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Chapter 1

Introduction

These notes are a work in progress. When finished, they will contain the material
covered in a year-long topology sequence taught at Clemson University during
the 2009-2010 academic year. I will be working on them throughout the year and
posting them as I go so that they can be edited by the students as well as provide
details that were omitted in lectures. I will also add a proper introduction at
some point.

Things to do yet:

1. More details about holomorphic and anti-holomorphic forms in Chapter 3.
Need to add stuff about complex de Rham cohomology, maybe notation
for it, etc.

2. Add a chapter on Riemann surfaces that gives the basic theorems neces-
sary for Chapter 5.

3. Beef up Chapter 4. In particular, at least add the duality theorem in this
case.

4. Add the proofs of the comparison theorem in Chapter 5.



Chapter 2

Point-Set Topology

This chapter covers the basics of point-set topology that will be needed through-
out the rest of these notes. In addition to basic point-set topology, three sections
are devoted to developing the notion of topological groups. This topic is nor-
mally left to the exercises in a first course in topology, but much more detail is
presented here to illustrate how topological notions can be applied effectively
to enhance our knowledge of some familiar algebraic structures.

2.1 Basic Definitions and Examples

We begin here with the most fundamental definition, namely that of a topology.

Definition 2.1.1. Let X be a set. A collection 7 of subsets of X is called a
topology on X if they satisfy:

1. @, X both lie in T;
2. Arbitrary unions of elements in 7 are in 7
3. Finite intersections of elements in 7 are in 7.

We refer to the elements of 7 as open sets in X or just open sets if X is clear.
Ifx € X and U € T with x € U, we say U is an open neighborhood of x.

As this is a fairly abstract definition, before we go any further we give some
examples.

Example 2.1.2. For any set X, the collection 7 = {f), X} is a topology on X.
We refer to this topology as the trivial topology.

Example 2.1.3. For any set X, the collection of all subsets of X is a topology.
We refer to this topology as the discrete topology.

Example 2.1.4. Let X = {z,y, z}. The collection 7 = {0, X, {z},{y},{z, v}, {y, 2}}
is a topology on X. It can be pictured as follows where the ovals represent the
open sets.
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Example 2.1.5. Let X = {x,y,2z}. The collection 7 = {0, X, {z}, {y}} is not
a topology because it is not closed under unions.

For a set X, there are generally many different ways to define a topology on
X. Sometimes we are able to compare two different topologies defined on X,
sometimes we are not.

Definition 2.1.6. Let 7; and 75 be topologies on a set X. If 75 C 77 we say
that 77 is finer than 75.

One should note here that given two topologies on a set X, often there will
be no containment in one direction or the other so it is not necessarily the case
that one topology will be finer than another.

In most cases it is not convenient (or even possible) to give a topology by
explicitly listing every open set. It will often be much easier to specify the
“important” open sets that can be used to generate the rest of the open sets in
the topology.

Definition 2.1.7. Let X be a set. A basis for a topology on a set X is a
collection B of subsets of X (called basis elements) satisfying:

1. For each x € X there is a basis element containing x;

2. If there exists By, By € B so that x € By N By, then there exists By € B
so that x € By C By N Bs.

Definition 2.1.8. Let B be a basis for a topology on X. The topology 7 on
X generated by B is given by declaring that U C X is in 7 if for each z € U
there exists a B € B so that x € B C U.

Of course, we are calling such a collection 7 given by a basis B a topology
on X, so it is important that we check that 7 is actually a topology!

Proposition 2.1.9. Let X be a set and B a basis for a topology generating T .
The collection T is a topology on X.



Proof. Tt is easy to see that () and X are both in 7.

Let {Ui}icr be a collection of elements of 7. We need to show that ( J,.; U; €
7. Set U = Uiel U; and let x € U. There exists j € I so that « € U;. Since
U; € T, there is a basis element B € B so that « € B C U;. However, U; C U
so we have a basis element B so that z € B C U. Thus, U € 7.

Finally, we need to show that if Uy,...,U, € 7, then Uy Nn---NU, € 7.
We show this by induction on n. The base case here is n = 2. Let x € U; N Us.
Since U; € 7T, there exists By € B so that € By C U; and similarly there
exists a Bs so that z € By C Us. We now use that x € B; N By and the fact
that B is a basis to conclude that there exists Bs € B so that x € Bs C B1 N Bs.
However, since By N By C Uy N Us, we have that + €éC By C U; N Uy and so
Uy NU; € 7. Suppose now that the result is true for n — 1 sets. Consider
Uyn---NU,_1NU, = U N---NU,—1) NU,. Our induction hypothesis gives
Uyn---NU,-1 €T and U, € 7 by assumption, so the case n = 2 then gives
that (U1 N---NU,—1) NU, € T and so we have the result. O

Lemma 2.1.10. Let X be a set and B a basis for a topology T on X. Then T
is the collection of all unions of elements in B.

Proof. Clearly one has all the unions of elements in B are in 7 because 7 is a
topology and B C 7. Now let U € 7. For each x € U, there exists B, € B so

that x € B, C U. Thus, U = UzGU B, and so the results follows. O

In some cases we will already have a topology defined and we would like to
check that a given basis actually gives this topology. Alternatively, we may be
interested in whether two bases give the same topology. The following lemmas
allow us to check this.

Lemma 2.1.11. Let X be a set and By and By bases for topologies Ty and Ty
on X. One has that T3 is finer than 7y if and only if for each x € X and each
B1 € By with x € By, there exists By € By so that x € By C By.

Proof. First, suppose that 75 is finer than 7;. For x € X, let B; € B be a basis
element containing x. Since 75 is finer than 77, we must have By € 75. However,
since 73 is generated by Bs, there must exist a Bs € By so that € By C Bj.
Now suppose that for each z € X and each By € B; with x € By, there exists
By € By so that € By C By. Let U € 7;. Let © € U. Since B; generates 77,
there exists By € By with x € By C U. Our hypothesis now gives By € By so
that x € By € By C U. Thus, we have that U € 75 as desired. O

Lemma 2.1.12. Let X be a set with a topology T. Let O be a collection of
open sets of X such that for each open set U C X and each x € U, there exists
aU, CU withx € U, and U, € O. Then O is a basis for T .

Proof. There are two steps in this proof: first we must show O is a basis and
second we must show that the topology generated by O is 7.

The first condition of being a basis is clearly satisfied by O. Let Uy, Us € O
so that © € Uy N Us,. Since Uy and Us are open, we have that Uy N Us is open



as well. Thus, there exists U3 € O with € U3 C U; N Uy and so O is a basis
of a topology 7.

We immediately have from Lemma 2.1.11 that 7 is finer than 7. However,
since the elements of O are in 7 and 7p consists of unions of elements of O by
Lemma 2.1.10, we use that 7 is a topology to get that 7o C 7 and so we have
equality. [l

With the notion of bases, we can now give less trivial examples than the
ones above.

Example 2.1.13. Consider the set R” = {(x1,...,2,) : z; € R}. Let B consist
of the sets of the form

B(z,e) ={yeR": |z —y| < ¢}

for z € R™ and € > 0. One can easily check that this collection constitutes a
basis for a topology on R™. The topology generated by B is referred to as the
standard topology and is the familiar one from classical analysis. Note that the
basis elements here are open balls.

Example 2.1.14. Once again we work with R™, but this time we let B’ consist
of sets of the form

B(z,e1,... 6n) ={y= (Y1, yn) ER" : |x; —yi| < €&}

for x € R™ and ¢; > 0. Once again it is straightforward to check that B’ is
a basis for a topology on R™. The basis elements in this case are open boxes
centered at points in R".

Let + € R™ and ¢ > 0. Consider the basis element B(x,e) € B. One
has that B(z,€/2,...,¢/2) C B(x,¢) and B(x,€/2,...,¢/2) € B'. Thus, the
topology generated by B’ is finer than the standard topology on R™. Now
let B(x,€1,...,€6,) € B'. Let € = min(ey,...,e,). Then we have B(x,€e) C
B(z,€1,...,€,) and B(x,€) € B. Thus, we see that the topology generated by
B’ is the standard topology.

Example 2.1.15. Let X and Y be sets with topologies 7x and 7y respectively.
Consider the set
X xY ={(z,y):xe X,y Y}

We define a basis for a topology on X x Y by
BZ{UXVZUETx,VETy}.

One should check that B is in fact a basis. It is also not hard to show that if
Bx is a basis for Tx and By is a basis for 7y, the

BXXBy:{BXxBy:Bx€Bx,ByéBy}

is a basis for the topology given by B. This topology is referred to as the product
topology. We will study this further in § 2.5.

Note that from what we have shown above the standard topology on R" is the
same topology as the product topology arising from viewing R™ as R x - - - x R™.



Up to this point the examples given have either been very straightforward or
familiar examples from analysis. We now introduce a few less familiar though
very important examples. Before we do this, we need to introduce the notion
of closed sets. Recall a set U C X is an open set if U € 7. We say a set C
is closed if C = X — U for some U € 7. From this definition it should not be
too surprising that one can give a topology on X by specifying the closed sets
instead of the open sets. In particular, we have the following result.

Proposition 2.1.16. Let X be a set and consider a collection C of subsets of
X. Suppose that C satisfies:

1. 0, X eC;
2. C is closed under finite unions;
3. C is closed under arbitrary intersections.
Then the set T ={X — C : C € C} is a topology on X.

Proof. First, note that ) = X — X and X = X — (), so ) and X are both in 7.
Let Uy =X —C4,...,U, = X — C,, be elements of 7. We have

_X_(i_[]loi)

Since |JI—, C; € C, we see that (;_, U; € 7 and so 7 is closed under finite
intersections.

Similarly, if we have an arbitrary collection {U; = X — C;};¢1 of elements of
T, then

el i€l

_X—<i6ﬂ]ci>.

Since (;c; Ci € C, we have |J,c;U; € T and so 7 is closed under arbitrary
unions. Thus, we have shown that 7 is a topology. [l

It is often the case that it is easier to specify the closed sets of a set X. In
this case one needs to keep in mind that the open sets are the complements of
the specified sets!

Example 2.1.17. Let C be the field of complex numbers. Affine n-space over
C is defined to be
A ={(a1,...,ay) : a; € C}.



One should note that as a set this is just C™. However, we use the notation
AZ to denote the fact that we consider it with a very different topology than
the standard topology generated by open balls. Let A = Claq,...,2,] be the
polynomial ring in n variables over C. We view polynomials f € A as functions
on A in the obvious way, namely, for P = (a1, ...,a,) € A and f(z1,...,2,) €
A, we have f(P) = f(ai,...,a,) € C. For such an f, set

V(f) ={P €Az : f(P)=0}.
Let T'C A. We define
V(T)={P € A¢: f(P) =0 for every f € T}.

We call a subset Y C A an algebraic set if there exists a T C A so that
Y = V(T). We declare the algebraic sets to be the closed sets of AZ. In order
to obtain a topology on Af, we need to show that the collection of algebraic
sets satisfies the conditions given in Proposition 2.1.16.

First, note that V(1) = 0 and V(0) = AZ. Now let V(T1),...,V(T}) be
algebraic sets. We need to show that (;_, V(T}) is an algebraic set. We claim
that V(T1) UV (Tz) = V(T Ts) where T T is the set of products of elements in
Ty and Ty. Let P e V(T1)UV(Ty) so P e V(T1) or P € V(Iy). If P € V(T1),
then f(P) = 0 for every f € Ty. Clearly we then have fg(P) = f(P)g(P) =0
for all f € Ty,g € To. Thus, P € V(T1Tz). Similarly if P € V(T3) and so
V(Th) UV (Tz) C V(T1T3). Now let P € V(ThT>). Suppose P ¢ V(T1). Then
there exists f € Ty so that f(P) # 0. If P € V(1) we are done, so suppose
P ¢ V(I), i.e., there exists g € Ty so that g(P) # 0. However, this gives
fg(P) # 0, which contradicts P € V(T1Tz). Thus, we have equality. One now
uses induction to get that | J;_, V(T;) = V(T1---T,) and so |J,_; V(T;) is an
algebraic set.

Consider now an arbitrary collection of algebraic sets {V(T;)}icr. We need
to show that (),c; V(T3) is an algebraic set. Note that if P € (;c; V(T3), then
P € V(T;) for all i € I. Thus, f(P) = 0 for every f € |J;c; Ti. Hence, we have
Nic; V(T) €V (Ui Ti)- Tt is also easy to see that V (U, Ti) € Nies V(T0).
Thus, we see that (1),.; V(T}) is an algebraic set as well.

The algebraic sets form a topology on A¢ called the Zariski topology.

Example 2.1.18. We can generalize the previous example. Let R be a commu-
tative ring with identity. Let Spec R denote the set of prime ideals in R. Recall
that an ideal p C R is a prime ideal if R/p is an integral domain. Equivalently,
p is a prime ideal if whenever xy € p, either x € p or y € p. We deal here only
with proper prime ideals. We define a topology on the space Spec R as follows.
Let I be any subset of R. (It is enough to consider only ideals, but we do not
need that here.) We define the closed sets by setting

V(I)={peSpecR:1ICp}.

One must show that these satisfy the criterion given in Proposition 2.1.16. Ob-
serve that V(0) = Spec R since every ideal contains 0. We also have that



V(1) = 0 since 1 is not contained in any prime ideal. Much as in the above
example, one can show that for V(I1),...,V(I,) one has

Avi=v (Z Ii>

i=1

so that ;_, V(I;) is a closed set. Similarly, for an arbitrary collection {V (L) }icr,

one has

Uva)=v (H IZ->

iel iel
so that (J;c; V(I;) is also a closed set. Thus, we have a Zariski topology on
Spec R as well.

One should take a moment to think about why Example 2.1.17 is a special
case of Example 2.1.18.

2.2 The Subspace Topology

Let X be a set with topology 7. Let Y C X be a subset. There is a natural way
to define a topology on Y using 7 called the subspace topology. This topology
is given by

Ty ={YNU:UeT}.

As an exercise one can show that 7y satisfies the definition of a topology on Y.

Lemma 2.2.1. Let B be a basis for T on X. Then
By ={BNY :BeB}

is a basis for Ty .

Proof. We use Lemma 2.1.12. Let UNY € 7y. Let x € UNY. In particular,
we have x € U € 7 and so there exists B € B so that x € B C U since B is a
basis for 7. Thus, we have x € BNY C UNY and so By is a basis for 7y. O

Example 2.2.2. Let X = R? with the standard topology. Consider Y = ([0, 1]Ju
{2}) x {0} with the subspace topology. The basis we obtain for 7y- are sets of the
form B(x,e)NY for e > 0 and x € R?. For example, {(2,0)} = B((2,0),1/2)NY
and so this point is open in Y. Sets of the form [0, a) x {0} as well as (b, 1] x {0}
are also open in Y for 0 < a <1 and 0 < b < 1. This shows there are many sets
that are open in Y but not in X.

The best way to get a feel for the subspace topology is to create examples
and see what the topologies look like. We see already that we must be careful
when specifying a set U C Y is open to specify where it is open. It may be the
case that U is open in Y but not in X. There is a case when one does not have
to be careful, namely when Y is open in X.

10



Lemma 2.2.3. Let Y C X withY € T. Then we have Ty C T.

Proof. Let V € Ty. Then there exists U € 7 so that V =Y NU. Since U € T
andY € 7, wehave V=Y NU €7. [l

Consider now two spaces X7 and Xs with topologies 77 and 75 respectively.
Let Y7 C X; and Y5 € X5. We have two natural ways to define a topology
on Y] x Yy C X; x X5, The first way is to consider Y7 x Y5 as a subspace of
X7 x Xo and give it the subspace topology. The second way is to give Y7 and Y3
the subspace topologies and then give Y7 x Y5 the product topology arising from
the subspace topologies. Thankfully, it turns out these are the same topologies.

Theorem 2.2.4. Let Y7 C X1 and Yo C Xo. The product topology on Yy X Ys
is the same as the subspace topology on Y1 X Ys.

Proof. The basis elements for the product topology on Y7 x Y5 are of the form
(U1 NY1) x (Uy NYs) where U; € 7;. Basis elements for the subspace topology
on Y7 x Y5 are of the form (U; x U) N (Y1 X Y3). However, by basic set theory
we have

(Ul ﬂYl) X (Ug ﬂng) = (Ul X Ug) N (Yl X ng)

Thus, since the bases are equal the topologies are necessarily equal as well. [

2.3 More Basic Concepts

In this section we introduce some more of the basic concepts that arise in topol-
ogy such as the closure of a set, limit points, and Hausdorff spaces. First we
need some more results on closed sets.

Let Y C X be a subset endowed with the subspace topology. (In general we
give subsets the subspace topology unless otherwise noted. We refer to them as
subspaces.) We say a set C' C Y is closed in Y if it is closed in the subspace
topology, i.e., there is an open set U € 7Ty so that C' =Y — U.

Lemma 2.3.1. Let Y be a subspace of X. A set C is closed in Y if and only
if it is the intersection of a closed set in X with Y.

Proof. Let C be closed in Y. Then Y — C is open in Y and so there exists
U € T such that Y — C =Y NU. We have that X — U is closed in X. Consider

the following figure as motivation.
Y
/ °
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Based on this figure it is not hard to give a purely set-theoretic proof that
C = (X —-U)NY. Thus, C is the intersection of Y and a closed set in X, as
claimed.

Suppose now that C =Y N (X —U) for U € T, i.e., C is the intersection
of Y with a closed set in X. Again, using the above picture as motivation one
shows that C =Y — (Y NU). Since Y NU is open in Y, we have that C' is closed
inY. O

Proposition 2.3.2. Let Y be a subspace of X. If C is closed in'Y and Y is
closed in X, then C' is closed in X.

Proof. The fact that C' is closed in Y gives C =Y N E for F a closed set in X.
However, since Y is also closed in X we have that C is closed in X. [l

Definition 2.3.3. Let A C X. The interior of A, denoted Int(A), is the union
of all U € T that are contained in A. The closure of A, denoted Cl(A), is the
intersection of all closed sets containing A.

Example 2.3.4. Consider A = [0,1) C R. The interior of A is (0,1) and the
closure is [0, 1].

Clearly one always has
Int(A) C A C CI(A).

Note that if A is open then Int(A) = A and if A is closed then Cl(A) = A.

If we have A C Y C X we must be careful whether we mean the closure
of Ain X or Y. When dealing with subspaces we write Cly (A4) to denote the
closure of A in Y. The following proposition relates ClI(A) and Cly (A).

Proposition 2.3.5. Let Y C X be a subspace. We have
Cly(A) =Cl(A)NY.

Proof. Observe that CI(A) NY is a closed set in Y and contains A. Thus, we
must have Cly (4) € CI(A) NY since Cly (A) is the intersection of all closed
sets in Y containing A.

As for the other direction, observe that since Cly (A) is closed in Y, there
is a closed set C'in X so that Cly(A) =Y NC by Lemma 2.3.1. However, we
know that necessarily A C C' and so CI(A) C C. Thus, Cl(A)NY CcYNC C
Cly (4). O

As we have already seen on several occasions, it is often much easier to work
with a basis rather than all of the open sets. The following result allows us to
do exactly this when trying to determine the closure of a set.

Theorem 2.3.6. Let A be a subset of X.
1. One has that x € CI(A) if and only if every open set containing x intersects

A.

12



2. Let B be a basis giving the topology T of X. Then x € CI(A) if and only
if every B € B such that x € B satisfies BN A # ().

Proof. Note that the first statement is logically equivalent to the statement that
x ¢ CI(A) if and only if there exists U € 7 with z € U so that UN A = 0. We
prove this statement. Suppose x ¢ CI(A). Then the U we seek is X — Cl(4).
Conversely, suppose there exists U € 7 with 2 € U and U N A = (). Then
C = X —U is a closed set containing A that does not contain x and so x ¢ C1(A).

The second results follows from the first. Let « € Cl(A). Then every open
set containing x intersects A. However, since B C 7 we have that every basis
element containing x must also intersect A. Conversely, suppose every B € B
with z € B satisfies BN A # (). Let U be an open set containing z. There exists
B € Bsothat x € B C U. Thus, UN A # () and so the first statement gives
x € Cl(A) as desired. O

Example 2.3.7. Let A= {1/n:n € Zso} C R where R is given the standard
topology. Note that there are no nontrivial open sets contained in A so there
are no basis elements in A. Thus, Int(A4) = 0.

We know that A C CI1(A) automatically. The only point we add when taking
the closure of A is 0. If B = (x,y) is a basis element containing 0, then we have
x < 0 <y and we can choose M so that 1/M < y and so (z,y) N A # (). Thus,
0 € Cl(A).

Example 2.3.8. Let A = {(z,y) € R? : 2 > 0,y # 0}. This is an open set so
Int(A) = A. The closure is given by Cl(A) = {(x,y) € R? : z > 0}.

Example 2.3.9. Let A = {(z,y) € R? : € Q}. Again, we see there are no
nontrivial open sets contained in A and so Int(A) = .

The fact that the rational numbers are dense in the real numbers gives
Cl(4) = R%

Definition 2.3.10. Let A C X. We say « € X is a limit point of A if every
open set containing x intersects A in some point other than x, i.e., x is a limit
point of A if it belongs to the closure of A — {z}.

Theorem 2.3.11. Let A C X and let LP(A) be the set of limit points of A.
Then
Cl(A) = AULP(A).

Proof. Let x € Cl(A). If & € A we are done. Suppose z ¢ A. Since z € Cl(A) we
know that every open set containing x intersects A by Theorem 2.3.6. However,
since « ¢ A it must intersect A in a point other than x and so z € LP(A). Thus,
Cl(A) c AULP(A).

Now suppose € AULP(A). If z € A then clearly = € CI(A). Thus, assume
x € LP(A) but ¢ A. Then every open set containing x must intersect A in a
point other than z. Thus, using Theorem 2.3.6 in the other direction we obtain
x € CI(A). Hence, AULP(A) C Cl(A) and so we have equality. O

13



Corollary 2.3.12. A set A is closed if and only if it contains all of its limit
points.

Definition 2.3.13. A space X is said to be Hausdorff if for every x,y € X
with z # y there exists U,V € 7T sothat r € U,y € V and U NV = .

A Hausdorff space is one in which one can separate points by open sets.
Most familiar spaces that one encounters before studying topology are Hausdorff
spaces. It is not difficult to come up with artificial examples of topological spaces
that are not Hausdorff.

Example 2.3.14. Let X = {a,y, 2} with 7 = {0, X, {z,y}}. It is not difficult
to check that this is a topology and the points z and y cannot be separated by
open sets and so X is not Hausdorff.

It is not uncommon for people to assume all the spaces worth considering
are Hausdorff spaces as this eliminates some pathologies that can arise in spaces
that are not Hausdorff and will still include most spaces geometers are interested
in. However, do not do this as many interesting examples that arise in number
theory and algebraic geometry are decidedly not Hausdorff.

Example 2.3.15. Let X = SpecZ = {0,2,3,5,7,...}. Let p,¢ € SpecZ with
p # £. Recall the closed sets of SpecZ are of the form V(n) = {q € SpecZ :
q | n} along with the empty set and the entire space. Thus, the basic open sets
are either the empty set, the entire space or of the form D(n) = X — V(n) =
{0} U {q € SpecZ : ¢ t n}. From this it is not hard to see that if p € U and
¢ €V, wemust have U NV # (. In fact, U NV must contain infinitely many
primes. Thus, SpecZ is not a Hausdorff space but is an interesting space to
arithmetic geometers.

The following theorem is an easy result on Hausdorff spaces. The proof is
left as an exercise.

Theorem 2.3.16. The product of two Hausdorff spaces is Hausdorff. The
subspace of a Hausdorff space is Hausdorff.

Theorem 2.3.17. Let X be a Hausdorff space. All subsets of X consisting of
finitely many points are closed.

Proof. Note that it is enough to prove the result for a set consisting of a single
point as all finite sets can be written as a finite union of one point sets, and
finite unions of closed sets are closed. Let z € X. We show that Cl({z}) = {x}.
Let y € X be a point with y # x. Then there exists U,V € 7 with = € U,
yeVand UNV = (. Thus, y ¢ Cl({z}) since V is an open set that does not
intersect {}. Since y was any point other than z we must have Cl({z}) = {z}
and so {z} is closed. O

Corollary 2.3.18. Let X be Hausdorff and A C X. One has x € LP(A) if and
only if every open set containing x intersects A in infinitely many points.
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Proof. Let x € LP(A) and suppose there is an open set U with z € U and
Un(A—-A{z}) ={z1,...,2,}. We know that {x1,...,2,} is a closed set in X
since X is Hausdorff. Thus, V =X — {z1,...,2,} is an open set containing x.
However, V N (A — {z}) is empty contradicting the fact that @ € LP(A). Thus,
if x € U € T we must have U N A contains infinitely many points.

Conversely, if every open set containing x intersects A in infinitely many
point, clearly it intersects A in a point other than z and so = € LP(A). (|

2.4 Continuous Functions

Regardless of the branch of mathematics one is studying, if one wishes to study
structure it is important to determine the relevant maps. For instance, in group
theory one wishes to look at group homomorphisms and in analysis one works
with continuous or differentiable maps. In topology, at least at this point, we
are interested in maps that are continuous. (Later we will look at differentiable
maps.)

Definition 2.4.1. Let X,Y be sets with topologies 7x and 7y respectively.
Let f: X — Y be a map. If for every V € Ty one has f~1(V) € Tx we say f
is continuous.

In general we will omit mention of 7x and 7y and content ourselves with
statements of the form “V is open in Y7, etc.

Definition 2.4.2. Let f : X — Y. Wesay [ is continuous at x € X if for every
open set V in Y with f(z) € V there is an open set U in X with f(U) C V.

Proposition 2.4.3. A function f : X — Y is continuous if and only if it is
continuous at every point in X.

Proof. 1t is clear that if f is continuous then it must be continuous at every
point in X.

Suppose now that f is continuous at each point € X. Let V be an open set
inY. Let z € f~1(V). Then f(x) € V and so there exists a U, that is open in
X with € U, and f(U,) C V since f is continuous at z. Thus, U, C f~1(V).

We can write
= U U
zef~1(V)

Thus, we see that f~(V) is open since it is the union of open sets. Since V
was an arbitrary open set, we see f is continuous. O

The proof of the following proposition is straight-forward and left as an
exercise.

Proposition 2.4.4. Suppose the topology on Y is given by a basis B. Then
f: X — Y is continuous if and only if for every B € B one has f~1(B) is open
m X.
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Example 2.4.5. Let f : X — Y be a map and suppose that X has the discrete
topology. Then f is continuous as f (V) is open for any V, so in particular is
open for all V' that are open in Y.

Example 2.4.6. Let X =Y = R with the standard topology. We need to
check that our new definition of continuous is equivalent to the ¢ — § definition
from elementary analysis. First, suppose f : R — R is continuous in the € — §
definition. Let (a,b) be a basis element of the topology. We wish to show
that f~'((a,b)) is open. Note that if f(X) N (a,b) = @ then f~'((a,b)) is
trivially open. So assume there exists y € (a,b) so that y = f(z) for some
x € R. Let € = min{|y — a|, |y — b|}. Since f is € — § continuous, there exists
a 0z so that if z satisfies |[x — z| < 04, then |f(z) — f(2)| < e. Thus, we see
that B(x,6,) C f~'((a,b)) and z € B(z,d). Since we can do this for each
z € f~((a,b)), we can write

@y = U Bl

zef~1((a,b))

Thus, f~*((a,b)) is open and so by Proposition 2.4.4 we see f is continuous.

Conversely, now assume f is continuous in our new definition. Let x € X
and let € > 0. We have that B(f(z),€) is an open set, so f~1(B(f(x),€))
is open. We have that z € f~'(B(f(z),¢)) and so there is a basis element
(a,b) C f~YB(f(z),€)) so that = € (a,b). Let § = min{|z — al, |b — z|}. Then
B(x,68) C (a,b) C f~Y(B(f(z),¢)). Thus, if z € B(z,d) then f(z) € B(f(z),e€),
ie., if |x — z| < § then |f(z) — f(2)| < e. Since & was arbitrary we have that f
is continuous in the € — ¢ definition.

Theorem 2.4.7. The function f: X — Y is continuous if and only if f~1(C)
is closed in X for every closed set C' in'Y .

Proof. First, suppose that f is continuous. Let C' C Y be closed. Set A =
F7Y(C). Our goal is to show that C1(A) C A. By definition we have f(A4) C C.
Let € CI(A). If x € A we are done so assume = ¢ A. Let V be an open set
containing f(z). The fact that f is continuous gives that f~(V) is open and
contains z. Since z € C1(A) we have that f~1(V)NA#0. Lety € f~1 (V)N A.
Then we have f(y) € V N f(A). Since V was an arbitrary open set containing
f(z) and it intersects f(A), we must have f(z) € Cl(f(A)) and so

(2.1) f(CL(A)) C CI(f(A)).

Thus,
f(z) € F(CI(A)) C Cl(f(4)) c Cl(C) =C

and so ClI(A) = A as claimed.
Now suppose f~1(C) is closed for every closed set C' in Y. Let V be an
open set in Y. Then Y — V is closed in Y and so f~1(Y — V) is closed in X.
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However, basic set theory gives

S =Y - 0)
=17 ) - 17(©)
=X~ f7(0)

and so f~1(V) is open. Since V was arbitrary, we have f is continuous. O

Accepting that continuous functions are the “right” functions to study topo-
logical spaces, we need to decide under what conditions on f: X — Y we can
reasonably conclude that from a topological point of view that X and Y are
the same space. A reasonable guess might be that we want to require f to be
continuous and bijective.

Example 2.4.8. Let S' = {(z,y) € R? : 22 + y?> = 1} be the unit circle
given the subspace topology. Let X = [0,1) and define f : X — S! by f(x) =
(cos2mx,sin27x). It is not hard to see using elementary calculus that f is
continuous and bijective. However, we would not say that X and S' are the
same space topologically. For instance, S contains all its limit points where X
does not. Pictorially, one has that 0 and 1 are not close together in R, but they
map to the same point on S' if one considers f defined on all of R. We will see
in § 2.8 that S' is compact and X is not, so we do not wish to consider them
the same space for that reason as well.

The previous example shows that it is not enough to require f : X — Y to
be continuous and bijective.

Definition 2.4.9. We say a continuous bijective map f : X — Y is a homeo-
morphism if the inverse map f~!:Y — X is also continuous.

Example 2.4.10. Returning to the example above we see that g :== f~! is not

continuous. In particular, [0,1/4) is open in X but ¢g—*([0,1/4)) is not open in
St

If there is a homeomorphism between X and Y we say that X and Y are
homeomorphic. This is the concept of “sameness” that we are looking for. (We
will actually give another definition of “sameness” in Chapter 3 that includes
homeomorphic spaces.) If whenever a space X satisfies a property, all homeo-
morphic spaces must also satisfy that property we call the property a topological

property.
Lemma 2.4.11. A continuous bijective map f : X — Y is a homeomorphism

if and only if f(U) is open for every open set U in X.

Proof. Write ¢ = f~! and let U be open in X. Let V = f(U). Since f
is bijective, the set f~1(V) = {z € X : f(x) € V} is precisely U. Thus,
g Y(U) = f(U) so g is continuous if and only if f(U) is open for every open set
UcCX. [l
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Example 2.4.12. Let X = (—1,1) and Y = R. Define f: X — Y by f(x) =

=== One can see by graphing this or using calculus that f is bijective and

continuous. It is also easy to see that for (a,b) C (—1,1) a basis element of the

subspace topology, that f((a,b)) = (ﬁ, #), which is open in R. Thus, f

is a homeomorphism.

Let f: X — Y be continuous and injective. We have that f: X — f(X) is
then continuous and bijective. If f: X — f(X) is a homeomorphism we say f
is an embedding and that X embeds in the space Y.

Example 2.4.13. Define f : R — R? by f(z) = (2,0). Then f is an embedding
of R into R2.

Example 2.4.14. The map [ : SpecZ — SpecZ[z]| sending (p) to (p) is an
embedding where (p) C Z[z] is the extension of the ideal (p) C Z to Z[z].

In general if X is a subspace of Y with the subspace topology then the
identity map id : X — Y is an embedding.

We have already made use of some of the following results, but we gather
them in one place for convenience. As each item is straight-forward to prove,
we leave the proofs to the reader.

Theorem 2.4.15. Let XY and Z be topological spaces.

1. The function f : X — Y defined by f(x) = yo for a fized yo € Y is
continuous.

2. If A C X is a subspace, then the inclusion function f: A — X is contin-
Uous.

S If f: X =Y and g : Y — Z are continuous, then go f : X — Z is
continuous.

4. If f+ X =Y is continuous and A C X is a subspace, then f: A —Y is
continuous.

5. If f: X =Y is continuous and f(X) C Z, then [ : X — Z is continuous
assuming the topologies on Z and f(X) agree.

Theorem 2.4.16. (The gluing theorem) Let X = AU B with A and B closed
subsets of X. Let f : A —Y and g : B — Y be continuous functions so that
f(x) =g(x) for all z € AN B. Then the function h: X —Y given by

_J @) xzeA
h(x)_{g(x) z€B

1S continuous.
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Proof. First note that h is well-defined because of the assumption that f and g
agree on AN B.
Let C' C Y be a closed set. We have

h=HO) = fTHC)Ug™H(O)

by set theory. Necessarily we have f~1(C) C A and ¢g~*(C) C B. Since f and
g are continuous, f~!(C) is closed in A and g~*(C) is closed in B. However,
since A is closed in X we have that f~1(C) is closed in X as well. Similarly we
have g=1(C) is closed in X. Thus, h=}(C) is closed in X and so h is continuous
as claimed. O

2.5 Products of Topological Spaces

Recall that in § 2.1 we defined a topology on X X Y in terms of the topologies
Tx and 7y . In particular, a basis for the topology on X x Y was given by

BZ{UXVIUETx,VETy}.

In this section we will generalize this notion to arbitrary products of topological
spaces. It turns out there are different ways to generalize the topology given
above and these generalizations are not equivalent. We begin with the box
topology, which gives the most obvious generalization.

Definition 2.5.1. Let {X;};c; be a collection of topological spaces with X;
having topology 7;. The box topology on [],.; X; is the topology generated by
the basis

icl

B—{HU1U1€Z}
il

One should check that the basis given in the definition of the box topology
actually satisfies the requirements to be a basis.

Though the box topology is the obvious generalization of the topology on
X XY, it is actually not the “correct” generalization for most instances as we will
see it does not satisfy many of the properties we would expect the topology on
[I;c; Xi to have. The second way to put a topology on [[,.; X; that generalizes
the product topology introduced in § 2.1 is called the product topology.

Definition 2.5.2. Let {X,;};,c; be a collection of topological spaces with X;
having topology 7;. The product topology on [[,.; Xi is the topology generated
by the basis

iel

B = {H U; : U; € 7;,U; = X; for all but finitely many z} .
il
Proposition 2.5.3. If I is a finite set then the product and box topologies are

the same topologies on [[,.; Xi. For general I the box topology is finer than the
product topology.

icl
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We leave the proof of this proposition as an exercise. In many contexts the
box topology has too many open sets while the product topology will have the
correct number of open sets. In general if we write [[,.; X; without specifying
a topology we will mean that it has product topology.

We now state some more easy results. The proofs are left as exercises.

Proposition 2.5.4. Suppose that for each i € I that 7; is given by a basis B;.
Sets of the form B = [],c; Bi with B; € B; give a basis for the box topology.
Sets of the form [[,c; Bi with B; € B; for all i and B; = X; for all but finitely

many i give a basis for the product topology on [],c; X

Proposition 2.5.5. If each X; is Hausdorff, then Hie[ X, is Hausdorff in the
boz or product topology.

Proposition 2.5.6. Let A; be a subspace of X; for each i € I. Then []
is a subspace of ]

16[

ic1 Xi as long as both are given the product or box topology

We close this section with a theorem on continuous functions. This theorem
is one that would be expected, but is only true for the product topology. This
gives a primary reason that the product topology is the correct topology to put
on an infinite product of topological spaces.

Theorem 2.5.7. Let {X;};,cr be a collection of topological spaces and let Y
be a topological space. For each i € I let f 1Y — X; be a function. Define
[:Y = [Licr Xi by f(y) = (fi(y))ier- The function f is continuous if and only
if fi is continuous for each i € I.

Proof. First, suppose that f is continuous. Define m; : [[,.; Xi — X; by
7;((w;)) = x4, i.e., 7; is the natural projection map onto the j*® component.
Clearly we have f; = ;o f. By assumption we have that f is continuous, and we
know the composition of continuous functions is continuous, so it only remains to
show that 7; is continuous. Let U; C X; be open. We have 7Tj_1(Uj) =1L Vi
where V; = X for all ¢ # j and V; = U;. This is clearly open so 7; is continuous
and thus f; is open as well. Note here that this part is true for the product or
box topology.

Now suppose that each f; is continuous. Let [[;.; U; be a basis element for
the product topology. We know that U; = X; for all but finitely many j. Let

Ji,--.,Jn be the indices where U; # X;. We have
[[vi=="w;)n---nx; ' (U;,).
iel

Thus, we have that

(HU> T (U) NN H(U)

icl
=[N U) N0 T N (U))
= [ Us) N0 U,
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This last set is open since each f; is continuous. Thus, f~! (Hiel Ui) is open
and so f is continuous. [l

It is important to be sure to understand where the fact that we were using
the product topology was used in the second part of the proof of Theorem 2.5.7!

2.6 Metric Spaces

Metric spaces are often covered in an analysis class so it is likely that most
already have some experience with metric spaces. In fact, it is generally metric
spaces that give most their geometric intuition. This can be a blessing as well as
a curse when dealing with more abstract spaces. Even if one has not encountered
the definition of a metric space, one is certainly familiar with many of them as
we will soon see.

