈ C∞(U). These form a partition of unity and show that this is a fine
sheaf.

Exercise 5.1.63. Show that if F and G are fine sheaves over X then F ⊗ G is
itself a fine sheaf.

5.2 Abstract Sheaf Cohomology

Note that the class decided not to see these proofs in class, just the statements
so the proofs are omitted for now. They will be added later.

In the next section we will construct Čech cohomology groups, which are very
useful for computations. However, in order to show that the Čech cohomology
groups agree with the singular and de Rham theories for smooth manifolds, we
need an abstract set-up. We provide that in this section.

LetX be a topological space and U = {Ui} an open cover ofX . A refinement
V = {Vj} of U is an open cover so that for each j there is an i so that Vj ⊂ Ui.
We say a collection of subsets {Ui} is locally finite if for each x ∈ X there is a
neighborhood Wx of x so that Wx ∩Ui 6= ∅ for only finitely many i. We restrict
here to the case that X is paracompact, i.e., if every open cover of X has a
locally finite refinement. In particular, smooth manifolds are all paracompact
so one can restrict to that case.
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Definition 5.2.1. Let X be a paracompact space and K a principal ideal
domain. A sheaf cohomology theory H for X with coefficients in sheaves of
K-modules over X consists of

1. a K-module Hn(X,F) for each sheaf F and each integer n,

2. a homomorphism φ∗ : Hn(X,F) → Hn(X,G) for each sheaf homomor-
phism φ : F → G and each integer n,

3. a homomorphism δn : Hn(X,F3) → Hn(X,F1) for each short exact se-
quence

0→ F1 → F2 → F3 → 0

of sheaves,

so that the following properties hold

(a) Hn(X,F) = 0 for all n < 0, and there is an isomorphism H0(X,F) ∼=
Γ(X,F) so that for each sheaf homomorphism φ : F → G the following
diagram commutes:

H0(X,F)
∼= //

��

Γ(X,F)

��
H0(X,G)

∼= // Γ(X,G).

(b) If F is a fine sheaf then Hn(X,F) = 0 for all n > 0.

(c) If

0→ F1
φ−→ F2

ψ−→ F3 → 0

is an exact sequence of sheaves, then one the following long exact sequence
in cohomology is exact:

· · · → Hn(X,F1)
φ∗−→ Hn(X,F2)

ψ∗−→ Hn(X,F3)
δn

−→ Hn+1(X,F1)→ · · · .

(d) The identity sheaf homomorphism id : F → F induces the identity homo-
morphism Hn(X,F)→ Hn(X,F) for all n.

(e) If the diagram

commutes, then for each n so does the diagram

(f) For each homomorphism of short exact sequences of sheaves

the following diagram commutes:
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F1
//

&&NNNNNNNNNNNNN F2

��
F3

Hn(X,F1) //

))SSSSSSSSSSSSSS
Hn(X,F2)

��
Hn(X,F3).

0 // F1
//

��

F2
//

��

F3

��

// 0

0 // G1
// G2

// G3
// 0,

Hn(X,F3) //

��

Hn+1(X,F1)

��
Hn(X,G3) // Hn+1(X,G1).

A bunch of material needs to be added here, but the result we are after is
the following.

Theorem 5.2.2. Any two cohomology theories on X with coefficients in sheaves
of K-modules over X are uniquely isomorphic.

Add stuff about singular and de Rham cohomology here. Provide proofs for
de Rham, probably not singular...

5.3 Čech Cohomology

In this section we define the the Čech cohomology groups. Again we assume
that X is paracompact. Let F be a sheaf of abelian groups on X . Let U = {Ui}
be an open cover of X . Fix an integer n. Given a set of indices (i0, i1, . . . , in).
Set

Ui0,...,in = Ui0 ∩ · · · ∩ Uin .
Observe that we have

Ui0,...,in ⊂ Ui0,...,̂ik,...,in
for any 0 ≤ k ≤ n.

Definition 5.3.1. A Čech n-cochain for the sheaf F over the open cover U is a
collection of sections of F , one over each Ui0,...,in . The space of Čech n-cochains
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for F over U is denoted by Čn(U ,F), i.e.,

Čn(U ,F) =
∏

(i0,...,in)

F(Ui0,...,in).

We denote a n-cochain by (fi0,...,in).

From the definition we see that a 0-chain is a collection of sections fi ∈
F(Ui), i.e., a section for each open set in the cover.

We define the coboundary map dn : Čn(U ,F)→ Čn+1(U ,F) by setting

d((fi0,...,in)) = (gi0,...,in+1)

where

gi0,...,in+1 =

n+1∑

k=0

(−1)kρ(fi0,...,̂ik,...,in+1
)

where the ρ here is the restriction map from Ui0,...,̂ik,...,in+1
to Ui0,...,in+1. In

general we will drop the restriction maps from the notation in this case and they
will be understood to be there. Note that d0((fi)) = (gi,j) where gi,j = fj − fi
and d1((fi,j)) = (gi,j,k) where gi,j,k = fj,k − fi,k + fi,j .

Definition 5.3.2. Let c ∈ Čn(U ,F) be a n-cochain satisfying dn(c) = 0. We
call such a cochain a n-cocycle. The space of n-cocycles is denoted by Žn(U ,F).
If c ∈ Čn(U ,F) is in the image of dn−1 we call c a n-coboundary. The space of
n-coboundaries is denoted by B̌n(U ,F).

Exercise 5.3.3. Check that dn+1 ◦ dn = 0 for all n.

Using the exercise, we obtain the Čech cochain complex

0 −→ Č0(U ,F)
d0−→ Č1(U ,F)

d1−→ Č2(U ,F) −→ · · · .
Definition 5.3.4. The nth Čech cohomology group of F with respect to the
cover U is given by

Ȟ
n
(U ,F) = Žn(U ,F)/B̌n(U ,F).

Of course, at this point the cohomology groups depend on the open cover U .
We will return to this momentarily.

Lemma 5.3.5. Let U be an open cover of X. Then we have

Ȟ
0
(U ,F) = Γ(X,F).

Proof. We know that B̌0(U ,F) = 0, so it only remains to compute Ž0(U ,F).
Define a map

α : Γ(X,F)→ Č0(U ,F)

by sending a global section f to fi = ρXUi
(f). Observe that d0(fi) = 0 for all i

because d0(fi) = (fj−fi) and since these are just restrictions of a global section,
they are equal on overlaps. Thus, the image of α lies in Ž0(U ,F). The fact that
α is injective and surjective is exactly the definition of F being a sheaf.
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Let φ : F → G be a sheaf homomorphism. Clearly this induces a map on
cochains

φ : Čn(U ,F)→ Čn(U ,G)
given by

(fi0,...,in) 7→ (φ(fi0,...,in)).

Moreover, since the coboundary map commutes with any map induced by a
sheaf homomorphism, we have an induced map on the cohomology groups

φ∗ : Ȟ
n
(U ,F)→ Ȟ

n
(U ,G).

Example 5.3.6. Consider X = S1 and let F = Z. Consider the open cover
U consisting of two sets U and V that overlap on small intervals as when we
computed the cohomology of S1 before. In this case, we have

C0(U ,F) = F(U)×F(V ) = Z(U)× Z(V ) ∼= Z× Z,

C1(U ,F) = F(U ∩ V ) = Z(U ∩ V ) ∼= Z× Z,

and
Cn(U ,F) = 0

for all n ≥ 2. Furthermore, we see that the map d0 : C0(U ,F) → C1(U ,F)
takes (a, b) to (b− a, b− a). Thus, we have that

Ȟ
0
(U ,F) = ker(d0) ∼= Z

and
Ȟ

1
(U ,F) = ker(d1)/ im(d0) ∼= Z.