Definition 2.6.1. A metric on a set X is a function
p: X xX—->R
such that
1. p(z,y) > 0 for every z,y € X and p(z,y) = 0 if and only if z = y;
2. p(x,y) = p(y, z) for every x,y € X;
3. plx,y) + ply, z) > p(x, 2) for every z,y,z € X.

The third condition above is often referred to as the triangle inequality as it
generalizes the triangle inequality |z + y| < |z| 4 |y| from R.

Metrics are generalizations of the distance function p(x,y) = |z — y| on R,
i.e., they measure distance between points of a space. Given a set X and a
metric p on X, we define the metric topology on X to be the topology generated
by the basis

B={B(z,¢):x € X,e >0}

where
B(z,e) = {y € X : p(x,y) < e}.

We must show that B satisfies the conditions of being a basis. The first condition
is clear as for any z € X, we have B(x,€) is a basis element containing x
for any € > 0. Consider now two basis elements B(z,e€1), B(z,€2). Let y €
B(z,e1) N B(z,€2). Set 6 = min(er — p(21,y), €2 — p(x2,y)). Then B(y,d) C
B(z,e1) N B(z,€2). Thus, B is a basis as claimed.

Note that we have shown that U is open in the metric topology if and only
if for each x € U there is an open ball B(z,¢€) contained in U. This will be a
very useful way to think of open sets in the context of metric spaces.

Example 2.6.2. The space R with p(z,y) = |z — y| is a metric space. The
metric topology gives the standard topology on R.
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Example 2.6.3. The space R with p(z,y) = |z —y| = /D1y (xi —y;)? is a
metric space. Note here we write = (z1,...,,) and similarly for y. Again
the metric topology gives the standard topology on R™.

Example 2.6.4. The space C with p(z,w) = |z — w| is a metric space. The
metric topology is the standard topology.

Example 2.6.5. It is often the case that one can define many metrics on
a space, each giving a different topology. Consider the space X = Q. The
function p(z,y) = |x — y| giving the usual metric on R can be restricted to Q
to give a metric on Q. In fact, in analysis class one learns that R is constructed
from Q via this metric. In particular, R is formed from Q by adjoining the
limits of Cauchy sequences where convergence is given in terms of the metric
p(x,y) = |z —yl.

There are other definitions of distance on Q that are extremely useful and
interesting. Let 7 € Q. For a prime p, we can write a = p"c and b = p°d with
r,s € L>0, ¢,d € Zand p{ cd. We define a new absolute value on Q known as the
p-adic valuation by setting |%‘p = p*~". For example, one has |% |5 =52"1 =5,
In this case the absolute value is measuring how divisible by p a number is. The
number is small if it is highly divisible by p. Define p,(z,y) = |z — y|p. In this
metric two numbers are close together if their difference is divisible by a large
power of p. For example, 5'° 4+ 1 and 1 are very close together in the metric ps.
This metric has many interesting properties that will be given in the following
exercises.

One can adjoin to Q the limits of the Cauchy sequences in the metric p, as
was done in forming R. In this case one obtains the field of p-adic numbers, Q.

Exercise 2.6.6. Let p, be as in the previous example.
1. Show that p,(z,y) = |x — y|, defines a metric on Q.

2. Show that this absolute value satisfies

|z £ ylp < max(|zlp, [y]p)-

3. Let © € Q and € > 0. Show that given any y € B(x,¢€) one has B(x,¢) =
B(y,e).

4. As in calculus class, a series EZOZO a, with a,, € Q, is said to converge if
the sequence of partial sums converge. Show that Y °  a, converges if
and only if lim,, . a, = 0.

5. Let Z, C Q, be the set defined by
Ly ={z€Qp: x|, <1}

It is a fact that any element = € Z, can be written uniquely in the form
o0
n=0
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where 0 < a,, < p—1 for all n. Show that Z is dense in Z,, i.e., if U is an
open set in Z, then U NZ # ().

Definition 2.6.7. Let X be a set with topology 7. We say X is meterizable if
there exists a metric on X so that 7 is the topology induced from the metric.

Theorem 2.6.8. Let X and Y be meterizable with metrics px and py respec-
tively. A function f: X — Y is continuous if and only if given any x € X and
€ > 0 there exists a § > 0 so that if px(x,y) < 0 then py (f(x), f(y)) <e.

Proof. First, suppose that f is continuous and let x € X and ¢ > 0. Consider
the open set B(f(z),e) C Y. Since f is continuous, we know f~1(B(f(z),¢)) is
open in X. Thus, there is a § > 0 so that B(z,d) C f~Y(B(f(x),¢)). In other
words, if px(x,y) < 0 then py (f(z), f(y)) <e.

Now suppose that given any x € X and ¢ > 0 there exists a § > 0 so
that if px(z,y) < § then py(f(z), f(y)) < e. Let V. .C Y be an open set. If
F~YV) =0, then f~1(V) is clearly open. Assume there is a z € f~*(V). Since
V' is an open set, there exists a ¢ > 0 so that B(f(x),e) C V. By assumption,
there exists a § > 0 so that if px(z,y) < ¢ then py(f(z), f(y)) < e, ie.,
f(B(x,0)) C B(f(x),€). Thus, we have that B(x,d) is an open neighborhood
of = contained in f~(V). Since x was arbitrary, we have that f~*(V) is open
and so f is continuous. O

One should compare the proof of this result with that of Proposition 2.4.4
and note the similarity. This shows in many ways a metric space acts much like
the familiar Euclidean spaces one is used to.

Recall from calculus the notion of a sequence. A sequence is a function
f N — R. We can define a sequence in a topological space X as a function
f: N — X. We again denote the values of f by z, := f(n). We say the
sequence {x,} converges to a point x € X if for every open set U containing x
there is a positive integer N so that if n > N then z,, € U. We write z,, — «
in this case.

In a general topological space sequences do not behave exactly as one is
familiar from calculus. For instance, a sequence can converge to more than one
point!

Exercise 2.6.9. Construct a sequence that converges to more than one point.

Proposition 2.6.10. Let X be Hausdorff and {x,} a sequence in X. If {z,}
converges then the limit is unique.

Proof. Suppose that {x,} converges to z and x’ with x # z’. The fact that X
is Hausdorff implies that there exists open sets U and V with z € U, 2/ € V
and UNV = (. However, we know that there exists NV € N so that if n > N
then x,, € U and there exists M € N so that if n > M then z,, € V. This is a
contradiction and so it must be that z = 2. O

Proposition 2.6.11. Let A C X. If there is a sequence of points of A con-
verging to x then x € Cl(A). If X is meterizable and x € Cl(A), then there is a
sequence {x,} of points in A that converge to x.
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Proof. Suppose there exists {z,,} with z, € A and x,, — 2. Let U be an open
set containing x. Since x,, — x, there are infinitely many z, € UNA. If x € A,
we are done. If not, every open set containing x intersects A — {x} and so
x € CI(A).

Now suppose that « € Cl(A) and X is meterizable with metric p. If z € A
we can set x, = x for all n and we are done. Assume z ¢ A. Consider the
open set B(z,1/n) for n > 1. Since x € Cl(A) — A, for each n there exists
xn € B(x,1/n) N A. We claim that 2, — x. Let U be an open set containing
x. There exists N > 0 so that B(x,1/N) C U. Thus, for n > N, z, € U and
so we have the claim. O

Example 2.6.12. Let X = RY = {(21,22,...) : 2; € R} and put the box
topology on X. Set A to be the set

A={(z1,22,...) :x; > 0}.

We claim that 0 € C1(A). Let B = (z1,y1) X (22,y2) X - - - be a basis element of
the box topology containing 0. Then clearly we have BN A # (). For example,
the element (y1/2,y2/2,...) is in the intersection.
Suppose there is a sequence of elements in A converging to 0. Call this
sequence {z; ;} where
Tj = ($17j,$27j, .. ) e A.

Consider the basis element

B = (—z11,211) X (—222,222) X -+ .

Then we have 0 € B, but x; ¢ B for each j and so the sequence cannot converge
to 0. Since the sequence was arbitrary, there can be no sequence in A converging
to 0 € CI(A).

Note that in light of Proposition 2.6.11 this shows that RY with the box
topology is not meterizable.

Theorem 2.6.13. Let f : X — Y be a function with X meterizable. The
function f is continuous if and only if for every sequence {x,} with x, — x the
sequence {f(x,)} converges to f(x).

Proof. Let f be a continuous function and {z,} a sequence in X converging to
2. Let V be an open set in Y containing f(z). Since f is continuous we have
that f~!(V) is open in X and contains z. Thus, there exists N € N so that if
n > N then x, € f~1(V). Thus, for n > N we have f(z,) € V. Since V was
arbitrary, we have f(z,) — f(z). Note that we did not use the fact that X is
meterizable for this direction of the proof.

Conversely, suppose that for every sequence {x,} in X with z, — x we
have f(x,) — f(x). Let A C X be a subset and let x € CIl(A4). Since X
is meterizable, Proposition 2.6.11 gives a sequence {x,} in A converging to x.
Thus, f(x,) — f(x). We have f(x,) € f(A) for all n and so we must have
f(z) € CI(f(A)) by Proposition 2.6.11. Let C be a closed subset of ¥ and set
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A = f71(C). Clearly we have f(A) C C. Let z € CI(A). However, as we saw
in equation (2.1), we have f(z) € f(Cl(A)) C Cl(f(A)) = CI(C) = C and so
x € f7YC) = A. Thus, Cl(A) C A and so A = CI(A) and so f~1(C) is closed.
Thus, f is continuous. O

As in analysis, we can consider the notion of a sequence of functions con-
verging uniformly to a function.

Definition 2.6.14. Let f,, : X — Y be a sequence of functions from a set X to
a metric space Y with metric p. We say the sequence {f,} converges uniformly
to the function f: X — Y if given any € > 0 there exists an integer N € N so
that

p(fn(@), f(z)) <€
for alln > N and all x € X.
Theorem 2.6.15. Let {f,} be a sequence of functions from a topological space

X to a metric space Y with metric p. If each f, is continuous and {fn} con-
verges a function f uniformly, then f is continuous.

Proof. Let V be an open set in Y. We want to show that f~1(V) is open in X,
i.e., for each z € f~1(V) there is an open set U containing z so that U  f~*(V),
ie, f(U)CV.

Let z € f~1(V) and write y = f(z). Choose € > 0 so that B(y,¢) C V. Since
{fn} converges uniformly to f, there exists N € N so that for n > N and for
all © € X one has p(fn(x),2) < ¢/4. Furthermore, since each f,, is continuous,
there is an open neighborhood Uy of z so that fy(U1) C B(fn(2),€¢/2). Set
Us =U NU;. We claim f(Us) C B(y,e€). Observe that if € Us, then

p(f (@), fn(2)) < €/4
by our choice of N. Similarly, we have

p(fn(2), [n(x)) < €/2
because fy is continuous and our choice of U;. Finally,

p(fn(2), f(2)) < e/4

again by the choice of N. Thus, applying the triangle inequality we have

p(f(x), [(2)) < p(f (@), fn (@) + p(fn(2), F(2))
< p(f (@), I () + p(fn(2), v (2)) + p(fn(2), £(2))
<e/d+e/2+¢€/4

= €.

Thus, Us is the open set around z we were looking for. [l
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2.7 Connected Spaces

The notion of a space being connected is a fairly intuitive one. Many of the
spaces one would expect to be connected are in fact. However, as with most
things, when considering general topological spaces some counterintuitive things
can occur.

Definition 2.7.1. Let X be a topological space. We say X is connected if
whenever X = U UV with U,V disjoint open sets, we have {U,V} = {0, X }.
If there exist disjoint open sets U,V with {U,V} # {0, X} so that X =U UV,
then we call {U,V} a separation of X.

Proposition 2.7.2. A space X is connected if the only sets that are both open
and closed are O and X .

Proof. Suppose that X is connected. Let U be a subset of X that is open and
closed but is not {) or X. Then we have that X — U is closed and open and is not
() or X. Thus, {U, X — U} provides a separation of X. This is a contradiction
so it must be that there is no such U.

Now suppose that () and X are the only open and closed sets in X. Let
{U,V} be a separation of X. Suppose that {U,V} gives a separation of X.
Then V = X — U, so V is open and closed. This is a contradiction so it must
be that X is connected. O

Note that we see in the above proof that if {U, V} provides a separation of
X then U and V are both open and closed in X.

Lemma 2.7.3. Suppose that {U,V'} gives a separation of X. IfY is a connected
subset of X then 'Y lies entirely in U or V.

Proof. This follows immediately from the fact that if not then {Y NU, Y NV}
gives a separation of Y. [l

Theorem 2.7.4. The union of a collection of connected sets that have a point
in common is connected.

Proof. Let {A;} be a collection of connected subsets of X with « € (1, A;. Set
Y = |J; Ai and suppose that {U,V} is a separation of Y. As U and V are
disjoint, we must have x € U or z € V. Without loss of generality we may
assume that x € U. Since each A; is a connected subset of Y, we must have
A; CU or A; CV by Lemma 2.7.3. However, since x € A; N U we must have
A; C U. Since i was arbitrary, we have Y C U. Thus, V = (), a contradiction.
Thus it must be that Y is connected as claimed. O

Proposition 2.7.5. Let A C X be a connected set. Let B be such that A C
B C CI(A). Then B is connected.
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Proof. Suppose that {U, V} is a separation of B. We have (UNA)U(VNA) = A.
Since A is connected we must have A C U or A C V' by Lemma 2.7.3. Without
loss of generality we may assume that A C U. Then we have Cl(4) C CI(U)
and so B C CI(U). Observe that we have CL{U)NV = { for if x € V, then V is
an open set containing x that does not intersect U and so z ¢ Cl(U). Thus, we
have BNV = (). This is a contradiction so it must be that B is connected. [

The following result shows that the property of being connected is a topolog-
ical property. This means that we can use this as a way to distinguish different
topological spaces. Namely, if X is connected and Y is not connected then X
cannot be homeomorphic to Y.

Theorem 2.7.6. Let f: X — Y be a continuous map. If A C X is connected,
then f(A) CY is connected.

Proof. Let {U,V} be a separation of f(A). Since U and V are open and f is
continuous, we have f~1(U) and f~!(V) are open in X. They are nonempty
because U and V are nonempty and contained in f(A). Similarly, we have
Y U)U f71(D) C A because U UV = f(A). Thus we have that f~(U) U
FY(V) = A so it only remains to show the intersection is trivial to obtain a
separation of A. Suppose that z € f~Y(U) N f~1(V). Then we have f(x) €
UND, a contradiction. Thus, the intersection is trivial and we have a separation
of A. However, this contradicts the fact that A is connected. Thus, we must
have f(A) is connected. O

We now prove the familiar result that R is connected. We will be able to
combine this with other results to obtain many familiar spaces such as R™ and
intervals are connected.

Theorem 2.7.7. The space R is connected.

Proof. Suppose that {U,V'} is a separation of R. Let € U and y € V.. Without
loss of generality we may assume z < y. (If there is no element of U that is less
than an element of V', just interchange U and V.

Set Up = [z,y] NU and Vy = [z,y] N V. We have that Uy is open in [z, y]
in the subspace topology since U is open in R and similarly V; is open in [z, y].
Let g = lub(Uy). We split into two cases:

Case 1: Suppose that zg € Uy. Then clearly we have xq # y since Uy NV = ().
Now since z¢ € Uy and Uy is open, there is an interval of the form [z, z) con-
tained in Uy. However, this means we can choose an element w € (g, z) so that
w € Up. This contradicts the fact that z¢p = lub(Up). Thus, we cannot have
zo € Up.

Case 2: Suppose that xg € V. Note that is has to be one of these two cases since
y & Vo so lub(Up) < y, so lies in [z,y] and [z,y] = Uy U Vj by our assumption
that {U,V'} is a separation of R. Since zy € Vj, we have that x¢ # x. Thus,
x < 2o < y and so there is an interval of the form (z,zo] contained in Vy. If
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xo = y we have a contradiction because then z is an upper bound of Uy that is
less than lub(Up). Suppose that zp < y. We then have (x¢, y] does not intersect
Uo, SO

(Zvy] = (Za IO] U (x()vy]

does not intersect Uy. However, this gives z as a smaller upper bound on Uy
than xg, a contradiction.

Since we have a contradiction in either case, it must be that R is connected.

O

One can use the same argument to obtain that intervals and rays in R are
connected as well. However, it is often easier to use Theorem 2.7.6. For example,
since sin : R — [—1, 1] is continuous, surjective, and R is connected, we have
[-1,1] is connected. To see that (—a,a) is connected, just observe that R is
homeomorphic to (—a, a) under the map

[ R— (—a,a)

2ax
IO =y Aae

We can use the following theorem to conclude that R™ is connected for any
n > 1.

Theorem 2.7.8. The product of connected spaces is connected.

Proof. We begin by proving the theorem for finite products via induction. Our
base case is n = 2. Consider two connected spaces X and Y. We wish to show
that X x Y is connected. Pick a point (zo,y0) € X x Y. Observe that {zo} x Y
is homeomorphic to Y so is connected and similarly X x {yo} is connected.
Consider the space

To = ({a} x Y) U (X x {yo}).

Since {z} x Y and X X {yo} are both connected and both contain the point
(x,y0), Theorem 2.7.4 we have that T, is connected for every x € X. Given
any x € X, we have (x9,%0) € T,. We also have that |J .y T» = X x Y. Since
X xY is the union of connected sets having a point in common, Theorem 2.7.4
gives that X xY is connected. See the following picture where T is given in red.

Y

Yo
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Now suppose the result is true for n—1, i.e., if j <n—1and X;y,..., X; are
connected, then X X ---x X is connected. Observe that we have X7 x---x X,
is homeomorphic to (X7 X -+ - x X,,_1) x X,,. We apply the induction hypothesis
to get that X; x -+ x X,,_1 is connected and then apply the base case to obtain
X X --- x X, is connected as desired.

The more difficult case is when we have an arbitrary product of connected
spaces. Let {X;}icr be a collection of connected sets. Set X = [],.; X;. Pick
a base point a = (a;);er € X. For any finite set of indices {i1,...,%,} in I, set

X(il,...,im) cX

to be the set of points (z;);cr so that x; = a; for all i ¢ {iy,... 4, }. Let

Y =X (i1, im)

where the union is over all finite subsets of I. First, note that Y is not all of X.
However, we will show that the closure of Y is all of X. Before we show this,
we show why this gives the result.

Observe that we have maps

¢1Xi1 X oo XXim —>X(i1,...,im)
(Tiys ooy ®iy,) = (Yi)ier

where y; = a; for i ¢ {i1,...,in} and y;; = x;, for i; € {i1,...,im}. It
should also be clear how to define the inverse map as well. Since we are in
the product topology, we claim this map is continuous and open. The basis
element Bj, x --- x By, maps to [[ B; where By, = By, if i; € {i1,...,im}
and otherwise B; = {a;} = X(i1,...,in) N ][, X; x B;. This gives that the
map is open. To see it is continuous, observe a basis element of X (i1, ..., %)
is of the form B = [[B; where B; = {a;} for j ¢ {i1,... iy} and B, is a
basis element of X; for j € {i1,...,im}. Thus, $~*(B) = B;, x B, . Thus, we
have a homeomorphism. The result we have already for finite products gives
X (i1,...,1m) is connected. Since each X (i1,...,4,,) contains a we have that
the union is connected, i.e., Y is connected. If we can show that C1(Y) = X,
then Proposition 2.7.5 will give that X is connected.

It remains to show that CI(Y) = X. Let # = (v;)ier € X. Let B = [[,; B:
be a basis element containing x. Each B; is open in X; and for all but finitely
many indices we have B; = X;. (Note here it is required we are using the product
topology!) Let {i1,...,4,} be the indices where B; # X;. Define (y;)icr € X

by
o T iE{il,...,im}
Yi = a; otherwise.

Observe that y = (y;)ier € X (i1,...,im) C Y. We also have y € B. Thus, every
basis element containing z intersects Y and so z € CI(Y). Thus, CI(Y) = X
and we are done. O
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Definition 2.7.9. A space X is said to be totally disconnected if the only
subsets of X that are connected are one point sets.

Example 2.7.10. Let R = R[z]/(2?—1). Note that since 22 —1 = (x—1)(z+1)
we have
R[z]/(z* —1) 2R @ R.

The isomorphism is given by the map

Rlz] — R®R
fl) = (f(1), f(=1)).

This map is onto, a homomorphism, and the kernel is (z* — 1). We consider
the set of prime ideals Spec R in R. There are precisely two elements in Spec R,
namely, (x — 1) and (x4 1). These correspond to the two prime ideals in R® R,
namely, (0) ® R and R @& (0). Recall given a general ring R, we defined the
Zariski topology on Spec R in § 2.1. We see that V((z — 1)) = {(z — 1)} and
V((z+1)) ={(xz+1)}. Thus, {(z+1)} and {(z—1)} are both closed in Spec R.
Furthermore, since {(x+1)} = Spec R—V ((z—1)), we have that {(z+1)} is open.
Similarly, {(z—1)} is open as well. We have that Spec R = {(z— 1)} U{(z+1)}
so is totally disconnected.

Exercise 2.7.11. Show that Q with the subspace topology from R is a totally
disconnected space.

There are other notions of how a space can be connected that are useful
depending on the situation.

Definition 2.7.12. Let X be a space and z,y € X. A continuous map f :
[a,b] — X with f(a) = z, f(b) = y is called a path from x to y. If given any
x,y € X there is a path from x to y we say the space X is path-connected.

Example 2.7.13. Let B(a,e) C R™ be an open ball. This is path-connected.
To see this, let 2,y € B(a,€). A path between z and y that lies in B(a,e€) is
given by f :[0,1] — B(a,€) where f(t) = (1 — t)z + ty. One should check that
the image of f lies in B(a,€).

Proposition 2.7.14. Let X be path-connected. Then X is connected.

Proof. Suppose X is not connected and let {U,V} be a separation of X. Let
x € U,y € V. Since X is path-connected, there is a path f : [a,b] — X with
fla) = z, f(b) = y for some interval [a,b] C R. Since [a,b] is connected and
f is continuous, f([a,b]) is connected. Thus, f([a,b]) C U or f([a,b]) C V.
However, this contradicts the fact that x € U, y € V and f is a path between
2 and y. Thus, it must be that X is connected. O

It may seem at first glance that a connected space would be path-connected
as well. However, this is not the case as the next example demonstrates.
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Example 2.7.15. Consider the space ¥ = {(w,sin (%)) cx € (0, 1)} This
space is known as the topologist’s sine curve. It is connected as it is the image
of the connected set (0,1) under the continuous map y = sinz. The topology
on Y is the subspace topology it inherits as a subset of R2.

Our first claim is that (0,0) € C1(Y'). Let U = B(x, €) be a basis element of
the topology on R? containing (0,0). We can choose § > 0 so that B((0,0),4) C
U. Choose n € N so that --- < §. Then (==, sin(n7)) = (-=,0) is contained in
B(z,e) NY. Since B(x,¢€) was arbitrary, this shows (0,0) € C1(Y). One should
also note that Y is path-connected by the definition of Y.

Now consider the space X =Y U{(0,0)}. This is a connected set by Propo-
sition 2.7.5 since Y is connected and (0,0) is a limit point of Y. We will now
show that X is not path-connected by showing that one cannot connect (0,0)
to any other point in Y.

Let f : [a,b] — X be a path connecting (0,0) to a point o = (x,sin (%))
in Y. Since f is continuous and [a,b] is connected, f([a,b]) must be connected
as well. Consider f~1({(0,0)}). Since {(0,0)} is closed, we have f~1({(0,0)})
is also closed. We now show that f~1({(0,0)}) is open as well. This will give
that f=1({(0,0)}) is a nonempty subset of the connected set [a,b] that is open
and closed and so must be the entire interval. This contradicts the fact that
f is a path from (0,0) to a. Let V = B((0,0),1/2). Let t € f~1(V) and
U C [a,b] a basis element with ¢ € U and f(U) C B((0,0),1/2). We now
show that U C f~1({(0,0)}) and so f~1({(0,0)}) is an open set since any point
can be surrounded by an open neighborhood that lies in f~1({(0,0)}). Since
U is a basis element, it is connected and so f(U) is connected as well. We
claim that this gives f(U) cannot contain any point other than (0,0). Suppose

8 = (y,sin (%)) is in f(U). Choose n € N so that -= < y. Then we see

that since f(U) C B((0,0),1/2), the point (:=,sin (ZF)) = (&, (-1)"*) is
not in f(U). Consider the disjoint subsets of R? given by (—oo, %) x R and
(%, oo) x R. We see that f(U) must lie completely in the union of these two
sets since it does not intersect the line z = % However, each set is connected
so f(U) must lie entirely in one or the other. Since (0,0) € f(U), we must have
fU) c (—oo,%) x R. However, 3 € (%,oo) x R. This is a contradiction.

Thus, f(U) = {(0,0)} as claimed.

Let X be a topological space. We define an equivalence relation on X by
setting = ~ y if there is a connected subset of X that contains x and y. The set
of equivalence classes under this relation are called the connected components of
X. Similarly, we can define another equivalence relation on X by setting z ~ y
if there is a path in X that connects x and y. The equivalence classes in this
case are called the path components of X. One should check that each of these
relations is an equivalence relation.

We leave the proof of the following two propositions as exercises.

Proposition 2.7.16. The connected components of X are connected, disjoint
subsets of X whose union is X such that each connected subsets of X intersects
only one of the components.
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Proposition 2.7.17. The path components of X are path-connected disjoint
subsets of X whose union is X such that each path-connected subset of X in-
tersects only one of the components.

Example 2.7.18. Let Y be the topologist’s sine curve. We saw above that Y
has one connected component and one path component. By adding points in
{0} x [-1, 1], we can form a space with one connected component and as many
path components as we desire. For instance, X = {(0,0)} UY has two path
components. The space X = {(0,7) : r € QN[—1, 1]}UY has a countably infinite
number of path components where Z = {(0,7) : 7 € (R—- Q) N[-1,1]} UY has
an uncountably infinite number of path components.

We end this section by briefly discussing the notion of a space being locally
connected.

Definition 2.7.19. A space X is said to be locally connected at x € X if for
every open set U containing x there is a connected open neighborhood of x
contained in U. We say X is locally connected if it is locally connected at each
point.

Similarly one has the notion of locally path-connected, which we leave the
reader to define.

Note that being locally connected is equivalent to having a basis of connected
sets.

Example 2.7.20. The space [0,1) U (1,2] is clearly not connected, but it is
locally connected. The topologist’s sine curve with the points {(0,7) : r €
QN [-1,1]} added is connected but not locally connected.

Theorem 2.7.21. A space X is locally connected if and only if for every open
set U C X, each connected component of U is open in X.

Proof. Let X be locally connected and U C X an open set. Let A be a connected
component of U. Let z € A. We can choose a connected open neighborhood
V of x that is contained in U. However, since A is connected, we must have
V C A and so A is open in X.

Suppose now that every connected component of every open set in X is open
in X. Let x € X and let U be an open neighborhood of z. There is a connected
component A of U that contains x. Since A is open in X by assumption, we
have that X is locally connected. O

2.8 Compact Spaces
The notion of a space being compact is not nearly as intuitive as that of being

connected. However, the property of compactness is a very powerful property
for a space to have so is very important to study.
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Definition 2.8.1. Let X be a space and {U;} a collection of open sets. We
call {U;}icr an open cover of X if X = J;.; U;. We say the space X is compact
if every open cover {U;}ic; of X contains a finite subcover, i.e., there exists
Ui,...,U, € {Ui}iel sothat X =U; U---UU,.

Example 2.8.2. The space R is not compact. For instance, if we set U; =
(—i,i), then {U;};cn is an open cover of R but there is no finite subcover of R.

Example 2.8.3. Let X = SpecZ. Recall the open sets for the Zariski topology
are very large. In fact, the basis elements are given by sets of the form D(n) =
{(p) € SpecZ : p t n}. This should lead us to believe that SpecZ is compact,
which it is. Let {U;} be an open cover of X. Since each U; is open, each contains
a basis element. Pick any U; and any basis element contained in U;, call it D(n).
This basis element contains all the elements of Spec Z except those primes that
divide n. Since there are only finitely many such primes, to cover SpecZ we
only need to choose the finitely many U; needed to cover the primes that divide
n along with U;. Thus, we have a finite subcover. Since the open covering was
arbitrary, we have that SpecZ is compact.

Theorem 2.8.4. Fvery closed interval in R is compact.

Proof. Let [a,b] be such an interval and let & = {U;} be an open cover of [a, ].
Let « € [a,b] and let U; contain x. Since U; is open, there exists a y € [a, b
so that [z,y) C U;. Choose z € [z,y). Then [z,z] C U;. This can be done for
any point = € [a, ], i.e., for each = € [a,b] there is a z € (a,b) so that [z, 2] is
covered by one element in U.

Let C be the set of points ¢ € (a,b) so that [a,c] can be covered by finitely
many elements of /. By what we have just shown C is nonempty. It is clearly
bounded above, so there is a least upper bound. Set ¢ = lubC.

Suppose ¢ ¢ C. Choose U € U containing c. There exists d € [a,c) so that
(d,c] c U. Since ¢ = lubC, there must be an element z € C so that z € (d, ¢)
for otherwise d would be a least upper bound of C. Thus, the interval [a, 2] can
be covered by finitely many elements in . However, [z,¢] C U and so adding
this one element to the cover of [a, z] we obtain a finite cover of [a, ¢], which
contradicts the assumption that ¢ ¢ C. Thus, ¢ € C.

If we can show that ¢ = b we will be done. Suppose ¢ < b. We can find
x € (¢,b) so that [c, 2] is covered by only one U € U. However, we know [a, ¢] is
covered by finitely many intervals, so [a, x] = [a, c] U [c, 2] is covered by finitely
many U;. This shows z € C, which contradicts ¢ = lubC. Thus, ¢ = b. O

Proposition 2.8.5. Every closed subset of a compact space is compact.

Proof. Let X be compact and let Y be a closed subset of X. Let U = {U;}
be any open covering of Y. Set U’ = {U;} U{X — Y}. We see that &’ is an
open covering of X, so has a finite subcover Uj,..., U/ since X is compact. If
X —Y is among the U/ for i = 1,...,n, throw it out. If not, leave the U] for
i =1,...,n alone. Either way, we obtain a finite subcover of Y. Thus, Y is
compact. (I
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Proposition 2.8.6. Every compact subset of a Hausdor(f space is closed.

Proof. Let X be a Hausdorff space and let Y be a compact subset. Let z¢ €
X — Y. For each point y € Y, the fact that X is Hausdorff allows us to
choose open sets Uy, V, so that g € Uy, y € V,, and U, NV, = . Note that
V = {V,}yey forms an open cover of Y. The fact that ¥ is compact gives a
finite subcover V., ..., V,, of Y. We have that |J;_, V,, covers Y and is disjoint
from the open set Uy, N---NU,,. Thus, U =, Uy, is an open set in X —Y
that contains xy. Since xg was arbitrary, we see that X — Y is open and so Y
is closed as claimed. O

It is very important to notice that this last proposition does not say that
compact sets are closed in general. This is only true in Hausdorff spaces!

Example 2.8.7. Let X = {a,b,c} and set 7 = {0, X,{a}}. Then {c} is a
compact subset of X but is not closed.

The following result was contained in the proof of Proposition 2.8.6 but we
list it as a separate result here as it will be very useful.

Corollary 2.8.8. Let X be Hausdorff and Y a compact subset of X. If x €
X =Y, there are disjoint open sets U,V so that x € U and Y C V.

As with connectedness, the criterion of being compact is a topological prop-
erty.

Proposition 2.8.9. The image of a compact space under a continuous map is
compact.

Proof. Let X be a compact space and f : X — Y a continuous map. Let
V = {V;} be an open cover of f(X). Since f is continuous, f~*(V;) is continuous
for each i and so { f ~(V;)} forms an open cover of X. Since X is compact, there
is a finite subcover f=1(V1),..., f~1(V,,). Then Vi,...,v, is a finite cover of
f(X). Thus, f(X) is compact. O

In addition to the previous result showing that being compact is a topological
property, we can also use it to give an easier criterion one can check to determine
if a continuous map from a compact to a Hausdorff space is a homeomorphism.

Theorem 2.8.10. Let f : X — Y be a bijective continuous map. If X is
compact and Y is Hausdorff, then f is a homeomorphism.

Proof. The bijectivity of f gives the existence of an inverse function g : ¥ — X.
To see that f is a homeomorphism we must show that g is continuous. To
see this, it is enough to show that f(C) is closed for every closed set C' C
X. The fact that C is closed and X is compact gives that C is compact by
Proposition 2.8.5. We now apply Proposition 2.8.9 to see that f(C) is compact.
Finally, Proposition 2.8.6 gives that f(C') is closed because Y is assumed to be
Hausdorff. O
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If we follow the same general outline as when dealing with connected spaces,
the next step would be to prove that the product of compact spaces is again
compact. This is true in general, though we will only prove it for a finite product.
Before we can prove this we need the following lemma.

Lemma 2.8.11. (Tube Lemma) Let X and Y be topological spaces and assume
Y is compact. If N is an open set in X X Y that contains the slice {xg} X Y
for some xg € X, then N contains a tube U x Y around {xzo} x Y where U is
an open set in X containing xg.

Proof. Note that {z} x Y is homeomorphic to Y so it is compact. Let {U; x V;}
be an open cover of {z¢} x Y with each U; x V; C N. Since {2} XY is compact,
there is a finite subcover Uy x Vq,...,U, X V,. Set

W=Un---NU,.

This is an open set in X that contains x¢. We claim that W x Y C N.

Let (z,y) € W x Y. There exists j so that (zo,y) € U; x V;. However, we
know that W C Uj for all j, so we have « € U; as well. Thus, (z,y) € U; x V; C
N. Hence, we have W x Y C N as claimed.

The following picture illustrates the proof where the red is W x Y and the
blue boxes are the U; x V;:

Y

O

It is essential in the tube lemma that Y be compact. If not, the result does
not necessarily hold. For example, let X =Y = R. Set

N = {(x,y) eR?: |y < ﬁ}u{(o,y):yER}.

This does not contain a tube around Y.

Theorem 2.8.12. The product of finitely many compact sets is compact.
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Proof. First we note that if we show the result for the product of two compact
spaces, the general result for finitely many spaces then follows by induction.

Let X and Y be compact spaces. Let U = {U, };c1 be an open cover of X xY.
Let 29 € X. The space {xo} x Y is homeomorphic to Y, so is compact. Thus,
there is a finite subcover Uy, ..., U, of {zo} x Y. We have that U; U---UU, is
an open set containing {xo} x Y, so Lemma 2.8.11 gives an open set W,, C X
with o € W, and Wy, xY C Uy U---UU,. Thus, the set W,, X Y is covered
by finitely many open sets Ui, ..., U, in U.

Thus, we see for each x € X, there is an open neighborhood W, of x so
that W, x Y can be covered by finitely many elements of /. Observe that
{W_.}zex is an open cover of X and since X is compact, there is a finite subcover
Waysoo oy Wy, . Thus, Wy, x Y, ..., W, xY is a covering of X x Y. We know
that each W, x Y can be covered by finitely many element of ¢/, and since there
are finitely many W, X Y covering X x Y, we obtain a finite cover of X x Y
as desired. O

The more general statement is known as the Tychonoff Theorem. One can
find a proof of it in [8].

Theorem 2.8.13. (Tychonoff Theorem) An arbitrary product of compact spaces
is compact in the product topology.

There are other forms of compactness that are useful as well. We introduce
two here.

Definition 2.8.14. A space X is said to be limit point compact if every infinite
subset of X has a limit point.

Definition 2.8.15. A space X is said to be sequentially compact if every se-
quence in X has a convergent subsequence.

Lemma 2.8.16. A compact space X is limit point compact.

Proof. Let A be an infinite subset of X and suppose A has no limit points.
Since the closure of A is A along with the limit points of A, we see A must be
closed. Since A is closed and X is compact, Proposition 2.8.5 gives that A is
necessarily compact as well.

For each a € A there is an open neighborhood U, of a so that U, N A = ()
since a is not a limit point of A. The collection {U, N A},c4 is an open cover
of A with each element containing only one point. Since A is compact, there is
a finite subcover. However, this contradicts the fact that A is infinite. Thus, A
must have a limit point. O

Lemma 2.8.17. Let X be a meterizable space. If X is limil point compact then
it is sequentially compact.

Proof. Let p be a metric giving the topology on X. Let {x,} be a sequence in
X. Set A ={x, :n € N}. If Ais finite there is clearly a convergent subsequence
because for some N € N, if n > N we have x,; = x, for all 7 > 0. Thus,
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we have a constant subsequence which obviously converges. Suppose that A is
infinite. Since X is limit point compact, A has a limit point x. For each ¢ > 1,
there is an element in ANB(x,1/7) that is not equal to x. Call this element .
It is now clear that the subsequence {z,,} converges to . Since the sequence
{z,} was arbitrary, we see that X is sequentially compact. O

Let X be a metric space with metric p. We say a subset A of X is bounded if
there exists M € Rsq so that p(a1,as) < M for all aj,as € A. If A is bounded,
the diameter of A is defined to be

diam(A) = lub{p(a1, a2) : a1,a2 € A}.

Lemma 2.8.18. (Lebesgue Number Lemma) Let U be an open cover of a metric
space (X, p). If X is sequentially compact, there is a 6 > 0 (called the Lebesgue
number of U) so that for each subset A of X with diam(A) < ¢, there is an
element of U containing A.

Proof. Let U be an open cover of X and suppose there is no such 4, i.e., for
every § > 0 there is a subset As of X with diam(As) < 6 but Ay is not contained
inside any element of /. In particular, if we set §; = %, we have sets A; with
diam(A;) < 1 so that A; is not contained in any element of U. For each n,
choose a x,, € A,, and form a sequence {x,, }.