Thus, we see that the cohomology groups agree with those computed using
singular cohomology with Z-coefficients in this case.

We would like to have cohomology groups attached to X and F that do not
depend on the choice of cover U . To do this, we must introduce the notion of
refinements.

Definition 5.3.7. Let U = {Ui}i∈I and V = {Vj}j∈J be two open covers of X .
Recall that we say V is a refinement of U if every open set Vj ∈ V is contained
in some open set Ui ∈ U . We write V ≺ U to denote that V is a refinement of
U .

Let V be a refinement of U . We can define a function r : J → I by r(j) = i
where Vj ⊂ Ui. We call such a function a refining map. Note that the refining
map is not unique!

Exercise 5.3.8. Let X be a Hausdorff space. Let U be an open cover of X .
Show that for any point x ∈ X there is a refinement V of U so that x is in only
one open set of V .
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Exercise 5.3.9. Show that any two open coverings have a common refinement.

Let V be a refinement of U and let r be a refining map. We obtain an induced
map on cochains

r̃ : Čn(U ,F)→ Čn(V ,F)

as follows. Let fi0,...,in ∈ F(Ui0,...,in). Since V is a refinement, there are indices
j0, . . . , jn so that r(jk) = ik. Set gj0,...,jn to be fi0,...,in restricted to Vj0,...,jn so
that gj0,...,jn ∈ F(Vi0,...,in). Doing this for each fi0,...,in for a cochain (fi0,...,in)
gives the desired map. This map induces a map on cohomology. We leave the
proof of the following proposition to the reader.

Proposition 5.3.10. The map r̃ induces a map

H(r) : Ȟ
n
(U ,F)→ Ȟ

n
(V ,F)

for each n.

This gives a way to compare cohomology groups with respect to different
covers, at least if one is a refinement of the other. However, it is not very useful
if it depends upon the refining map. It turns out that it only depends on the
covers U and V and not the refining map r!

Proposition 5.3.11. The map H(r) depends only upon U and V and not the
refining map r.

Proof. Let V be a refinement of an open cover U of X . Let r and r′ be refine-

ments of V . First, since we know that Ȟ
0
(U ,F) = Γ(X,F) = Ȟ

0
(V ,F), we have

that H r is just the identity map on the 0-cocycles so there is nothing to prove
in that case.

Let h ∈ Ȟ
n
(U ,F) and let h be represented by the cocycle (fi0,...,in). Then

we have that H(r)(h) is represented by the n-cocycle (gj0,...,jn) where

gj0,...,jn = fr(j0),...,r(jn)

and H(r′)(h) is represented by the n-cocycle (g′j0,...,jn) where

g′j0,...,jn = fr′(j0),...,r′(jn)

for every set of (n + 1)−indices (j0, . . . , jn). In order to show that H(r) is
independent of the choice of r, it is enough to show that the difference g′j0,...,jn−
gj0,...,jn is a n-coboundary.

Consider the n-cochain (hk0,...,kn−1) defined by

hk0,...,kn−1 =
n−1∑

i=0

(−1)ifr(k0),...,r(ki),r′(ki),...,r′(kn−1).

One now uses that (fi0,...,in) is a cocycle to see that

dn−1((hk0,...,kn−1)) = (g′j0,...,jn − gj0,...,jn).

Thus, we have that the two cocycles differ by a coboundary and so are equal as
cohomology classes, as desired.
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As the map H(r) depends only on the open covers U and V , we denote it as
HU

V from now on. Note that if W ≺ V ≺ U , then

HU
W = HV

W ◦HU
V .

It is also not hard to check that these maps commute with any φ∗ induced by
a map φ of sheaves.

Definition 5.3.12. Let F be a sheaf on X . For any n ≥ 0, we define the nth

Čech cohomology group of F on X to be

Ȟ
n
(X,F) = lim−→

U

Ȟ
n
(U ,F).

Note that we have Ȟ
0
(U ,F) = Γ(X,F) for all open covers U . Thus, we have

that Ȟ
n
(X,F) = Γ(X,F) as well. This combined with the fact that we clearly

have Ȟ
n
(X,F) = 0 for all n < 0 gives that these cohomology groups satisfy

condition (a) of Definition 5.2.1.
We have natural maps from Ȟ

n
(U ,F) to Ȟ

n
(X,F) for each open cover U

and each n ≥ 0 by the definition of a direct limit. Thus, given a cohomology
class h ∈ Ȟ

n
(U ,F), we obtain a cohomology class in Ȟ

n
(X,F). Moreover, the

image of h in Ȟ
n
(X,F) is zero precisely if there is a refinement V of U so that

HU
V (h) = 0.

As one should expect, there is a universal property for direct limits. One
can use this to see that given a sheaf map φ : F → G, the induced maps
φ∗ : Ȟ

n
(U ,F)→ Ȟ

n
(V ,F) induce a map

φ∗ : Ȟ
n
(X,F) −→ Ȟ

n
(X,G)

for each n ≥ 0. This induced map is functorial, i.e., we have that id∗ = id and
(φ ◦ ψ)∗ = φ∗ ◦ ψ∗. This gives conditions (d) and (e) of Definition 5.2.1.

Our next step is to give a long exact sequence in cohomology.
Let

0 −→ K ψ−→ F φ−→ G −→ 0

be a short exact sequence of sheaves. From this we obtain, for each n and each
open cover U , an exact sequence

0 −→ Čn(U ,K)
ψ−→ Čn(U ,F)

φ−→ Čn(U ,G).

As usual, we do not know that the last map is surjective. However, we can write
exact sequences

0 −→ Čn(U ,K)
ψ−→ Čn(U ,F)

φ−→ φ(Čn(U ,F)) −→ 0

for each U and each n. Thus, we obtain a short exact sequence of chain com-
plexes

0 −→ Č∗(U ,K)
ψ−→ Č∗(U ,F)

φ−→ φ(Č∗(U ,F)) −→ 0.
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0 // Č∗(U ,K)

��

ψ // Č∗(U ,F)

��

φ // φ(Č∗(U ,F)) //

��

0

0 // Č∗(V ,K)
ψ // Č∗(V ,F)

φ // φ(Č∗(V ,F)) // 0.

Let V be a refinement of U . Then we obtain a commutative diagram

Thus, from our general cohomology theory in § 3.2 we see that there exists a
map δn so that the following diagram commutes:

· · · // Hn−1(φ(Č∗(U ,F)))
δn−1

//

��

Ȟ
n
(U ,K)

ψ∗ //

��

Ȟ
n
(U ,F)

φ∗ //

��

Hn(φ(Č∗(U ,F))) //

��

· · ·

· · · // Hn−1(φ(Č∗(V ,F)))
δn−1

// Ȟ
n
(V ,K)

ψ∗ // Ȟ
n
(V ,F)

φ∗ // Hn(φ(Č∗(V ,F))) // · · · .

Thus, taking direct limits we obtain the long exact sequence

· · · → lim−→
U

Hn−1(φ(Č∗(U ,F)))
δn−1

−→ Ȟ
n
(X,K)

ψ∗−→ Ȟ
n
(X,F)

δn

−→ lim−→
U

Hn(φ(Č∗(U ,F)))→ · · · .

Thus, to obtain the desired long exact sequence it remains to show that

Ȟ
n
(X,G) ∼= lim−→

U

Hn(φ(Č∗(U ,F))).

Set C̃n(U) = Čn(U ,G)/φ(Čn(U ,F)). From this we obtain an exact sequence of
cochain complexes

0→ φ(Č∗(U ,F) −→ Ȟ
∗
(X,G) −→ C̃∗(U)→ 0.

By taking the long exact sequence in cohomology for this short exact sequence
of chain complexes we see it is enough to show that

lim−→
U

Hn(C̃∗(U)) = 0

for all n. We will show this by showing that for each f ∈ Čn(U ,G), there a
refinement V of U so that the restriction of f lies in φ(Čn(V ,F)). Let V = {Vi}
be a refinement of U so that Cl(Vi) ⊂ Ui for each i ∈ I. For each x ∈ X , choose
an open neighborhood Wx satisfying

1. Wx ⊂ Vi for some i.

2. If Wx ∩ Vi 6= ∅ then Wx ⊂ Ui.
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3. Wx lies in the intersection of all the Ui containing x.

4. Let Ui0 , . . . , Uin be in U so that Ui0,...,in 6= ∅. If x ∈ Ui0,...,in , then the
restriction of f from Ui0,...,in to Wx is the image of a section of F over
Wx.

Note that it is possible to satisfy the last condition since there are only finitely
many sets Ui0 , . . . , Uin so that x ∈ Ui0,...,in . Let W = {Wx}. For every x ∈ X ,
choose Vx ∈ V and Ux ∈ U so that Wx ⊂ Vx ⊂ Ux. Thus, we have that W is
a refinement of U . Let Wx0 , . . . ,Wxn be in W so that Wx0,...,xn 6= ∅. Then for
0 ≤ i ≤ n we have Wx0 ∩ Uxi 6= ∅ and so by the above conditions we see that
Wx0 ⊂ Uxi and so Wx0 ⊂ Ux0,...,xn . Now we have that by (4) above that W is
the refinement we seek so that the restriction of f lies in φ(Čn(W ,F)). This
gives condition (d) of Definition 5.2.1. We can also use this construction to get
(f) as well.

It only remains to prove condition (b) to see that the Čech cohomology
groups as defined give a sheaf cohomology theory as in Definition 5.2.1. Let F
be a fine sheaf and let n > 0. It is enough to prove that Ȟ

n
(U ,F) = 0 for a

locally finite cover U . Let {φi} be a partition of unity for F with respect to
the cover U . We will define homomorphisms Ψn : Čn(U ,F) → Čn−1(U ,F) for
each n ≥ 1. Let f ∈ Čn(U ,F) and let {U0, . . . , Un−1} be sets in U so that
U0,...,n−1 6= ∅. We have that φj ◦ fj,0,...,n−1 has support in Uj,0,...,n−1. Thus, we
can extend φj ◦fj,0,...,n−1 to a continuous section of F over Uj,0,...,n−1. Consider
φj ◦ fj,0,...,n−1 as this section over U0,...,n−1. Define

Ψn(f0,...,n−1) =
∑

j

φj ◦ fj,0,...,n−1.

Then it follows that

dn−1 ◦Ψn + Ψn+1 ◦ dn−1 = id

for all n ≥ 1. Thus, if f is a n-cocycle with n > 0, there is a (n − 1)-cochain
Ψn(f) so that dn−1Ψn(f) = f . Hence we have that Ȟ

n
(U ,F) = 0 and so we

have the result.
Thus, we have that Čech cohomology gives a sheaf cohomology theory for X

as given in Definition 5.2.1. In particular, we have the following results (need
to justify why the others give sheaf cohomology theories as well).

Theorem 5.3.13. Let X be a smooth manifold. Given an abelian group G we
have

Ȟ
n
(X,G) ∼= Hn

B(X ;G)

where we denote the singular cohomology group as HB to represent the fact that
these groups are often referred to as the Betti cohomology groups. If we define
singular cohomology in terms of differentiable simplices instead of continuous
ones, we obtain cohomology groups denoted by H∆∞. In this case we have

Ȟ
n
(X,R) ∼= Hn

dR(X) ∼= Hn
∆∞(X ; R).
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Even though the previous result allows us to compute many Čech cohomol-
ogy groups from what we have already done, we add a few examples here before
moving on to algebraic sheaves in the next section.

Theorem 5.3.14. Let X be a Riemann surface. For any n ≥ 1 we have

1. Ȟ
n
(X,C∞) = 0,

2. Ȟ
n
(X,Ω1

X) = 0,

3. Ȟ
n
(X,Ω1,0

X ) = 0,

4. Ȟ
n
(X,Ω0,1

X ) = 0,

5. Ȟ
n
(X,Ω2

X) = 0.

Proof. We prove that Ȟ
1
(U , C∞) = 0 for every open covering. The same argu-

ment works for Ȟ
n
(U , C∞) by just keeping track of more indices. Furthermore,

the other results follow with similar arguments and are left as an exercise. Al-
ternatively, one can view that each of these sheaves is fine and so the result
follows from what was shown above.

Fix an open cover U = {Ui} of X . Let (fij) be a 1-cocycle for the sheaf
C∞ and the covering U . Let {φj} be a partition of unity with respect to the
cover U . Consider the function φjfij and extend it by 0 outside of supp(φi) and
consider it as a C∞ function on all of Ui. Set gi = −∑j φjfij , which is also
a C∞ function defined on Ui. Now, we can use that (fij) is a 1-cocycle to see
that

gj − gi = −
∑

k

φkfjk +
∑

k

φkfik

=
∑

k

φk(fik − fjk)

=
∑

k

φkfij

= fij .

However, we know that d0((gk)) = (gi − gj) and so (fij) is a coboundary. Since
every cocycle is a coboundary, we obtain the result.

We can use a variation of the above method to prove the analogous result
for skyscraper sheaves. However, we first need an integer-valued version of a
partition of unity.

Lemma 5.3.15. Let X be a topological space and U = {Ui}i∈I be an open cover
of X. There is a collection of integer-valued functions {φi} on X satisfying

1. every point x ∈ X lies in only finitely many of the support sets of the φi,

2. for every x ∈ X,
∑

i φi(x) = 1,

251



3. supp(φi) ⊂ Ui for every i ∈ I.

Proof. Put an order on the index set I. Define

φi(x) =

{
1 if x ∈ Ui −

⋃
j<i Uj

0 otherwise.

These functions work.

Theorem 5.3.16. Let X be a topological space and F a skyscraper sheaf on X.
Then Ȟ

n
(X,F) = 0 for all n ≥ 1.

Proof. Again we only prove this for n = 1 as the general case follows from the
same arguments, one just needs to keep track of more indices.

Note that if f is a section of F over U and φ is any Z-valued function defined
on U , then φf is also a section of F over U . This allows us to use the integer-
valued partition of unity constructed above. This statement would not be true
if one used a regular partition of unity as φf would not necessarily be a section
of F over U anymore.

Let U = {Ui} be an open cover of X and let {φi} be an integer-valued
partition of unity. Let (fij) be a 1-cocycle for F for this covering. Consider
the section φjfij and extend it by zero outside of supp(φi), considering it as a
section of F over Ui. As above, set gi = −∑j φjfij . Then gj is also a section

of F defined over Ui. We have that (fij) = d0(gi) exactly as above, which gives
the result.