Suppose that {x,} has a convergent subsequence {z,,} that converges to
an element . Let U € U be an element that contains z. Since we are in a
metric space, there exists ¢ > 0 so that B(x,¢) C U. Choose a large j so that

p(x,z,;) < § and nL < 5. Note that A,, C B (:vnj, ni) since diam(A4,,;) < %,
J J J
and so A,, C B(x,e) C U. This is a contradiction, so the sequence {x,} has

no convergent subsequence. This contradicts the fact that X is sequentially
compact, so we must have that there exists such a d. [l

In the case that X is meterizable we can now relate the different notions of
compactness we have given here.

Corollary 2.8.19. Let X be meterizable. The following are equivalent:
1. X is compact;
2. X s limit point compact;
3. X is sequentially compact.

Proof. We have already shown that (1) implies (2) in the general case and that
(2) implies (3) in the case of a metric space, so it only remains to show that (3)
implies (1).

Let € > 0. We claim that we can cover X by finitely many sets of the form
B(z,€). Suppose not. Let 21 be any element in X. Note that if B(zq,¢)
is all of X we are done. Otherwise, choose z3 € X — B(x1,¢). We con-
struct a sequence inductively as follows. Suppose we have chosen z1,...,x,_1.
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If B(x1,€),...,B(xn-1,€) covers X we are done, if not, choose z, € X —
U?;ll B(x;,€). For each i we have p(x,,x;) > €. Therefore, the sequence can
have no convergent subsequence, a contradiction. Thus, the claim follows.
Now let U be any open cover of X. Since X is sequentially compact there is
a Lebesgue number § associated to Y. Choose a finite covering of X by balls of
the form B (a:, %) Each ball has diameter %‘5 < d. Thus, for each ball there is an
element of U containing it. Thus, the finitely many elements of U containing the
finitely many %—balls covering X give a finite cover. Since U was an arbitrary
open cover, we see X is compact. [l

This allows us to prove the following calculus result generalized to the setting
of metric spaces.

Corollary 2.8.20. Let f : X — Y be a continuous function with (X,px) a
compact metric space and (Y, py) a metric space. Then f is uniformly contin-
uous, i.e., for every € > 0 there exists a § > 0 so that if x1,x2 € X satisfy
px(z1,22) < 8, then py (f(x1), f(x2)) <e.

Proof. Let € > 0. Cover Y by open balls of the form B (y, %) Let U be the open
cover of X given by the inverse images of the B (y, %) under f. Let § be the
Lebesgue number of U. If x1, 29 € X satisty px(x1,22) < §, then x1,20 € U € U
for some U and so py (f(21), f(x2)) < € since f(21), f(x2) € B (y, §) for some
yey.

As was the situation when studying connectedness, it is often the case that
even though our space is not compact, locally it is compact. Though weaker
than being compact, it is still a very useful property to have.

Definition 2.8.21. A space X is said to be locally compact at a point x € X if
there is a compact subset C' of X that contains an open set containing z. If X
is locally compact at each point we say that X is locally compact.

Example 2.8.22. The space R with the standard topology is locally compact.
If 2 € R, for any € > 0 the set [z — ¢,z + €] is a compact set containing x that
contains the open set (x — €,z + ¢€).

Lemma 2.8.23. Let X be Hausdorff. The space X is locally compact at x if
and only if for every open neighborhood U of x there is an open neighborhood V/
of © so that CL(V') is compact and CL(V) C U.

Proof. First suppose that X is locally compact at z. Let C be a compact set
containing an open neighborhood of . Let U be any open neighborhood of x
and set A = C' — U. Since A is closed in C' and C is compact, we see A is
compact as well. Using Corollary 2.8.8 we can choose disjoint open sets V; and
V5 around x and A respectively. Set W = V3 NInt(C). Note that W is an open
neighborhood of x. The fact that X is Hausdorfl and C' is compact gives that
C is closed by Proposition 2.8.6. Thus, CI(W) C C and so Cl(W) is compact.
Now W C V3 so WNA = (. Thus, Cl(W) Cc C — A and so CI(W) C U. This
gives the first direction.
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The second direction is obvious as one can take C1(V') as the desired compact
set containing an open neighborhood of the point . [l

Corollary 2.8.24. Let X be a Hausdorff space that is locally compact. If a
subspace Y is open or closed in X then it is locally compact.

Proof. First we suppose that Y is open in X. Let y € Y. Lemma 2.8.23 allows
us to choose an open (in X) neighborhood V of y so that C1(V') is compact and
Cl(V) C Y where Y is our open neighborhood of y. Then Cl(V) is a compact
set contained in Y containing the open neighborhood V of y. Note that V C Y
here since V' C CI(V) C Y. Thus, Y is locally compact.

Now suppose that Y is closed in X. Let y € Y. Let C be a compact set
containing an open (in X) neighborhood U of y. Then C' NY is closed in Y
and hence compact. Thus, we have a compact set C N'Y containing the open
neighborhood U NY. Thus, Y is locally compact. O

One should note that in Corollary 2.8.24 the condition that X is Hausdorff
was only used in the case that Y is open in X; it was not needed in the case
that Y is closed in X.

By now it should be clear that compact spaces are nice ones to work with.
Given a locally compact Hausdorff space, there is a way to make the space
compact by adding points to it. We will focus on the basic case of a one-point
compactification, but one should be aware there are other ways to compactify
a space. We will come back to examples and some motivation after definitions.

Definition 2.8.25. Let X be a locally compact Hausdorff space. Let co be an
object not in X. We adjoin this to X:

Y = X U{co}.
We put a topology on Y as follows: 7y consists of
1. Tx
2. Y — C where C' is a compact set in X.
The space Y is called the one-point compactification of X.
Exercise 2.8.26. Check that 7y is actually a topology on Y.
We have the following important theorem.

Theorem 2.8.27. Let X be a locally compact Hausdorff space that is not com-
pact and let Y be the one-point compactification of X. Then Y is a compact
Hausdorff space, X is a subspace of Y, the set Y — X consists of a single point,
and ClI(X) =Y.

Proof. First we show X is a subspace of Y. Let U € 7y. Then we have either
U € Tx and so U is open in X or U =Y — C for C a compact subset of X.
However, in this second case we have UN X = (Y — C)NX = X — C, which is
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open in X since C' is compact and hence closed because X is Hausdorff. Thus,
any U € Ty restricts to an open set in X. Conversely, if V € Tx, then V € Ty
and VN X =V so we see that Tx is the subspace topology induced from Y.

Observe that since X is not compact, Y — C' must contain co and intersect
X. Thus, co is a limit point of X and so Cl(X) =Y.

Now we show Y is Hausdorff. Let z,y € Y. If both lie in X then there exists
U,V € Tx C Ty that are disjoint with z € U, y € V. If x € X and y = oo,
then choose a compact set C' containing and open neighborhood U of z. Then
U and Y — C are disjoint open neighborhoods of x and oo respectively. Thus,
Y is Hausdorff.

Finally we show that Y is compact. Let U be an open cover of Y. There
must be at least one open set of the form Y — C in U in order to cover oco. Set
U; =Y — C for one of these sets. Let U’ be the collection of sets U; N X where
U, € U —{U;}. We see that U’ is an open cover of C' and so there is a finite
subcover UsNX, ..., U,NX. Thus, the finite collection Uy, Us, ..., U, is a finite
cover of Y and so Y is compact. O

Example 2.8.28. Let X = R. The one-point compactification of X is then
Y =2 St

Example 2.8.29. The one-point compactification of R? is the Riemann sphere
S52. One generally encounters this in complex analysis as stereographic projec-
tion:

X

The above picture gives the map from Y to X.

In many cases one does not want to compactify a space by adding a single
point.

Definition 2.8.30. A compactification of a space X is a compact Hausdorff
space Y containing X such that X is dense in Y, i.e., C1(X) =Y. Two compact-
ifications Y7 and Y5 of X are said to be equivalent if there is a homeomorphism
h:Y1 — Ys so that h(z) =z for all z € X.

Not all spaces have compactifications, though we have just seen that all
locally compact Hausdorff spaces do. This is enough for many applications.
There are particularly useful ways of compactifying Euclidean spaces known as
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projective spaces. We will deal with these more thoroughly in § 2.9 when dealing
with quotient spaces, but we give some motivation here. Consider the space K™
where K = R or C. We can form a compactification of K" called projective
space and denoted by KP". As we will deal with this more in the next section,
we restrict to the case of n = 2. One has the following very important theorem
from algebraic geometry.

Theorem 2.8.31. (Bezout’s Theorem) Let F(x,y,z) and G(x,y,z) be homo-
geneous polynomials over C of degree n and m respectively. Suppose F' and G
have no common factor. Then the curves they define in CP? have mn points of
intersection counting multiplicity.

For example, Bezout’s Theorem tells us that if we have two lines that are not
the same line, they must intersect when considered in CP?! Thus, in projective
space parallel lines also intersect! This type of result makes it much easier
to work so that one does not have to constantly split into cases of how many
intersections two curves have.

Finally, we give a quick illustration of RP?. One can think of RP? as the
plane R? along with a “line at infinity” L., with a distinguished point co on
this line that compactifies it into a circle:

RZ

2.9 Quotient Spaces

The notion of a quotient space is really the first concept we have encountered
that is not in some way generalized from classical analysis. The notion of quo-
tient objects is a familiar one from abstract algebra and we will see how the two
can be combined when we study topological groups in § 2.10 - 2.12.

Definition 2.9.1. Let 7 : X — Y be a surjective map between topological
spaces. The map = is said to be a quotient map provided U € Ty if and only if
1 (U) e Tx.

Recall that 7 : X — Y is an open map if w(U) is open for every open set
U € Tx. The map 7 is said to be a closed map if 7(C') is closed for every closed
set C'in X. It is straightforward to check that if 7 is an open or closed map
then it is a quotient map.
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One is often interested in the case where one has a surjective map7: X — A
where X is a topological space and A is a set with no topological structure
associated to it. In this case one can put a unique topology on A via the map
. This topology is called the quotient topology.

Theorem 2.9.2. Let m: X — A be a surjective map from a topological space
X to a set A. There is a unique topology T4 on A so that 7 is a quotient map.

Proof. Set T4 to be the set of subsets of A so that U € 74 if and only if
7T_1(U) e Tx. [l

Example 2.9.3. Let X = R? and A = {a,b,c} and define 7 : X — A by

a zy>0
m((z,y)) =4 b 2y=0
c zy <0.

The quotient topology induced on A in this case is given by 74 = {0, A, {a}, {c},{a,c}}.

One of the most common ways one encounters the quotient topology is in
the case that A is a partition of X. Recall a partition A of a set X is a collection
of subsets {U;}icr of X so that | J,.; Ui = X and U; N U; = 0 for i # j.
Definition 2.9.4. Let X be a topological space and A a partition of X. Let
7 : X — A be a surjective map given by m(x) = U; where U; is the unique
element of the partition containing x. If we let 74 denote the quotient topology
on A arising from 7, we call A the quotient space of X with respect to A. Note

that this is often also referred to as the identification space.

Note that the quotient space depends upon the partition given. If one gives
a different partition, one will construct different spaces in general, as we will see
in the following examples and exercises.

Example 2.9.5. Let X be a topological space and Y a subspace. We define the
quotient space X /Y by using the partition A = {Y} U, ¢y {z}. For example,
if we set D? = {z € R? : |z| < 1}, and let Y = S' C D? then X/Y is
homeomorphic to S2.

Example 2.9.6. Let w; and we be complex numbers that are linearly indepen-
dent over R. The following picture gives an example:

Let
X ={aw; +bwy : 0 < a,b <1},

i.e., X is the parallelogram spanned by w; and ws. Define a partition on X by
the sets:

{aw; +bws : 0<a <1,0<b< 1}

{awy,aw1 +we : 0 < a < 1}

{bwa, w1 +bws : 0 <b< 1}

{O,Wl,(.«)Q,UJl + (.()2}.
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w2

Essentially we are gluing the sides of the parallelogram together to form a tube
and then gluing the ends of the tube together to form a doughnut shape. The
resulting quotient space is a torus:

Write T for the torus, i.e., for the quotient space given by the partition given
above. Recall a set U is open in T if and only if 71(U) is open in X. The
basic open sets in X are given by the subspace topology from C, i.e., they are
intersections of open balls with X:
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On the torus we can see them easily:

Example 2.9.7. We can construct another example from the same space X
used in the previous example by specifying a different partition. The resulting
space is referred to as the Klein bottle. Define the partition in this case by the
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sets:

{aw; +bws : 0<a <1,0<b< 1}
{awy,aw1 +we : 0 < a < 1}
{bwa,w1 + (1 = b)wa : 0 < b < 1}
{0, w1, w2, w1 +wa}.
Essentially we are identifying sides of the parallelogram to form a tube as in

the previous example, but now we twist when we identify the ends of the tube.
The following series of pictures shows how the Klein bottle is constructed:

We will return to the Klein bottle in § 3.5 when discussing embedding of
manifolds in Euclidean space.

Example 2.9.8. We now can give a precise definition of projective space. Con-
sider the space R"*'. (One could consider C"!, Fpt!, etc. instead if one
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wanted.) Define an equivalence relation on R" ™1 —{0} by setting (z1, ..., Znt1) ~
(Y15 -+, Yn+1) if there exists A € R — {0} so that (1,...,2,) = (Ay1, ..., Ayn).

We write [x1 : -+ : x,41] for the equivalence class containing (z1,...,%n41).

Each equivalence class can be pictured as a line through the origin as all points

on the line are equivalent under this equivalence relation. The quotient space

obtained from this equivalence relation is denoted RP™. We will deal specifically

with the case RP?. In this case we have that the “points” of RP? are equivalence

classes [x1 : 2 : 23] where (21,22, 23) # (0,0,0).

Observe that if x3 # 0, then [r1 : x2 @ x3] = [i—; P22 1}. In this way we
have a homeomorphism between the space of equivalence classes with x5 # 0
and R2. Call the space of such equivalence classes U;. Similarly, one can define
Up={[z:1:2]} and U3 = {[1:y: 2]}. Since any [z : y : z] € RP? satisfies x, y,
or z is non-zero, we have that RP? is covered by U;, Us and Us. Note that there
is a large intersection between the U;. For example, UjNUz = {[x : 1 : 1]}, which
is homeomorphic to R. Anther way to view this is that RP? = Uy U{[z : y : 0]}.
Note that we can write {[z : y : 0]} as {[0 : 1 : 0]} U {[z : 0 : 0]}, which is
homeomorphic to RP'. Thus, we have that RP? is U; along with projective
line, often referred to as the “line at infinity. In the notation of § 2.8 we have
that RP? = U; U Lo U {00} where Lo, = {[z : 0: 0]} and {oo} = {[0:1:0]}.
One can picture this line at infinity as the line one intersects off infinitely far
when going out in R? away from the origin. The distinguished point at infinity
can be viewed as

0:1:0]= lim {5:1:0]
y—oo | Y

i.e., you hit this point by traveling vertically in the y-direction.

As was mentioned previously, the notion of forming a quotient space does
not directly generalize anything from classical analysis. As such, many of the
nice properties we have been studying do not behave nicely when forming a
quotient space. We will give several examples of such properties.

Let A be a subspace of a topological space X and let 7 : X — Y be a
quotient map. It is not necessarily true that 7|4 : A — w(A) is a quotient map.

Example 2.9.9. Let X =[0,1]U[2,3] and Y = [0,2]. Define 7 : X — Y by

]

x x € 0,1
2,3].

W(x):{ -1 ze2
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One can check that this map is a quotient map.

Set A =[0,1] U (2,3]. Then 7|4 : A — [0,2] is continuous and surjective.
However, |, ((1,2]) = (2,3]. The set (2, 3] is closed in A but (1,2] is not closed
in A. Thus, w4 is not a quotient map.

Proposition 2.9.10. Let w: X — Y be a quotient map and A a subspace of X .
If w is an open map and A is open in X, then 7|4 is a quotient map. Similarly,
if ™ is a closed map and A is closed in X then w|a is a quotient map.

Proof. We already know that in general we have 7|4 : A — m(A) is continuous
and surjective.

Suppose that 7 is an open map and A C X is open. Note that it is enough
to show that 7|4 (U) is open for all U open in A. However, if U is open in A
and A is open in X, then U = V N A for some V € Tx and so U € Tx. The
fact that 7|4 is an open map gives that 7|4 (U) = 7(U) is open in Y. Since
7w|la(U) C w(A), we see that 7|4(U) = n(U) N w(A) and so is open in w(A).
Thus, 7|4 is a quotient map.

A similar argument will give the case that A is closed and 7 is a closed
map. (I

Consider the case of a quotient map 7 : X — Y and a continuous map
f X — Z for some topological space Z. The natural question is whether f
descends to a map from Y to Z. This type of question arises often in abstract
algebra. For example, given a group G and a normal subgroup N, one often is
interested in determining when a map ¢ : G — H factors through G/N.

Theorem 2.9.11. Let w: X — Y be a quotient map, Z a topological space, and
f:X — Z a continuous map. Assume that f is constant on 7=+({y}) for each
yeY. Then f descends to a continuous map g : Y — Z so that the following

diagram commutes:
f
X —>
ﬂl /
g
Y

Proof. Let y € Y. Since f is constant on 7~ !({y}), we have that f(7='({y}))
is a one point set. Let g(y) be this point. This defines a map g : Y — Z so that
for each z € X, g(w(x)) = f(z). It remains to show that g is continuous. Let
V C Z be open. Since f is continuous we know that f~1(V) is open in X. Note
that f~1(V) = 7= 1(¢g71(V)). The fact that 7 is a quotient map gives f~1(V)
open implies g~1(V) is open in Y. Thus, g is continuous as desired. [l

Z

This theorem is very useful in practice. For example, to define a map from
RP™ to a space Z, it is enough to define a continuous map f : R"t! — Z so
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that f is constant on each 7=*([x1 : -+ : #,41]). In other words, we just need
f to satisfy

f(xl, ceey InJrl) = f(/\Il, ey /\InJrl)
for all (x1,...,2,41) € R and A € R.

Exercise 2.9.12. Show that the composition of quotient maps is again a quo-
tient map.

Theorem 2.9.13. Let f: X — Z be a surjective continuous map. Let

Y = {f (el iz € Z).
We put the quotient topology on Y .
1. If Z is Hausdorff, so is Y.

2. The map f induces a bijective continuous map g : Y — Z which is a
homeomorphism if and only if f is a quotient map.

Proof. We apply Theorem 2.9.11 to see that f induces a continuous function
g:Y — Z. It is clear that g is a bijective map as well. Suppose that Z is
Hausdorff and let y1,y2 € Y be distinct points. The images of these points,
z1 = g(y1) and z3 = g(y2) are distinct points in Z and so there exist disjoint
open neighborhoods V7 and V5 of these points in Z. However, this gives that
g 1(V1) and g~1(V3) are disjoint open neighborhoods of y; and ys in Y. Thus,
Y is Hausdorff as well.

Suppose now that g is a homeomorphism. Then we have that g and 7 are
both quotient maps. Thus, f = g o 7w is a quotient map as well. Conversely,
assume that f is a quotient map. Let V C Y be an open set. Then f~*(g(V)) =
7~Y(V), which is open in X because 7 is continuous. Thus, using that f is a
quotient map we have that g(V') is open in Z. Thus, g maps open sets to open
sets, hence it is a homeomorphism by Lemma 2.4.11. O

In general one does not have that a quotient space of a Hausdorff space is
Hausdorff, so this result can be very useful!

Example 2.9.14. Let A = {a,b, c} and consider the map 7 : R — A defined
by

a x>0
m(z)=¢ b <0
c x=0.

This is a quotient map inducing the quotient topology 74 = {0, A4, {a,b},{a},{b}}.
Even though R is Hausdorff, the quotient space A is not Hausdorff with the quo-
tient topology.

Let 7 : X1 — Y7 and 75 : Xo — Y5 be quotient maps. A natural question
is whether we can conclude that the product map

7T1><7T22X1><X2—>Y1><}/2

(z1,22) = (m1(21), m2(2))
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is a quotient map. In general, this will not be a quotient map. One can see [§]
for a counterexample. Fortunately, if we add some conditions on the spaces we
can conclude that the product map is a quotient map.

Definition 2.9.15. Given amap f: X — Y we say asubset A C X is saturated
if f71(f(A)) = A. Given an arbitrary subset B C X, we define the saturation
of B to be

Sat(B) = f~1(f(B)).
We leave the proof of the following lemma as an exercise.

Lemma 2.9.16. A surjective continuous map 7 : X — Y is a quotient map if
and only if it takes saturated open sets to open sets.

Theorem 2.9.17. Let w: X — Y be a quotient map and assume Z is a locally
compact Hausdorff space. Letid : Z — Z be the identity map. Then the product
map

h=nxid: XxZ—->YxZ

(z,2) = (7(x), 2)
1S a quotient map.

Proof. The fact that 7 is a quotient map gives that h is continuous and surjective
(id is clearly continuous and surjective as well.) It only remains to show that h
takes saturated open sets to open sets.

Let U C X x Z be a saturated open set and let (z9,20) € U. Suppose we
can find a saturated open neighborhood V' x W of (zg, 29) contained in U. Then
h(V x W) =x(V) x W contains (m(x0), 20) and is contained in h(U). Since 7
is a quotient map and V' is necessarily saturated and open, we have 7(V'), and
hence h(V x W), is open. Thus, h(U) is open. It remains to show that we can
find such a V- x W.

Let V! x W be a basis element of X x Z containing (g, z0) that is contained
in U. As we have seen before, since Z is locally compact and Hausdorff there is
an open set Wy so that Cl(Wj) is compact and C1(Wy) € W, Thus,

(z0,20) € VI x Cl(Wy) c VI x Wt C U.

Since U is assumed to be saturated one can check that Sat(V'!) x Cl(Wy) C U.
The definition of h gives that Sat(V!) x W is a saturated subset of X x Z
contained in U that contains (zg, 29). (Note that h is the identity on Wy so
saturation is automatic there.) It remains to show it is open.

We now show that there exists an open V2 C X with Sat(V!) € V2 so that
V2 x CI(Wy) C U. Fix z € Sat(V?!). For any z € Cl(Wp), there is a basis
element V,, x W, C U in X x Z. We can cover the compact set {z} x Cl(W))
with these open sets and so obtain a finite subcover

Vo, Xx Wy, Ve, x W
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Set V, = N, V,,. We have that V, is an open neighborhood of z with V, x
Cl(Wp) C U. Set V? = U,V, where the union is over z € Sat(V!). Repeating
this construction we form a sequence

VicSat(V) c v cSat(VH) c V3 c---

with V? x Cl(Wp) C U. Let V. = UV’. We have that V is open as it is the
union of open sets and V' x W, C U. We also have that V' x W is saturated.
If (z,2) € V x Wp, then x is in some V* and if 2’ is in the same factor as x,
then 2’ € V! and so (2/,2) € V x Wy as well. Thus, V x Wy is the required
saturated open neighborhood of (xg, o). O

Corollary 2.9.18. Let m : X1 — Y7 and 7o : Xo — Y be quotient maps. If
X5 and Y7 are locally compact Hausdorff spaces, then w1 X wo is a quotient map.

Proof. Consider the map
T Xidxz :Xl XX2—>Y1 XXQ.

Theorem 2.9.17 gives that this is a quotient map since X» is locally compact
and Hausdorff. Similarly, we have

idy1><7T22Y1 ><X2—>Y1><Y'2

is a quotient map because Y; is locally compact and Hausdorff. We now can
use that the composition of quotient maps is again a quotient map to finish the
proof. O

2.10 Topological Groups: Definitions and Basic
Properties

In this section we introduce the notion of a topological group. It is the first
instance of topology and algebra mixing together. In the subsequent two sections
we will see how topologies can be put on familiar algebraic structures to enhance
our understanding of them.

Definition 2.10.1. A topological group is a group G that has a topology so
that the following conditions hold:

1. If we endow G x G with the product topology, then the group operation

GxG—G
(g,h) = gh

is continuous.
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2. The inversion map

G—G
g—g "
is continuous.

For general groups we will denote the identity element as e and the group
operation as multiplication. It is also convention that unless otherwise noted,
finite groups are all given the discrete topology.

Example 2.10.2. Let G be any group. We can form a topological group by
putting the discrete topology on GG. This may seem to be a trivial example, but
we will see that we can use finite groups with the discrete topology to build very
interesting topological groups.

Example 2.10.3. The spaces R" and C" with the usual topology are topolog-
ical groups with the operation being addition and the identity being (0, ...,0).

Example 2.10.4. The spaces R* and C* with the subspace topology are topo-
logical groups under the operation of multiplication. Note that even though they
are subspaces of R and C respectively, they are not subgroups!

Example 2.10.5. Let V be a finite dimensional vector space over k where
we take k to be R or C. We can think of V' as just a group by focusing on
the addition and ignoring scalar multiplication. (One can actually define a
topological vector space, but we omit that.) As a vector space, we have V 2 k"
if n = dimg V. We can use this to define a topology on V by declaring that
U C V is open if and only if T(U) is open in k™ where T is the linear map
giving the isomorphism V 2 k™. A priori this depends on the choice of T', but
it turns out that one gets homeomorphic spaces for different choices of T'.

Example 2.10.6. Let & be R or C again and consider
GLa(k) = {g € Mo (k) : det(g) £ 0}.

This is a finite dimensional vector space with operation given by matrix multi-
plication. As such, it is a topological group.
Let
SL,, (k) = {g € GL,, (k) : det(g) = 1}.

This is a subgroup of GL, (k) that one gives the subspace topology. In fact,
this is a closed subgroup of GL,, (k) as g € GL,,(k) is in SL,,(k) if and only if ¢
satisfies the polynomial equation

det(g) —1=0.

Let GG be a topological group. Given any g € G, we can define left and right
translation maps:

Ly:G— G
h — gh
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Ry:G— G
h — hg.

It is clear from the definitions that L, and R, are homeomorphisms for any
g € G. Thus, we see that U C G is open if and only if gU is open if and only
if Ug is open. Similarly, we use that inversion is a homeomorphism to see U is
open if and only if U=! = {g~1 : g € U} is open.

Proposition 2.10.7. Let G be a topological group. It is enough to give a basis
of open neighborhoods around the identity in order to give a basis for the entire
space.

Proof. This follows from the fact that L, is a homeomorphism for each g. Thus,
U is an open neighborhood of ¢ if and only if g~'U is an open neighborhood of
e. (|

Definition 2.10.8. Let S be a subset of a group G. We say S is symmetric if
S =571

Proposition 2.10.9. Let G be a topological group.

1. Every neighborhood U of the identity contains a neighborhood V' of the
identity so that V-V C U.

2. FEvery neighborhood U of the identity contains a symmetric neighborhood
V' of the identity.

3. If H is a subgroup of G, CI(H) is also a subgroup.
4. Every open subgroup of G is also closed.
5. If K1 and Ky are compact subsets of G, so is Ky - Ks.

Proof. 1. Note that since every neighborhood of the identity contains an open
neighborhood of the identity, we can assume without loss of generality that
U is open. Let m : U xU — G denote the continuous map arising from the
group operation. Since U is open, m~1(U) is open in U x U and contains
the point (e, e). The fact that U x U has the product topology gives that
there are open sets Vi,V C U so that (e,e) € V3 x Va. Set V. =11 NV,
Then e € V, V C U, and by construction we have V-V C U.

2. Note that g € UNU ! if and only if g, g~ € U. Thus, set V. =UNU"!.
This is clearly a symmetric neighborhood of the identity contained in U.

3. Recall that the map f : G x G — G defined by f(z,y) = zy~! is a
continuous map as it is the composition of two continuous maps. Also
recall that under a continuous map f : G x G — G we have f(CI(H) x
CI(H)) C CI(f(H x H)) by equation (2.1). Let hy, hy € CI(H). Then we
have f(hi,hs) = hihy' € f(CI(H) x CI(H)) C CI(f(H x H)) = CI(H)
since H is a subgroup. Thus, we have C1(H) is a subgroup.
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4. Let H be a subgroup of G. Then G = [[ Hg; for some set of coset
representatives {g;}. If H is open, we have Hg; is open for every g; and
so [[ Hgi is open. In particular, if we consider {g;} — {e}, then we get

H=G- ]_[ Hyg;,
giFe

which shows H is a closed set.

5. The set K; - K5 is the continuous image of the compact set K1 x K5 in
G x G under the multiplication map. Thus, it is compact.
O

Note that by combining the first two parts of the previous proposition we
see that every neighborhood of the identity contains a symmetric neighborhood
of the identity so that V -V C U. Also note that if G is connected, the only
open subgroups of GG are the empty set and G. This can be used to show G is
not, connected in many instances.

Proposition 2.10.10. Let G be a topological group. The following are equiva-
lent:

1. G is Hausdorff.
2. The set {e} is closed.
3. Every point of G is closed.

Proof. Suppose that G is Hausdorff. Then we know every one point set in a
Hausdorff space is closed, so we get the first statement implies the second and
third.

Suppose now that {e} is closed. Let g € G' and consider the map L -:. This
is a continuous map and Lq_,ll({e}) = {g}. Since {e} is closed, we must have
{g} is closed as well. ‘

Finally, assume that every point of G is closed. Let g,h € G be distinct
points. The set {gh™!} is a closed set and so there is an open neighborhood U of
e that does not contain gh~!. Choose V to be an open symmetric neighborhood
of e contained in U as given by Proposition 2.10.9. Then V¢ and Vh are open
neighborhoods of g and h respectively. Note that they must be disjoint as well
for if not, we’d have xg = yh for some z,y € V, ie., gh™t = 27y € V, a
contradiction. Thus, G is Hausdorff. O

As was mentioned in § 2.9, we can also study quotient groups in the setting
of topological groups. Let H C G be a subgroup and consider the set G/H of
left cosets of G. Recall this partitions GG into disjoint sets so we can put the
quotient topology on this space via the usual projection map

m: G — G/H,
i.e., U C G/H is open if and only if 7=!(U) is open in G. If H is normal in G,

then G/H is also a topological group as we will see in the next proposition.
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Proposition 2.10.11. Let G be a topological group and H a subgroup.

1.

The quotient space G/H is homogeneous under G, i.e., left translation is
a homeomorphism.

The projection 7 : G — G/H is an open map.

The quotient space G/H is discrete if and only if H is open. Moreover, if
G is compact, then H is open if and only if G/H s finite.

If H is normal in G, then G/H is a topological group with respect to
multiplication of cosets and the quotient topology.

If H is normal in G, the topological group G/H is Hausdorff if and only
if H is closed.

Set H = Cl({e}). Then H is normal in G and the quotient group G/H ‘s
Hausdorff with respect to the quotient topology.

Proof. 1. Let x € G. We need to show the map

L,:G/H— G/H
gH — xgH

is a homeomorphism. Note that the inverse map is given by L,-1,s0 it is
enough to show that L, is an open map. Let U be an open set in G/H and
set U = 7~ 1(U). We have that U is an open set by the definition of the
quotient topology. Given any = € G, it is easy to see that 77! (2U) = 2U.
Since U is open, zU is open as well. Now we use the definition of the
quotient topology again to see that 2U is open. Thus, L, is an open map.

. Let U C G be an open set. We need to show that 7(U) C G/H is an

open set. We know that 7(U) is open if and only if 7= (7(U)) is open.
Group theory gives that 71 (m(U)) = U - H. Let g € U - H. Then there
exists u € U and h € H so that g = uh. Since U is open, there is an open
neighborhood V,, of u contained in U. Thus, V,, A is an open neighborhood
of g contained in U - H. Thus, U - H is open as desired.

Let H be an open subgroup of G. By what we have just shown, 7(H) is
open in G/H, i.e., H is an open point in G/H. However, we know that
L, is a homeomorphism on G/H for every x € GG, so xH is open for every
2 € G. Thus, all the points in G/H are open and so GG/ H has the discrete
topology.

Conversely, if G/H has the discrete topology the point H in G/H is open
and so 7~ 1(H) = H is open in G.

Suppose now that G is compact. We have that H is open if and only if
G/H has the discrete topology. However, since G/H is the continuous
image of the compact set G, it is compact as well. But this means it must
be finite since it is compact and discrete.
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4. Let H be a normal subgroup so that G/H is a group with multiplication of
cosets being the operation. We must show multiplication and inversion in
G/H are continuous in the quotient topology. For multiplication, observe
we have a commutative diagram

m

GxG G

o

G/H x G/H™— G/H.

Let U C G/H be open. Then we must show that m'(U) is open in
G/H x G/H. We have by the commutativity of the diagram that

mH(U) = (7 x 7)(m™ (x7H(0))).

Since 7 is continuous and m is continuous, we have that m~!(7~1(U)) is
open in G x G. We have shown above that 7 : G — G/H is an open map,
so 7 x 7 is also an open map. Thus, m ~1(U) is open in G/H x G/H.
A similar argument shows inversion is a continuous map on G/H and so
G/H is a topological group with respect to the quotient topology.

5. Let H be a normal subgroup of GG. Proposition 2.10.10 applied to the
group G/H gives that G/H is Hausdorff if and only if H is closed as a
point in G/H. If H is closed as a point in G/H, we have 7~ *(H) = H is
closed in G. Thus, if G/H is Hausdorff then H is closed in G. Suppose now
that H is closed in G. Then G — H is open. Note that 7(G — H) is open in
G/H since 7 is an open map. Furthermore, 7(G— H) = (UgH) — H, i.e.,
all the cosets except H. Thus, H = (G/H) —n(G — H) and so is closed as
a point in G/H. Now we use Proposition 2.10.10 again to conclude that
G/H is Hausdorfl.

6. We know that {e} is a subgroup of G and so H = Cl({e}) is also a subgroup
by Proposition 2.10.9 Observe that for any g € G, the map

f:G—-G
h— ghg™?

is a continuous map on G. Thus, we know that f(Cl({e})) C Cl(f({e})),
ie., gHg~! C H for all ¢ € G. On the other hand, since H is the
smallest closed subgroup containing e, we have H C gHg~! for otherwise
HNgHg ' would be a smaller closed subgroup containing e. Thus, H =
gHg~" for every g € G and so H is normal. The rest now follows from
the previous part.

O
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Example 2.10.12. Consider the topological group C. Let wi,ws € C with wq
and ws linearly independent over R. Consider the subgroup of C given by

A = {mw1 + nws : m,n € Z}.

This is clearly a group under addition. We refer to such a group in C as a lattice.
The topology is the subspace topology, which one can easily check is actually
the discrete topology in this case. Since C is an abelian group, all subgroups are
normal so we can form the topological group C/A. This is precisely the torus
we studied in § 2.9. Note that since A is easily seen to be closed in C, we recover
the (also easy) fact that the torus is Hausdorff.

Definition 2.10.13. A topological group G that is locally compact and Haus-
dorff is called a locally compact group.

Note that we require Hausdorff in this definition. The reason is that under
such an assumption one has the existence of a Haar measure on GG. Though
we will not prove such a measure exists, we will briefly review some definitions
from measure theory and then precisely state the theorem. First, we prove the
following result.

Proposition 2.10.14. Let G be a Hausdorff topological group. A subgroup H
of G that is locally compact in the subspace topology is closed. In particular,
every discrete subgroup of G is closed.

Proof. Let K be a compact neighborhood of e sitting in H. Since H is Hausdorff,
we have that K is closed in H. Thus, there is a closed set C' in G so that
K =HnNC. Now HNC' is compact and sits inside the Hausdorff space G, so it
is closed in G as well. Proposition 2.10.9 gives a neighborhood V of e in G so
that V-V C C. Our goal is to show that if g € CI(H), then g € H.

The fact that H is a subgroup gives that CI(H) is a subgroup as well. Let
g € CI(H). This means that g=* € CI(H) as well. If g € H, we are done
so assume g ¢ H. We know that ¢! ¢ H as well then. Since ¢! € CI(H),
every neighborhood of ¢g~! must intersect H. In particular, there exists a y €
Vg=' N H. We claim that yg € C N H. Since C N H is closed, showing that
yg € CI(C N H) is the same as showing yg € C' N H. Thus, to show the claim
it is enough to show every neighborhood of yg meets C' N H. Let W be a
neighborhood of yg. Then we have that y~'W is a neighborhood of g. Observe
that y~1WNgV is also a neighborhood of g. Since g € CI(H), there is an element
z€y 'WngVNH. We then have yz € WNH, y € Vg~! and z € gV. Thus,
yz € Vg=t.gV =V .V C C. Thus, the intersection W NC N H # (. Thus,
yg € CI(C'N H) and so the claim is true.

We can now use the claim to see that yg € H and y € H, so g € H as
desired. O

We now begin our review of the relevant definitions from measure theory.

Definition 2.10.15. A collection 9 of subsets of a set X is called a o-algebra
if it satisfies:
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1. X e I,
2. If Ae M, then X — A € M
3. If A, € M for all n > 1, then |J;2, A; € M, ie., M is closed under

countable unions.

One should note that the definition implies that () € 9t and 9 is closed
under finite and countably infinite intersections.

Definition 2.10.16. A set X along with a o-algebra 9 is called a measurable
space. If X is a topological space with topology 7, the smallest o-algebra
containing 7 is denoted by B. The elements of B are called the Borel subsets
of X.

Definition 2.10.17. Given a measurable space (X,9), a function
9 — R U {0}

is called a positive measure if given any family {A,} of disjoint sets in 91, one
has that p is countably additive, i.e.,

o0 o0
Iz <U Ai) = ZM(Ai)'
i=1 i=1
Moreover, if X is a locally compact Hausdorff space and p is a positive measure

defined on the Borel sets, p is called a Borel measure.

Definition 2.10.18. Let u be a Borel measure on X and let E be a Borel
subset of X. We say u is outer regular on E if

w(E) =mf{uU):UDEUeT}.
We say u is inner reqular on E if
w(E) =sup{u(K): K C E, K compact}.