In particular, we have the following corollary which lists the cases of most
interest.

Corollary 5.3.17. Let X be a Riemann surface. Then:

1. for any x ∈ X, Ȟ
n
(X,Cx) = 0 for all n ≥ 1,

2. Ȟ
n
(X,DivX) = 0 for all n ≥ 1,

3. for any divisor D on X, Ȟ
n
(X, TX [D]) = 0 for all n ≥ 1,

4. for any pair of divisors D1 and D2 with D1 ≤ D2, Ȟ
n
(X, TX [D1/D2]) = 0

for all n ≥ 1.

We can use Theorem 5.3.13 and our previous results calculating singular
cohomology groups to give the Čech cohomology groups for locally constant
sheaves.

Corollary 5.3.18. Let X be a contractible Riemann surface and let G be an
abelian group. Then

1. Ȟ
0
(X,G) ∼= G

2. Ȟ
n
(X,G) = 0 for all n ≥ 1.
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Corollary 5.3.19. Let X be a compact Riemann surface of genus g, i.e., the
torus with g holes. Let G be an abelian group. Then

1. Ȟ
0
(X,G) ∼= G,

2. Ȟ
1
(X,G) ∼= G2g,

3. Ȟ
2
(X,G) ∼= G,

4. Ȟ
n
(X,G) = 0 for all n > 2.

We can use these results to show that Ȟ
n
(X,OX [D]) = 0 for n ≥ 2.

Theorem 5.3.20. Let X be a Riemann surface and let D be a divisor on X.
Then for n ≥ 2 we have Ȟ

n
(X,OX [D]) = 0.

Proof. We begin with the case that D = 0 so we are just dealing with the sheaf
of holomorphic functions OX . Given a form ω =

∑
I,J fI,JdzI ∧ dzJ ∈ Ωp,qX (U),

we define
d : Ωp,qX (U)→ Ωp,q+1

X (U)

by setting

d(ω) =
∑

I,J,j

∂

∂zj
fI,J(z)dzj ∧ dzI ∧ dzJ .

This gives the short exact sequence

0 −→ OX −→ C∞
X

d−→ Ω0,1
X −→ 0.

We now use the long exact sequence in cohomology to obtain sequences

Ȟ
n
(X,Ω0,1

X )
δn

−→ Ȟ
n+1

(X,OX) −→ Ȟ
n+1

(X,C∞
X )

for every n ≥ 0. However, we know that the first and last terms of the sequence
vanish for n ≥ 1, so the result follows in this case.

For the general case we consider the short exact sequence

0 −→ OX [D1] −→ OX [D2]
αD1/D2−→ TX [D1/D2] −→ 0

for D1 ≤ D2. Using the associated long exact sequence we obtain

Ȟ
n−1

(X, TX [D1/D2])→ Ȟ
n
(X,OX [D1])→ Ȟ

n
(X,OX [D2])→ Ȟ

n
(X, TX [D1/D2]).

Now for n ≥ 2 we know that the two sequences on the end vanish. Thus, we
have

Ȟ
n
(X,OX [D1]) ∼= Ȟ

n
(X,OX [D2])

for all n ≥ 2 as long as D1 ≤ D2.
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Let D be a divisor and write D = D1 −D2 with D1, D2 ≥ 0. Then we have

Ȟ
n
(X,OX [D]) ∼= Ȟ

n
(X,OX [D1]) (since D ≤ D1)

∼= Ȟ(X,OX) (since 0 ≤ D1)

= 0

where the last equality uses the base case D = 0. Thus, we have the result.

Corollary 5.3.21. Let X be a Riemann surface and D a divisor on X. Then
for n ≥ 2 we have Ȟ

n
(X,Ω1

X,hol[D]) = 0.

Proof. Let ω be a meromorphic 1-form on X and consider the canonical divisor
associated to ω given by

K =
∑

x

ordx(ω) · x.

Then one can check that there is an isomorphism of sheaves

OX [K +D]
≃−→ Ω1

X,hol[D]

given by multiplication by ω. Combining this with the previous proposition
gives the result.

5.4 Algebraic Sheaves

In this section we will study the analogous algebraic theory for Riemann sur-
faces. As such, we will consider our spaces with the Zariski topology. We say
U ⊂ X is a cofinite if X − U is a finite set.

Definition 5.4.1. Let X be a compact Riemann surface. The Zariski topology
on X is the topology where open sets are given by cofinite sets along with the
empty set. When we consider X with the Zariski topology we write XZar.

We recall the following basic facts about the Zariski topology that will be
useful:

1. XZar is not Hausdorff,

2. XZar is compact,

3. Any two nonempty open sets of XZar intersect nontrivially.

Note that if U is open in the Zariski topology, it also open in the classical
topology. Thus, for a compact manifold we have that the Zariski topology is a
subtopology of the classical topology. In particular, given a sheaf F on X , we
obtain an algebraic sheaf Falg on XZar by restricting the sheaf to the Zariski
open sets. We can determine what these algebraic sheaves look like fairly easily.
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Example 5.4.2. The sheaf OX,alg on X is given by

OX,alg(U) = {f ∈ M(X) : f ∈ OX(U)}.

Note here that we are requiring the functions to be globally meromorphic and
holomorphic on U , where the sheaf OX only required the functions to be holo-
morphic on U and made no global constraints. This follows because of the
property above that any two nonempty open sets in XZar have nontrivial inter-
section. We call OX,alg the sheaf of regular functions on X . The terminology
arises from algebraic geometry, but applies here as well. Observe that we have
an inclusion of sheaves given by

OX,alg ⊂ OX .

Example 5.4.3. Consider a divisor D on X . We define the sheaf of rational
functions with poles bounded by D on X by setting

OX,alg[D] = {f ∈ M(X) : div(f) ≥ −D for all points of U}.

We have a natural inclusion here as well given by

OX,alg[D] ⊂ OX [D].

Note that in each of the definitions above of the associated algebraic sheaves
we had that the functions were globally meromorphic. The algebraic version of
MX is MX,alg, and is a constant sheaf since every two open sets intersect in
XZar. Thus, the sections ofMX,alg are given byMX(X) for any open set U .

Example 5.4.4. We can also consider the algebraic forms as well. For instance,

consider the group of meromorphic 1-forms M(1)
X (X). This is a 1-dimensional

vector space over the fieldMX(X) generated by any non-zero 1-form. One can

associate an algebraic sheaf toM(1)
X , which is again a constant sheaf. The global

sections of M(1)
X,alg is given by M(1)

X for any open set. Similarly, we have the
sheaf of regular 1-forms

Ω1
X,alg(U) = {ω ∈M(1)

X (X) : ω ∈ Ω1
X,hol(U)}

and given a divisor D on X the sheaf of rational 1-forms with poles bounded by
D is given by

Ω1
X,alg[D](U) = {ω ∈M(1)

X (X) : div(ω) ≥ −D for all points in U}.

We again have the natural inclusions

Ω1
X,alg →֒ Ω1

X,hol

Ω1
X,alg[D] →֒ Ω1

X,hol[D]

M(1)
X,alg →֒ M

(1)
X .
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Exercise 5.4.5. Check that the algebraic “sheaves” defined above are actually
sheaves.

Exercise 5.4.6. Show that the stalk OX,alg,x of the sheaf OX,alg at the point x
is the subring of the rational function fieldMX(X) consisting of those rational
functions which are holomorphic at the point x.

We can now given the motivation for the definition of the Zariski topology.
The following proposition shows that when considering sections of algebraic
sheaves, ones only needs the cofinite sets.

Proposition 5.4.7. Let D be a divisor on X and consider the algebraic sheaf
OX,alg[D]. For any open set U and any f ∈ OX,alg[D](U) there is a cofinite
open set V with U ⊂ V ⊂ X so that the restriction map

ρVU : OX,alg[D](V ) −→ OX,alg[D](U)

so that f lies in the image of the restriction map. The same statement holds
for the algebraic sheaves Ω1

X,alg[D].

Proof. Let f ∈ OX,alg[D](U). Since f ∈ MX(X), we know that f has a finite
number of poles overall, and so in particular a finite number of poles not lying
in U . Let x1, . . . , xm be the poles of f outside U . The divisor D has finite
support by definition, so there are finitely many points y1, . . . , yn outside of U
with D(yi) < 0.

Set V to be the complement of {xi}∪{yj}. By construction we have div(f) ≥
−D on all of V since it is on all of U and at any point x ∈ V − U we have
div(f)(x) ≥ 0 and D(x) ≥ 0. Thus, we have f ∈ OX,alg[D](V ).

The same proof works for Ω1
X,alg[D].

Let f be a meromorphic function on X . We say that f has multiplicity 1 at
x ∈ X if either f is holomorphic at x and ordx(f − f(x)) = 1 or f has a simple
pole at x.

Definition 5.4.8. Let S be a set of meromorphic functions on X . We say that
S separates points of X if for every pair of points x, y ∈ X with x 6= y there is
a meromorphic function f ∈ S so that f(x) 6= f(y). We say that S separates
tangents of X if for every x ∈ X there is a meromorphic function f ∈ S which
has multiplicity 1 at x.

We call X an algebraic curve if the fieldM(X) of global meromorphic func-
tions separates the points and tangents of X . The following is a deep theorem,
but one that we will assume.

Theorem 5.4.9. Every compact Riemann surface is an algebraic curve.

We can construct Čech cohomology on XZar in the exact same manner as
was used in § 5.3, the only difference being the open sets under consideration
here. In this way we obtain the Čech cohomology groups of the sheaf F on XZar

Ȟ
n
(XZar,F).

256



Proposition 5.4.10. Let G be an abelian group and G the associated sheaf on
XZar. For every n ≥ 1 we have

Ȟ
n
(XZar, G) = 0.

Proof. Note that since all open sets in XZar have nontrivial intersection, the
locally constant sheaf G is actually a constant sheaf and G(U) = G for all open
U in XZar. We prove the result in the case that n = 1. As in the computations
in § 5.3, the arguments for general n are the same up to keeping track of more
indices.

Let f be a cohomology class in Ȟ
1
(XZar, G). We can represent f as (fij)

for some open cover U = {Ui}. We can assume that U is a finite open cover
since XZar is compact. Write U = {U0, . . . , Un}. Since f is a cocycle we have
fii = 0 for 0 ≤ i ≤ n and fij = −fji for all i 6= j. Thus, the cocycle f is
completely determined by the fij with i < j. In fact, one can do better. The
cocycle condition gives that for i < j < k,

fik = fij + fjk

and each of these elements make sense since all open sets intersect. Moreover,
if one has fi,i+1 chosen arbitrarily in G one recovers the cocycle condition by
setting

fij =

j−1∑

k=i

fk,k+1

for all i < j. Thus, the cocycle f is completely determined by the fi,i+1 for each
0 ≤ i ≤ n− 1.

Set g0 = 0 and for i ≥ 1, set

gi =

i−1∑

k=0

fk,k+1.

Then we have that (gi) is a 0-cocycle for the sheaf G and we clearly have

fij = gi−gj for i < j. Thus, f is coboundary and so is zero in Ȟ
1
(XZar, G).

The particular case of this proposition we are interested in is the following
corollary.

Corollary 5.4.11. For n ≥ 1 we have

Ȟ
n
(XZar,MX,alg) = 0

and
Ȟ
n
(XZar,M(1)

X,alg) = 0.

It turns out that in this case one does not necessarily obtain a long exact
sequence of cohomology groups for XZar from a short exact sequence of sheaves
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on XZar because XZar is not paracompact. One does have a long exact sequence

up through Ȟ
1
, i.e., given a short exact sequence of sheaves

0 −→ K −→ F −→ G −→ 0

on XZar, one obtains a long exact sequence

0→ Γ(XZar,K)→ Γ(XZar,F)→ Γ(XZar,G)→ Ȟ
1
(XZar,K)→ Ȟ

1
(XZar,F)→ Ȟ

1
(XZar,G).

We now have two ways to view the space X , as a Riemann surface with stan-
dard topology or with the Zariski topology. As is standard when working in both
settings, we write Xan when we are working in the analytic setting considering
X with standard topology. Given a divisor D on X , it would be nice if there
was a way to compare the groups Ȟ

n
(Xan,OX [D]) and Ȟ

n
(XZar,OX,alg[D]) as

well as the groups Ȟ
n
(Xan,Ω

1
X,hol[D]) and Ȟ

n
(XZar,Ω

1
X,alg[D]).

Recall that OX,alg[D] is a subsheaf of OX [D]. The inclusion map induces a
map on cohomology

j1 : Ȟ
n
(Xan,OX,alg[D]) −→ Ȟ

n
(Xan,OX [D]).

We also have that the Zariski topology is a subtopology of the standard topology
in this case, so any Zariski open cover is a classical open cover and so any cochain
for the Zariski topology is a cochain for the standard topology as well. Thus,
we obtain a map

j2 : Ȟ
n
(XZar,OX,alg[D]) −→ Ȟ

n
(Xan,OX,alg[D]).

We can compose j2 with j1 to obtain a map

j : Ȟ
n
(XZar,OX,alg[D]) −→ Ȟ

n
(Xan,OX [D]).

The same construction yields a map

j1 : Ȟ
n
(XZar,Ω

1
X,alg[D]) −→ Ȟ

n
(Xan,Ω

1
X,hol[D]).

It turns out that a deep result of Serre, known as a GAGA theorem (Geometrie
Analytique et Geometrie Algebrique), gives that these maps are actually iso-
morphisms. Serre’s theorem is much more general, but for our set-up it is given
as follows.

Theorem 5.4.12. ([10]) Let X be an algebraic curve. Then for any divisor D,
the comparison maps

j : Ȟ
n
(XZar,OX,alg[D]) −→ Ȟ

n
(Xan,OX [D]).

and
j1 : Ȟ

n
(XZar,Ω

1
X,alg[D]) −→ Ȟ

n
(Xan,Ω

1
X,hol[D]).

are group isomorphisms for all n.
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Note that the theorem does not say we get the same thing for any sheaf!
For example, if we look at the sheaf G, we have seen that

Ȟ
1
(XZar, G) = 0

but
Ȟ

1
(X,G) = G2g

if g is the genus of X .

5.5 Further applications and computations

In this section we summarize some applications of the previous sections. Many
of the results will be statements without proofs as they require a more thorough
study of Riemann surfaces than the previous chapters provide at this point. As
in the previous section, we assume X is a compact Riemann surface throughout
this section.

Let D be a divisor on X . As in the analytic setting, we obtain a map of
sheaves

αD,alg :MX,alg −→ TX,alg[D]

given by truncation of Laurent series. In terms of the classical theory, we con-
sider only the global sections for a moment. In this case we have a map

αD :MX(X) −→ TX [D](X).