A Radon measure on X is a Borel measure that is finite on compact sets, outer
regular on all Borel sets, and inner regular on all open sets.

Consider now a group G. A Borel measure p on G is said to be left translation
invariant if for all Borel subsets E of G one has

wgE) = u(E)

for all g € G. We say u is right translation invariant if

w(Eg) = u(E)

for all g € G and all Borel subsets E of G.
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Definition 2.10.19. Let G be a locally compact topological group. A left
(resp. right) Haar measure on G is a nonzero Radon measure p on G that is left
(resp. right) translation invariant. A bi-invariant Haar measure is a nonzero
Radon measure that is left and right invariant.

Theorem 2.10.20. Let G be a locally compact group. Then G admits a left
invariant Haar measure. Moreover, this measure is unique up to a scalar mul-
tiple.

The proof of this theorem is not terribly difficult, but it would take us too
far afield. The interested reader can consult [9] for a proof of this result. One
has the same result for a right invariant Haar measure. As the measure is only
unique up to scalar multiple, in practice one must choose a Haar measure. One
generally does this by picking a set that one specifies to have measure 1 which
fixes the scalar. Having a Haar measure allows one to define integration on
general locally compact groups.

Example 2.10.21. The topological group R is locally compact and hence has a
Haar measure. The Haar measure in this case is the familiar Lebesgue measure.

Example 2.10.22. The topological group Q,, is a locally compact groups and
so has a Haar measure. One generally normalizes it so that the measure of Z,
is 1.

Example 2.10.23. If G is locally compact, then so is GL,(G) and so GL,(G)
has a Haar measure as well.

2.11 Profinite Groups

Profinite groups given an example of how one can build an interesting topology
out of discrete topologies. Profinite groups arise in many situations. For exam-
ple, infinite Galois groups are profinite. Profinite groups are also very prevalent
in number theory. Before we define profinite groups, we give a quick review of
inverse limits.

Let I be a nonempty set. We say I is preordered with respect to a relation
<ifi<iforeveryi €l andifi < jand j <k, then i« < k. Note that we do
not require that if ¢ < j and j < i then i = j.

Example 2.11.1. The set R is preordered with respect to the usual inequality
<.

Example 2.11.2. The set Z is preordered with respect to the operation of
division.

Let I be a preordered set and let {G;} be a family of sets indexed by I. We
assume that for every i,j € I with ¢ < j we have a mapping ¢;; : G; — G so
that

1. i = idg, for every ¢ € I;
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2. wij o pjr = i for every 4,5,k € I with 1 <j <k.
The collection (G, ¢;;) is called an inverse system or projective system.

Definition 2.11.3. Let (G;, ¢;;) be a projective system of sets. The projective
limit or inverse limit of the system is defined by

@Gl == {(gz) S HGl cif g S], then Sﬁij(gj) —gi}-
? el

It is clear that lim G; is a subset of the product []
obtains for each ¢ € I natural projection maps

ser Gi- As such, one

Uy @Gl — Gj.
3
For our interests we will require the G; to be topological groups and the
maps @;; to be continuous maps. In this case we see that l&n G is a topological
group with componentwise multiplication and the subspace topology coming
from the product topology on [[, G;.
We recall the following universal property of inverse limits. One can find
a proof of this result in any elementary commutative algebra or graduate level
abstract algebra book. One should adapt the proofs given there to our setting
of topological groups.

Theorem 2.11.4. (Universal Property of Inverse Limits) Let H be a topolog-
ical group and let there be a system of continuous maps ¢; : H — G; for all
j € I that is compatible with the given projective system (G;, ;) in the sense
that for each i,j € I with i < j, the following diagram commutes:

H
"
Pij

Then there exists a unique continuous map ¥ : H — lin G; such that for each
1 € I the following diagram commutes

G; Gi.

H—>1im G,
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The main case of interest is when each G; is a finite group with the discrete
topology. The projective limit @ G; acquires the subspace topology from the
product topology as mentioned above. One should immediately note that even
though each G; has the discrete topology, [];.; Gi does not have the discrete
topology and neither does lim G;. The topology on lim G; is called the profinite
topology.

Definition 2.11.5. A topological group G is said to be a profinite group if it is
isomorphic (as a topological group) to the projective limit of a projective system
of finite groups with the profinite topology.

One should note here that as is always the case, when we use the term “iso-
morphic” we mean that the relevant structures agree. So in the the case of
topological groups isomorphic means they are isomorphic as groups and home-
omorphic as topological spaces.

Proposition 2.11.6. Let G be a profinite group with G = @Gi. Then we
have

1. G is Hausdorff in the profinite topology;
2. G is a closed subset of |], Gi;
3. G is compact.

Proof. 1. We know that each G; is Hausdorfl because it has discrete topol-
ogy. The product of Hausdorff spaces is Hausdorff, and the subspace of a
Hausdorff space is Hausdorff.

2. Note that we have

HGZ'_G:UU {(gk) EHGk :ij(95) #gz}.
i k

i og>i

This is an open set as it is the union of open sets, thus G is closed in

L G..

3. Since each G; is compact, [ [, G; is compact. Thus, we have a closed subset
of a compact space, hence it is compact.
O

This proposition can be very useful in showing spaces are compact. It can
be easier to realize a space as a profinite than to show it is compact directly.
We now give a few examples before studying the topology of profinite groups
further.

Example 2.11.7. Let p be a prime number and consider G; = Z/p‘Z. We have
natural maps _ _
0ij 1 L/P’L — Z/p'L
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for j > i given by reduction modulo p’. The projective limit is denoted by Z,,
the ring of p-adic integers:
Zy =lim Z/p'L.
3
We can view Z, in other ways as well. The most common way is as a ring of
power series in p. Let « € Z,. Then x = (z;) with each z; € Z/p’Z so that
if j > i then x; = z; (mod p'). We can define a power series inductively as
follows. Set ag = x1. For o € Z/p?Z, write 1o = ag + aip. For 23 € Z/p3Z,
since po3(73) = T2, We can write r3 = ag + ai1p+ azp? for some ay. We continue
in this pattern to get the power series in p.
Another way that Z, arises is as the valuation ring of Q,, i.e.,

Ly ={x€Qp:|z|, <1}

It is clear from the above description of Z, as a power series that these two
definitions coincide algebraically. One must still check that the metric topology
arising from | - |, is the same as the profinite topology. It is easy to see the only
values ||, takes on Z, are 1, %, #, .... Thus, given an € > 0, we choose ng so that
W <e< p%o. In this case, if we look at B(z, €) with # = ag+a1p+asp®+-- -,
we see y =y .o, bip' € B(x,¢) if and only if a; = b; for 0 < i < ng. Thus, we
have that B(z,e€) is contained in the open set

{1} x {z2} x - X {wng} X Z/p" T Zx - -

where x1 = ag, T2 = ag + a1p, etc. Now we just need to show we can find an
€ so that given an open set U around z in Z, in the profinite topology, that
U C B(z,¢e). We will then have that the topologies match up as well. In general,
a basic open set in Z, in the profinite topology will be of the form

{xl}x{$2}X"-X{xn}xZ/p"Zx...

This follows from the fact that we must have z; = x; (mod p’) for z = (x,) €
Z,. It now follows that if we choose € = pin, then U C B(z,€) as claimed.

Example 2.11.8. We briefly note here that one can do the same procedure
as the previous example with the groups Z/NZ. In this case the ordering is
divisibility. Thus, if N | M we write N < M and have the natural projection

onu : Z/MZ — Z/NZ.

If we take the projective limit in this case we obtain the group Z. We will see
later that in fact one has
112

p

Z

1%

Example 2.11.9. Consider the collection of finite Galois extensions of Q in
some fixed algebraic closure Q. This collection forms a directed set with respect
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to inclusion. We have a direct system of finite groups where if L and K are
finite Galois extensions of Q with Q C K C L, then

vrr : Gal(L/Q) — Gal(K/Q)

via restriction. We can consider the inverse limit lim = Gal(L/Q). It is not hard
to see that

Gal(Q/Q) — lim Gal(L/Q)
L
o (o]r).

Recall that a topological space is said to be totally disconnected if every point
is its own connected component. For a topological group G, the fact that G is
homogeneous gives that G is totally disconnected if and only if the connected
component of the identity is {e}. We write the connected component of the
identity in G' as G°. Thus, G is totally disconnected if and only if G° = {e}.

Lemma 2.11.10. The set G° is a normal subgroup of G. The quotient space
G/GO is totally disconnected and so (G/GO)O is the trivial subgroup of G/G°.

Proof. Let g € GY be any element. The fact that G is homogeneous gives
g 1GY is connected. Now since ¢ € G°, we have e € g7'GY. Thus, ¢~ 'G°
is a connected set containing e and so ¢g7!G° C G°. Thus, G is closed under
inverses. The same type of argument gives gG° C GY and so G is a subgroup of
G. Let g € G. Then by homogeneity we have gG%g~! is connected and contains
e, so gG%°g~! ¢ G°. Thus, G is normal in G.

The homogeneity of G gives that the connected components of G are pre-
cisely the elements of G/G°. Thus, G/G" is totally disconnected. O

Lemma 2.11.11. Let G be a profinite topological group. Then G is compact
and totally disconnected.

Proof. We have already seen that G is necessarily compact, so it only remains
to show that G is totally disconnected, i.e., that G° = {e}.

Let U C G be an open subgroup. Since e € U necessarily, we have U N G
is a nonempty open subgroup of G°. Set

v= ][] =Unac.

zeGO-U

We have that V is open in GV. Suppose that there exists y € UNV. Then there
exists © € G° — U so that y € (U N GY), i.e., there exists u € U N G so that
y = zu. But this gives that z = yu~! € U, a contradiction. Thus, U NV = (.
Furthermore, one has G° = (G° N U) [ V. However, since G° is connected we
must have UNG® = 0 or V = . We know that e € U N G, so it must be that
V = (). Thus, we have G® C U. Since U was arbitrary, we have

G"c(U
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where the intersection is over open subgroups of GG. Note that up to this point
we have not used that G is profinite.

Write G = lim G; where each G; is finite with discrete topology. Let g € G
with g # e. Then there exists a j so that g; # e. Let m; : G — G; be the
natural projection map. Since G; has discrete topology, {e} is open in G;. The
fact that {e} is open and 7; is continuous gives that U = m; *({e}) is an open
set in G which by construction does not contain g. Since g was any element not

equal to e, we see
(U = {e}

where the intersection is over the open subgroups of G. Thus, G° = {e} as
claimed. (|

The converse to this theorem is also true, namely, if G is compact and totally
disconnected then G is profinite. The proof of this result is more involved so we
break it into pieces. First we define the profinite group that we will eventually
show G is isomorphic to.

Let NV be the collection of open normal subgroups of G. This is a directed
set where we say M < N if N C M. If we assume that GG is compact and totally
disconnected, we see that Proposition 2.10.11 gives that G/N is finite with the
discrete topology for each N € N. Letting M, N € N with M < N, we have
that the natural projection map G — G/M must have N in the kernel, so it
descends to

oun : G/IN — G/M
gN +— gM.

Thus, if N7 < No < N3 with N; € N, we see that

¥PNiNs © PNyN3 = PN N3

so {G/N}nen gives a projective system. One goal will be to show that G 22
lim G/N.

Lemma 2.11.12. Set G' = im G/N. There exists a surjective, continuous
homomorphism o : G — G'.

Proof. Let N € N and let ay : G — G/N be the canonical projection map.
Recall that G/N is homogeneous because G is. The map ay is continuous be-
cause G/N is homogeneous and ay'(eg/n) = N, an open set. If M < N we
have that the following diagram commutes:

Thus, applying the universal property of projective limits we have a continuous
map
a:G— G = lim G/N
4
NeN

so that Ty o v = apy for all N € N.
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G PMN
G/M.

We still must show that « is surjective. First, we show that a has dense
image in G’, i.e., there is no open set in G’ disjoint from a(G). The topology of
G’ is generated by open sets of the form 7' (Uy) where Uy is any subset of G/N
since G/N has the discrete topology. Thus, given any open set in G’, we can
express it as a union of finite intersections of sets of the form 7' (Uyx). Let U
be such a set. Then U consists of elements of the form (vx)ven € [[yen G/N
where zy € G/N with finitely many of the x y required to lie in a subset of G/N.
Let Ny,..., N, be the groups where the coordinates of (zx) are constrained to
lie in a subset. Set

M= ﬂ N;.
j=1

Then for (zn) € G’, the coordinates of x, are all determined by the projection
of xps under the map oy, n : G/M — G/Nj;. Since ayy is surjective there exists
a g € G so that apn(g9) = xa and so an,(g) = xn; for j = 1,...,r. Now if
(xn) € U, then a(g) € U as well since «(g) agrees with (zx) on the constrained
coordinates. Thus, U N a(G) # 0 and so a(G) is dense in G’.

We can now show « is in fact surjective. Recall that G is compact and G’
is Hausdorff and thus «(G) is compact and Hausdorff, hence closed. However,
since it is also dense we must have a(G) = G'. O

Lemma 2.11.13. Let X be a compact Hausdorff space. For any fized xo € X,
set
Uy, = {K : K compact and open, xo € K}.

Y= ) K

Keu:no

Set

The set'Y is connected.

Proof. First, observe that U, is nonempty because X € U,,. Suppose that
there exist nonempty disjoint closed sets Y7, Y5 so that Y = Y3 UY5. Recall that
since X is compact and Hausdorff and Y7 and Y> are closed, there exist disjoint
open sets Uy and U so that Y; C U; for i = 1,2. Set Z = X — (U3 UUs) so that
Z is closed and hence compact. By construction we have Z and Y are disjoint,
ie., Z C X —Y. Thus, the sets {X — K} form an open cover of Z. There
is a finite subcover X — Ki,...,X — K,.. Thus, there exist Ki,..., K, € Uy,
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so that Z N (ﬂ;zl Kj) =0. Set W = (\;_, K;. Then W is a compact open
neighborhood of g and so W € U,,. However, since W is disjoint from Z we

have
W= Wnty) [[WnU,).

Now W NU; and W N Uy are compact open subsets of X and xg must lie in
W N U; or W N Us, but not both. Suppose g € W N U;. Then W NU; € Uy,
and so Y C WNU;. Since Yo C Y and Y5 is disjoint from Uy, we must have
Y5 = (). This is a contradiction. Thus, Y is connected as claimed. [l

Finally, we come to the last lemma we need before we can prove the converse
to Lemma 2.11.11.

Lemma 2.11.14. Let G be a compact, totally disconnected topological group.
Then every neighborhood of the identity contains an open normal subgroup.

Proof. The proof this lemma consists of three steps. First, we show every open
neighborhood of e contains a compact open neighborhood W of e. The second
step consists of showing that W contains an open symmetric neighborhood V'
of e so that W -V C W. Finally, using V' we construct an open subgroup and
then an open normal subgroup of G contained in U.

Let U be the set of compact open neighborhoods of e. Then, as in the
previous lemma using e for xg, we see that Y = [, K is a connected set
containing e. However, since we are assuming G is totally disconnected we
must have Y = {e}. Let U be any open neighborhood of e. Then G — U is
closed and hence compact. The fact that e is the only element in every K € U
shows that we can cover G—U with {X — K} x¢yy. Since G—U is compact, there
finitely many K € U so that G — U is covered by X — K1,...,X — K,. Thus,
W = ﬂ;zl K; must be a subset of U. It is also a compact open neighborhood
of e. Thus, W € U as desired. This gives the first step.

We consider the continuous map m : W x W — G given by restricting the
group operation to W. Note that

1. For every w € W, (w,e) € m~Y(W).
2. Since W is open, m~ (W) is open in W x W.

3. The first two imply that for every w € W, there exist open neighborhoods
Uy, of w and V,, of e so that U, x V,, C m~Y(W). Moreover, we can
assume V,, is symmetric by Proposition 2.10.9.

4. The collection {U,,} is an open cover of W. Since W is compact, we can
choose a finite subcover Uy, ..., U,.

Let Vi, ..., V; be the sets corresponding to Uy, . . ., U, so that U; xV; C m~Y(W).
Define V-C W by



By construction we have W -V C W. By induction we have W - V" C W for
all n > 0. Thus, V™ C W for all n > 0. This gives the second step.

Set O = J,;2., V™. Note that O is open in G and contained in . Moreover,
since V' is symmetric O is closed under inversion and so is an open subgroup
contained in W. The space G/O is compact and discrete and hence finite.
Thus, we can find a finite set of cost representatives z1,...,z,, for O in G.
Similarly, xj(’)xj_l for j = 1,...,m are the finitely many conjugates of O in
G. Thus, N = ﬂ;nzl :ij:vj_l is an open normal subgroup of G. Moreover,
since necessarily a:j(Qx;1 = O for one of the j’s, we see that N C O C W as
desired. O

Theorem 2.11.15. Let G be a topological group. Then G is profinite if and
only if G is compact and totally disconnected.

Proof. We have already seen that if G is profinite then it is compact and totally
disconnected. Suppose now that G is compact and totally disconnected. We
have seen in Lemma 2.11.12 that there is a surjective homomorphism o : G — G’
where G' = lim G//N. It is enough to show that « is injective by Theorem 2.8.10.

It is easy to see that ker(a) = [y V. Lemma 2.11.14 gives that every
open neighborhood of e contains an open normal subgroup, which is necessarily
in V. Thus, ker(«) is contained in every neighborhood of e, and hence is in
the intersection of all such neighborhoods. However, since G is Hausdorff, the
intersection of all neighborhoods of e is {e} and so « is injective. O

Theorem 2.11.15 is important because it may not immediately be clear a
group is profinite. Moreover, not only does it tell us that a compact totally
disconnected topological group G is profinite, but it gives us exactly how the
profinite group is realized:

G2 lim G/N
Nen
where AV consists of the open normal subgroups of G. We will see a particularly
interesting example of this in the next section.

We close this section with the following theorem on the closed subgroups of

a profinite group.

Theorem 2.11.16. Let G be a profinite group and H a subgroup of G. The
subgroup H is open if and only if G/H is finite. Moreover, the following three
statements are equivalent:

1. H 1is closed.
2. H 1is profinite.
3. H is the intersection of a family of open subgroups.

Finally, if the above conditions are satisfied, then G/H is compact and totally
disconnected.
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Proof. The fact that H is open if and only if G/H is finite follows from Propo-
sition 2.10.11.

Suppose that H is closed. Since H is a closed subset of a compact space, H
is compact. We also have that G® = {e}, so H® = {e}. Thus, H is compact
and totally disconnected and so profinite.

Suppose now that H is profinite. Then H is a compact subset of a Hausdorff
space, so it must be closed. This shows the first two statements are equivalent.

Now suppose that H is the intersection of a family of open subgroups of G.
Recall that every open subgroup is also closed by Proposition 2.10.9. Thus, we
have that H is the intersection of a family of closed subgroups, and so must be
closed.

Let H be closed. Once again, let A/ denote the family of all open normal
subgroups of G. For each N € N, NH is a subgroup of G because N is normal.
We also see by the first statement that [G : NJ is finite because N is open.
Thus, [G : NH] is also finite and hence N H is open. We also have

Hc () NH.
NeN

Let x € (yen NH. Let U be any neighborhood of x. Then Uz~! is a neigh-
borhood of e and so contains a N, € A/ by Lemma 2.11.14 where we have used
that G is profinite since we have already shown the equivalence of the first two
statements in the theorem. So x € N, H. Since e € N,, x € N,x as well. Thus,
N,z = N,h for some h € H and so h € N,z C U. Thus, every neighborhood
of z intersects H and so x € CI(H). However, we assumed H is closed and
so Cl(H) = H. Thus, (\ycy NH = H as desired. This shows that the first
and third condition are equivalent, which when combined with what we have
already shown gives the equivalence of all three conditions.

Finally, we must show if one of the three equivalent conditions is satisfied
then G/H is compact and totally disconnected. Since G is compact and G/H
is the continuous image of G, we have that G/H is compact as well. Let 7 :
G — G/H be the canonical projection map. Suppose that G/H is not totally
disconnected. Let 7(X) be a connected subset of G/H that properly contains
m(H). Note that we may assume H # {e} for otherwise the result is trivial. We
also clearly see that H is a proper subset of X and so X — H contains at least one
point. Suppose X — H = {z}. Then we have {z} is closed because G, and hence
X is Hausdorff. Thus, H is open in X. Now observe that 7({z}) is nonempty,
m({z}) # m(X) since w(H) is a proper subset of 7(X), and 7({z}) is open
because projection is an open map, and closed because once again H is closed
and we are in a Hausdorff space and 7({z}) is a point. This contradicts 7(X)
being connected and so it must be that w(H) is its own connected component.

Suppose now that X — H has at least two points. In this case we set ¥ =
X — H. Then Y cannot be connected because G is totally disconnected so there
exist disjoint nonempty open (and hence closed) sets Fy and F5 in X so that
Y = Fy UF,. Then X = (F; U H) U F,. Now repeat the argument above
replacing {z} by Fb. O
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One should note that the last part of the previous theorem could also be
shown by directly showing

G/H = lim G/NH.
—
NeN

2.12 Examples of profinite groups

In this section we work out a couple of important examples of profinite groups
based on the material covered in the previous sections. We also introduce the
notion of pro-p groups and examine what they say for these examples.

It is customary in a beginning abstract algebra class to cover Galois theory
for finite extensions of fields. However, one is often interested in studying infinite
field extensions. For example, if we have a field K, the separable closure K®P
is a very interesting infinite field extension. Often by studying properties of the
larger field extension one can recover information about the finite extensions.
The theory of profinite groups is very important in this study. We quickly recall
some notions from abstract algebra.

Definition 2.12.1. Let F be a field and K a field that contains F. We say
a € K is algebraic over F if there is a monic polynomial f(x) € Flx] so that
f(a) = 0. We say that « is separable if f(z) is irreducible and has no repeated
roots. The field K is said to be a separable extension of F if it is generated over
F' by separable elements.

Definition 2.12.2. Let F be an algebraic closure of F' and K a field so that
F C K C F. The field K is said to be a normal extension of F' if every
embedding o : K — F so that o|p = id is an automorphism of K.

Definition 2.12.3. A field extension K/F is said to be Galois if it is separable
and normal. The set of all automorphisms of K that fix F' form a group under
composition denoted Gal(K/F).

One should note that there is no assumption the field extensions were finite
extensions in the above definitions!

One of the deepest and most beautiful theorems one learns as an under-
graduate or graduate student is the Fundamental Theorem of Galois Theory for
finite extensions:

Theorem 2.12.4. Let K/F be a finite Galois extension. Set G = Gal(K/F).
There is a bijection

{subfields E of K containing F'} «— {subgroups H of G}

given by
E — Gal(K/E)

and
H— KH
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which are inverse to each other where
K" ={zx € K:orx=ux for every o € H}.

Furthermore, we have that E is Galois over F if and only if Gal(K/E) is normal
in Gal(K/F).

One can see [3] for a more detailed discussion of this result as well as a proof.
Out interest is in the corresponding statement for infinite extensions.

Let K/F be a Galois extension of fields, not necessarily finite. Let A be the
set of normal subgroups of G = Gal(K/F) of finite index. If Ny, Ny € N with
N; C Ns, we have a natural projection map

ONy.Ny ¢ G/N1 — G/Ns.

Thus, we obtain a projective system {G/N} yenr. It is easy to see the projections
©N,,N, are compatible with the natural projection

YN, - G — G/N2

Note that ¢y, is the restriction map Gal(K/F) — Gal(K™2/F). Thus, as
before we have a canonical induced homomorphism

¢:G— lim G/N.
NeN

Proposition 2.12.5. The canonical map

¢ : Gal(K/F) — lim Gal(K/F)/N
NeN

is an isomorphism of groups and so G is a profinite group in the topology induced
by .
Proof. 1t is clear that

kerp = ﬂ N.

NeN

We wish to show that ker ¢ is trivial and ¢ is onto. Let o € kery and let
x € K. Then there exists a finite Galois extension E of F' where FF C F C K
with © € E. The restriction map Gal(K/F) — Gal(E/F) has kernel Gal(K/E).
Thus, Gal(K/FE) is normal and has finite index so Gal(K/E) € N. Thus,
o € Gal(K/FE), which gives o(z) = z since x € E. Since x was arbitrary, we
must have o(z) = z for every x € K, i.e., 0 = e and so ker ¢ must be trivial as
desired.

Now let (on)nen € lim G/N. We need to show there is a o € G so that
on(0) =on forevery N € N. Let x € K. There exists a finite Galois extension
E of F contained in K that contains z with N = Gal(K/FE) normal and of finite
index in G. Note G/N = Gal(E/F). Define 0 € Gal(K/F) by o(x) = on(x).
The definition of projective limit shows that this is well-defined, i.e., if we choose
another field E’ satisfying the same conditions as E, the definition of o on x
does not change. Doing this for each x € K defines ¢ and it is clear from
construction that pn (o) = on. O
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From this proposition we obtain that Gal(K/F) is compact and totally dis-
connected. We have that a subgroup H C Gal(K/F)is open if and only if G/H
is finite.

Theorem 2.12.6. Let K/F be any Galois extension of fields and set G =
Gal(K/F) endowed with the profinite topology. The maps

E v Gal(K/E)

and
Hw— E=K"

giwe a bijection between the intermediate fields F C E C K and the closed

subgroups of G. The maps are inverse to each other and are order reversing.
Furthermore, E/Fis Galois if and only if Gal(K/E) is normal in Gal(K/F).

One should note that if G is finite, the topology on G is the discrete topology
and this theorem reduces to Theorem 2.12.4. We will assume the that Theorem
2.12.4 is known in the process of proving Theorem 2.12.6.

Proof. Let f be the map that sends E to Gal(K/E) and g the map that
sends H to KH. Tt is clear that for any subset H C G, the set K7 is a
field between F' and K so g is well-defined. We must show that f is well-
defined, i.e., for F C E C K, the group Gal(K/FE) is a closed subgroup of
G. Consider the collection {L a field : L/F is finite and Galois, L C E}. For
each such L, we have Gal(K/L) is a subgroup of Gal(K/F). It is open because
Gal(K/F)/ Gal(K/L) = Gal(L/F), a finite group, so we can apply Theorem
2.11.16 to conclude it is open. Now recall from Proposition 2.10.9 that every
open subgroup of a topological group is also closed, so Gal(K/L) is closed for
each such L as well. It is easy to see that Gal(K/FE) C (), Gal(K/L) since if
o € Gal(K/E), then certainly o € Gal(K/L) for every L C E. Conversely, let
o € Gal(K/L) for every such L. Suppose there is an o € E so that o(a) # .
This is a contradiction because by adjoining o and the rest of the roots of the
minimal polynomial of o to F' we obtain a finite Galois extension of F', and so
o must fix this extension. Thus, Gal(K/FE) = (), Gal(K/L), and so being the
intersection of closed sets, Gal(K/FE) is itself closed.

Our next step is to show that g o f is the identity map. Let FF C E C K so
f(E) = Gal(K/E), which clearly fixes E. Thus, we must have (go f)(E) D E.
Let z € (go f)(E). There exists a finite Galois extension of E containing x that
is contained in K. Call this extension L. Let 0 € Gal(L/E). There exists a
7 € Gal(K/E) so that 7|, = 0. This follows exactly as in the finite case only
requiring an application of Zorn’s Lemma in this instance. By definition, we
have = € (go f)(E) = KGUK/E) and so 7(x) = x. However, since 7|;, = o
and xz € L, we see that o(x) = = as well. We now use finite Galois theory on
Gal(L/FE) to conclude that € E and so g o f is the identity map.

We now show that f o g is the identity map. Let H be a subgroup of G. We
have

(f 0 g)(H) = F(K™) = Gal(K/K")
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and so clearly we have H is a subgroup of (f o g)(H). Now let H be a closed
subgroup. Theorem 2.11.16 gives that H is the intersection of a family of open
subgroups, call the family U/ = {U;}. We have

g(H) = g(NU;)
_ KﬁUi

S UKUi
= Ug(Ui)'

If we apply f we obtain

(fog)(H) = Gal(K/g(H))
C Gal(K/ U g(U))

C () Gal(K/g(U))
— ﬂUi

=H

where we have used that since the U; are open, they have finite index and so we
can use the finite case to get (| Gal(K/g(U;)) = (U;. Thus, we have that fog
is the identity.

It only remains to show that given an intermediate field E, E/F is Galois if
and only if H = Gal(K/F) is normal in G = Gal(K/F). Let o € G. We claim
that

cHo ' = Gal(K/o(E)).

Let 7 € H. If z € o(E), we have 0~ !(z) € F and so to '(z) € E and
thus oro~!(z) € o(E). Hence, oro~! € Gal(K/o(E)) and so cHo™! C
Gal(K/o(FE)). Now suppose that x € Gal(K/o(FE)). Let x € E. Then o(x) €
o(E) so x(o(z)) = o(z), and so o~ txo(x) = z. Thus, 0 1xo € Gal(K/E).
From this we see that y = o(0c71xo)o~! € ocHo~!. Thus, Gal(K/o(E)) =
oHo~1. From what we have shown above, we have o(E) = E for every o € G
if and only if cHo~' = H for every o € G, i.e., E is Galois over F if and only
if H is normal in G. O

Before our next examples we need some definitions and theorems.

Definition 2.12.7. Let p be a prime number. We say a profinite group is a
pro-p group if it is the projective limit of finite p-groups.

Example 2.12.8. We constructed Z, as

Ly =UmZ/p"Z.
Thus, Z,, is a pro-p group.
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Definition 2.12.9. A supernatural number is a formal product
e
P

where p runs over the set of primes and n, € NU {co}.

Definition 2.12.10. Let G be a profinite group and let N denote the set of
open normal subgroups in G. Let H be a closed subgroup of G. The index of
H in G, denoted |G : HJ, is defined by

[G: H] =lempyen [G/N : HN/N]J.
The order of G is defined by
G| =[G : {e}].

Note that since N € N is an open subgroup in G, |G/N| < oo so [G/N :
HN/N] < oo for each N. However, [G : H| is a supernatural number.

Example 2.12.11. We claim that |Z,| = p>. To see this, observe that the
open subgroups of Z, are p"Z, for n > 0. Thus,

|Zp| = lemp>0[Zy : p"Zyp)
= lemy, >0 p"
= pOO,

It is possible to prove many of the standard results of group theory in this
setting. We state one of them here but omit the proof.

Proposition 2.12.12. Let G be a profinite group, H and K closed subgroups
of G with H C K. Then

[G:K]=I[G: H|K : H].

Definition 2.12.13. Let G be a profinite group. A maximal pro-p subgroup
of GG is called a pro-p Sylow subgroup of G, or simply a p-Sylow subgroup of G.

Theorem 2.12.14. Let G be a profinite group and p a prime number. One has
1. p-Sylow subgroups of G exist (they may be trivial.)
Any pair of p-Sylow subgroups of G are conjugate.

If H is a p-Sylow subgroup of G, then [G : H] is relatively prime to p.

Each p-Sylow subgroup of G is nontrivial if and only if p divides the order
of G.

72



Proof. We begin with a basic observation. If we let A" denote the open normal
subgroups of GG, then we have

G = lim G/N
—
NeN

T (TN)NeN-
Thus, given g,h € G, g = h if and only if gy = hy for all N € N.

1. Let N € N and write P(N) for the (possibly empty) set of p-Sylow sub-
groups of the finite group G/N. Let M, N € P(N) with N C M. There
is a natural surjection

omuN : G/N — G/M.
For Py € P(N) we have a natural induced surjection
(G/N)/Py — (G/M)/(enm,n(PN))-
The kernel of this map is Py ker s n/Pn. In particular, we have
[G/N : Py| = [G/M : N (Pn)][Pn ker v : Pr].

It is clear that @y n(Pn) is a p-group and this equality shows it is a
p-Sylow subgroup of G/M since p 1 [G/N : Py]| implies p { [G/M :
oy, N (Pn)]. Thus, we have a map

Y$M,N - P(N) — P(M)

induced from the original ¢ n. Thus, the collection ({P(N)}, pam,n)
forms a projective system of finite nonempty sets. This projective limit is
nonempty, so we can take an element of it. An element in this projective
limit is a collection of p-Sylow subgroups Py C G/N, one for each N € N.
However, these are finite groups themselves so form a projective system
themselves:
P =1lim Py.
N

We have that P is then a subgroup of G and by construction we have
that P is a pro-p group. We must show that P is maximal. Let @ be any
p-Sylow subgroup of G containing P. Then for each N € N we have

QN/N > PN/N = Py,
and is a p-group. Since Py is a p-Sylow subgroup of G/N, the finite Sylow

theorem gives Py = QN/N for every N € N. Thus, by the comment at
the beginning of the proof we have Q) = P.

73



2. Let P and Q be p-Sylow subgroups of G. Set Py = PN/N, Qn = QN/N
and

Ay = {gN S G/N : gNPNgj;l = QN}

By the finite Sylow theorems we have that Ay # (0 for all N € A/. The
sets An form a projective system. Set

A= @AN,
N

which is a subset of G. Let a € A. Then we have that aPa~! and Q have
the same projection in G/N for each N € N/, so they must be equal.

3. This is a homework exercise.

4. This follows immediately from the previous parts.

Corollary 2.12.15. Let G be an abelian profinite group. Then:
1. For every prime p, G has a unique p-Sylow subgroup.

2. Let p and q be distinct primes and P a p-Sylow subgroup and @ a q-Sylow
subgroup. Then PN Q = {e}.

3. The group G is isomorphic to a direct product of its Sylow subgroups.

Proof. The first two results follow immediately from the previous theorem. The
third statement follows from the isomorphism

G/N = ][ PN/N

where the product is over the p-Sylow subgroups of G and the fact that P N N
forms a cofinal system among the open subgroups of G. O

We close this section and chapter by returning to the example of Z formed
by looking at the projective system formed by Z/NZ — Z/MZ. We begin by
observing that |Z| = [I,p>. To see this, let n > 1. We have a surjection
Z— Z/nZ with a kernel, call it H,. Thus, every integer n divides |Z|

Let p be a prime and let P be the p-Sylow subgroup of Z. Let P, be the
unique p-Sylow subgroup of Z/nZ. Then

P =1lim P,
—
= @Z/pvp(n)z
= lmZ/p"Z

:Zp
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where v,(n) is the power of p exactly dividing n. Thus,

Z

I
—
H
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Chapter 3

Differential Topology and
de Rham cohomology

In the last few sections of Chapter 2 we saw how topology can be useful in giving
more information to algebraic settings such as Galois theory. In this chapter we
begin to see how algebra can be used to study topological notions. This chapter
focuses on the differential theory, which one can think of as generalized calculus.
As such, we draw our motivation from calculus and develop the theory over R™
before moving on to the more abstract theory over differentiable manifolds. One
should keep in mind that this theory can be developed over C™ as well. In this
case one needs to use the theory of several complex variables. We will return to
this later and develop what is needed for covering some of the desired examples
from algebraic geometry.

3.1 Motivation

In this section we give the basic motivation for deRham cohomology by study-
ing a familiar problem from multivariable calculus and rephrasing it in a more
algebraic language.

Definition 3.1.1. Let D C R2. A wvector field on D is a function that assigns
a vector F(z,y) to each point (z,y) € D.

Example 3.1.2. Define a vector field on R? — {(0,0)} by setting

where i and j are the standard unit vectors in the x and y directions respectively.
This vector field can be pictured as follows:

76



S S S S OO

|
\
\
\
\
\
\
N
N

Recall that given a function z = f(x,y), the gradient of f is defined by

7] 0
VS(o) = G 0)i+ G (5
The gradient of a function is a vector field where it is defined.
One knows from elementary physics class that work done by a constant force

F over a straight line displacement D is given by
W =F-D.

More generally, we can consider the work done by a variable force F(z,y) in
moving a particle over a path C'. Suppose the path is traced out as the tips of
the vectors r(t) = x(t)i+y(t)j fora <t <b. Let tp =a<t1 <--- <t, =bbe
a partition of the interval and let s; be the arc-length of the curve from r(¢;)
to r(tj41) for 0 < j < n — 1. Let T(¢) be the unit tangent vector to C at ¢,

ie, T(t) = % As long as s; is small for each j, we can approximate the
force over this interval by F(r(¢;)) and the displacement by s;T(¢;). Thus, one
has that the work done over the interval ¢; to t;11 is approximately equal to
F(r(t;)) - T(t;)(s;). If we add up all of these contributions we end up with a

Riemann sum approximating the value of the total work:

Now, let the width of the partition, i.e., mini<;<y(t; —tj—1), go to 0. This gives
that the work over this curve is given by

W:/CF-Tds
b
~ / F(x(t)) - T(¢) dt.

Of course, we recall that this is how a line integral is defined even when one
does not have the physical interpretation of F as a force moving something.
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Suppose now that there is a function z = f(z,y) so that Vf(z,y) = F(z,y).
In this case we see from the fundamental theorem of line integrals (which follows
immediately from the standard fundamental theorem of calculus) that

/C F-Tds = f(x(b)) — f(x(a)).

In other words, if there is such a f then the line integral along C' from the point
r(a) to the point r(b) is independent of the path C! We call such a f a potential
function and such a vector field F' a conservative vector field. The question is,
given a vector field F(x,y) = Fi(x,y)i + Fa(z,y)j, is F conservative, i.e., when
does there exist a function z = f(z,y) so that F} = % and Fb = g—i? Using the
equality of mixed partial derivatives we see immediately that it is necessary for

oF  0%f
By Oydux
_ 0%
= Sei

OF,

= 5=

However, it is not immediately clear if this is also a sufficient condition.

Example 3.1.3. Consider the vector field F given in Example 3.1.2 and let C'
be the unit circle parameterized by x(t) = cost, y(t) = sint for 0 < t < 2.
Then we have

2
/ F-Tds= / ((—sinti+ costj) - (—sinti+ costj)) dt
c 0
= 2m.