Given a Laurent tail f ∈ TX [D](X), a natural question to ask is if it is in the
image of αD. Note that f is a collection of Laurent tails, one for each point. So
we are asking if there is a global meromorphic function that when expanded in a
Laurent series at each point gives the Laurent tail at that point. The problem of
constructing a meromorphic function g ∈ MX(X) so that αD(g) = f is known
as the Mittag-Leffler problem. We set

H1(D) = coker(αD).

This can be studied classically. For instance, it is known that H1(D) is a finite
dimensional C-vector space ([7], Chapter VI, Proposition 2.7.)

Recall that a canonical divisor K on X is the divisor associated to a nonzero
ω ∈M(1)

X (X). One has the following version of Serre duality. For a more general
version, see ([4], Chapter III, Theorem 7.6).

Theorem 5.5.1. ([7], Theorem 3.3) For D a divisor on X, and K a canonical
divisor on X, one has that there is an isomorphism

L(1)(−D) ∼= H1(D)∨.

In particular,

dimC H1(D) = dimL(1)(−D) = dimC L(K −D).

259



This theorem provides a crucial step in the proof of the Riemann-Roch the-
orem.

Theorem 5.5.2. ([7], Theorem 3.11) Let X have genus g. Then for any divisor
D and any canonical divisor K, we have

dimC L(D)− dimC L(K −D) = deg(D) + 1− g

where the degree of a divisor D =
∑
x nx · x is given by

∑
x nx.

Corollary 5.5.3. With X and K as in the previous theorem, let D be a divisor
of degree at least deg(K) + 1. Then H1(D) = 0 and

dimC L(D) = deg(D) + 1− g.

Proof. The fact deg(D) > deg(K) implies that L(K −D) = 0. To see this, we
prove the following more general result: ifD1 is a divisor onX with deg(D1) < 0,
then L(D1) = 0. Suppose that f ∈ L(D1) and f is not identically 0. Consider
the divisor E = div(f) + D1. Since f ∈ L(D1), E ≥ 0 and so deg(E) ≥
0. However, since deg(div(f)) = 0 we have deg(E) = deg(D) ≤ 0. This
contradiction gives the result modulo the result that deg(div(f)) = 0, which we
omit the proof of as it would take us too far afield.

Thus, we have by Serre-duality that H1(D) = 0. The other result is imme-
diate from the Riemann-Roch theorem.

One should note that deg(K) = 2g − 2 for any canonical divisor K, so we
can make the previous corollary more precise if we grant this result.

Example 5.5.4. Let X be an algebraic curve of genus g = 1 and let P be a
point on X . Observe that deg(K) = 0 in this case. Thus, if D is a divisor with
deg(D) > 0, then L(K −D) = 0. Thus, Riemann-Roch in this case reads:

dimL(D) = deg(D).

Consider the divisor D = P . Then deg(P ) = 1 and so L(P ) is the field C. We
can take 1 as a basis for L(P ). Now consider the divisor D = 2P , which has
degree 2 and so dim(2P ) = 2. Thus, there is a nonconstant function x ∈ L(2P ),
i.e., x is a meromorphic function with a degree two pole at P . We can take {1, x}
as a basis for L(2P ). We have that L(3P ) has dimension 3. Since {1, x} are both
in L(3P ), we have a function y ∈ L(3P ) with a degree 3 pole at P . Continuing
in this pattern, we have L(4P ) is spanned by {1, x, x2, y} and L(5P ) is spanned
by {1, x, x2, y, xy}. Things change when we reach L(6P ). We have that the set
{1, x, x2, x3, y, y2, xy} is contained in L(6P ). However, since dimL(6P ) = 6,
this set cannot be linearly independent. Thus, there are constants in C so that

y2 + a1xy + a2y + a3x
3 + a4x

2 + a5x+ a6 = 0.

Note that this is precisely the equation giving an elliptic curve.
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We can give a cohomological interpretation of H1(D) via the following propo-
sition. Note that this proposition is really saying that if one allows an arbitrarily
bad pole outside of U , then one can arrange for any finite set of Laurent tails
inside U .

Proposition 5.5.5. Let D be a divisor on X. The map αD,alg is an onto map
of sheaves on XZar with kernel OX,alg[D]. Thus, we have a short exact sequence
of sheaves

0 −→ OX,alg[D] −→MX,alg
αD,alg−→ TX,alg[D] −→ 0.

Proof. The fact that OX,alg[D] is the kernel of αD,alg is clear. The real issue
is showing that αD,alg is surjective. We will show that αD,alg is surjective on
any open set U that is properly contained in X . This is clearly enough to show
surjectivity.

Let x ∈ X−U and let f ∈ TX,alg[D](U), i.e., f is a finite Laurent tail divisor
supported on U . Let Dn be the divisor given by Dn = D + n · x. Now, for
large n we know that H1(Dn) = 0 by Corollary 5.5.3. Thus, for large n we have
that the map αDn on global sections is surjective. Observe that f ∈ TX [Dn](X)
since f does not have x in its support. Thus, there is a global meromorphic
function g with αDn(g) = f . Thus, if we restrict g to U , then g is a preimage
of f as well.

Recall that we do not have a long exact sequence of cohomology for algebraic
sheaves, but that we do have a long exact sequence through the first cohomology
groups. Thus, the short exact sequence gives rise to

0 −→ L(D) −→MX(X)
αD−→ TX [D](X) −→ Ȟ

1
(XZar,OX,alg[D]) −→ 0

where we have used that Ȟ
1
(XZar,MX,alg) = 0. This gives that Ȟ

1
(XZar,OX,alg[D])

is isomorphic to the cokernel of αD, i.e., that we have

H1(D) ∼= Ȟ
1
(XZar,OX,alg[D]).

Proposition 5.5.6. Let X be an algebraic curve of genus g. Let D be a divisor

on X. The spaces Ȟ
1
(Xan,OX [D]) and Ȟ

1
(Xan,Ω

1
X,hol[D]) are finite dimen-

sional. Moreover,

dim Ȟ
1
(Xan,OX) = g

and
dim Ȟ

1
(Xan,Ω

1
X,hol) = 1.

If deg(D) ≥ 2g − 1, then Ȟ
1
(Xan,OX [D]) = 0.

Proof. Observe that by Serre’s GAGA theorem we have that

Ȟ
1
(Xan,OX [D]) ∼= Ȟ

1
(XZar,OX,alg[D]).
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Combining this with the fact that

Ȟ
1
(XZar,OX,alg[D]) ∼= H1(D)

and H1(D) is finite dimensional, gives the first result. For the second statement,
recall that for any divisor E and K a canonical divisor associated to a global
nonzero meromorphic 1-form ω, we have an isomorphism of sheaves OX [E] →
Ω1
X,hol[E −K]. In particular we have

Ȟ
1
(Xan,OX [D +K]) ∼= Ȟ

1
(Xan,Ω

1
X,hol[D]).

Using that Ȟ
1
(Xan,OX [E]) is finite dimensional for any divisor E gives the

result.
In the case that D = 0, we apply Theorem 5.5.1 to see that dimL(K) =

dimH1(0) = dim Ȟ
1
(Xan,OX). We have that dimL(0) = 1 because f ∈ L(0)

means that f has no poles, which on a compact Riemann surface means it must
be a constant function. Thus, applying Riemann-Roch we obtain

dimL(K) = g.