Thus, we have that F is not conservative because C'is a closed curve and the line
integral of a conservative vector field over a closed curve must be 0. However,
it is easy to check that F satisfies the necessary condition given above. Thus,
this condition cannot be a sufficient condition as well!

It turns out that the topology of the region D the vector field is defined on
is fundamental to whether or not the condition is also sufficient.

Definition 3.1.4. A region U C R? is said to be star-shaped with respect to the
point (xo,yo) if the line segment {t(xo,yo) + (1 —t)(z,y) : 0 <t < 1} lies in U
for all (x,y) € U.

Theorem 3.1.5. Let U C R? be open and star-shaped. Let F(z,y) = Fi(z,y)i+

Fy(z,y)j be a vector field defined on U with Fy and Fy having continuous partial
derivatives on U. Furthermore, assume %}1 = % on U. Then F is conserva-
tive. ‘
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Proof. Without loss of generality we may assume that U is star-shaped with
respect to (0,0). Define f : U — R by

1
flz,y) = / xFy (te, ty) + yFa(tx, ty) dt.
0

Note that this is well-defined because U is star-shaped with respect to (0,0) and
F is defined on U. Observe that we have

of e ) OF,
%(:v, y) = /o (Fl (tz,ty) + twa—x(t:v, ty) + ty%(t:c,tyo dt.

An application of the chain rule gives

d OF; OF
pn (tFy(tx, ty)) = Fy(tz, ty) + ta:a—xl(t:r, ty) + tya—yl(tx, ty).

Thus, we see that
of [t d OF, OF,
L= [ (Gertam o (G2 enm - ) ) a

Yd
= — (tFy(tzx, ty)) dt
| Gt

= ((E, y)
where we have used that 66—};1 = 2 Similarly, we obtain g—{;(ac, y) = Fa(z,y)
and so F is conservative. ‘ O

Let U € R® and V C R™. We write C(U, V) for the set of functions
f : U — V that have continuous partial derivatives of all orders. We refer
to this as the set of smooth functions. For most instances continuous partial
derivatives to the second order, but we don’t lose much by focusing on the

smooth functions and it simplifies the exposition.
Let U C R2. Define

curl : (U, R?) — C*°(U,R)

by setting
oFy OF
curl(Fy, Fy) = 8—211 - 8—172
and
grad : C*®(U,R) — C*°(U,R?)
by setting
_(9f 9F
grad(f) = <% 6—y> |

Observe that we have
curl(grad(f)) =0
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for all f € C*°(U,R). Thus, we see that the image of V lies in the kernel of curl.
The problem we are trying to solve is to determine when the image of grad is
precisely the kernel of curl. To this end, define

Hig (U) = ker(curl)/ im(grad)

and

HYR (U) = ker(grad).
Observe that Theorem 3.1.5 can be restated as follows.
Theorem 3.1.6. If U is star-shaped then Hig (U) = 0.

It is clear that C°°(U,R?) has the structure of a R-vector space. Further-
more, ker(grad) and im(curl) are both R-subspaces and so H)g (U) and Hig (U)
both have natural R-vector space structures. This structure will be essential in
the forthcoming sections to establish a nice algebraic theory.

At this point we do not have enough machinery to calculate H}iR(U ) for any
nontrivial spaces U. However, we can calculate H)g (U).

Theorem 3.1.7. The dimension of H)g (U) as a R-vector space is precisely the
number of connected components of U.

Proof. Let U have k connected components Uy, . . ., Uy. Define functions f1,..., fr
by

1 (I, y) ey,

0 otherwise.

filz,y) Z{

It is immediate that each f; satisfies grad(f;) = 0 and so fi,..., fr € Hig(U).
It is also clear that f1,..., fx are linearly independent, so it only remains to
show they span Hg (U).

Let f € Hig(U). Since grad(f) = 0 we have that f is locally constant, i.e.,
for each (w9,y0) € U there is an open set Vi, ) containing (zo,yo) so that
f(z,y) = f(x0,y0) for all (x,y) € Vigy.y)- Let (zi,yi) € Us be fixed points and
set f(xs,y:i) = 2z for 1 <14 < k. We claim that f(x,y) = z for al (z,y) € U,.
To see this, consider the set

SN y) NUs = {(z,y) € Ui : fa,y) = 2}

This set is closed in U; since it is the preimage of the closed set {z;} under the
continuous map f and it is open because f is locally constant. Thus, it must
be that it is all of U, as claimed. Thus, we see that we can write

k
flay) = zfilx,y)
i=1
and so f1,..., fr span Hx (U) as claimed. O
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3.2 Some General Homological Algebra

Before we proceed further with de Rham cohomology we give some basic ho-
mological algebra results. One could prove all the results in this section for de
Rham cohomology in particular, but as we will encounter other types of co-
homology theories it is best to have some of the machinery set up generally.
We also briefly review some basic algebra facts that we will use often. For the
reader that desires to see a concrete example before seeing such general theory,
the following section can safely be read before this one. Section 3.3 is spent
constructing an example of a chain complex that satisfies the definitions laid
out in this section and whose cohomology groups generalize those constructed
in § 3.1.

Let V', V2, and V3 be vector spaces and 7% : V¥ — V**! be linear maps.
Note we use superscripts here as we are going to be dealing with cohomology,
so superscripts are standard. One can also keep in mind that spaces Q(U) are
the vector spaces that will take the place of these when we specialize to the case
of de Rham cohomology. We say the sequence

vi Iy Ty,
is ezact when ker(T?) = im(T").

Let {V*} be a collection of vector spaces and {d : VI — V11 a collection

of linear maps. We call the sequence

. difl . dl . d7,+1 .
_)VZ 1 —)VZ—7V,L+1 —7V1+2—7"'

a chain complex if AT o d* = 0 for all i. We say the chain complex is ezact if
ker(d') = im(d*~1) for all 4. If the chain complex is exact, we obtain a short
exact sequence
0 — im(d" ') — V' — im(d") — 0.
Let V* = {V% d'} be a chain complex. Note that the maps d* are understood
from context. The cohomology groups of this chain complex are defined by

ker(d™ : V™ — VL)
im(dm—1t . ym-1 5 ym)’

H™(V*) =

Note that this is a natural vector space to consider as it measures how far
the complex V* is from being exact. In general, we refer to the elements in
ker(d™) as the m-cocycles and the elements in im(d™~!) as the m-coboundaries
(or simply the cocyles and coboundaries if m is clear from context.) Note in the
de Rham setting we will refer to these as closed and exact instead.

Let V* and W* be chain complexes. A chain map T* : V* — W* is a
collection of linear maps 7% : V' — W' satisfying di;, o T = T"t1d}, for all 1,
i.e., the following diagram commutes:

Lemma 3.2.1. A chain map T* : V* — W* induces a linear map
H™(T*): H™(V*) - H™(W™)

for all m.
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i—1 7
di; d

yi-1 v v yitl

Ti71 Ti T'H»l
di71 dz

.._>Wi71W_>Wi_W>Wi+1_>...

Proof. Let v € V™ be a cocycle and [v] = v + im(d™~!) be the corresponding
cohomology class. Define

H™(T*)([v]) = [T (v)].

We must show this map is well-defined. The first step of this is to show that
T™(v) is a cocycle in H™(W*), i.e., that dfj,(T"™(v)) = 0. Observe that

dijy (T™ (v)) = T™H(dy (v))
_ Tm+1 (O)
=0

since v is a cocycle.

It remains to show that H™ (7*)([v]) is independent of the representative of
[v] we choose. Let v; and vy be representatives of [v]. Note that this means
there is a 2 € V™! so that v; — vy = dj ' (x). So we have

T™ (01 —v2) = T™(dy ™ (2))
= dyy (T} (2))
i.e., we have T™(v1) — T™(vs) = dj,(T™ '(2)). Thus,
[T (v1)] = [T™ (v2)]
and so H™(T™*)([v1]) = H™(T*)([v2]). Hence, the map is well-defined. O
We say a sequence of chain complexes
0— U v oW — o
is a short exact sequence of chain complexes provided that the sequence
5™ ™"

0—U" —V" —W"—0

is exact for every m.
From this we get the following commutative diagram for any m:
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m—1 m—1 m—1
dU dV dW
Sm T’V?‘L
0 um vm wm 0
ay ay a3
S7n+1 T7n+1
0 Uerl Verl [ Werl —
m+1 m+1 m1
dy dy dyy

Lemma 3.2.2. Given a short exact sequence of chain complexes as above, one
as that the sequence

H™(S7) H™ (T%)
— —

is exact for every m.
Proof. Let [u] € H™(U*). We have
H™(T7) o H™(S™)([u]) = H™ (T™)([S™ (w)])
= [T 0.5™(u)]
=0
since T o S™ = 0 for all m because of the fact that we have an exact sequence
of chain complexes. Thus, we have im(H™(5*)) C ker(H™(T™)).

Suppose now that [v] € ker(H™(7*)). Thus we have 7" (v) € im(dj, ") so
there exists w € W™~ ! so that T™(v) = djj; ' (w). Since the sequence is exact
at the level of chain complexes we know that 7! is surjective. Thus, there is
a vy € V™1 so that 7™ !(v;) = w. Hence, we have

T (v —dy~ " (v1)) = 0.
Thus, using exactness there is a u € U™ with S™(u) = v — d{}~ " (v1). We need
to show that w is a cocycle. Observe that we have
S"THdY (w) = A7 (S™ (u))
= d} (v —dy " (v1))
=0
since v is a cocycle by definition and dy} o dgl_l = 0. The fact that S™+t!

is injective gives that dff(u) = 0 and so w is a cocycle. Thus, given [v] €
ker(H™ (T*)) we have found [u] € H™(U*) so that

H™(5%)([u]) = [S™ ()]
=[v—dy " (v)]

= [v].
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Thus, ker(H™ (7)) C im(H™(5*)) and so we have equality as desired. O
One should note that given an exact sequence of complexes

0— U v owr — o0
in general one does not obtain a short exact sequence of cohomology groups.
The issue arises in the fact that even though 7™ : V™ — W™ is surjective for
all m, it can be the case that (T™)~!(w) does not contain any m-cocycles even
if w is a m-cocycle. In fact, this is measured via a map

o™ H™(W*) — H™TH(U™).

Our goal will be to show that we can define such a map so that we obtain a
long exact sequence of cohomology groups

m— m * m * m m-+41 *
Define
o™ ([w]) = [(S™H1) " (dg ((T™) " (w)))]-
Graphically, we have
() w) <= == == - K
x
/
/ m
/ ym T wm
/
/
|
| v
|
\
ym+1 s \\ ym+l
\
\
\\
(ST THd((T™) " Hw) < = = = = 4dR((T™) ~H (w)).

We must show that this map is well-defined. In order to do this, we must
show

1. If T™(v) = w and df} (w) = 0, then d}(v) € im(S™*).

2. If S™+(u) = d(v), then djf™'(u) = 0, i.e., the elements that map to
di? (v) are cocycles.

3. I T™(v1) = T™(v2) = w and S™ (u;) = d(v;), then [u;] = [ug] in
Hm+1((*)U).
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Note that the following diagram commutes:

m

ym Wi

T'm.+1

Vm+1 - 5 Wm+1

Thus, we have that T (d}(v)) = 0, i.e., d{}(v) € ker(T™T!). The fact that
the sequence

m+1 m+1
0 m+1 3 ymt+1 T wmtl 0

is exact implies that there must be a u € U™ so that S™!(u) = dy*(v). This
gives the first part.
For the second part, we use the following diagram:

Vm
Sm+1
0 ym+l mtl
mt1 mt1
m+2
0 gm+2 2 ymee

If S™+1(u) = di? (v), then we have d/ (S (u)) = diP ! (df? (v)) = 0, since
we have a chain complex. Using that the diagram commutes we have

S+ () = 0.

However, the fact that S™*2 is injective gives that d} ™' (u) = 0. Thus, we have
the second part.

Finally, we show the third statement and thus conclude that 9™ is well-
defined. Note that T™(v1) = T™(v2) implies that vq — vy € ker(T™) = im(S™).
Thus, there is a u € U™ so that S™(u) = v1 — v2. We use that di} o S =
St o d to conclude that we have

dy} (01 — vg) = dy/ (5™ (u))
= §™H(dg (u)).

Thus,
(S™ ) TH @Y (01)) = (5™ 7HdY (v2)) + dif (w),

i.e., [u1] = [ug] as desired.
We can now show that we obtain the long exact sequence of cohomology as
stated above.
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Theorem 3.2.3. Let

T

0—>U*S—*>V*—>W*—>O

be a short exact sequence of chain complexes. Then the sequence

om H™(S7) H™(T7)

m m+1 *

18 exact.
Proof. There are two things to check, namely, that given any m, the sequences

H™ (T*)
—

and
H™F1(5%)
—

Hm(W*) ﬁ} Hm—i—l(U*) Hm—i—l(v*)

are exact. We begin with the first sequence.

Let [v] € H™(V*). We have
oM H™(T™)([v])) = o™ ([T™ (v)])

since v is a cocycle. Thus, im(H™(T%)) C ker(9™).

Now let [w] € ker(0™). Let v € V™ so that T™(v) = w. (Recall the sequence
is exact at the level of chain complexes!) Observe that since w is a cocycle, we
have that dj}, (w) = 0. Consider the following diagram:

S’VTL T’VTL
0 um vm wm 0
gm+1 Tm+1
0 Uerl Verl - 5 Werl - s 0

Since this diagram commutes and we have dj},(w) = 0, we have that d{}(v) €
ker(T™%1). Thus, using the exactness we see there is a u € U™ so that

ST (u) = dF (v).

Using the definition of 9™ we have

o™ ([w]) = [(S™H) " Hay ((T™) ™  (w))]
(5™ )7 (dy (v)]
= [u].
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However, we know that 0™ ([w]) = 0 so we must have v’ € U™ with u = d} (v’).
Now observe that we have

(v = 8™ (u) = T™(v) = T™(S™ ()

=T7(v)
Moreover, we have
dy (v = 8™ (W) = dy (v) — dy (8™ ()
= dy(v) — S™ T (u))
= dy(v) — S™H(u)
=dy'(v) — dy(v)
=0

Thus, we have that v — S™(u') is a cocycle that maps to w and so
H™(T*)([v = S™(u)]) = [w].

Thus, we have exactness of the first sequence.
Let [w] € H™(W™*). We have
HHH(S%) (0™ ([w])) = [S™HH((S™ ) T (™) (w))]
= [dy (v)]
=0

where v € V™ such that 7" (v) = w. Thus, im(0™) C ker(H™*1(5*)).
Now let [u] € ker(H™"1(S%)), i.e., S (u) = dj}(v) for some v € V™. We
have
dyy (T™ (v)) = T™*(dy (v))
= TS ()
=0.

Thus, we have that T (v) is a cocycle. We also see that

o™ ([T (v)]) = (™) (dy (™)~ HT™ (v))]
(5™ )7 (d (v)]
= [u].

This shows that ker(H™ % (5*)) C im(9™) and so the second sequence is exact
as well. g

Exercise 3.2.4. Show that 0™ is a linear map.
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Definition 3.2.5. Let S*, 7 : V* — W* be chain maps. We say S* and T*
are chain-homotopic if there are linear maps U™ : V™ — W™~ satisfying

dyy PO O = ST T YT
for all m.

Chain homotopies will be very important for calculating cohomology groups
in § 3.4. We will also construct a chain homotopy in Theorem 7?7 of § 3.3 to
calculate the cohomology groups of a star-shaped region in R™.

Proposition 3.2.6. Let S*,T* : V* — W™ be chain homotopic maps. Then
for all m we have

H™(S*)=H"™(T") : H™ (V") — H™(W™).
Proof. Let [v] € H™(V*). We have

(H™(T*) = H™(S%))([v]) = [(T™ = ™) (v)]

[

= ldw~ 1(‘1””(v)) + U (dy (v))]
= [dyy (T () + ¥ FH0)]
[d’v”v L ()]

Exercise 3.2.7. Let V* and W* be chain complexes. Show that

where V* @ W* has the obvious definition. Extend this to a finite number of
chain complexes.

3.3 de Rham Cohomology on Open Subsets of
RTL

We set up the basic definitions of de Rham cohomology groups for open subsets
of R™ as well as prove the basic properties in this section. The main purpose of
this section is to show that we can generalize the results of § 3.1 and define a
chain complex of “differential forms” with the resulting cohomology groups as
defined in § 3.2 recovering the ones defined in § 3.1.

Let K be a field of characteristic 0. We will be interested in the case when
K =R or K = C, so one can specialize to those cases immediately if one likes.
Let V be a K-vector space. We write V¥ for the product V x V x --- x V where
there are k terms.
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Definition 3.3.1. Let F be a field. A map f : V¥ — F is said to be k-linear
if it is linear in each of the k variables.

In general we will take F' = K in the above definition, but we will also be
interested in the case that the maps are on a R-vector space but map into C as
in Example 3.3.4 below.

Example 3.3.2. The natural projection maps
T; RF 5 R

given by
xi(alv s aak) = a;

are k-linear for 1 <1 < k.

Example 3.3.3. The projection maps on CF are k-linear as well. We denote
them by z; in this case.

Example 3.3.4. We can consider C" as a 2n-dimensional R-vector space. If
we do this, then we have that the maps

EiZCkHC

defined by

are k-linear for 1 <1 < k.

Definition 3.3.5. A k-linear map f is said to be alternatingif f(v1,ve,...,v;) =
0 whenever v; = v; for some i # j. We denote the set of alternating k-linear

maps by Alt"(V, K). We set Alt’(V, K) = K.

It is easy to see that for a K-vector space V', the set Altk(V, K) is a K-vector
space as well. One should also note that Alt'(V, K) is the dual space to V/, i.e.,
Alt'(V, K) = Homg (V, K).

Exercise 3.3.6. Show that Alt"(V, K) = 0 for all k > dimg V.

Let Si denote the symmetric group on k letters. As is standard, we write
a transposition interchanging ¢ and j by (4,7). Recall that any permutation
o € Sy can be written as a product of transpositions. Moreover, there is a
well-defined homomorphism

sgn: S, — {£1}
where sgn(7) = —1 for any transposition 7.

Lemma 3.3.7. Let f € Alt*(V,K) and o € Sy. Then we have

f0oqy, - Vo) = sgn(o) f(v1, ..., vk).
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Proof. We prove the result for a transposition o = (i,5). The general result
then follows by induction and the fact that any permutation can be written
as a product of transpositions. Set f; ;(vi,v;) = f(vi,...,vi,...,05,..., V%)
where we view the v,’s with » ¢ {i,j} as arbitrary but fixed vectors. We see
immediately that f; ; € Alt*(V, K) and so

fi,j(vi + v, + ’Uj) =0.
We use the linearity and the fact that f; ; is alternating to obtain
fig(wisvg) + fij(vj, vi) =0,
ie.,
fij i v5) = = fi; (v, v3).
This gives the result for ¢ and so finishes the proof. O

Exercise 3.3.8. Let V = K2. Let v = (v1,v2) and w = (w1, ws) be vectors in
V. Show that the map

F(v,w) = det (”l ”2>

w1 W
is alternating. More generally, prove the corresponding statement for V = K*.

Definition 3.3.9. Let m, n be positive integers. A (m,n)-shuffle o is a permu-
tation of {1,...,m + n} that satisfies

and
om+1) < <o(m+n).

The set of all such permutations is denoted S(m,n).

Exercise 3.3.10. Show #S(m,n) = ("™").

m

Definition 3.3.11. Let f € Alt"(V, K) and g € Alt"(V, K). Define

(f/\g)(vla s ,’Uern) - Z sgn(a)f(va(l)a s ava(m))g(vo’(m-l-l)a s 7va(m+n))'
oeS(m,n)
Example 3.3.12. Let m = n = 1. Then for f, g as above, we have
(f A g)(vla UQ) = Z Sgn(a)f(va(l))g(va'@))

ceS8(1,1)
= f(v1)g(v2) — f(v2)g(v1).

Example 3.3.13. For m = 2, n = 1 we have S(2,1) = {1,(1,2,3),(2,3)}.
Then for f,g as above we have

(f A g)(v1,v2,v3) = f(v1,v2)g(v3) + f(v2,v3)g(v1) — f(v1,v3)g(v2).
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Proposition 3.3.14. Let f € At (V,K) and g € AIt"(V,K). Then f Ag €
A"V, K).

Proof. Tt is clear from the definition that f A g is (m + n)-linear, so it only
remains to check that it is alternating.

Recall that Sy is generated by transpositions (7, j + 1). We have seen above
that for any h € Alt"(V, K),

h(’Ul,...,’Uj,’UjJrl,...,’UT) = —h(vl,...,Uj+1,vj,...,vrr).

Suppose that h satisfies h(vi,...,v,) = 0 for all r-tuples with v; = v;4q for
some 1 < j <r —1. We claim that this implies that h is alternating. Suppose
v; = v; for some i # j with i < j. We can write (i, j) a product of transpositions
(k,k+ 1) so we have

h(v1y .oy 0y Viy ey Up) = —1R(U1, 00 V41,V oo Vg e, Uy)
= h(’Ul,'UQ,. <5 Uj41, V42, Vg - ..,’Ui,...,'l}r)
== (—1)]_1_1h(’01,’02, . .,Uj+1,’l)j+2, . .,Ui_l,’l)j,’l)i, . ,’UT)
=0

by assumption. Thus, the claim is satisfied and so it is enough to show (f A

9)(v1, ..., Vmpn) = 0 whenever v; = v;41 for some 1 < i < m+n— 1. We show

the case that v; = v as the general case is completely analogous.

Let

S ={oceSim,n):o(l)=10(m+1) =2}
Sy ={oceSim,n):o(l)=2,0(m+1)=1}
So = S(m,n) — (S,2) US2,1))-

Suppose that o € Sp. We must have either v,(1) = vy2) OF Vo(rmy1) =
Vs(m42) Dy the definition of S(m,n) and Sp. Thus, for o € Sy we have either
F(Vo(1)s Vo(2)s - -+ Vo(m)) = 0 0T §(Vo(mi1)s Vo(m+2)s - - - » Vo(m+n)) = 0. Thus, we

see that we can ignore these terms in the definition of f Ag when v; = vo. Thus,
in our situation we have

(fAG)(V1y .y Umgn) = Z sgn(0) f(Vo(1)s -+ + s Vo(m) ) I Va(ma1)s - - » Vo (men))-
UGS(lyg)US(gyl)

The transposition 7 = (1,2) gives a bijection S(1,2) = S(2,1), S0 we can write

(f A g)(Uh v 7vm+n) = Z Sgn(U)f(va'(l)u o 7va(m))g(va(m+1)7 s 7Ucr(m+n))
065(112)

- Z sgn(a)f(vﬂf(l)v s 7UTU(m))g(vTU(m+1)7 SRR vra'(m—i-n))'
065(112)

Since o € S(1,2), we have o(1) = 1 and o(m + 1) = 2 and so 7o(1) = 2 and
To(m+1) =1and 70(j) = o(j) for j ¢ {1,m+ 1}. However, v = vz so we see
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that

J(Wo1)s -+ Vo(m) )9 Wa(ma1)s - - > Vo(man)) = F(V1,Va(2), - - > Vo(m) ) 9(V2; Vo(mt2)s - - - »
= f(vla Vra(2)y -3 Ura(m) )9(02; Vro(m+2)y - -
= f(v2a Vra(2)y -3 Ura(m) )g(vla Vro(m+2)y - - -

This shows that the remaining terms in f A g cancel. The same argument for
general v; = v;41 combined with the observation at the beginning of the proof
shows that f A g € Alt™T™(V, K). O

Exercise 3.3.15. Given ¢ € K, f1, fo € Alt"(V, K), g1, 92 € Alt"(V, K), then
L (it f)Ng=(fing)+ (faAg)
2. (cfi) Ng1 = c(fi Ag1) = f1 A (cgr)
3. fin(gr+g2) = (fiAg1) + (f2A g2).
Lemma 3.3.16. Let f € Alt™(V,K), g € Alt"(V,K). Then
frng=(E=0m"g AL
Proof. Define 7 € S(m + n) by

T)=m+1,72)=m+2,...,7(n) =m+n
Tn+1)=1,7(n+2)=2,...,7(m+n) =m.

Note that sgn(7) = (—1)™". The map
S(m,n) — S(n,m)

g o00oT
is a bijection. Observe that
g(var(l)a SRR var(n)) = g(va(m-i-l)a SR va(m-{-n))
and
f(Uch(n+1)7 s 7va'7'(m+n)) = f(va'(l)a s 7Ucr(m))'

Thus, we have

(g A f)(vla cee 7vm+n) = Z Sgn Ucr(l) Uo’(n))f(va'(nJrl)a s 7va'(m+n))

oceS(n,m)

oceS(m,n)

( )mn Z Sgn( ) (Ucr(m+1)7 s 7va'(m+n))f(va'(1)7 SERE)

ceS(m,n)
=(=D""(fANg) (V1. Vmtn)-
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Uo’(ern))
U‘ro’(m-i—n))
v‘ro’(m-i—n))-

Z Sgn UT UO’T(l)? s 7Ucr‘r(n))f(va'7'(n+1)7 cee 7va'7'(m+n))
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We leave the messy and tedious proof of the following lemma as an exercise.
It follows along the same reasoning as in the previous few results.

Lemma 3.3.17. Let f € AW (V,K), g € Alt"(V,K), and h € Alt"(V, K).

Then one has
fA(gAR)=(fNg)Ah.

Definition 3.3.18. A vector space A over K is a K-algebra if there is an
associative bilinear map
m:AxA— A

We say the algebra is unitary if there exists an element 14 € A so that m(14,a) =
a=m(a,14) for all a € A.

Definition 3.3.19. Let {Aj} be a sequence of K-vector spaces along with an
associative bilinear map
m:AkXAl—>Ak+l

for all k,I. Such a sequence is called a graded K -algebra. The elements of Ay
are said to have degree k.

Recall that Alt’(V, K) = K. Using this, if we define

cNf=cf
for c € Alt"(V, K), f € Alt"(V, K), then we have the following theorem.

Theorem 3.3.20. The sequence {Alt*(V, K)}32, along with the wedge product
map forms a graded algebra.

The following lemma will be useful in determining a basis of Alt*(V, K).

Lemma 3.3.21. Let fi,..., f, € Alt'(V, K). Then

fl(Ul) e fl (Un)
(FiN- A fo)(v1,...,0,) = det : . )

Falr) o fulon)

Proof. The case n = 2 is clear as we have
(fr A f2) (v, v2) = fi(vi) fa(v2) = fi(v2) fa(v1)

— de fitv1)  fi(v2)
—dthm>foQ'

We now proceed by induction on n. Assume the result is true for all 2 < k < n.
Observe we have

AN N A f)on, o) = Y sgn(0) filve) (f2 A A Fa)(Ve@)s o Vo)
ceS(1l,n—1)

n

Z(—l)jJrlfl(’Uj)(fg A A fn)(vl, .. ,ﬁj, .. ,Un)

Jj=1
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where (v1,...,0;,...,v,) indicates the (n — 1)-tuple with v; removed.
On the other hand, we have
filor) o fi(vn) fa(v2) -+ fa(vn)
det : : = fi(v1)det : :
fu(v1) -+ fa(vn) fa(va) - fu(vn)
fa(v1) -+ fa(vn-1)
4o (=D)L f (vy,) det . :

Fulor) o fulvny)

(—1)j+1f1(1)j)(f2 Ao A fn)(’Ul, e ,f)j, e ,Un)
1

Jj=
by our induction hypothesis. Thus, we have the result. O
Corollary 3.3.22. Forms fi,..., fn € Alt'(V,K) are linearly independent if
and only if fi A--- A fn, #0.

Proof. First, suppose that fi,..., f, are linearly dependent. Thus, for some
1 < j < n we can write
fi=2 afi

i#]
for some a; € K. For ease of notation we take j = n. We have

n—1

fl/\.../\fn:Zai(fl/\-"/\fnfl/\fi)'

i=1
Thus,

1
(fl/\-u/\fn)(vl,...,vn) = . ai(fl/\--'/\fn,l/\fi)(vl,...,vn)

n

__1 filvr) o fi(on)
= a; de
; ' fn—l(vl) T fn—l(vn)
filvr) o filon)
=0

since each determinant has a repeated row.

Conversely, suppose now that f1,..., f, are linearly independent. Then for
each j, there exists v; so that

e ={ 5 b

0 otherwise.

It is easy to see that det(f;(v;)) = 1 and so it must be the case that f1A---Af, #
0 by Lemma 3.3.21. O
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Recall that given a vector space V over a field K with basis ey, ..., e,, one
can define the dual basis €1,...,¢, of Alt'(V, K) = Homg (V, K) by

Ei(ej)Z{ Lo

0 otherwise.

Theorem 3.3.23. Let eq,...,e, be a basis of V and €1, ...,e, the dual basis
of Alt'(V,K). Then
{50(1) ARRRNA Ea(n)}UES(n,m—n)
is a basis of Alt"(V, K). In particular, we see that
dim V'
dimg ALt™(V, K) = ( o )

n

Proof. One can show (and should as an exercise) that for f € Alt"(V, K) one
can write

f(Ul,...,Un) Z f(eg(l),...,eg(n))ag(l) /\---/\Eg(n)(’vl,...,’l}n).

ceS(n,m—n)

Thus, our set spans Alt"(V, K) so it only remains to show they are linearly
independent.
Suppose we have a relation

Z oEr(1) N NEg(n) = 0

oceS(n,m—n)

for some a, € K. If we apply this equation to (e,(1),- -, €q(n)) and use the fact
that
€iy Noo Nei, (€5, 05e5,) = { ggn(o) ({)zi;erwfslg} ={j1,- -, n}
where ¢ is the permutation that takes {i1,...,4,} to {Jj1,...,Jn} We obtain
aysgn(o) =0
and so a, = 0. Thus, we have the result. O

Suppose now that we have two vector spaces V and W over K and a linear
map T : V — W. For each n we have an induced linear map

AW™(T) : A (W, K) — Alt™(V, K)

given by
AW™(T)(f)(v1,. .. vn) = f(T(v1),...,T(vy)).

One can easily check that this map is well-defined, i.e., that Alt"(T)(f) lies in
Al™(V, K) for all f € Alt™(W, K).
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Note that we have Alt"(id) = id and given two linear maps Ty : V; — V4
and Ty : Vo — V3, we have

Ah]n (TQ o Tl) = Altn (Tl) o Ah]n (Tg)
This gives that Alt" (x) is a contravariant functor.

Theorem 3.3.24. The characteristic polynomial of a linear endomorphism T :
V — V is given by

det(T — x) = i(—l)j tr(Alt" 7 (T))2’
=0

where n = dimg V' and tr denotes the trace map.

We leave the proof of this theorem to the reader. We note that if dimg V =n
and T : V — V is a linear map, then necessarily Alt"(T') : K — K is a linear
map and so must be multiplication by a constant. Using the theorem we have

det(T) = Zn:(—mi tr(Alt"(T))0°
=0

= tr(Alt" (7).

Since AIt"(T) is a constant, we see that tr(Alt" (7)) = Alt"(T") and thus this
constant is precisely det(T"). In particular, we see that Alt"(T) acts on K by
multiplication by det(7").

We now restrict to the case that V. =R", {e1,...,e,} is the standard basis
of R, and {e1,...,e,} is the dual basis of Alt'(R™). We will encompass the
case that V' = C" into this framework as we will view C as a 2-dimensional
R-vector space and so view C™ as R?" as a R-vector space. Since we will be
interested in C'°° functions instead of holomorphic ones, this is the appropriate
framework in which to work anyways. We write Alt"(V, K) as simply Alt" (V)
now since K = R from here on.

Let U C R™ be an open set unless otherwise noted.

Definition 3.3.25. A differential m-form on U is a smooth map w : U —
AlL™(R™).

The set of differential m-forms clearly forms a R-vector space. We denote
this vector space by Q™(U). One also inherits the wedge product which can be
defined on differential forms point-wise, i.e.,

(w1 Aws)(x) = wi(x) Awa(x).

Example 3.3.26. Let m = 0 so that Alt”(R") = R. Thus, we have that Q°(U)
is the vector space of all smooth real-valued functions on U, i.e.,

QUU) = C>=(U,R).
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Before we proceed any further we recall some material from multivariable
calculus. The reader that feels the need for further review or desires to read
proofs of the stated results is advised to consult [11].

Let FF: U — R™ be a function. Recall that we say F is differentiable at
x € U if there exists a linear transformation L : R — R™ so that

o [P+ 1) = F@) = L(b)

=0.
h—0 |h|

We denote the linear transformation L by D,F. Note that this depends on
where the derivative is taken and so we include = in the notation. However,
when it is the case that one gets the same map D, F for all values of = we
simply write DF'. As this is a linear transformation, we can also view D, F' as a
m x n-matrix. We will change our viewpoint depending on the situation. Some
useful properties are summarized in the following proposition.

Proposition 3.3.27. Let F : U — R™ be a differentiable map.
1. If F is a constant map then D, F =0 for allx € U.
2. If F is a linear map then DF = F.

OF;
8£Ej

3. IfF = (Fy,...,Fy) i

(a) exists for all

9 (a)).

From this we see that given w € Q™ (U), we can differentiate w at any x € U
to obtain a linear map D,w : R" — R™.

Recall that we determined in Theorem 3.3.23 that a basis of Alt" (R™) is
given by

1<i<m, 1< 73 <nand D, F is the m x n-matriz given by (

{Ea(l) JAERNAN Ecr(n)}creS(m,nfm)'

For I = (o(1),...,0(n)), we write 1 for £5(1) A+ - A€g(p) to make the notation
more bearable. Given any z € U and w € Q™ (U) we have w(z) € Alt" (R"™), we

can write
x) = Zwl (x)er
I

where I runs over all tuples (o(1),...,0(n)) for o € S(m,n —m) and w; €
C>°(U,R) for all such I. Using this we see that D,w is the (') X n-matrix

(M(x)) In other words, it is the linear map defined by

Ox
- L
w €,
Daw(e;) 3171

Thus, from this we see that for each € U we have D,w is a linear map

D,w: R"™ — Alt™(R").

Furthermore, the map x — D,w is a smooth map from U to the vector space
of linear maps from R™ to Al (R"™).
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Definition 3.3.28. The exterior derivative d™ : Q™(U) — QmL(U) is the
linear operator

m—+1
Al w(vi, .. Um1) = Z (=17 Dow (Vi) (1, oy Dy e ey Umng1)-

j=1

This definition is sufficiently complicated that it merits further descrip-
tion. First, note that saying d™w € Q™T1(U) means that it is a map U —
Alt™ " (R™). Thus, for each z € U we have that d7w € Alt™ ™ (R") and as
such is a map from R™ x --- X R” — R where there are (m + 1)-copies of R™.
This explains the left-hand side of the definition. For the right-hand side, first
observe that since w € Q™ (U), we have that w : U — Alt""(R") and so D,w is
amap R” — Alt™(R"™). Thus, Dyw(v;) is a map from R™ x - - - x R™ to R where
there are m-copies of R™. This explains each of the terms in the definition.
Of course, we still must show the exterior derivative is well-defined, i.e., that
d™w is in QFY(U). Let # € U. It is clear from the definition that d™w is
(m + 1)-linear, so it only remains to check that it is alternating. Suppose that
v; = ;41 for some 7. Then we have:

m+1

+

(V1o V) = S (1 Daw(u) (01, By, V1)

(]

1
—1)i_1me(UZ‘)(U1, ey Dy ,’Um+1) + (—1)ime(Ui+1)(U1,

Il
[

where we have used that each D,w(v;) is alternating and that v; = v; 1. Thus,
d™ is well-defined.

Note that for convenience we write merely dw when m = 0. This will save
considerably on notation.

Recall the projection maps x; : R™ — R defined by z;(a1,...,a,) = a;. Each
of these projection maps lies in Q°(U) = C*°(U,R). Thus, each dz; € Q*(U).
Observe that for v = Z?:l a;e; and any x € U we have

dyxj(v) = Z a;dyx;(e;)
i=1

= ajdyzj(e;)

:aj.

Thus, dr; € Q'(U) is the constant map U — Alt'(R") given by z + ¢;, i.e.,
dyxj =¢; for 1 < j < nandall z € U. This allows us to write the basis of
Alt™(R™) in terms of the images under the exterior derivative of the projection
maps. In particular, we will often write e; as dz;.

Consider now the case of C" considered as a R-vector space. When dealing
with C, it is common to use z as the variable and write z = z + iy. Thus,
coordinates on C™ can be given as z1 = x1 + iy1,. .., 2, = Ty + 1Y,. We know
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from our work to this point and the fact that C* = R2" as R-vector spaces that
Altl((C", R) has a basis consisting of 2n-linear maps ¢1, ..., £2,. From what we
have just shown, these can be identified with the images dzx1,dy, ..., dx,, dy,.
The complex conjugation map sending z = x + iy to Z = z — iy is a linear
map. It is not hard to show that the projection map z; : C* — C given
by Zi(a1,...,a,) = @; is a n-linear map. One can also easily show that the set
{dz1,...,dzy,dzZ1, . ..,dZ,} spans the same set over R as {dz1,dy1, . .., d2,, dy, }
and so it is customary to take this as our basis in the case we are working with
C™. One should note here that this depends heavily on the fact that we are
working over R and only are considering smooth functions. One could easily
develop this theory over C with holomorphic functions. In this case the conju-
gation projections would play no role as they are not holomorphic and so would
not enter into the theory.
Let f € C(U,R) = Q°(U). Then we can write df € Q}(U) as

1
=> (=1)7'Dy f(v;) = Do f(v).

j=1

If we write v = )" | a;e;, then we have

ay
af af
Dz i 5 ) :
10) = (@ 5@ |
an
= Z (;9;: (z)a;
=1
=Y A @e
i=1
Thus, we have
im1 6:51-
Exercise 3.3.29. Show that
Ay — 0 kel
SN (ml)rey k¢l
where 7 is defined by i, < k < i,y1 and J = (i1, .., 0p Kylpg1y .-y im)-

The following result allows us to calculate exterior derivatives quickly and
easily by relating the m'" exterior derivative to a wedge product of a basis
element and a 0'" exterior derivative.

Lemma 3.3.30. Let w € Q™(U) and write

Zu}] d:Z?[
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Then
dy'w = Zdwwl ANdzg.
J;

Proof. Tt is enough to show the statement for w(x) = wy(z)dx since the exterior
derivative is a linear map. Recall that we have from our calculation above that
for v=">"", ase;,

D,w(v) = ZaiDziw(ei)
i=1

29
— <§ a; (’;c)j (x)) dx

= (dywy(v))dxy,

' Daw(v) = (dyws (v))da1.

Thus we have

m—+1
(dewr Ndxr)(vi,. .., Vpmg1) = (1) dpwr(vj)dor(ve, ..., 04, V1)
j=1
m—+1 )
= (-1 Daw(v) (v, - By U
j=1
=dl'w(v1, ..y Umg1)-

Example 3.3.31. Consider the function f(z,y) € Q°(R?) given by

f(x,y) = cos(zy) + 2%y.
We have

] )
df = 6—£da: + a—zdy

= (—ysin(zy) + 2zy)dr + (—zsin(zy) + 2?)dy € Q' (R?).

Thus, in the notation above we have

wi(z,y) = —ysin(zy) + 2zy

and
wa(z,y) = —wsin(zy) + 22

Observe we have
d' (df) = dwy A dx + dws A dy.
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Now
dwy = (—y? cos(xy) + 2y)dx + (—sin(zy) — zy cos(zy) + 2z)dy

and
dwy = (—sin(xy) — zy cos(zy) + 2z)dx + (—x* cos(zy))dy.

Using the fact that dz A dz = dy A dy = 0 we have
dwy A dx = (—sin(zy) — zy cos(ay) + 2x)dy A dx

and
dws N dy = (—sin(zy) — xy cos(zy) + 2z)dx A dy.

Now use the fact that do A dy = —dy A dx to see that
d\(df) = 0

The fact that d™1(d™w) = 0 holds in far greater generality than given in
the previous example. Without this fact we would be unable to develop a theory
of cohomology.

Proposition 3.3.32. For m > 0 the composition

Qm(U) ﬂ Qerl(U) dm_)ﬂ Qm+2(U)

is identically 0, i.e., the collection Q*(U) = {Q™(U),d™} forms a chain com-
plex.

Proof. First, suppose that w(z) = wr(x)dzy € Q™(U). We have

dV'w = dywr AN dzy

)
= ( ({;;j (x)dgcl) ANdxy

i=1

"0
= Z (‘;le (x) (d:vz A\ dl‘])
i=1 ¢

Recall that dz; A dx; = 0 and dx; Adx; = —dx; Adx;. Using these relations we
have

n 2
(9(4}]

A" (d™w) = ——dx; A (dx; Nd
e = 00 73 N d)
82w1 82w1
= - dz; Adx; Nd
- (8:6]8:51 89518:5]) :Cj/\ i M G
1<J
=0

using the equality of mixed partial derivatives.
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Suppose now that we have w(z) = >, wr(x)dzr € Q™(U). Then

d"w = Z d(wrdxr)
1

and

dm N (dmw) = Y dm (A wrdar)

I
:Zo
I
=0.
O

Observe that we have seen that given wy € Q™1(U) and wy € Q™2 (U), that
we can define wy A wy € Q™1 T™2(U) by setting
(w1 Aw2)(x) = wi(z) A wa(z).
This also shows that given f € C°(U,R) = Q°(U), we have

(fwr Aw2) () = f(@)wi(z) A wa ()
= (f(z) Awi(z)) A wa(z)
() A (w1(z) A wa(z))
)

=7
= f(@)(w1(z) Awa(z))

(x
and so fwy Aws = f(w1 Aws). Similarly we have f(w; Aws) = wi A fwe. Thus,
we have fw; Aws = w1 A fws. This observation allows us to prove the following
proposition.

Proposition 3.3.33. Let w; € Q™ (U) and we € Q™2(U). Then
dmatme (wl A\ (UQ) =d™w; ANwy = (—1)m1w1 Ad™ws.

Proof. We again use linearity of the exterior derivative to reduce to the case
that wy = fdx; and we = fdx ;. Then we have

w1 Awso = fgldxr ANdxy).
Thus,

d™ T2 (w1 Awe) = d(fg) Adxy Adxy
= ((df)g + f(dg)) ANdzy N dx s
= (df)g Ndxr Ndxy + f(dg) Ndxr Adzy
=df Ndxy A\ gdey + (=1)™ fdxy Adg A dxy

= dm1w1 A wo + (—1)m1w1 A deWQ.
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Theorem 3.3.34. The map d™ : Q™(U) — Q™ L (U) for m > 0 is the unique
linear operator satisfying

1. feQU), thendf =31, ax L day;
2. d"tlod™ =0;
3. for w; € QMi(U), d™T™M2 (w1 Awsy) = d™wy Aws + (=1)™wy A d™2ws.

We have shown that the exterior derivatives satisfy the above theorem. We
leave the proof of uniqueness to the reader.

We are finally ready to define the de Rham cohomology groups. Those
familiar with cohomology will have recognized the chain complex of differential
forms and the necessary properties we have been pursuing up to this point.

Definition 3.3.35. The m'" de Rham cohomology group of U is the quotient
space
m ker(d™ : Q™(U) — QmL(U))
ar(U) = m—1 . (Qm—1 m '
im(d :Qm=1(U) — Qm(U))

We now check that this more general definition arising from the chain com-
plex of differential forms agrees with what we defined in § 3.1. Restrict to the
case that U C R? for this. Let f(z,y) € Q°(U). Then we have

O g 1+ 9L 4
8xd S 8y

= grad(f) - (dx, dy).
Let w € QY(U). Write w = fdx + gdy. Then

df =

d'w =df Ndx +dg A dy

of of g g
(8 dr + 3 dy) Adx + ((%d:c—i-aydy) A dy

_of dg
= o —dy /\dx—i—a—dx/\dy

dg Of
((996 — ay)d:c/\dy

= curl(f)(dz A dy).
For w € Q*(U), we can write w = f(dx A dy). We have

d'w =df Ndx Ady

of of
(8 dz +8 dy)/\dx/\dy

=0.

Note that we can use the fact that d' o d = 0 to recover the standard fact that
curl(grad f) = 0.
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Exercise 3.3.36. Work out the situation for U C R® and use the fact that
d? o d* = 0 to show the standard fact that Div(curl F) = 0.

We refer to the forms w € Q™(U) with d™w = 0 as closed m-forms and to
the forms in d™~1(Q™~1(U)) as the ezxact m-forms. In this terminology, the
cohomology group Hjjg (U) measures the failure of the closed forms to be exact.

Note that a closed form w € Q™ (U) defines an element [w] € HiR(U). We
see that [wi] = [we] precisely if w1 — wy € d™~HQ™L(U)), i.e., there is a
W' e QMTL(U) so that wy — wy = d™ 1w’

It is clear that we have Hijk (U) = 0 for m < 0 and that Hig (U) is the kernel
of the map

d:C™(U,R) — Q' (U),

i.e., the space of maps f with % =0 fori=1,...,n. Thus, Hix(U) is the
space of locally constant maps and as in § 3.1 we have the following result.

Proposition 3.3.37. The number of connected components of U is precisely
the dimension of Hig(U) as a R-vector space.

Exercise 3.3.38. Let Uy,...,U, be open sets in R"™ with U; N U; = 0 for all
i # j. Show that

Hiz (U U---UU,) =HE(U) @ - @ HAR(U,).

Let w; € Q™i(U). We can define an associative, bilinear, and anti-commutative
map called the cup product

U Hig (U) x Hg (U) — Hig ™™ (U)
by setting
[wl] U [LUQ] = [wl A\ (AJQ].

We must check that this is well-defined. Observe that given closed forms wy and
ws, we have that

dmitms2 (wl A\ (UQ) =d™w; ANwy + (—1)m1w1 A d"™ woy
=04+0=0.

Thus, we have that if w; and wy are closed, 50 is wi Aws. Now let wq 4+ d™ 1oy
and wy + d™27 1y be different representatives of [w1] and [ws] respectively. We
have

(wl—l—dml_1771)/\(wg+dm2_1772) = wl/\w2—|—w1/\dm2_1772—|—dm1_1771/\w2+dm1_1771/\dm2_1772.
Observe that
™2 Awy + (=1) ™ wi Anp +m Ad™ )
= d™Tm T (i Aws) + (1) AT W Ap) AT (g A AT )
=d™ 7 Awy + (1) I Ad™wy + (—1)™d ™ wy A
+ (1) wy Ad™ gy A+ d™ gy Ad™ T g+ AdT? 0 d™ T
= dm1717’]1 A wo + w1 A dm2717’]2 + dm1717’]1 N dm2717’]2.
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Thus we have

[wi+d™ ] U [wo +d™2 M pe] = [wy Awp +d™ 2T i Awy + (=1)™wy Ang 1 Ad™2 )]
= [wl A\ LUQ]
= w1 U fwo]
and so the cup product is well-defined.
Note that the cup product makes Hj (U) into a graded algebra. The exis-
tence of a cup product is a feature of general cohomology theory as we will see
later.
Let U; C R™ and Uy C R™ be open sets and let ¢ : U3 — Us be a smooth

map. Recall that given a linear map T : Vi — V5, for each m > 0 we associated
to T a linear map

AL™(T) : ALt™(Va) — AL™(V4).

From this we showed that the map V — Alt"'(V) is a contravariant functor.
We would like to have the same type of result in this case. Thus, we need
to define a linear map Hj(¢) and show it has the required properties. We
begin by showing that U — Q*(U) is a contravariant functor. Our first step in
constructing the linear map Hyp (¢) is to construct an induced map on the level
of differential forms. We start with the case m = 0 so we need an induced map

Q°%(¢) : C*(Uz,R) — C=(U1,R).
Let f € C*°(Uz,R). Observe that we have
Ul i’ U2 —f> Ra

so it is natural to define Q°(¢)(f) = f o ¢.
Consider now the general case. Let w € Q™(Uz). Thus, w is a smooth map
from Us to Alt™ (R"™2). We define a map

Uy — Alt™(R™)
z = w(o(z)).

We now need to define a map from Alt"™(R"2) to Alt"(R™). The map D,¢ :
R™ — R™ induces a map

Al (Dy ) : Alt™(R"2) — Alt" (R™).
Thus, we define the map Q™ (¢) : Q™ (Usz) — Q™ (Ur) by
Q"(¢)(w)a = Alt™ (D) 0 w(¢(x)).

We call Q™ (¢) the pullback map of ¢. One should note that often Q™ (¢) is
written as simply ¢* and the m is then to be understood from context.

We now must check that " (¢) has the desired properties. Note that the
chain rule gives that for ¢ : Uy — Uy and v : Us — Uz we have

Dz(w o ¢) = Dd)(z)(d}) © Dm(¢)
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Thus, for w € Q™(Us) and « € U; we have

Q" (Y 0 d)(w)z = Alt™ (Dy (¢ 0 9)) 0 w(¥ 0 $())
= Alt" (Dy(z)(¥) 0 Dz()) o w(¥ 0 ¢())
= Alt"(Dy(¢)) 0 Alt"™ (D) (1)) o w(¥ 0 p(z))

where we have used that Alt"™ (T o S) = Alt"(S) o At™(T"). We know that
AW (Dya) (1)) : AIE™(R™) — Alt™ (R"2)
and s0 Alt™ (D4 (1)) o w(® o ¢(x)) € Alt™(R™?). Thus we have

Q" (¢ 0 @) (w)a = Alt™ (Da () (Alt™ (D (a) (1)) 0 w(¥ 0 $()))
=Q7(¢) 0 Q™ () (W)
as desired. Similarly one can check that Q™ (id) = idgm vy
Exercise 3.3.39. 1. Show that Q%(y 0 ¢) = Q°(¢) 0 Q™ (v).
2. If ¢ : Uy — Uy is the inclusion map, then Q™ (¢)(w) = w o ¢ for any m.

Example 3.3.40. Let ¢ : Uy — Uy be as above and consider the map dz; €
Q' (Uy), i.e., the map that sends x € Us to ; € Alt'(R"2). Recall that given a
map T : V; — V5, the induced map on the spaces of alternating forms is given
by

AR™(T)(f)(v1y .- yom) = F(T(v1)y ..., T(vm))-

We apply this to our situation to see that for z € Uy and v = Y"1, a;e; € R™,

we have
QY (@) (ds ) (v) = (di) g(a) (D2 (v)) = €i(Drp(v))

where we use that dx; is constant. We have

3¢k
— (Z 8:10] )
7j=1
where ¢ = (¢1,...,¢n,). Thus,

Q1 (9)(dz)o(v) = €i(Dud(v))




So we have

Q' (o) (dw;) = doy.

Theorem 3.3.41. Let U; € R™ be open sets fori=1,2 and ¢ : Uy — Us be a
smooth map. Then we have

LQMEmR () (W A T) = Q™ ()W) AQH(B)(r) for w € Q™ (Ua) and T €
Qm2 (UQ),’

2. QU@)(f) = fo¢ for f e QUs);
3. dmQ™ (¢)(w) = QM (M),

Conversely, if T™ : Q™(Uz) — Q™(Uy) is a collection of linear maps satisfying
the above properties, then T™ = Q™ (¢).

Proof. We leave the case of myms = 0 as an exercise, so assume m; > 0 and
mg > 0. Let z € Uy and let vy, ..., Uy, +m, be vectors in R™*. Then we have

QI (G) (W AT (V1 -y Uy tma) = (WA T)g(a) (Da(01); - -, Dad(Vimy +ms))
= ngn((’) W () (Ded(Ve1)); - - s Ded(Vo(mi)))]
[To(2) (Dad(Vo(my 1)) - - - » Dad(Vo(my +ms)))]
= ngn(a )" () (W) (UU(I)a--~ava(ml))Qm2(¢)(T)I(va(m1+1)v---vvo(m1+m2))
= Q™ (@) (W)a A2 (D) (T)2) (V1, - -+, Vi 4ma);

which gives the first statement.
We have already shown the second statement, so it only remains to prove
the third. First we consider the case that f € Q°(Us). We wish to show that

d°(¢)(f) = Q' () (df).

Recall that we have

T2 6][ n2 af
df = Za_xjd Oy - A da;.
Jj=1
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We can use the first two properties now to conclude that
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This gives the third statement for the case m = 0. For the general case we again
use linearity to reduce to the case w = fdxr; = f A dz;. Recall that we have
d™w = df Ndxy. Thus,

QM) (d™ w) = Q™ TN (G)(df A dar)
Q@) (df) A Q™ (¢)(der)
—d(QO( )(F)) AT () ().

Observe we have
d™ Q™ (¢)(der) = d™ (Q(9)(dwiy) A -+ AQH(9)(das,,, )
= Z QN (@) (dwiy ) A A dHQH(O)(dwi,)) A AQY(B) (da,, )
= o
since Q' (¢)(dz;) = d¢; and d* o d = 0. Thus,

QM (@) (d™ w) = d(Q(9) () A Q™ (d)(dar)
= d™ (Q%(e)(f) A Q™ (¢)(dz1))
=d™ Q™ (9)(w))-

We leave the proof of the uniqueness to the following exercise. O
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Exercise 3.3.42. 1. Prove the first statement in Theorem 3.3.41 in the case
that mimso = 0.

2. Prove the uniqueness claimed in Theorem 3.3.41.

Example 3.3.43. Let ¢ : (a,b) — U be a smooth curve with U C R™. Write
¢ = (¢1,...,0n). Let w € Q(U) be given by

w = fidxy + - fpdz,.

Then we have

|

N
Il
-

() (w) Q%(e)(f:) A QY (¢)(ds)

Q%) (£:)2' (¢)(dx:)

I

N
Il
-

Q%) (f)d" (Q%(d)(x4))

I

s
Il
-

I
M:

(fi 0 9)d" (Q°(¢) (1))

N
Il
-

I
M:

(fz ¢) d¢z

N
Il
-

(fi00) 2y
- <f<¢<t>>,¢>'<t>>dt

where in this case we write (, ) for the inner product on R”™. One should compare
this with the integrand for a line integral.

Exercise 3.3.44. Let ¢ : Uy — Us be a smooth map. Show that
O"(p)(day A -+ Nday) = det(Dyd)(dzy A -+ Aday,).

We can now define the linear map Hjg(¢) for ¢ : Uy — U a smooth map
where U; C R™ are open sets. For [w] € Hyy (Us), set

ar(9)([w]) = [ () (w)]-
As usual, we must show this map is well-defined. First we must show that if w

is closed, then Q™ (¢)(w) is closed as well. This is shown in the third part of
Theorem 3.3.41. Now let w + d™ !5 be another representative of [w]. We have

[
M:

s
Il
-

Hik (0)([w + d™ ")) = [27(8) (w + d™ )]
= [2"(9)(w) + Q™ ($)(d™'n)]
= [Q"($)(w) +d" Q" (@) ()]
= [Q"(9)(W)]
= Hir(0)(w)
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and so Hyy (¢) is well-defined. Observe that for [wi] € Hyy (Us), [w2] € H (Us)
we have
HiR 72 () (fwr] U fwa]) = [Q™F72(¢) (w1 A ws)]
= [ (@) (w1) A Q™2 (4) (w2)]
= [ () (w2)] U [ () (w2)]
= Hag (0)([w1]) U HGg (9)([w2])
and so Hjj (¢) is a homomorphism of graded algebras from Hj (Uz) to Hig (U1).

We finish this section by proving a more general version of Theorem 3.1.5
by constructing a chain homotopy between the identity map and 0.

Theorem 3.3.45. (Poincare’s Lemma) Let U C R™ be a star-shaped open set.
Then HY% (U) = 0 for m > 0 and HiR(U) = R.

Proof. For simplicity we assume U is star-shaped with respect to 0. We claim
there is a linear map
U Q™U) — Q™)

so that
dm—lq}m 4 \I]m-l-ldm _ 1d

when m > 0 and
Uld=id—e

where e(w) = w(0) for w € Q°(U). Granting the existence of this map, observe
that we have for a closed form w € Q™(U),

d™ N (W) = w

since UM (dMmw) = mFTLH(0) = 0. Thus, [w] = [d" 1™ (w)] = [0] for any
closed form w with m > 0.
For m = 0 we have
w—w(0) = V(dw) =0

since we are assuming w is a closed form. Thus, w is a constant. Hence, if we
can show the claim we are done.
We begin by constructing a map

U™ QMU x R) — Q™ L),
Let w € Q™ (U x R). We can write

W= Zf](.’[],t)dx] +Zg]($,t)dt/\d$J
I J

where I = (i1,...,4y,) and J = (j1,...,jm—1). Define

o -Y ([ e ) .

J
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Note that we have

dm— 1\IJm Z <A gi; t)dt) dxi Ndxy

Jk
and since
ofr(x,t) 9g,(x
d"w = ———~dz; Ndxr + d j AN dt ANdx g,
; 0x; Z BIJ
we have
Tm+1 m agJ
gt (d Z t)dt da:l—z 222dt ) dxj Adxy.
I T 0 3x3
J
Thus,

m—1Tgm w Tm+1 m ) — ! & T "

A" (w) + U (A" w) ZI:(/O (,%(,t)dt)df

(31) = Z f](w, 1)d1‘] — Z f[(i[], O)dxl
I

I
Define (t) to be a smooth function so that
P(t)=0 ift<0

vty =1 ift>1
0 <9(t) <1 otherwise

Set

¢:UxR—-U
p(z,t) = P(t).

This is well-defined because U is star-shaped.
Define

U (w) = D" (9)(w))
with U™ defined as above. Write w = Y7 hi(z)dz;. Observe that we have
Q' (dx;) = dgy
= d((y(t)x):)
=z (t)dt + Y (t)dz;.
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Thus,

Q" () (w Z hi(x)dxr)
= ZQW dCC])
—Zm )) A Q™ () (dr)

= Z hi((O)2)(dy()zi, + P (E)dwiy) A--- A(dp(b)ai,, +P(t)dzi,,))-

In our notation, we have
> fr@ tyder = hr( (D)) ()" day.
J; I

Applying equation (3.1) to this case we have
A" (W) + T (dw) = AT (6) (@) + BTN () (w))

= Z f[(l‘, 1)d$[ — Z f](w, O)dl']
I I
= Z hr(W()a) (1) der — Y hr(y(0)z)(0)" dx;
I
= Zh} d,T]

= Ww.

If m = 0, we have that d™~! = 0 and so our equation above reads

Zh} dCC]—Zh[ dII
=w —w(0),

as claimed. This completes the proof of the result. O

3.4 Calculations and Applications of de Rham
Cohomology in R"

In this section we will develop more general ways to calculate de Rham coho-
mology groups. In particular, we will prove the exactness of the Mayer-Vietoris
sequence, a very powerful tool for computing examples. Up to this point we
have only been able to calculate Hy (U) for U a star-shaped open set in R”.
This calculation will turn out to be very useful in more complicated examples
as we will shortly see.
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Note that throughout this section U and V denote open sets in Euclidean
space unless noted otherwise.

Before we proceed, we need to introduce partitions of unity. These are
important for working with smooth functions and we will encounter them often
in this section.

Let U C R”™ be any set, not necessarily open. Let f : U — R be a function.
The support of f in U is the set

suppy (f) = Cl({z € U : f(z) # 0}).

If U happens to be open then U — supp;;(f) is the largest open subset of U on
which f vanishes.

We state the following standard fact from analysis without proof. One can
see Chapter 1, § 8 of [6] for a proof of this fact.

Theorem 3.4.1. Let U C R™ be open and U = {U; }icr be an open cover of U.
There exist smooth functions

fi:U—[0,1]
satisfying
1. suppy (fi) C U; for every i € I;

2. FEvery x € U has a neighborhood V' on which only finitely many of the f;
do not vanish;

3. For everyx €U, Y, fi(x) = 1.

The functions {f; }ies are called a partition of unity. The terminology arises
from the third property listed in the theorem.
The following theorem is a precursor to the Mayer-Vietoris sequence.

Theorem 3.4.2. Let Uy, Us C R™ be open sets. Set U = Uy UU,. Write
ik : Uk — U

and
gk U NUg — Uy,

be he natural inclusion maps for k = 1,2. We have the following short exact
sequence

0 — Q™) L QM Uy) & Q™ (Us) L QMU N Us) — 0

where i (w) = (7 (i1) (@), Q7 (i2)(@)) and ™ (w1, wa) = Q7 (j1) 1)~ Q2" (j2) (ws).

Proof. Recall that given open sets Vi, V5 and a smooth map ¢ : Vi — V5, we
defined
Q™ () : Q" (V2) — Q™ (V1)
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O"(@)(w) =Y _(frod)dei, A+ Ndd,

I

for

W = Zf]dCC].
I

We have also shown that if ¢ is an inclusion map of open sets, then ¢, (x) = a;
and so
d¢i1 /\"'/\d¢im deil /\---/\d:vim.

Thus, for ¢ an inclusion map we have

Q™) (w) =Y (frod)der.

I

We can now apply these results to our inclusions i, and jy.
Suppose thereisaw € Q™(U) so that i"™(w) = 0, i.e., (Q™(i1)(w), Q™ (i2)(w)) =
(0,0). Thus, we must have

Q" (ix)(w) = Y _(froir)dzs = 0.

1

However, this is the case if and only if f; o = 0 for all I since the dx; form a
basis. Thus, froiy =0 = fyois for all [ and so fy =0 on U. Thus, w =0 and
so 7™ is injective.

The next step is to show that

ker(5™) = im(i"™).

Let w € Q™(U). Define j : Uy N Uy — U to be the natural inclusion map.
Observe that j = iy o ji for k = 1,2. We have

3T (W) = Q™ (i) (w), Q™ (i )( )
= Q" ([)(Q" (i)(w)) = Q™ (2) (27 (i2) ()
=Q"()(w) = ") (w)
—0.
Thus, we have that im(i"™) C ker(j™).
Let (w1,w2) € Q™(Uy) @ Q™(Us) so that j™(w1,w2) = 0. Write wy =

> frdzr and we = 37, grdxy. Since j™(wq,w2) = 0, we must have Q™ (j1)(w1) =
0™ (j2)(w2). Thus, we must have

> (frog)der =Y (g1 o ja)dur,

I I

ie.,
froji=groja
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for all I. This statement is equivalent to fr(x) = gr(x) for all x € Uy N Us.
Define (@)
f] x xz e U
hr(z) =
I( ) { g](:E) xr e U2.
Note that hj(z) is well-defined since f; and g; agree on Uy NUs and it is clearly
a smooth function. We have (>, hrdxr) = (w1, w2). Thus, ker(;™) C im(i"™)
and so we have equality.
It remains to show that ;™ is surjective. Let p1,ps be a partition of unity
of U with support {Uy,Us}. Let f: U3y NUs; — R be a smooth function. We
extend f to a function on U; and a function on Uy via the partition of unity.

Set
Folz) = { —f(@)p1(x) xeUiNUs;
0 a € Uz — suppy (p1).
This is smooth because supp;;(p1) N Uz C Uy N Us. Similarly, define

| f@)p2(z) zeUNU:
fi(@) = { 0 ’ x € Ui - SSPPU(I)Z)-

We have f(x) = fi(x) — fa(z) for all z € Uy N Us.

Now for w = Y, frdz; € Q™(U; N Usz), we can apply the construction
to each fr : Uy NUs — R giving functions fr; : Up — R and differential
forms wy, = >, freder € Q™(Uy) for k = 1,2. So by construction we have
j™(w1,ws) = w and so j™ is indeed surjective. O

From this the proof of the Mayer-Vietoris sequence follows easily.

Theorem 3.4.3. (Mayer-Vietoris sequence) Let Uy,Us C R™ be open sets,
U =U1UUs, and i™, ™ defined as in Theorem 3.4.2. There exists a long exact
sequence of vector spaces

T HdR(U) di’ ) HdR(Ul)@HdR(U2) dR_U) HdR(UlﬂUQ) 2 de;rl(U) —

Proof. We have that i* and j* are chain maps and so we can apply Theorem
3.4.2 to get a short exact sequence of chain complexes. Theorem 3.2.3 along
with Exercise 3.2.7 finish the result. O

Exercise 3.4.4. Work out the map 0" explicitly in this case.

Exercise 3.4.5. Let U; and Us be disjoint open sets in R™. Then
i Hin (U UUy) = Hik (U) @ H R (Us).

Example 3.4.6. We return to the example of R? — 0 that was examined in §
3.1. Set
Uy =R*—{(z,y) : 2 >0,y = 0}

and
Uy =R?—{(z,y): 2 <0,y =0}
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Note that U; and Us are each star-shaped. Furthermore, we have
UyulU, =R* -0
and
Uy N Uy = {(e.) :y > 0} U{(z,y) 1y < 0} = RZ UR?,
Note each term of the disjoint union in U; N Us is star-shaped and so we have
HJL (U1 NUs) = HiR (RT LR?)
= HiR(RY) @ H{R (R?)
_J R&R m=0
10 m # 0.

Thus, we are set up perfectly to apply Mayer-Vietoris. Applying this we
have for m > 0

025 1 Uy N Uy) 25 B (R2 — 0) — 0

and so
HL (U NUz) = HYEH(R? - 0).

Thus, for m > 2 we have
(B2 — 0) = 0.

Consider now the case when m = 1. In this case Mayer-Vietoris gives the
exact sequence

i° 3° % 1 2
0 —R-“SRORISROR - Hiz(R?-0) — 0.

The fact that ker(i®) = 0 gives im(i’) = R. Thus, we have ker(j°) = R and so
we must have

" : RO R/im(j°) = Hix (R' —0),

ie.,

Hig(R? - 0) = R.
Thus, using that we already know Hig (R? — 0) we have shown that

R m=0
mRP-0)={ R m=1
0 m>1.

Proposition 3.4.7. Let U C R" be an open set and assume that U is cov-
ered by finitely many star-shaped open sets Uy, ..., U,. Then Hir (U) is finitely
generated.
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Proof. We proceed by induction on r. If » = 1 the result is clear by Theorem
3.3.45. Suppose we have the result for all k <r —1. Set V=U;U---UU,_
so we have U = V UU,. The result is clear for m = 0 so we assume m > 1. We
have using Mayer-Vietoris

s HE NV N U LS H (U) 55 HR (V) @ HiR (U,) — - - .

We know that
HiR(U)/ ker(i™) =2 im(i"™).

However, we have that ker(i") = im(0™) and so we can write
TR(U) 2im(i™) @ im(0™).
Our induction hypothesis gives that
VnU.=UNnU)N---N(U—1NUT,)

and so Hw H(V N U,), Hix(V), and HjR (U,) are all finitely generated. In par-
ticular, 9™ (Hjs ' (VNU,.)) and i™(Hj, (U)) are finitely generated as a subspace
of a finitely generated space is finitely generated and the image of a finitely gen-
erated space is finitely generated. Thus, H] (U) must be finitely generated as
well. O

For cohomology to actually be useful for anything one needs to have topologi-
cal spaces that “look alike” to have the same cohomology groups and topological
spaces that do not to have different cohomology groups. In other words, it is
important that we can distinguish between topological spaces if we know each
spaces’ cohomology groups. In order to see we can do this, we need to define
the correct notion of equivalence between topological spaces.

Definition 3.4.8. Let X and Y be topological spaces and let
fi: X—=>Y

be continuous maps for ¢ = 0,1. We say fy is homotopic to fi if there exists a
continuous map

F:Xx[0,1] =Y
so that
F(z,0) = fo(x)
and
F(z,1) = fi(z)

for all x € X. We write fy >~ f1 or fo ~p f1 if we want to keep track of the
homotopy F'.

The way one should view this definition is to view F(z,t) as a family of
continuous maps f;(x) = F(z,t) that continuously deforms fy into f.
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Lemma 3.4.9. Homotopy is an equivalence relation.

Proof. Clearly f ~ f via F(x,t) = f(z) for all t.
Suppose f ~p g. Define G(z,t) = F(x,1 —t). Then g ~¢ f.
Finally, suppose f ~r g and g ~¢ h. Define

F(x,2t) 0<<1/2
H(z,t) = { G(z,2t —1) 1/2<t<1.

Then we have f ~p h. O

Example 3.4.10. Let f; : U — V be continuous maps for ¢ = 0,1 with U C R"
and V C R™ open sets with V star-shaped with respect to a point y. Define

F:Ux[0,1]—V

by
Fi(z,t) = (1=1) fi(z) + ty

for i = 0,1. It is clear the maps F;(xz,t) are continuous and since V is star-
shaped with respect to y they are well-defined as well. Thus, we have each map
fi is homotopic to the constant map sending all of X to the point y. Since
homotopy is an equivalence relation, we see that fo ~ f1. The map F; is called
the straight-line homotopy. We see that any continuous maps into a star-shaped
region are homotopic.

Lemma 3.4.11. Let X,Y, and Z be topological spaces and let f; : X — Y,
gi : Y — Z be continuous maps for i = 0,1. If fo ~r fi and go ~a g1, then
goo fo=gio fi.

Proof. The required homotopy is given by H(z,t) = G(F (z,t),t). O
Definition 3.4.12. A continuous map f : X — Y is said to be a homotopy
equivalence if there exists a continuous map g : Y — X so that go f ~idyx and
go f ~idy. We call g a homotopy inverse to f. We say X and Y are homotopy
equivalent if there is a homotopy equivalence between them. In particular, we

say X is contractible if there is a homotopy equivalence between X and a one
point space.

Since homotopy is an equivalence relation, we can use the above definition
to partition topological spaces into homotopy equivalence classes.

Exercise 3.4.13. Show that X is contractible if and only if idx is homotopic
to a constant map.

Lemma 3.4.14. If X and Y are homeomorphic they are necessarily homotopy
equivalent.

Proof. This fact is obvious from the definition. O
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Lemma 3.4.15. Let U C R" be an open star-shaped region. Then U is con-
tractible.

Proof. Let z € U be the point with which U Is star-shaped with respect to. Let
f be the map f : U — {«} that sends everything to = and let g : {a} — U be
the natural inclusion. Observe that fog =id,). It only remains to show that
h =go f ~idy. Define

F(y,t) = (1—t)z + ty.
Since U is star-shaped with respect to z we have
F:Ux[0,1]-U
and

F(y,O)ZgOf
F(y,l)zidU.

Thus, U is contractible. O

Example 3.4.16. Consider the spaces R® — 0 and S"~'. We claim they are

homotopy equivalent. Define g : R® — 0 — S™~! by setting g(z) = 1oy and
define f : S ! < R™ — 0 to be the natural inclusion map. Observe that we
have go f : S"~1 — S~ ! is actually equal to the identity map, so certainly

homotopic to it.
Define G(z,t) : (R* — 0) x [0,1] — R — 0 by G(z,t) = (1 — t)z + ¢t (i) .

[]
This gives (f o g)(z) = ‘7””‘ is homotopy equivalent to idgn_g. Thus, we have

R™ — 0 and S™! are homotopy equivalent.

Note that R™ — 0 is not homeomorphic to S"~!. For example, S" ! is
compact and R"™ — 0 is not compact. Thus, we see that spaces can be homo-
topy equivalent without being homeomorphic. Thus, the homotopy equivalence
classes are larger than the equivalence classes one obtains by considering spaces
as equivalent if they are homeomorphic.

While homotopy provides a way to separate topological spaces into equiva-
lence classes that hopefully will turn out to be more useful than separating them
by homeomorphism, it is phrased in terms of continuous maps where we have
been working with smooth maps. The next few results will show that working
with only smooth maps is “good enough” for what we want to do.

Lemma 3.4.17. Let ACR"CV Cc U C R" where U and V' are open in R™ and
Ais closed inU. Leth: U — W be a continuous map into an open set W C R™
with smooth restriction to V. For any continuous function € : U — (0, 00) there
exists a smooth map f: U — W satisfying

1. |f(z) — h(x)| < €(x) for every x € U;
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2. f(xz) = h(z) for every x € A.
Proof. If W # R™, we can replace ¢(x) by
e1(z) = min(e(z), (1/2)p(h(z),R™ — W))
where
p(y, R™ = W) =inf{ly — z| : z € R™ — W}.

Now if f: U — R™ satisfies the first condition with €; instead of €, we obtain
f(U) c W. Thus, without loss of generality we may assume W = R™.

The fact that h and € are continuous allows us to find for each point zy €
U — A an open neighborhood U,, C U — A of z( so that

[h(z) = h(xo)| < e(x)

for all # € U,,. Consider the open cover of U consisting of V' and {Uy, }zocv—A-
We know there is a partition of unity with respect to this open cover, call it
{pz, }- Using the properties of a partition of unity we define a smooth function

f(@) =po(x)h(z) + D pu(@)h(xo).

roeU—A

Note we also have

h(z) = po()h(z) + Y pay(@)h(z).

roceU—A

Thus,
fl@)=h@) = > puy(@)(h(zo) = h(x)).

roeU—A

Since suppy; (pa,) C Uz, € U — A, we have the second part of the theorem. As
for the first part, we have

[f(@) =h(@)] < Y pag(@)|hl@o) = h(z)]

roceU—A

Z Pao (2)€(T)

roceU—A

< Z pmo(x)> e(z)

zocU—A
= ¢(x)

where we have used that necessarily « € Uy, in order for ps,(x) # 0. g

IN

Proposition 3.4.18. Let U,V be open in R™ and R™ respectively. Then we
have:

1. Fvery continuous map h : U — V is homotopic to a smooth map.
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2. If two smooth maps f; : U — V', j = 0,1 are homotopic, then there exists
a smooth map F : U x R — V with F(x,j) = fj(z) for j = 0,1 and all
zel.

Proof. We begin with the first statement. By Lemma 3.4.17 we can approximate
h by a smooth map f: U — V. Choose f so that V' contains the line segment
from h(x) to f(x) for every x € U. The straight-line homotopy then gives h ~ f.
This gives the first part.

Let G be a homotopy from fy to fi. Let ¢ : R — [0,1] be a continuous
function with ¢ (t) = 0 for t < 1/3, ¢(t) = 1 for ¢ > 2/3. Define

H:UxR-=V
by
H(z,t) = Gz, 9(1)).

We have h(x,t) = fo(z) for t € (—o00,1/3] and H(z,t) = fi1(x) for t € [2/3,00)
so H Ts smooth on (—o0,1/3]U[2/3,00). Appealing to Lemma ?? again we can
approximate H by a smooth map

F:UxR—-V

so that F' and H have the same restriction on U x {0,1}. Thus, for z € U and
k=0,1 we have F(z,k) = H(z,k) = fr(x) as desired. O

Thus, we have shown that when working with homotopies, it is enough to
work in the setting of smooth maps.

Theorem 3.4.19. Let f,g: U — V be smooth maps with f ~p g. The induced
maps

Q™ (f),Q"(g) - Q™(V) — Q™(U)
are chain-homotopic.

Proof. Let w € Q™(U x R). Recall that we can write

w=Y_ frlx,t)dey + > gs(x,t)dt Ada;.
I

J

Let ¢y : U — U x R be the inclusion map given by ¢r(z) = (x, k) for k =0, 1.
Then we have
O(d)(w) = 3 fila, Kydar.
I

Note that we have used here that d(¢y); = da; since ¢, is an inclusion map
and Q™ (¢r)(dt A dxzy) = 0 since the t-component of ¢y, is constant.
Recall we constructed a linear map

U QU x R) — Q™ H(U)
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so that
(3.2) (d™ U™ + Ud™) (w) = Q™ (1) (w) — Q™ (¢o ) (w).
Consider the composition

UL xRSV
Then we have F o ¢y = f and F o ¢1 = g. Define
T Q™M(V) — Q™)

by _
U™ =9 o Q™ (F).