Thus, we have dim Ȟ
1
(Xan,OX) = g as claimed. Furthermore, we have that

Ȟ
1
(Xan,Ω

1
X,hol)

∼= Ȟ
1
(Xan,OX [K]) ∼= H1(K).

Now apply Theorem 5.5.1 again to see that

dim H1(K) = dimL(0),

and so has dimension 1 as claimed.
Finally, we must deal with the case when deg(D) ≥ deg(K)+1. We again use

that dimH1(D) = dimL(K−D). The latter space vanishes since deg(K−D) <
0 by the assumption on D, and so using the above isomorphisms we have the
result.

Consider the exact sequence

0 −→ OX [D] −→MX
αD−→ TX [D] −→ 0.

Taking the associated long exact sequence we obtain

0→ L(D)→MX(X)→ TX [D](X)→ Ȟ
1
(X,OX [D])→ Ȟ

1
(X,MX)→ 0

where we have used that Ȟ
1
(X, TX [D]) = 0. For D a divisor with large enough

degree, the previous proposition gives that Ȟ
1
(X,OX [D]) = 0. Thus, we obtain

that
Ȟ

1
(X,MX) = 0,
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a result we already had for the pair (XZar,MX,alg), but did not know for the
analytic space and sheaf.

Our next application is to discuss Abel’s theorem. Recall that Div(X) =
DivX(X) is the group of divisors on the Riemann surface X . The divisors
D that satisfy deg(D) = 0 form a subgroup of Div(X) denoted by Div0(X).
A divisor D is said to be a principal divisor if there exists a meromorphic
function f ∈ MX(X) so that D = div(f). The set of principal divisors forms
a subgroup PDiv(X) of Div(X). In the case that X is compact we have that
PDiv(X) ⊂ Div0(X). A natural question to ask is when is a degree 0 divisor a
principal divisor? This is answered via Abel’s theorem. We need to introduce
some more concepts before we can state the theorem.

Our first step is to define a map from H1(X ; Z) to Ω1
X,hol(X)∨. Let ω be a

smooth closed 1-form on X . Let U be a triangulated subset of X , i.e., U can
be covered by simplices. Applying Stoke’s theorem to this setting we have

∫

∂U

ω =

∫ ∫

U

d1ω =

∫ ∫

U

0 = 0.

Thus, we see that the integral of ω around a boundary chain is 0 and so the
integral of ω around any closed chain depends only on the homology class of the
chain. We see that for any homology class [c] ∈ H1(X,Z), the integral

∫

[c]

ω =

∫

c

ω

is well-defined. Note that since X is a Riemann surface, i.e., a complex manifold
of dimension 1, we have that every holomorphic 1-form is closed. Thus, given
any ω ∈ Ω1

X,hol(X) and any homology class [c] ∈ H1(X,Z), the integral

∫

[c]

ω

is well-defined. Thus, we obtain a map from H1(X,Z) to Ω1
X,hol(X)∨ defined by

[c] 7→
(∫

[c]

: Ω1
X,hol(X)→ C

)
.

We denote the image of this map by Λ and refer to it as the subgroup of periods
of 1-forms. This construction allows us to attach a group called the Jacobian
to any algebraic curve.

Definition 5.5.7. Let X be a compact Riemann surface. The Jacobian of X ,
denoted by Jac(X), is the quotient group

Jac(X) =
Ω1
X,hol(X)∨

Λ
.
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Note that by choosing a basis of Ω1
X,hol(X) and H1(X,Z), we can identify

the Jacobian of X with

Jac(X) ∼= Cg

Z2g
.

Exercise 5.5.8. Let X be the complex torus C/L for some lattice L. Show
that Jac(X) ∼= X . In particular, this gives that the Jacobian of an elliptic curve
is just the elliptic curve itself.

We can now define the Abel-Jacobi map. Fix a basepoint x0 ∈ X . For each
x ∈ X we choose a path γx from x0 to x. The Abel-Jacobi map

AJ : X → Ω1
X,hol(X)∨

is defined by sending

x 7→
(
ω 7→

∫

γx

ω

)
.

This map is not well-defined because it depends on the choice of γx; if one
chooses a different path one will obtain a different integral. However, we can
remedy this by considering the map into Jac(X) instead of Ω1

X,hol(X)∨. In this
case the map is well-defined. It is easy to extend this from a map on X to a
map on Div(X) by setting

AJ

(
∑

x

nx · x
)

=
∑

x

nx AJ(x).

Thus, we obtain a group homomorphism from Div(X) to Jac(X). We can
restrict this map to Div0(X), which we denote as AJ0.

Lemma 5.5.9. The Abel-Jacobi map AJ0 is independent of the basepoint x0.

Proof. Set AJ0,x0 to be the Abel-Jacobi map restricted to Div0(X) defined
relative to the basepoint x0. Let x′0 be a different basepoint. For x ∈ X , let γx
be a path from x0 to x and γ′x a path from x0 to x′0. Let γ be a path from x′0
to x0. Then we have γx − γ′x − γ = 0 in H1(X,Z). Thus, we have

AJ0,x0(x)(ω) −AJ0,x′

0
(x)(ω) =

∫

γx

ω −
∫

γ′

x

ω

= Zγx−γx′
ω

=

∫

γ

ω.

Observe that the element
∫
γ
ω is independent of the point x. Now if D =
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∑
x nx · x ∈ Div0(X), then

AJ0,x0(D)(ω)−AJ0,x′

0
(D)(ω) =

∑

x

nx

∫

γ

ω

=

(∫

γ

ω

)∑

x

nx

=

(∫

γ

ω

)
· 0

= 0.

Thus, we have lemma.

We can now state Abel’s theorem.

Theorem 5.5.10. Let X be a compact Riemann surface of genus g. Let D ∈
Div0(X). Then D ∈ PDiv(X) if and only if AJ0(D) = 0 in Jac(X).

Consider the exact sequence arising from the exponential map:

0 −→ Z −→ OX −→ O∗
X −→ 0.

Using the fact that the exponential map from C to C∗ is surjective, the long
exact sequence in cohomology gives

0→ Ȟ
1
(X,Z)→ Ȟ

1
(X,OX)→ Ȟ

1
(X,O∗

X)→ Ȟ
2
(X,Z).

In particular, we can write this exact sequence as an exact sequence

0→ Ȟ
1
(X,OX)/Ȟ

1
(X,Z)→ Ȟ

1
(X,O∗

X)→ Ȟ
2
(X,Z).

We also have a short exact sequence of sheaves

0 −→ O∗
X −→M∗

X −→ DivX −→ 0

where the map M∗
X −→ DivX is given by sending a meromorphic function to

its divisor. The associated long exact sequence here begins as

0→ C∗ →MX(X)∗ → Div(X)→ Ȟ
1
(X,O∗

X).

Note that the image of the map MX(X)∗ −→ Div(X) is precisely the set of

principal divisors. Moreover, using that Ȟ
2
(X,Z) ∼= Z, we have a map

Div(X)→ Ȟ
1
(X,O∗

X)→ Ȟ
2
(X,Z) ∼= Z

In particular, one can check that this map is given by sending a divisor to its
degree. Combining all of this gives the following commutative diagram:
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0

��

0

��
PDiv(X)

= //

��

PDiv(X)

��
0 // Div0(X) // Div(X)

��

deg // Z //

=

��

0

0 // Ȟ
1
(X,OX)/Ȟ

1
(X,Z) // Ȟ

1
(X,O∗

X)
deg // Ȟ

2
(X,Z).