We claim that
d™y™ 4 gl = Q" (g) = Q™ (f)-

To see this, we begin by applying equation (3.2) to Q" (F)(w):
(@1 BdT) QT (F) (W) = Q7 (1) (Q7(F)(w)) — Q™ (o) (7 (F)(w))

= Q"(Fo¢1)(w) = Q™(F o ¢o)(w)
= Q"(g)(w) = Q" (f)(w).

Now observe that since F' is a chain map we can write this as

AN (W) + UL (MO (F) (w) = d™™ (W) + U (F) (d"w)
= d"U" (W) + T M,
Thus, we have a chain homotopy between Q™ (g) and Q™ (f). O

Note that this results shows that if f ~ ¢, then the induced maps on coho-
mology are equal. So, given a continuous map ¢ : U — V we can find a smooth
map f:U — V so that f ~ ¢ and by the previous result the induced map

ar(f) : Hgg (V) — Hig (U)

is independent of the choice of f. Thus, given a continuous map ¢ : U — V, we
define
Hir () : Har (V) — Hir(U)

by Hir(¢) = Hig(f) where f is any smooth map from U to V with f ~ ¢.
Theorem 3.4.20. Let U, V,W be open sets in Euclidean spaces.

1. If ¢g, 1 : U — V are homotopic continuous maps, then

Hir (90) = Hir(¢1) : Hig (V) — Hir (V).
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2. If :U =V and ¢ : V — W are continuous, then
ar(¢ © @) = Hir () o Hir () : Hir(W) — Hir (U).
3. If the continuous map ¢ : U — V is a homotopy equivalence, then
Hir(¢) : Hir(V) — Hir (U)
is an isomorphism.

Proof. Let f : U — V be a smooth map with f ~ ¢g. Since homotopy is
an equivalence relation and ¢g ~ ¢1, we must have f ~ ¢ as well. Thus,

ar(®0) = Hir(f) = Hgr(¢1). This gives part (1).
Part (2) is known if ¢ and ¢ happen to be smooth. Otherwise, choose f ~ ¢
and g ~ ¢ with f and g smooth. Then we have

pogp~gof
and so
dr(¥ o ¢) = Hir(go f) = Hig(f) o Hir(9) = Hir(¢) o Hik (¥).

This gives part (2).

Finally, we prove part (3). Let ¢ : V' — U be a homotopy inverse to ¢. Part
(2) gives that Hj, (¢) is an inverse to Hyp (¢) and so we have an isomorphism
of vector spaces. O

Corollary 3.4.21. Let f : U — V be a homeomorphism. Then Hig(f) :
Hix (V) — Hig(U) is an isomorphism of vector spaces.

Corollary 3.4.22. Let U C R™ be a contractible open set. One has that
H)R(U) 2R and Hi%(U) =0 for m > 0.

Proof. Recall that U being contractible is equivalent to idy being homotopic to
a constant map. Let f be such a constant map, say f(z) = xo for all x € U.
Let F(z,t) be the homotopy between idy and f. Note that F(z,t) defines a
continuous curve in U that connects xy and x. Thus, U is path-connected, hence

connected. Thus, H)g (U) = R.
If m > 0, we know that

Qm(f): QmU) - Q™(U)

is 0 because Q" (f)(w)z = Al (D, f)(w(f(z))) and since f is constant, D, f =
0. Thus, by Theorem 3.4.20 we have

Hig (idv) = Hir(f) = 0.

Since Hig (idv) = idum (1), it must be that Hig (U) = 0. O
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The following proposition will be very important in subsequent calculations.
It allows us to “move up” in the sense of calculating the higher cohomology
groups of Euclidean spaces with a closed set removed if we know the cohomology
of a smaller Euclidean space with the same closed set removed. In particular,
it will allow us to calculate the cohomology of R"™ — 0 for n > 2 using that we
already have the calculation in the case n = 2.

Proposition 3.4.23. Let A C R"™ be a closed set. Then we have
HH (R - A) & HIL(R" — 4) m > 1
Hlg (R™H — 4) = HOp (R — 4)/R
HiR (R™H — 4) =R
where we have identified R™ with R™ x {0} C R" 1.
Proof. We view R"™! as R” x R and define open subsets of R"*! by

Uy =R"™ x (0,00) U (R" — A) x (—1,00)

and
Us =R"™ x (—00,0) U(R" — A) x (—o0,1).
We have
UiulU, =R — 4
and

U nNnU; = (Rn — A) X (—1, 1)

The reader is urged to draw some examples of this to be sure to understand
what the sets Uy and Us look like.
Define ¢ : Uy — Uy by setting

O(x1, . Ty 1) = (21, o, Ty T + 1).

For z € U; we have that the line segment from x to ¢(z) is contained inside Uy
and so idy, ~ ¢. Given any ¢(z) we have that ¢(z) € R™ x (0,00) and since
R™ x (0,00) is star-shaped with respect to yo = (0,...,0,1), we can connect
() to yo by a straight line. Thus, ¢(z) is homotopic to the constant map
sending everything in U; to yp. Combining these homotopies we have idy, is
homotopic to a constant map and so U is contractible. Similarly we have that
U, is contractible and so

m R m=0
HdR(Uk)_{ 0 m>0

for k=1,2.

Define 7 : Ul NUz — R™ — A to be the natural projection map. Define
i:R"—A — U;NU; by i(z) = (x,0). Then moi = idgn_ 4 and ionm(z,y) = (x,0),
which is homotopic to id¢;,ny, by straight line homotopy. Thus, we have

UlﬂUQZRn—A
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and so

Suppose now that m > 1. Since U; and U, are contractible, Mayer-Vietoris
gives
HR (U N U2) = H (U U TU,),

ie.,

HiR (R — A) = HR (R — A).
Mayer-Vietoris also gives the exact sequence

0 (; 0 (. 0
0 — HO (R*1—4) "2 5O )aH (Us) Y HO, (R7—4) 2 HLL (R™1—A) — 0.

Recall that H)g (U) are the locally constant functions defined on U. Since Uj
and Us are connected, an element of Hg (U;) ® HIg (Uz) is a pair of constant
functions aj,as. The image of (ai,as) under the map HgR(j) IS a1 —as €
Hg (U1 N Uy). Thus,

ker(8°) = im(H9R (j)) = (a1 — a2)R = R.
Thus,
Hig (R™! — 4) 2 Hyp (R" — A)/R.
Finally, we have that dimg (im(H9g (7)) = dimg (ker(Hg (5))) = 1 and so
Hig (R"*' — A) =R,
O
We can now easily calculate the cohomology of punctured Euclidean space.

Theorem 3.4.24. For n > 2 we have the following

m mon o R m=0n-1
ar(R _0):{0 m#0,n—1.

Proof. We have already shown the case of n = 2 in Example 3.4.6. The general
case now follows by induction using Proposition 3.4.23. [l

We also note that in the case of n = 1 we have

m ol ) R&ER m=0

We can now use this allow with Theorem 3.4.24 to conclude that Euclidean
spaces of different dimensions are not homeomorphic. Though Theorem 3.4.25
certainly would be believable to anyone that had read through Chapter 2, it is
not something that is easy to prove! It is a good illustration of the power of
cohomology to try and prove it using only the basic tools established in Chapter
2.
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Theorem 3.4.25. If m # n then R™ is not homeomorphic to R™.

Proof. Suppose there is such a homeomorphism, say ¢ : R — R™. Without
loss of generality we may assume ¢(0) = 0 as we can change ¢ by a homotopy
to make it so if not. Thus, ¢ : R® — 0 — R" — 0 is a homeomorphism. This
implies that all the cohomology groups of R” — 0 and R — 0 must be equal.
However, this contradicts Theorem 3.4.24 unless m = n. [l

Definition 3.4.26. Let X be a topological space. Given a map f: X — X we
call z € X a fized point of f if f(z) = x.

For brevity we denote the closed unit ball C1(B(0,1)) C R™ by D™.

Theorem 3.4.27. (Brouwer’s fixed point theorem) Fvery continuous map f :
D™ — D™ has a fixed point for n > 1.

Fixed point theorems are very useful in many areas of mathematics. For
example, one has well-known applications of this theorem to economics and
game theory. In fact, recently a paper has been posted that uses this theorem
to study methods of counter terrorism! For a fun “party-fact” consequence of
this theorem, suppose that you have a cup of coffee and you swirl it around.
If you assume that all of the particles on the surface of the coffee remain on
the surface, then no matter how much you swirl the coffee around at least one
particle will end up in the same place it started!

Before we can prove Theorem 3.4.27, we need the following lemma.

Lemma 3.4.28. There are no continuous maps g : D™ — S"~1 with g|gn-—1 =
idgn-1.

Proof. The case n =1 is clear so we assume n > 2. Define f : R" -0 — R" -0
by f(z) = ro7- Recall that we have seen before that f ~ idgn_o by the straight
line homotopy. Suppose there is such a g. Then for 0 < ¢ < we have

F(z,t) = g(tf(z))
is continuous and

F(z,0) = g(0) = constant map
P ) =g(f@) =g (Z) = =

2|/ =]

where we have used that ¢g|gn—1 = idgn-1. Thus, F' gives a homotopy between
f and a constant map, i.e., we see that idgn_o ~ f ~ a constant map. Thus,
R" — 0 is contractible. This is a contradiction as Hj;'(R™ — 0) = R. Thus,
there can be no such g. O

We now prove Theorem 3.4.27.

Proof. Suppose that f(z) # « for all x € D™, Thus, z and f(x) determine a
line and so we can define g(x) € S"~! to be the intersection of the ray starting
at f(x) going through = and S"~! as pictured:
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9(x)

We can write g(z) = z+tu where u = %fg;\ and t = —(z,u)++/1 — [z]2 + (z,u)?
where we again write the inner product on Euclidean space as (, ). However, this
gives a continuous map g : D™ — S"~! with g|gn-1 = idgn—1. This contradicts
Lemma 3.4.28 and so it must be that f has a fixed point. O

It is interesting to note that Brouwer was a proponent of only proving the-
orems with constructive proofs and felt that proofs by contradiction should be
avoided at all costs. It is ironic then that his most famous theorem is demon-
strated by contraction.

Definition 3.4.29. Let U C R", V C R™ be open sets. A smooth map
f U — V that is bijective and has a smooth inverse function is called a
diffeomorphism.

The following result is another corollary of Proposition 3.4.23.

Corollary 3.4.30. Let A C R"™ be a closed set. Let

F:R"™ - AR -4
be the diffeomorphism given by

F(z1, .. @n, Tpg1) = (X1, oy Tny —Tpg1)-
The induced linear map
HEL(F) s A (R — 4) — H (R = 4)
is multiplication by —1 for m > 0.
Proof. Tt was shown in the proof of Proposition 3.4.23 that for m > 1 we have
O™ Hin (Uy N Us) — HY (U UUR)

is an isomorphism and

Y HYR (U1 NUz) — HiR (U UTL)
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is a surjection. Thus, to show that Hy (F) is multiplication by —1, it is enough
to show that
ar(F) 0 0™ ([w]) = —0™([w])

for m > 0 and [w] € Hip (U1 N U2).
Recall we have the following exact sequence:

0— Qm(Ul U Ug) i Qm(Ul) D Qm(Ug) L Qm(Ul n Ug) — 0.
Thus, given w € Q™ (U; N Us), there exist wy,ws so that

w=j"(w1,w2)

= Q" (j1)(w1) — Q" (j2)(w2).
Furthermore, recall that

" ([w])

(™) ™ A (1) @am (0) (™) HW)))]
(™) (A (17 y W15 o (17yw2)]

[7]

where 7 € Q"+ (U1 U Us) is so that Q™! (ix) (1) = dif g, wk for k= 1,2.
Observe we have the following commutative diagrams (where Fy and Fj are
the restrictions of F):

Rn+1 — A —F>R"+1 — A R"+l _ A—F>R"+l — A
ZlT 7‘21\ ’LQT ’LIT
L — U,—2 1,
le jo jQT le
F() FO
UlﬂUg UlﬂUg U1ﬂU2—>U1ﬂU2.

These diagrams given the following diagrams in differential forms for all » > 0:

QT(RnJrl o A) & QT(RnJrl _ A)

lﬂr(h) lﬂr(iz)
Qr
Q"(Uy) Q"(Uz)

lQT(jl) lW(Jé)
QT(Ul n Ug) & QT(Ul n Ug)

(F1)
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(F2)
Q"(U2) - Q" (th)
lﬂr(jz) lﬂr(jl)
ar
QT(Ul n UQ) <$ QT(Ul n UQ)

Thus, we have
—Q"(Fp)(w) = =Q™ (Fo) (2™ (j1)(w1) — 2™ (j2)(w2))
= Q"(Fp) o Q" (j2)(w2) — Q" (Fp) 0 Q™ (j1)(w1)
= Q" (j1) o Q" (F1)(w2) — Q™ (j2) 0 Q™ (F2)(w1),

Q" (i) 0 QMTH(E) (1) = Q™ (Fy) 0 Q™ (i) (1)
= Q"R (dfn 17,y w2)
= dym () (" (F1)(w2)),
and
Q" (i3) 0 QMTH(E) (1) = Q™ (Fy) 0 Q™ (41) (1)
= Q" F) (dfm (17, yw1)
= dym () (2" (F2)) (w1).
Combining these results with the definitions we have
O™ (=[Q™ (Fo)(w)]) = 0™ ([ (j1) o " (F1)(w2) — Q™ (j2) 0 Q™ (F2)(w1)])
= [(™ ) T g )y (v) (27 (F1) (w2), Q7 () (w1))]
= [T THQ T (i) 0 QFH(E) (1), QM (i) 0 QM (F) (7))
= [Q"FH(F) (7).

(3.3) O™ o Hiy ([w]) = ™ (12 (Fo)()])
— — [ (F) ()]
— Q" 0™ (w)]
— —H(F) 0 0" ([w]).

Note that for 7 : Uy N Uy — R™ — A the projection map as before, we have
mo Fy = m and so

) Hig (Fo)

H™ (7
HT (R — A) =T g g py) MR g gy
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is identical to just Hjg (7). However, we saw in the proof of Proposition 3.4.23
that Hjg (7) is an isomorphism, and so Hj (Fp) must be the identity map on

Tr(U1 NUs). Thus, in equation (3.3) we have
0™ ([w]) = — Hig ' (F) 0 0™ ([w)),

which is exactly what we were trying to show. O

Let A € GL,,(R). One has an associated linear endomorphism from R” to
R™. Moreover, A also defines a diffeomorphism

fa:R"—0—R" -0
in the natural way.
Lemma 3.4.31. For each n > 2 the induced map

HiR (fa) s Hig'(R™ — 0) — Hijg ' (R™ —0)

det A
| det Al "

is multiplication by

Proof. Let E, s be the matrix with a 1 in the r* row and s™ column and 0’s
elsewhere. Consider the matrix

B=(1,+cE.)A

for ¢ € R and r # s. The matrix B is thus obtained from A by replacing the
™ row by the sum of the ™ row and ¢ times the s row.
We have fa4 ~ fp via the map

F(z,t) = (1, + ctE, s)Ax.

Thus, Hiz'(fa) = Hjz'(f5). Note that we also have det A = det B. Ob-
serve that by doing a series of such operations we can put A into the form
diag(1,1,...,1,det A) where diag denotes a diagonal matrix. Thus, it is enough
to prove the theorem for diagonal matrices of this form.

Consider the matrix diag(1,...,1,d). The map given by

d|*d
F(x,t)zdiag(l,...,1,|||d| )x

gives a homotopy between the map given by

d
diag (1, ooy 1, —)
|d|

diag(1,...,1,d)

and so we reduce to considering

diag(1,...,1,£1).

and

Thus, Hjz'(fa) is either the identity map or is the map H'jz'(F) given in
Corollary 3.4.30 depending upon %, as claimed. [l

130



Given a point = € S", the tangent space to S™ at x is defined to be those
y € R so that (x,y) = 0. We denote the tangent space of S™ at = by T,,S™.
A wector field on S™ is a continuous map v : S™ — R"T! 5o that v(z) € T,,8"
for every z € S".

Theorem 3.4.32. The sphere S™ has a tangent vector field v with v(x) # 0 for
all x € S™ if and only if n is odd.

Proof. Suppose there is such a vector field. We can extend it to R"*' — 0 by

setting
x
w(z) =v <m) )

We have that w(z) # 0 and (w(z),z) = 0 since w(x) € T, (S™). Define
F(x,t) = (cosmt)x + (sinwt)w(x).
This is clearly continuous and we have

F(z,0) ==

F(z,1) = —x.
Furthermore, we claim F(z,t) lies in R" ™' —0 forallz € R*""'—0and 0 < ¢ < 1.
To see this, observe that we have (F(z,t),z) = (cosmt){(z,z). So if cosmt # 0,
then (F'(z,t),z) # 0 because = # 0. If cosmt = 0, then we must have ¢t = 1/2
and then F(z,1/2) = w(x) # 0. Thus, we have a homotopy between the identity
and the antipodal map. In particular, we must have that the antipodal map f
induces the identity map on Hjjz (R"™ — 0) = R. However, Lemma ?? gives
that Hjjg (f) is multiplication by (—1)"*1. This forces n to be odd.

Conversely, suppose that n is odd. Write n = 2m — 1. Define

'U(x1,x2, e 7$2m—17w2m) = (_./L'Q,./L'l, ceey _x2m7x2m—l)'
This is a vector field that satisfies v(z) # 0 for all z € S™. g

This theorem has many interesting consequences. For example, one can
apply this theorem to anything that can be represented as a vector field on the
surface of the Earth. For instance, there is at least one point on the Earth at
this moment where there is no wind at all!

The following theorem is purely a point-set topology result. The only tool
needed that we did not include in Chapter 2 is the notion of partitions of unity.
We could actually strengthen the result by replacing R” by any metric space
and R™ by any locally convex topological space.

Theorem 3.4.33. (Urysohn-Tietze) If A C R™ is closed and f : A — R™ is

continuous, then there exists a continuous map g : R™ — R™ with gla = f.
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Proof. For x € R", define
A —_— 1 f .
pz, A) ;Iel |z —yl

Given any z € R™ — A we can define an open neighborhood U, C R" — A of 2
given by

1
U.= {xER”:|x—z| < §p(z,A)}.

The collection of these open sets gives an open cover of R™ — A. Thus, we can
use this open cover to define a partition of unity {p.}. Define g by

_ | fl=) reA
9(o) = { ZzeRn—Apz(l’)f(@(xo)) reR"—- A

where for z € R™ — A we choose a(z) € A so that
|z —a(2)] < 2p(z, A).

This is a smooth function on R™ — A because for any x there is a neighborhood

V of x so that p, vanishes on V for all but finitely many z, so g is a finite sum.

However, we still must check that g is continuous on the boundary of A.
Given x € U, and y on the boundary of A we have

ly—z2| <|ly—a|+|x -2
1
<u—m+§m%m
1
SM—M+§W—A

Thus,
ly — 2] < 2z —y|
for all z € U,. Since we have
|2 — a(2)| < 20(2, A)
< 2]z —y|
we have for x € U, that
ly —a(2)| <y —2[+ [z — a(z)]
<3z —y|
< 6lz —y|.

For x € R™® — A we have



and

(3-4) l9(2) — 9| <Y pa(2)|f(a(2)) — f(v)l

where the sum is over those z so that x € U.,.

Now for € > 0, choose > 0 so that |f(b) — f(y)| < € for every b € A with
b —y| < 6. If z € R" — A and |z — y| < J, then for z with « € U, we have
ly —a(z)] < 66 and |f(a(2)) — f(y)| < e. Thus, using equation (3.4) we have

l9(x) — g(W)| <D pa(a)e =

and so g is continuous on the boundary of A as well. O

Corollary 3.4.34. Let A C R", B C R™ be closed sets and ¢ : A — B
a homeomorphism. There is a homeomorphism h : R"T™ — R"™ 5o that
h(z,0m) = (0n, d(x)) for all z € A.

Proof. Theorem 3.4.33 allows us to extend ¢ to a continuous map g : R — R™.
Define a map
hi :R" x R™ — R" x R™

by
hi(z,y) = (z,y + g(z)).

One can easily check that this is a homeomorphism as it is clearly continuous
and the inverse map is given by

hi'(,y) = (z,y — g(2)).
We can also extend ¢! to a continuous map
f:R™ —=R"
and define a homeomorphism
hy : R" x R™ — R" x R™

by
Set h = hy ' o hy. Then for x € A we have

h(z,0m) = hy ' (,9(2))

as claimed. O

133



Corollary 3.4.35. If ¢ : A — B is a homeomorphism between closed sets in
R™, then ¢ extends to a homeomorphism ¢' : R?* — R?",

Proof. Combine the homeomorphism of Corollary 3.4.34 with the homeomor-
phism that switches the factors. O

Theorem 3.4.36. Let A C R", B C R"™ be closed sets and assume A is home-
omorphic to B via ¢. Then

Hir(R" — 4) 2 Hgr (R™ — B)
for allm > 0.

Proof. We begin by applying Proposition 3.4.23 inductively to conclude that for
all m > 0 and all » > 0 we have

H (R — A) = Hi (R” — A)
Hijp (R — 4) = Hig (R" — A)/R

and similarly for B. Now we apply Corollary 3.4.35 to see that ¢'|pzn_4 gives
a homeomorphism between R?” — A and R?” — B. Thus, we have

ar(R™ — A) = HIZ™(R*" — A)
= H (R — B)
= Hi (R - B)
for all m > 0 and

Hp (R" — A)/R = Hip (R — A)
= Hijp(R*" - B)

~ Hp,(R" — B)/R.

O

Note that this result shows that if A and B are homeomorphic closed sets in
R™ then R™ — A and R™ — B have the same number of connected components.

Example 3.4.37. Let X C R3 be a subset that is homeomorphic to S*. Such
a subset is called a knot; two examples are pictured below.

&

Figure 3.1: Trefoil knot
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Figure 3.2: Listing knot

We can use Theorem 3.4.36 to calculate Hj (R®* — X). This theorem shows
it is enough to calculate HJj (R3 — S1).
We can write
R? — S = Int(D?) LU (R? — D?)
and so
Hip(R? - S1) = Hih (Int(D?)) @ Hih (R? — D?).

We know that Int(D?) is star-shaped and R? — D? is homeomorphic to R? — 0.
Thus we have

R m=0
m 2 ~
o) = { § "0
and
R m=0
(R D)= d R m=1
0 m>2.
Thus,
R2 m=0
Hip(R?—SH=¢ R m=1
0 m > 2.

We now apply Proposition 3.4.23 to see that

R 0<m<2
m 3_ ~ — —
ar(R X)_{O m > 2.

Exercise 3.4.38. Do the analogous calculation for X C R™ homeomorphic to
Skfor1<k<n-—2.

The following theorem, at least in the case of a curve in the plane, was so
obvious that for many years no one bothered to write down a precise statement,
let along a proof. In the case of a smooth closed curve in the plane it is an easy
result in vector calculus as one can employ an argument using normal vectors.
However, if one considers the curve given by the von Koch snowflake fractal, it
is easy to see such an argument will not work in general.

Theorem 3.4.39. (Jordan-Brouwer separation theorem) Let n > 2 and X C
R™ be homeomorphic to S~ 1. Then

1. The space R™ — X has two connected components. One of the components
is bounded and the other is unbounded.
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2. The set of boundary points for the connected components is given by X.

Proof. First, observe that since X is homeomorphic to S™~! it is necessarily
compact. Since we are in Euclidean space, this gives that X is closed. Applying
Theorem 3.4.36 we see that R” — X has two connected components because
R"™—S"~! has two connected components, namely, Int(D") = {x € R" : |z] < 1}
and W ={z e R" : |z| > 1}.

Let r = max;cx |z|. This is well defined because the map z — |z| is a
continuous function and X is compact. The set rW = {z € R" : |z| > r} is a
connected set and so much be contained in one of the connected components of
R™ — X. The component that contains 7W is then clearly unbounded. We also
see that the other component must be contained in the set {z € R" : |z| < r}
and so is bounded. This gives the first part of the theorem.

Let x € X and let U be an open set containing x in R”. We want to show
that U intersects each of the connected components of R™ — X so that it is a
boundary point. Let A = X — (X NU). This is a closed subset of X and so is
homeomorphic to a proper closed subset of S”~!, call it B. It is easy to see that
R™— B is connected (it is path-connected in particular), so we must have R™ — A
is connected as well. Let U; and Us be the connected components of R” — X
with Us the unbounded component. Given any x7 € Uy and zo € Us, there is
a continuous path v : [0,1] — R™ — A so that v(0) = z; and v(1) = zo. It is
then clear that 4~!(X) is nonempty and so the curve given by v must intersect
X. This gives that v~ 1(X) is a nonempty closed subset of [0, 1]. Thus, we have
that vy~(X) has a largest, y2, and smallest element, y; (possibly equal). Note
that y1,y2 € (0,1). We have that v(y1) and v(y2) both lie in X N U since the
curve lies in R™ — A. We have that v([0,y1)) C Uy and v((y2,1]) C Uz and so
there is a t € [0,y1) so that

"y(tl) ceU;NU

and a t2 € (y2, 1] so that
’y(tg) e UsnNU.

Thus, we have the result. O

Exercise 3.4.40. Let A C R" be homeomorphic to D* for k < n. Show that
R™ — A is connected.

Theorem 3.4.41. Let U C R™ be an open set and f : U — R™ an injective con-
tinuous map. The image f(U) is open in R™ and f maps U homeomorphically

to f(U).

Proof. To show that f : U — f(U) is a homeomorphism, it is enough to show
that f takes open sets in U to open sets in f(U). Thus, it is enough to show
that f(U) is open in R™ since then the same argument will work for any open
set in U.

Let B(xg,d) = {x € R" : |z — 20| < ¢} be a basis element contained in U.
Let S = 0B(z0,0) be the boundary and Int(B(xg,d)) the interior. Since U can
be covered by such discs, it is enough to show that f(Int(B(xg,d))) is open.
The case n = 1 follows from calculus so we assume n > 2.
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Note that S is homeomorphic to S"71, as is f(S). Let U; and Us be the
connected components of R™ — f(S) with U; bounded and Us unbounded. The
previous exercise gives that R — f(B(xz, ¢)) is connected and since it is disjoint
from f(S), it must be contained in Uy or Us. Now f(D) is necessarily bounded
as it is compact in R", so we must have R” — f(B(x¢,d)) is unbounded and
so contained in Us. Thus, f(S)UU; C R" — U, C f(B(x0,9)). Thus, U3 C
f(Int(B(x0,d))). Since Int(B(zg, d)) is connected, we have that f(Int(B(z,0)))
is connected and so is equal to U;. Thus, it is open as claimed. O

Corollary 3.4.42. Let U C R" have the subspace topology and suppose that U
is homeomorphic to an open set in R™. Then U s open in R™.

Corollary 3.4.43. Let U C R™ and V. C R™ be nonempty open sets. If U is
homeomorphic to V', then m = n.

Proof. Assume without loss of generality that m < n. Let V C R™ C R so V
is a subset of R™ as well. The previous corollary then gives that V is open in
R™. However, this contradicts V' being contained in R™. O

Proposition 3.4.44. Let X C R" be homeomorphic to S~ with n > 2. Let
Uy and Us be the bounded and unbounded connected components of R" — X. We

have
HdR(Ul)_{ 0 m>0

and
m ~ )] R m=0n-1
Hir (U2) _{ 0 m=#£0,n—1.

Proof. The case of m = 0 follows immediately from Theorem 3.4.39. Assume
m > 0. Set U =R"™ — D™. Then we have isomorphisms

Hir (U1) © Hgr (U2) = Hig (R" — X)
~ HdR(Rn gn— 1)
ar (Int(D")) & Hig (U)
ar(U)-

The natural inclusion map ¢ : U — R"™ — 0 is a homotopy equivalence where the

inverse is given by
lz| +1
o) = (5o
||

These are homotopic to the identity by the straight line homotopy. Thus, we
have

ar(t) t Hir(R™ = 0) — Hgr(U)

is an isomorphism. So we have

m ~J) R m=0n-1
dR(U)_{ 0 m#0,n—1
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Thus, if m # 0,n — 1 then we have
ar(U1) = Hgg (U2) = 0.

In general we have that dimp Hiy (U;) is 0 or 1. Thus, it is enough to show that
HiR (U2) 2 R.

Assume that 0 € U;. If not, we can translate under straight line homotopy
to make it so. Furthermore, assume that U; U X C D™. If this is not the case,
we can contract the space under straight line homotopy to make it so. We then
have a commutative diagrams of inclusions

R™ -0

!

Thus, we have

HiZ (R —0) =R
Hig ' (U) =———HiR ' (02)
Since Hjjz ' (U) = R and this isomorphism factors through Hjy'(Us), it must
be the case that H'(Us) # 0 and so must be isomorphic to R as claimed. [

We end this section by calculating the de Rham cohomology of R™ with r
holes.

Theorem 3.4.45. Let Ki,...,K, be disjoint compact sets in R" with 0K;
homeomorphic to S~ for j =1,...,r. Then for U =R" — U;Zl K; we have

R m=0
HirU)=¢ R" m=n—-1
0 m#0,n-—1.

Proof. We proceed by induction on . The case of r = 1 is given by Proposition
3.4.44. Assume the result is true for

r—1
Uy =R"— | J K.
j=1

Set Uy = R" — K. Since the K are disjoint we have Uy UU; = R". Furthermore,
Uy NU; = U. We now apply Mayer-Vietoris.
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Let m = 0. Then we have
0—R-—R®R — HIR(U) — 0

by the induction hypothesis and our previous calculations. Thus, H)g (U) = R
as claimed.
Suppose now that m > 0. If m = n — 1, we have

0—R1'eR—HIZY(U)—0
by induction and our previous calculations. If m # 0,n — 1 then we have
0 — Hijr(U) — 0.

Thus, we have the result. O

3.5 Smooth R-Manifolds

Though we have done many interesting things in this chapter in regards to open
subsets of Euclidean space, it is often the case that objects we are interested in
studying are not open subsets of Euclidean space. For example, curves are not
open subsets but are extremely interesting. In fact, even the sphere which we
have looked at often is not an open subset so requires further theory. In this
section we set the basic definitions and properties of smooth manifolds. These
are spaces that locally look like Euclidean space so will allow us to apply the
differential theory we have developed to study them.

Definition 3.5.1. Let M be a Hausdorff space with a countable basis. We call
M a topological manifold if there exists n > 0 so that for each © € M there is
an open neighborhood U of x and a homeomorphism ¢ : U — R"™. The number
n is referred to as the dimension of M and we will refer to M as a n-manifold
if we need to specify the dimension.

Recall that for any z € R™ and € > 0, the open ball B(z,¢) C R™ is diffeo-
morphic to R™. Thus, it is equivalent to the above definition to have a home-

omorphism ¢ : U — B(xz,¢). In fact, it is enough to have a homeomorphism
@ : U — W for W open in R".

Definition 3.5.2. Let M be a topological manifold of dimension n.

1. A chart (U, @) on M is a homeomorphism ¢ : U — W where U € T; and
W e Tgn.

2. A local parameterization around the point x € M is a homeomorphism
¢: W — U where W € Tgn and U € Tj; is a neighborhood of z.

3. A system A ={y;: U; — W; :i € I} of charts is called an atlas provided
{U;}ier covers M.
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4. We say the atlas A is smooth when all of the maps
pii = w0 p; 1 eiUiNUy) — ¢;(UiNT;)
are smooth. These maps are called transition functions.

We illustrate the transition functions as follows:

Definition 3.5.3. A smooth structure on a topological manifold M is a maximal
atlas A = {(U;, ;) : 7 € I}, i.e., it is an atlas satisfying that if (U, ¢) is a chart
such that o ;" and ¢; 0 p~! are smooth for all i € I, then (U, ¢) € A.

One should note that given any atlas A, there is a unique smooth structure
A containing A. Namely, set

1

A={(U,p): pop; ' and p; 0 p~! are smooth for all p; € A}.

Thus, we do not need to give the entire smooth structure in general as we can
specify an atlas and then know that there is a unique smooth structure that
contains it. In general when we refer to a chart we mean a chart in the smooth
structure.

Definition 3.5.4. A smooth manifold is a pair (M, A) consisting of a topological
manifold M and a smooth structure A on M.

As we will only be interested in smooth manifolds, from this point on when
we write “manifold” or n-manifold it should be understood that we are working
with smooth manifolds. We will drop the atlas A from the notation for M much
as we do not include 73, in the notation when working with a topological space
M. The smooth structure should be clear from the context.

Exercise 3.5.5. Show that if M is a compact manifold it is not possible to give
a smooth atlas on M consisting of only one chart.

Example 3.5.6. The sphere S” is a n-manifold. To see this, we define an atlas
with 2(n + 1) charts (Usj, p+;) where

U+j - {(Il,...,ﬂ?n+1) es": Lj > O}
U*j - {(Il,...,ﬂ?n+1) es": Lj < O}
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and
¢+, : Uxj — B(0,1) CR"
(,Tl,...,l'n_H) — ($1,...,fb'\j,...,$n+1).

The inverse maps are given by

wi}(yh---,yn):(yl,---,yjfui\/l—(yf+~~+y%),yj,---,yn)-

This gives that we have the necessary charts. It remains to see that the transition
functions are smooth. This is straightforward and left as an exercise.

Example 3.5.7. Recall that in § 2.9 we defined RP™ as a quotient space. We
can also view this as a quotient of S™ by setting RP™ to be the set of equivalence
classes [z] = {z,—x} for x € S™. One should check that this is equivalent to
the definition given in § 2.9. We have the quotient map

m:S" — RP"

given by m(z) = [x]. Thus, U is open in RP" if and only if 7=1(U) is open in
S™. We can use this along with the previous example to put a smooth structure
on RP". Note that we have m(Uy;) are all open in RP" and 7(Us,;) = 7n(U—,)
for all j. Thus, we can set

Uj = m(Us;)-

Observe that 71 (U;) = Uy; UU—; and Uy; NU—; = (. We have that
m: Uy — Uj
is a homeomorphism. We can define
pj = py;om L :U; — B(0,1) C R"™.

The Uj cover RP™ and the ¢; are smooth maps giving charts. Thus, RP" is a
n-manifold.

Example 3.5.8. Consider the figure in R? given by M = {(sin2¢,sint) : 0 <
t < 2m}. This is not a smooth manifold as there is no chart around 0.

Exercise 3.5.9. Given a topological space M, it is possible to put different
smooth structures on M. For example, if M = R we can use a single chart
given by U = R and ¢ = id to put a smooth structure on R. One also has that
U =Rand ¢: U — R defined by p(x) = 2% is a chart giving a smooth structure
on R. Show that these are not equivalent smooth structures.

Exercise 3.5.10. Let M be a m-manifold and N a n-manifold. Show that
M x N is a (m + n)-manifold.

Definition 3.5.11. Let IV be a subset of a n-manifold M. We say N is a smooth
submanifold of dimension k if for every x € N there is a chart ¢ : U — W on
M with W € Tgn so that x € U and (U N N) = W NRF where RF C R™ is the
standard subspace topology.
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As with manifolds, we will only be interested in smooth submanifolds so
when we use the term “submanifold”, it is understood that it is smooth.

Example 3.5.12. For k < n we have R* is a submanifold of R” of dimension
k.

Example 3.5.13. The sphere S™ is a submanifold of R"*! of dimension n — 1.

Let M and N be smooth manifolds of dimensions m and n respectively. Let
f:+M — N be a continuous map. Let € M. We say f is smooth at x if there
exist charts 1 : Uy — Wi and ¢q : Us — Wa with « € Uy, f(x) € Uy so that
a0 foprt: oi(f 1 (Us)) — Wy is smooth in a neighborhood of ¢;(z). In
terms of a diagram, we have

U, ! U,

«Pll lhz
waofopr !

W) —— Wh.

Basically what we are saying is that when we map down to Euclidean space the
map there should be smooth. If f is smooth at every x € M we say that f is
smooth.

Note that since transition functions are by definition smooth, the definition
of smooth given above does not depend on the charts chosen in the smooth
structures for M and N. Thus, once a smooth structure A has been chosen for
M, we know which functions on M are smooth functions.

Definition 3.5.14. Let M and N be manifolds and f : M — N a homeo-
morphism. We say f is a diffeomorphism if f is smooth and has a smooth
inverse.

One should note here that by definition the charts in our smooth structure
are diffeomorphisms. This is important to note in terms of rectifying our def-
inition of smooth manifold with those given in books that begin by assuming
that M is a subset of Euclidean space. In that definition, it is assumed from
the start that the charts are diffeomorphisms. Clearly such a definition does
not work in our case as there is a priori no notion of smoothness without first
specifying a smooth structure.

Exercise 3.5.15. Let T be the torus defined in § 2.9.

1. Show that T is diffeomorphic to S' x S' and so conclude that T is a
2-manifold.

2. Show directly from the definition that 7" is a 2-manifold.
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Consider a point € R™ and let v = (v1,...,v,) be a vector. We can view
v as an operator on functions f that are differentiable in a neighborhood of =,
in particular, we set v(f) to be the directional derivative of f at z in the the
direction of v, i.e.,

0
R T

One can easily check that this operation satisfies

o(f +eg) = v(f) +ev(g)

and
v(fg) = f(x)v(g) + g(x)o(f)
for any ¢ € R and any functions f and g that are differentiable at z. Such

operators are familiar in algebra and are known as linear derivations. In general
we have the following definition.