We can apply Serre duality (Theorem 5.5.1) to see that Ȟ
1
(X,OX) ∼= Ω1

X,hol(X)∨,

and so Ȟ
1
(X,OX)/Ȟ

1
(X,Z) ∼= Jac(X). Composition of this map with the Abel-

Jacobi map gives a map

Div0(X)→ Ȟ
1
(X,OX)/Ȟ

1
(X,Z).

We denote this map as AJ0 as well. One then can work out that this map fits
into the diagram so that the diagram commutes:

0

��
PDiv(X)

��

= // PDiv(X)

��
0 // Div0(X)

��

// Div(X) //

��

Z

=

��

// 0

0 // Ȟ
1
(X,OX)/Ȟ

1
(X,Z) // Ȟ

1
(X,O∗

X) // Ȟ
2
(X,Z) // 0.

It is now clear that if D ∈ Div0(X) then D ∈ PDiv(X) since Div0(X) injects
into Div(X) and the above diagram is commutative. Similarly, it is clear that
if D ∈ PDiv(X) then D is in the kernel of the map AJ0. Thus, we have Abel’s
theorem up to the nontrivial checking that the maps are the appropriate ones
and that the above diagram commutes after inserting the map AJ0.

5.6 The Hodge Conjecture

The Hodge conjecture is one of the Clay Mathematics Institute’s Millenium
problems. It is probably more difficult to state than any of the other millenium
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problems as it states a deep relationship between analysis, algebraic geometry,
and topology. Very little is known about this conjecture. In this section we
outline the statement of the conjecture.

Let X be a complex manifold of dimension n. Viewing X as a real manifold
of dimension 2n, for any x ∈ X we have an associated tangent space Tx(X) as
defined in § 3.5. By choosing coordinates z1 = x1+iy1, . . . , zn = xn+iyn, we can
realize Tx(X) as the space of R-linear derivations on the ring of C∞(U,R) for
U an open neighborhood of x, i.e., Tx(X) is generated over R by the operators
∂
∂xi

and ∂
∂yi

for 1 ≤ i ≤ n. As Tx(X) is a real vector space, it is natural to
consider the complexified vector space

TC,x(X) = Tx(X)⊗R C.

Choosing coordinates, this vector space can be realized as the space of C-linear
derivations on the ring of smooth complex valued functions in a neighborhood
of x. In particular, we have that TC,x(X) is generated over C by ∂

∂xi
and ∂

∂yi

for 1 ≤ i ≤ n. If we write

∂

∂zi
=

1

2

(
∂

∂xi
−
√
−1

∂

∂yi

)

and
∂

∂zi
=

1

2

(
∂

∂xi
+
√
−1

∂

∂yi

)
,

then TC,x(X) is generated over C by ∂
∂zi

and ∂
∂zi

for 1 ≤ i ≤ n. Finally, we define
the holomorphic tangent space to X at x by setting Tx,hol(X) to be the vector
space over C generated by the ∂

∂zi
, i.e., the space of derivations that vanish on

antiholomorphic functions (functions f where f is holomorphic.) Similarly, one
can define the antiholomorphic tangent space, which is isomorphic to Tx,hol(X).
Thus, we can write

TC,x(X) = Tx,hol(X)⊕ Tx,hol(X).

Recall, given a complex vector space V , a hermitian inner product is a
bilinear form

〈 , 〉 : V ⊗ V → C

that for any α ∈ C and u, v, w ∈ V satisfies

• 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

• 〈u, v + w〉 = 〈u,w〉+ 〈u, v〉

• 〈αu, v〉 = α〈u, v〉

• 〈u, αv〉 = α〈u, v〉

• 〈u, v〉 = 〈v, u〉.
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A hermitian metric on X is a positive definite hermitian inner product

〈 , 〉z : Tz,hol(X)⊗ Tz,hol(X)→ C

that depends smoothly on z, i.e., if we choose local coordinates around z as

above and set hij(z) =
〈

∂
∂zi
, ∂
∂zj

〉

z
, then the hij(z) are smooth functions of z.

If we write 〈 , 〉z in terms of the basis {dzi ⊗ dzj} of (Tz,hol(X)⊗ Tz,hol(X))∨ =
Tz,hol(X)∨ ⊗ Tz,hol(X)∨, then the hermitian metric is given by

ds2 =
∑

i,j

hij(z)dzi ⊗ dzj .

A coframe for the hermitian metric ds2 is a n-tuple of forms (ω1, . . . , ωn) with
ωi ∈ Ω1,0

X (X) so that

ds2 =
∑

i

ωi ⊗ ωi.

We say that the metric ds2 is Kähler if the (1, 1)-form

ω =

√
−1

2

∑

i

ωi ∧ ωi

is d-closed, i.e., d2(ω) = 0. A complex manifoldX is said to be a Kähler manifold
if it admits a Kähler metric. There are many other equivalent conditions one
can give on ds2 to ensure it is Kähler, including many that are more useful for
geometric insight. However, we choose the easiest version to state to keep from
going to far afield.

We have already seen that for any m, we have

ΩmX,hol(X) ∼=
⊕

p+q=m

Ωp,qX (X).

In general one does not have the same decomposition for the de Rham coho-
mology groups. However, on a Kähler manifold one does!

Theorem 5.6.1. (Hodge Decomposition Theorem) Let X be a compact Kähler
manifold. Then we have for the complex de Rham cohomology groups

Hm
dR(X,C) ∼=

⊕

p+q=m

Hp,q
dR(X)

Hp,q
dR(X) ∼= Hq,p

dR(X).

One does not get the same decomposition in terms of the real cohomology,
in this case one gets

Hm
dR(X,R) ∼=



⊕

p+q=m
p≤q

(Hp,q
dR(X)⊕Hq,p

dR(X))


 ∩Hm

dR(X,R).

268



We define the rational Hodge classes to be the set

Hdg(X) =
⋃

p

(
Ȟ

2p
(X,Q) ∩Hp,p

dR(X)
)
.

These are the classes in the de Rham cohomology groups that have any hope of
being “algebraic”.

For the algebraic side of things, we now let X be a smooth projective alge-
braic variety of dimension n. The space of C-valued points X(C) is a complex
n-manifold, which we denote as Xan. Given a subvariety Y ⊂ X of codimen-
sion p, we obtain a submanifold Yan of Xan of codimension p by considering
the C-valued points. Since Yan is a submanifold of Xan, so we have a natural
injection

Yan →֒ Xan,

which gives a natural map of sheaves

ΩmX,hol −→ ΩmY,hol

for each m ≥ 0. Consequently, we have a map

Hm
dR(Xan,C) −→ Hm

dR(Yan,C).

We specialize to the case that m = n − p. We apply the fact that Yan has

dimension n− p to see that Hn−p
dR (Yan,C)

≃−→ C. Combining this with the map
above, we have a map

Hn−p
dR (Xan,C) −→ C,

i.e., for each subvariety Y of X of codimension p we obtain an element of
Hn−p

dR (Xan,C)∨. We now apply Poincare duality to obtain an element [Y ] in
Hp

dR(Xan,C). We call these elements algebraic cycles.

Conjecture 5.6.2. (Hodge Conjecture) Let X be a smooth complex projec-
tive algebraic variety. Every Hodge class can be written as a rational sum of
alegebraic cycles.
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