Definition 3.5.16. Let S be a ring and M a S-module. A map d:S — M is
a derivation if it satisfies

d(fg) = fd(g) + gd(f)

for all f,g € S. If S happens to be a R-algebra, we say a derivation d is a
R-linear derivation, or just linear derivation if it is a map of R-modules.

Exercise 3.5.17. Fit the above specific example of a linear derivation into the
general definition just give.

Observe that the operation of taking a derivative at a point is purely a local
operation, so it can be characterized by “zooming in” at the point in question.
Before we state exactly what this means in our situation, we recall the following
definition from algebra.

Definition 3.5.18. Let I be a nonempty set with a partial order <. For each
i € I, let G; be an additive abelian group. Suppose for every pair i, 5 € I with
1 < j there is a map p;; : A; — A, so that

1. pjr © pij = pir. whenever 7 < j < k and
2. psi = 1forallicl.

Let H be the disjoint union of all the ;. Define an equivalence relation ~ on H
by setting g ~ h if and only if there exists a k with 4,7 < k and p;(9) = pjx(h)
for g € G, h € G;. The set of equivalence classes is called the direct limit of
the G; and is denoted h_H)li G;.

Now consider a manifold M of dimension n and let x € M. For an open
set U C M that contains z, let C*°(U) denote the set of smooth real-valued
functions defined on U. These are groups under addition and we can put a
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natural order on the open sets by inclusion, which gives maps between the
spaces by restriction, i.e., if U C V, we have p; : C*°(V) — C*(U). This
allows us to consider the direct limit of the spaces C*°(U). Set
¢y = lim C>(U).
U

We will return to this notion in Chapter 5 when we introduce stalks. As this
definition can be a bit unwieldy to work with, we boil it down into more familiar
terms. Let f and g be C*° functions defined on open sets U and V of x. We
say that f and g have the same germ at x if there is an open neighborhood
W C U NV containing « on which f and g agree. This gives an equivalence
relation on the space of C'*° functions on neighborhoods of x. In fact, this set
of equivalence classes is precisely the space C3°. We will denote the germ of f
at « by f,. Note that any germ f, at x has a well-defined value at the point z,
namely, choose any g € C°°(U) that represents the germ and set f,(x) = g(z).

Definition 3.5.19. A tangent vector v at the point x € M is a linear derivation
of the algebra C2°. We denote the set of tangent vectors to M at « by T, (M)
and call it the tangent space.

Given v, w € T, (M), a germ f,, and a constant ¢ € R, we can define

(U + w)(fac) = U(f;v) + w(fm)

and
(cv)(fz) = c(v(f2)).

This makes the tangent space T (M) into a R-vector space.

Let m; denote the subset of C2° of germs that vanish at x. It is easy to
check that m, is an ideal. We write m* to denote the k™ power of the ideal.
We then have the following very useful result.

Proposition 3.5.20. The tangent space T,.(M) is naturally isomorphic to
(mg /m3)".
Proof. First, let v € T,(M). Observe that v is a function on m,. Furthermore,
using the fact that v is a linear derivation gives that v vanishes on m, and so
we have a natural map from T}, (M) into (m,/m2)V.

Now let ¢ € (m,/m2)V. Let f.(z) denote the germ with the constant value
f(x). We define a tangent vector associated to ¢ by setting

vs(fz) = O((fo — fulz))m3)

for f,C2°. Of course we must check that this is actually a tangent vector. The
fact that the map is linear is straight forward and can be checked as an exercise.
We show that it is a derivation. Let f, and g, be germs at . We have

Uy (fr9z) = O((fege — fx(x)gx(x))mi)

(
= ¢(((fm - fm(x))(gm - gm(x) + fw(‘r)(gm - gm(x)) + (fm - fw(:c))gw(x))m
= ¢((fo = fo(2)) (92 — g2 (@))m2) + fo(2)0((92 = gu(@))m3) + 9o (2)D((f2 — fu(a))m
= fo(®)vy(92) + gu()v5(f2)-
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Since we now have a mapping from T}, (M) to (m,/m2)¥ and vice versa, it only
remains to check that they are inverses. We leave this as an exercise. [l

The reason that this proposition is particularly useful is that it allows us a
convenient way of showing that the dimension of the tangent space as a R-vector
space is the same as the dimension of the manifold. Before proving that, we
need the following result from multivariable calculus.

Lemma 3.5.21. Let k > 2, U a conver open set in R™ around x, and g €
C*(U). Then for each y € U, we have

o) = g0+ 22

i=1

(Ii(y)—xi(I))+Z(xi(y)—xi(x))(xj(y)—flfj(fr))/O (1-1)

x

In particular, if g € C*°(U), then the second summation determines an element
of m2 since the integral as a function of y is C>(U).

One can see [13] for a proof of this lemma. We apply it to prove the following.

Theorem 3.5.22. Let M be a smooth manifold of dimension n and let x € M.
Then
dimg (m,/m2)" = n.

Proof. Let € M and let (U, ¢) be a chart around z. Let y1,...,y, be the
coordinate functions, i.e., y; = z; 0 ¢. Let f, be a germ at x and let f € C(U)
be a representative of f,. We apply the result in Lemma 3.5.21 to the function
fo¢~! and then compose with ¢ to obtain:

—~ A(fooh)
— x

f= oz,

P

» (yi — yi(z)) + Z(y —vi(@))(y; — y5(2)h

in a neighborhood of x with h a smooth function. Thus we have

—~ I(fogp!

I (yi — yi(z)) (mod m2).

#(2)

Thus, we see that the cosets (y; — yi(z))m2 spans m,/m2. Thus we see that

dimg(m,;/m2)¥ < n. We now must show that these are linearly independent.
Suppose that we have

Zai(yi —yi(z)) € m3.
i=1

We must show that the a; are all 0. Observe that we have

n n

Do ailyi —yi@) o ¢t =Y (w1 — 2i(6(x))).

=1 =1
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Thus, we have
> ai(zi — 2i(p())) € m3,.
i=1

However, this implies that

<Z ai(xi — wi(¢($))> =
é(=) \i=1

However, we know these are linearly independent because we are just working
in Euclidean space now, so it must be that the a; are all 0 as claimed. O

0

0z

Corollary 3.5.23. Let M be a smooth manifold of dimension n and let x € M.
Then
dimg T, (M) = n.

Let f be a differentiable function on a neighborhood of z. We can view
tangent vectors as acting on such functions by setting

v(f) = v(fa).

Thus, we see that v(f) = v(g) if there is an open neighborhood of 2 on which f
and g agree. We now define some convenient tangent vectors.

Definition 3.5.24. Let (U, ¢) be a chart around a point = € M with coordinate
functions y1, ..., y,. For each i, define a tangent vector (0/0y;)|, € T»(M) by

setting 5 8(f o 6
fo oo™
(391' x) ) b(x)

8$i
for each function f that is smooth in some neighborhood of z. We often use the

2| ).

notation g—J‘ to denote (8—11_

Exercise 3.5.25. 1. Show that (0/0y;)|, are tangent vectors. Furthermore,
show they are a basis of T, (M) and are the dual basis to {y; — y;(x)} of
m, /m2.

2. If v € T,(M), show that

v =

0
v(y:) %

n

i=1 T

3. Applying the definition about to the coordinate functions z1,...,z, on

R™ show that one obtains the normal partial derivative operators %.

Exercise 3.5.26. Recall from Exercise 3.5.10 that if M is a m-manifold and
N a n-manifold, then M x N is a (m + n)-manifold. Show that

Tz (M x N) =T, (M) ®Ty(N).
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Given a map [ : M — N between manifolds, we now define an induced linear
map between the tangent spaces. Let f : M — N be a smooth map between
manifolds and let = € M. We wish to define an element D, f(v) € T, (N) for
each v € Ty(M). Since D, f(v) will be a tangent vector, to define it we need to
specify its action on functions that are smooth in a neighborhood of f(x). Let
g be such a function. Define D, f(v)(g) by setting

Dq f(v)(g) = v(g o f).
Exercise 3.5.27. Check that this map lands in T, (V).

Exercise 3.5.28. Let (U, ¢) and (V, ) be charts around z and f(z) respectively
with coordinates given by y; = x; o ¢ and z; = x; o 1. Show that

o (]) -5 %522

Wil,) = Oy

2

= 821-

f(@)

Exercise 3.5.29. Let (U, ¢) be a chart around z and yi, ...,y coordinates.
Show that {Dyy;|.} is a basis of T,,(M)Y dual to the basis {9/9y;|.} of T,,(M).
Thus, if f: M — R is a smooth function, apply the above result to show that

af => a_%dy“
i=1

as in the case of open sets in Euclidean space.

Exercise 3.5.30. Let M, Ms, and M3 be manifolds with f : M; — M, and
g : My — M3 smooth maps. Prove the chain rule for the corresponding maps
on tangent spaces, namely,

Dy(go f) = Df(:c)g oD f.

There is a notion called the tangent bundle that packages all of the tangent
spaces together at once while still separating them so that they do not intersect.
While we will not need the tangent bundle for our purposes, it is an important
concept so we include a couple of brief results. One should note that the tangent
bundle is a special case of a vector bundle.

Definition 3.5.31. Let M be a m-manifold. Define the tangent bundle T M of
M by

xe M

It turns out that the tangent bundle is intrinsic to the manifold itself. This
will be shown in Exercise 3.5.34 below.

The tangent bundle of the circle can be pictured as follows where the first
picture is the circle in blue with tangent spaces illustrated in red and the second
one is the tangent bundle:
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Our first step is to show that T'(M) is a 2m-manifold. Observe that there
is a natural projection 7 : T(M) — M given by n(v) = z if v € T,(M). Let
(U, ) be a chart around = € M with ¢ : U — R™ and coordinate functions
T1,..., Ty Set V. = 77 Y(U) C T(M) and define v : V. — R*™ by 9(v) =
(21 (m(v), ..., m(w(v)),dz1(V),. .., dxm(v)). Now, let {(U;, i) }ier be an atlas
on M and set V; = 7~ 1(U;). Then given U C T(M) we say that U is open
in T(M) if and only if ¥;(U N V;) is open in R*™ for all i € I. This defines a
topology on T (M) and (V;,1;)ier defines a smooth structure on T'(M).

Exercise 3.5.32. Check that the definition given above for open sets in T'(M)
satisfies the required properties to give a topology. Check that the transition
maps are smooth so that (V;,;);cr gives a smooth structure on T'(M).

Note that one can equivalently write
T(M) = {(z,v) : x € M,v € T,(M)}.

Given a smooth map f : M — N one has a natural global derivative map
Df:T(M)— T(N) defined by

Df(x,v) = (f(x), Daf(v)).
Exercise 3.5.33. Show that Df is a smooth map.

Exercise 3.5.34. Show that if f : M — N is a diffecomorphism, then T'(M) is
diffeomorphic to T'(NV).

In many cases two manifolds may locally look the same, even if they do not
globally. As many of the concepts, such as smoothness, are defined locally, it is
important to have a notion of when two manifolds look alike locally.

Definition 3.5.35. Let f : M — N be a smooth map between n-manifolds.
We say f is a local diffeomorphism at x € M if there exists an open neighbor-
hood U of z and an open neighborhood V of f(z) so that fly : U — V is a
diffeomorphism. If f is a local diffeomorphism at each point € M we say f is
a local diffeomorphism.
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It is important to note that being a local diffeomorphism is a local property,
not a global one. In other words, it is entirely possible for f to be a local
diffeomorphism but not a diffeomorphism. For example, consider M = R and
N = S! with f defined by f(t) = (cost,sint). Then f is a local diffeomorphism
but not a global one.

Recall the inverse function theorem from classical analysis.

Theorem 3.5.36. Let U,V C R"™ be open sets. Let f : U — V be a smooth
map with Dy f an isomorphism. Then f is a local diffeomorphism.

We will not prove this theorem here as it is a well-known result in analysis.
One can see [11] for a proof if it is not a familiar result. We can generalize this
theorem to the setting of smooth n-manifolds.

Exercise 3.5.37. Show that if f is a local diffeomorphism at x then D, f is an
isomorphism.

The more remarkable property is that if D, f is an isomorphism then f is
a local diffeomorphism at x. This is nice because checking an isomorphism of
vector spaces should be easier than that a function is a local diffeomorphism.

Theorem 3.5.38. (Inverse Function Theorem) Let M and N be n-manifolds.
If f+ M — N is a smooth map so that Dyf : T,(M) — Ty (N) is an

isomorphism, then f is a local diffeomorphism at x.

Proof. We will use charts along with Theorem 3.5.36 to prove the result. Let
(U, ¢) and (V, %) be charts around = and f(z) respectively. Observe that since
D, f is an isomorphism by assumption and D¢ and Dj,)Y are isomorphisms
by construction, if we set ' = 1) o f o ¢! then the fact that the following
diagram commutes gives that D) F is an isomorphism.

Ty (M) ————=T}(z)(N)
Dzwl lDﬂz)w
Dy oy F
R” R™.

We now apply Theorem 3.5.36 to see that there exist open neighborhoods
W1 and Ws of ¢(z) and 9 (f(x)) respectively so that F is a diffeomorphism from
Wy to Way. We can shrink U, V', W7 and Wy if necessary so that ¢ : U — Wy
and ¢ : V — Wy are diffeomorphisms. Thus, we obtain the commutative dia-
gram:
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Wy —E W

Thus, we have that f|y is a diffeomorphism from U to V' as desired. O

The classical inverse function theorem tells us that if D, f is an isomorphism
then locally f looks like the identity map. In other words, Wj is an open neigh-
borhood of 2z € R™ and W5 an open neighborhood of f(x) in R™, then there exist
charts ¢1 : W7 — W and ¢ : Wy — W so that the following diagram commutes:

Wy ———W;

¢1l l%
id

W—-W.

To see what this means in our setting, we compose the charts given in the
proof of Theorem 3.5.38 with the charts ¢ and ¢5 to obtain

U \%4
¢10<P\L l@ otp
W1
In terms of a picture, we have:
f

Thus, in a neighborhood of = we have that f looks like the identity map.
Note that what is really going on is that when we want to talk about things
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locally, it is enough to work in a chart. This is the entire point of the definition
of a smooth manifold. So the Inverse Function Theorem is saying that we can
choose charts so that in these charts the function looks like the identity. This
makes working locally, i.e., with these charts, particularly easy.

The Inverse Function Theorem only applies if dim M = dim N. The natural
question to ask is what can we say if dim M < dim N or dim M > dim N? If
f: M — N is a smooth map from a m-manifold to a n-manifold, we have that
Dyf : To(M) — Tpz)(N) is a linear map from a vector space of dimension m
to a vector space of dimension n. If m < n, the best we can hope for is that
D, f is an injection. Similarly, if m > n, the best we can hope is that D, f is a
surjection. We begin with the case that m < n.

Definition 3.5.39. Let f : M — N be a smooth map. If D, f is an injection
we say that f is an immersion ot x. If f is an immersion at every point in M
we say f is an immersion.

The most basic example of an immersion is the canonical immersion R"" —
R™ for n > m given by (x1,...,2Zm) — (Z1,...,Zm,0,...,0). As the Inverse
Function Theorem shows us that if D, f is an isomorphism then f locally looks
like the identity map, the Local Immersion Theorem tells us that if f is an
immersion at x then f locally looks like the canonical immersion.

Theorem 3.5.40. (Local Immersion Theorem) Let f : M — N be an immer-
sion at x. Then there are charts (U, @) and (V,v) around x and f(x) respectively
so that the following diagram commutes:

f
U \%4
Wl canonical immersion W2 '

Proof. Let (U1, ) and (V1,11) be charts around = and f(z) so that the follow-
ing diagram commutes:

f

U, ———"

l lwl

We have that D,(,)g : R™ — R" is injective. Our goal is to “expand” g
so that we can apply the Inverse Function Theorem. Note that we can choose
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bases of R™ and R" so that D, (g is given by the n x m matrix (%”) Define

G:R*"xR""™ - R"
(a,b) — g(a) + (0,D).

We have that G is clearly a smooth map and D, G = I, so the Inverse
Function Theorem gives that G is a local diffeomorphism. Observe that g =
G o (canonical immersion). Thus, there exists W7 C R™, W, C R™,

and W3 C R" so that the following diagram commutes:

=]
G canonical immersion

Wa

where U and V are open subsets of U; and V; chosen to ensure that the maps ¢
and 1, are diffeomorphisms. Thus, if we set ¥y = G~ 01); we have that (V,)
is a chart around f(z) so that the following diagram commutes:

| k

W canonical immersion W
1 2

O

It is important to note that this is a local result. As the notion of immersion
is an “injectivity” condition, it is natural to inquire if the image of an immersion
is a submanifold. Unfortunately this is not true in general.

Exercise 3.5.41. Show that the map from S* to R? that takes the circle to the
figure eight is an immersion but clearly the figure eight is not a submanifold of
RZ.

The previous exercise shows that we should require our maps to be injective
if we hope to have the image being a submanifold. Even if the map is an injective
immersion this is not enough.

Exercise 3.5.42. Show that the image of map f from R to R? defined by
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R f <>
O

is not a submanifold of R2.

The previous exercise shows we also need a notion of things that are far
apart staying far apart. Fortunately, if we add such a condition and injectivity
to our immersion this will be enough!

Definition 3.5.43. A map f : M — N is called proper if the preimage of a
compact set is compact. A map that is a proper injective immersion is said to
be an embedding.

Theorem 3.5.44. Let f: M — N be an embedding. Then f maps M diffeo-
morphically onto a submanifold of N.

Proof. Our first goal is to show that f(M) is a submanifold of N. Recall that
this means for every f(x) € f(M), there is a chart (V,4) in N around f(x) with
YV — Wy C R so that (f(M)NV) = Wa NR™ where R™ sits inside of R™
via the canonical immersion. Let (U, ¢) be a chart around z in M. We claim it
is enough to show that f(U) is open in f(M). If f(U) is open in f(M), then we
have that since f(M) has the subspace topology in N there is a V’ open in N so
that f(U) = f(M)NV"'. If (V,4) is any chart around f(z) with ¢ : V — Wh,
then we can take for our chart (VNV' ¢|yay:) with ¢|yqy - VNV =, W3 and
see immediately that ¢|yav/ (f(M)NV NV') = W,;NR™ by applying Theorem
3.5.40 and possibly shrinking our open sets. Thus, in order to see f(M) is a
submanifold of N it only remains to show that f(U) is open for any chart (U, ¢)
around z.

Suppose that there exists a chart (U, ¢) so that f(U) is not open in f(M).
Then there exists a sequence {yn}nen with y, € f(M) — f(U) so that {y,}
converges toy € f(U). Let x,, € M so that f(z,) =y, and z € M with f(z) =
y. The fact that f is injective gives that these preimage points are unique. We
have that {y}U{yn }nen is compact along with the fact that f is proper gives that
{z} U{zp}nen is compact as well. Thus, there is a subsequence {x,, }ren that
must converge, say to z € M. However, this gives that {f(z,,)}ren converges
to f(z) and {f(zp)}nen converges to f(z). Again using that f is injective we
have that x = z. Since U is open, for large enough n we must have z,, € U.
However, this contradicts the fact that f(x,) = y, ¢ f(U). Thus, it must be
that f(U) is open. Thus, we have that f(M) is a submanifold.

It only remains to show that f : M — f(M) is a diffcomorphism. By
assumption we have that f is smooth and bijective. This gives an inverse map
f~': f(M) — M. However, since we know that f is a local diffeomorphism,
this implies f~! is a local diffeomorphism and so is smooth. Thus, we have
a smooth bijective map from M to f(M) with a smooth inverse, thus it is a
diffeomorphism. O
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The next case to handle is when f : M — N is a smooth map and dim M >
dim N. In this case D, f is a linear map from T3 (M) to Ty, (N) with dimg T;, (M) >
dimg T'y(5)(IV) so the best we can hope for in this case is for D, f to be surjective.

Definition 3.5.45. Let f : M — N be a smooth map so that D, f is surjective.
We say f is a submersion at x. If f is a submersion at each point x € M, we
simply say f is a submersion.

The canonical submersion is given by the map
R™ — R"
(@1, oy Tm) = (21,00, ).
As in the case of immersions, it turns out that locally this is the only submersion.

Theorem 3.5.46. (Local Submersion Theorem) Let f : M — N be a submer-
sion at x. Then there are charts (U, @) and (V,v) around x and f(x) respectively
so that the following diagram commutes:

U \%4
«pl J/w
canonical submersion
Wh Wo

Proof. The proof of this theorem is very similar to the proof of the Local Im-
mersion Theorem. We begin by choosing charts (U, 1) and (V%) around
x and f(z) respectively with ¢; : Uy — R™ and ¢ : V — R". Let
g=1ofo cpfl. Observe that D, (,)g is surjective, so by change of bases
we may assume that D, (,)g is given by the n x m matrix (I,]0). Define
G :R" - R" by G(a) = (g(a), ant1,- .-, am) where a = (aq,...,an). Then we
have that D, ;)G = I, and so G is a local diffeomorphism at ¢1(x). Observe
that ¢ = G o (canonical submersion). Thus, there exist open sets Wy, Wa, W3
so that the following diagram commutes (after possibly shrinking U and V):

f
U 1%
®1 l: :lw
W1 W3
G Anical submersion
Wo
Thus, if we set ¢ = G o 1 we have the result. O
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We saw above that by requiring an immersion to be injective and proper we
could conclude that the image is a submanifold. In the case of a submersion,
we are interested in the preimage of points. In particular, given f : M — N,
we would like to be able to determine when f~1(y) is a submanifold of M for
y € N. Such results are incredibly important when studying algebraic curves
for instance. We will see such an example after the result.

Definition 3.5.47. Let f : M — N be a smooth map. We say y € N is a
regular value of f if Dy f : Tp.(M) — T,(N) is surjective for every z € f~1(y).

Theorem 3.5.48. Let f: M — N be smooth and y € N a regular value of f.
Then f~Y(y) is a submanifold of M with dimension m — n.

Proof. Let y € N be aregular value and z € f~*(y). (Note the result is trivially
true if y ¢ f(M).) We need to show that there is a chart (U, ¢) around = in M
with ¢ : U — Wi C R™ so that (U N f~1(y)) = Wi NR™ ™.

Since y is a regular value of f, we see that f is a submersion at = and so
Theorem 3.5.46 gives charts (U, ¢) and (V) around 2 and y respectively as in
Theorem 3.5.46. Observe that U N f~1(y) is an open set in f~!(y) containing
x. We must show that (U N f~1(y)) = Wi NR™™". We may assume that
¥ (y) = 0. Observe that we have

FHGIT = {670, .0, Zets o ) (0,0, 21,y ) € WACRT MY,
Thus, p(f~1(y) NU) = Wy NR™™" and we have the result. O

Corollary 3.5.49. Let f : M — N be smooth and set Z = f~1(y) fory € N
a regular value. Then for any x € Z the kernel of Dyf : T,(M) — T,(N) is
T.(Z).

Proof. Note that since f(Z) = y, we have D, f|z = 0. The face that y is a
regular value gives D, f : T,,(M) — T, () is onto and so

dimp ker(D, f) = dimg T, (M) — dimg Ty (N)
=dim M — dim N
= dim Z.

Thus, T,(Z) is a subspace of the kernel that has the same dimension as the
kernel and so they must be equal. O

Example 3.5.50. Consider the map f : R"™* — R given by f(x1,...,2n11) =
x? + -+ 22 . It is clear that this is a smooth map. Observe that for a =
(a1,...,an+1) we have D, f = (2a1,...,2an4+1). Thus, for a # 0 we have that
D, f is surjective and so f is a submersion away from 0. In particular, this
shows that S™ = f~1(1) is a n-submanifold of R"*!. This shows how useful

this theorem can be as it eliminates having to define charts in many cases.
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Example 3.5.51. Let E be the elliptic curve defined by 3% = 2% — x along with
the usual point at infinity. Let f : R? — R be defined by f(z,y) = y® — 2% + 2.
Observe that for a = (a1, a2) we have D, f = (—3a? + 1,2az). The only points
where D, f will not be surjective are when 3a? = 1 and 2as = 0. Thus, we must
have as = 0 and a; = +1/4/3. Observe that E(R) = f~1(0). We easily see that
the points (+1/+/3,0) do not lie in E(R) and so E(R) is a 1-submanifold of R?.
A graph of E(R) is given as follows:

—
i

Definition 3.5.52. Let M be a manifold that has a group structure as well. If
the multiplication and inversion maps are smooth we call M a Lie group.

The theory of Lie groups is a subject unto itself so we only give an example.

Example 3.5.53. Let M,,(R) denote the set of n x n matrices with entries in R.
It is easy to see that this is diffeomorphic to R by just listing out the entries
of the matrix as a tuple. Let Skew,,(R) denote the subset of skew-symmetric
matrices, i.e., the matrices A in M, (R) so that ‘A = —A. This is a manifold
of dimension @ (see Exercise 3.5.54.) Define f : My, (R) — Skews,(R) by
f(A) = 'Au, A where (,, = <(1)" _01") It is clear that this map is well-defined
and smooth. We would like to show that Sps,(R) = f~!(1,) is a submanifold
of My, (R). First we calculate the derivative of f at a matrix A € My, (R). We
have

f(A+hB) - f(A)

Daf(B) = lim

h
t ot
— lim (A4 hB)i,(A+ hB) — AL, A
h—0 h
. LAty A+ h(*Av, B) + h(*Bi, A) + h2(*Bu, B) — *Au, A
= lim
h—0 h

= '4,,B+ 'Bi, A
= '"Av, B — (*A1,, B).

In order to apply Theorem 3.5.48 we must show that D4 f is surjective for
each A € Sp,,(R), i.e., for each C' € Skewa, (R) there exists B € Ma,(R) so
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that 'Av, B+ ‘B, A = C. Observe that since C € Skews, (R) we can write C' =
$C—1('C). In particular, if we can find B so that ‘Ai,, B = $C we will have the
surjectivity. Note that ¢, is invertible, in particular, ¢, 1 = (_Of (1)"> This
shows that A is invertible as well with A=! =41 tAs,,. Thus, set B = (‘4¢,,)C
and we have the result. Thus, Sp,,, (R) is a submanifold of My, (R) of dimension
(2n)? — 72"(2;’_1) =n(2n —1).

Exercise 3.5.54. Show that Skew, (R) is a manifold of dimension @ In
particular, show it is a submanifold of M, (R).

Exercise 3.5.55. Show that matrix multiplication and inversion is smooth on
Spay, (R) and so Spy, (R) is a Lie group.

Exercise 3.5.56. Let O,(R) be the set of orthogonal matrices, i.e., the A €

M,,(R) so that YAA = 1,,. Show that O,,(R) is a Lie group of dimension %

These examples show that Theorem 3.5.48 is a very powerful tool for con-
structing manifolds. It is natural to ask given a smooth map f : M — N, are
there regular values of f? If so, are there many of them? Fortunately there are
always a large number of regular values. This is given by Sard’s theorem, which
we state here but omit the proof of. One can find a proof in Chapter 1 of [6].

Theorem 3.5.57. (Sard’s Theorem) Let f : M — N be a smooth map of
manifolds. The set of points of N that are not reqular values constitutes a set
of measure 0.

Corollary 3.5.58. The reqular values of any smooth map f : M — N are
dense in Y. In fact, if fi + M; — N is a countable collection of smooth maps,
then the points in N that are simultaneously reqular values for all f; are dense

n N.

We end this section by stating Whitney’s embedding theorem. This will
allow us to assume M C R?™*! for any manifold M. This is useful in many
contexts but certainly is not an obvious result. For instance, projective space
does not obviously embed into a Euclidean space. A proof of Whitney’s embed-
ding theorem can be found in [1].

Theorem 3.5.59. (Whitney’s Embedding Theorem) Let M be a m-manifold.
Then there exists an embedding of M into R?™+1,

In fact, Whitney was able to show that M embeds into R?™, but this result
is much more difficult than the one stated. For our purposes the important
point is just to note that such an embedding exists. It is also useful to note that
the stronger version of the theorem is optimal. In particular, it states that the
Klein bottle embeds into R*. One can see that the Klein bottle does not embed
in R? which shows the result is optimal. Another easy example would be to see
that S! embeds into R? but not into R*.
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3.6 Differential Forms on Smooth Manifolds

In this section we define differential forms on smooth manifolds and the corre-
sponding de Rham cohomology groups. This will set the stage for § 3.7 when
we study integration on smooth manifolds and prove Stokes’ theorem in this
setting. As in § 3.5, when we refer to a manifold M we will always mean a
smooth manifold unless otherwise noted.

Recall that for U C R™ an open set, the space of differential forms QF(U)
consists of smooth functions w : U — Alt*(R™), i.e., for each z € U we had
w(x) € AltF(R™). We want to generalize this to the setting of manifolds. Let
M be a m-manifold and let

w: M — Al*(T(M))

be a function with w(z) € Alt*(T,,(M)) for each z € M. Let (W, 1) be a local
parameterization of M, i.e., v : W — U is a diffeomorphism between an open
set W C R™ and an open set U in M. For any y € W, this gives an isomorphism

Dyp : R™ —= Ty, (M),
which in turn gives an isomorphism
Al (Dy) « A" (T, (M)) — A" (R™).
Define

OF () (w) = " () : W — ALF(R™)

y = Alt"(Dy ) (w(3(y)))-
For clarity,
Wt 2 ATy (M) — ) Alt*(R™)
Y Y(y) w(P(y)) = ALt"(Dy 1)) (w(¢(y)))-

Observe that *(w) is a function on Euclidean spaces so we have a notion
of smoothness here from classical analysis. We can use this to define the notion
of a differential form on M.

Definition 3.6.1. Let w: M — ]_[xeMAltk(Tw(M)) be as above. We say w is
a smooth differential form on M if ¢*(w) is smooth for every local parameteri-
zation (W, ). We denote the set of smooth differential forms by QF(M).

We will refer to smooth differential forms as just differential forms.
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It is useful to note here that the map 1* is the generalization of the map
QF (1) given in § 3.3 when 1 was then a map between open sets in Euclidean
space. The only difference is in the present case our map moves through an open
set in M where before all the open sets were in Euclidean space. From now on
we write QF(v)) as simply ¢* as it is assumed by this point one has sufficient
experience with the notions to be able to understand & from context. One can
go through and write everything with QF(z)) instead of 1* if one prefers, but
one should keep in mind that when reading other sources this will be denoted
1* there as well.

Exercise 3.6.2. Show that Q°(M) consists of smooth functions.
Exercise 3.6.3. Check that (1)1 o ¢2)*(w) = ¥5 (¢ (w)).

Lemma 3.6.4. Let M be a manifold and {(W;,v;)}ier a family of local param-
eterizations so that U;ep;(W;) = M. If ¥F(w) is smooth for each i, then w is
smooth.

Proof. Let (W,4) be any local parameterization and let y € W. Since the
sets ;(W;) cover M there is an i so that ¢(y) € ¢;(W;). Let f := ;' o) :
=1 (ah;(W)) — W;. We have that f is a smooth map between open sets in R™.
Observe that if we restrict 1 to ¢~ (;(W;)), then we have ¢ = 1; o f. Thus,
using the exercise above we have in a neighborhood of y that

P (w) = (io ) (w)
= (i ().

However, by assumption f* and ¢ are smooth so we get that ¢* is smooth and
thus w is smooth. O

Note that this result says that we do not have to check smoothness for every
local parameterization, it is enough to check it for a collection of parameteriza-
tions that cover the manifold.

Our next step is to define the exterior derivative in this setting. As with
everything else, we define the exterior derivative

d* - QF (M) — QM)

via local parameterizations. Let w € QF(M) and (W, ) be a local parameteri-
zation around x € M. Set

dhw = AT (D)) o di (¥ w)

where ¥(y) = x. First, one should check that this indeed maps QF(M) to
QFFL(M). This follows from the definitions of the maps involved. We need to
check that this definition is independent of the choice of local parameterization
used. Let (Wi,9) be a local parameterization for x € M with ¥(y) = =.
Any other local parameterization can be given by v o f where f : Wo — W3
is a diffeomorphism, Wy C R™ open. Let x1,...,254+1 € T, (M) and choose
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V1., U1 € R™ with Dy (¢ o f)(v;) = x;. Let y' € Wy so that f(y') = y and
define wn, ..., wry1 in R™ so that D, f(v;) = w;. We must show

d;jz/}*(w)(wl, R T dg,(w o fY (w)(v1y .-y Vkg1)-
From a previous exercise we have that
(o f) = froy™
We also have from Theorem 3.3.34 that
d*f*(r) = f*d"(r)
where here we want 7 = 1)*(w). Observe that we have
dy (o f) (W) (vr, ... vrt1) = (f* o) (W) (v, ..., Vk1)
= dy [T (" (W))(v1, - - -, Vkg1)
= f (de) (@) (v, - vpt1)
Althrl(Dy’f)(dkw ( ))(Ulv s 7U/€+1)
= dk Y (W) (Dy f(v1),- .., Dy f(vr41))
dkd) (W)(wry ..., Wet1)-
Exercise 3.6.5. Check that d*™1 o d* =0 for all k > 0.

Exercise 3.6.6. Show that if M is diffeomorphic to N, then QF(M) =2 QF(N)
for all £ > 0.

Thus, we have produced a chain complex

Note that Q¥(M) = 0 for k > dim M as then Alt*(T,,M) =0 for all z € M. As
was shown in § 3.2, a chain complex gives rise to cohomology groups.

Definition 3.6.7. Let M be a manifold. The k** de Rham cohomology group
of M is defined by
H{R (M) = H*(Q(M).

Exercise 3.6.8. Show that Hig (M) consists of locally constant functions.

Note that Exercise 3.6.6 shows that if M is diffeomorphic to N then Hig (M) =
HA: (N) as one would expect. Tt is also important to note that if ' C R” is an
open set, if we view U as a m-manifold this definition of de Rham cohomology
agrees with what was defined earlier.

Let f : M — N be a smooth map. For each £ > 0 this induces a map
i QF(N) — QF(M) via

D (f)(r)(@) = [ (1) () == AL (Do f)(7(f ()
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for k£ > 0 and

QUf)(1)(2) = f*(7)(@) == 7(f(2)).
For this to be well defined one must check that the image of f* actually lies
in QF(M). We leave this verification as an exercise to the curious reader. It

basically amounts to showing it is smooth by choosing a local parameterization.
As in § 3.2, this induces a map on cohomology Hky (f) : HEL (N) — HER (M)

defined by
Hir (F)((7]) = [£*(7)).

We can define a wedge product as before since the wedge product on the
alternating spaces was done in full generality in § 3.2. Thus, we define A :
QF (M) x QY (M) — QM) by (wAT)(z) = w(z) AT(7). As before, we extend
this to the cohomology groups in the natural way.

Exercise 3.6.9. Show that for w € Q%(M) and 7 € Q'(M) we have
A wAT)=d*w AT+ (1) *w Adr
wAT = (=D)krAw.

This shows that we have a contravariant functor from the category of man-
ifolds with the morphisms being smooth maps to the category of graded anti-
commutative R-algebras.

Let M = U; U U, with U; and Us open sets. As in § 3.4 we have natural
inclusion maps ig : Uy — U; U Us and ji : Uy N Uy — Uy. Following the same
argument as given in the proof of Theorem 3.4.2 we have the following result.

Theorem 3.6.10. With the set-up as above we have that the following sequence
is exact for each 1 > 0:

. -1l
0 — QUM) = QUUY) & Q' (Us) 2 QU UL N Us) — 0

where it (w) = (i (@), i5(@)) and (w1, ws) = j3 (w2) — 5 (@1)-

Recall that the only real difficulty in showing the exactness of the sequence
in Theorem 3.6.10 is the exactness at the last factor. As in the case of open sets
in Euclidean space, we see that given w € Q'(U; N Us) and a partition of unity
{pv,, pu, } subordinate to {Uy, Uz}, the element (—py,w, py,w) maps to w.

As before, we use this exact sequence to produce a long exact sequence in
cohomology.

Theorem 3.6.11. (Mayer-Vietoris Sequence) With M, Uy, and Us as above
we have a long exact sequence in cohomology

Hl il Hl -1 1
e Hh (M) " HY ()@l (U5) T H (0nn0) 2 BN (U) —

Exercise 3.6.12. Show that for w € Q!Y(U; N Us), the map &' is given by
8 () = [d'(puw)] on Uy and 8 (]) = [d!(pus,w)] on Uy where {pu,. pu, } is 2
partition of unity subordinate to {Uy, Us}.
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Example 3.6.13. We compute the de Rham cohomology of the circle. We
choose open U; and U, in S! as in the following picture:

Us

We have S* = U; UUy and Hig (U1) ©@HSR (U2) = RE&R and HR (U1 NU,) =
R @R since we have that dimg H)g (M) is the number of connected components
of M as before. We have

0 — HiR(S') — ROR —RPR — Hig(S!) — 0

where we have used that Hig(U1) = Hig(Us) = 0 because U; and U, are
diffeomorphic to R and Hjg(R) = 0 by Poincare’s Lemma. This shows that
Hig(S') = R and so we have

~f R k=01
HSR(SI)_{O k> 2.

As in the case of open subsets of R™, one has the following result in the case
of manifolds as well. The proofs are virtually identical to the ones given before.
The interested reader can fill in the details by working via charts.

Theorem 3.6.14. Homotopic maps induce the same map in cohomology. In
particular, two manifolds with the same homotopy type have the same de Rham
cohomology.

Example 3.6.15. Let T be the torus. We have seen that this is a 2-manifold.
We now calculate the cohomology groups of 7. We must make the assumption
that Hig(7) = R for this calculation to work out. We will see in the next
section that this is a special case of a much more general result, namely that if
M is a compact connected oriented m-manifold, then Hjy (M) = R. The torus
is such a manifold, so we use this result in our calculation.

Let U be a little more than the upper half of the torus and V be a little
more than the bottom half. This can be pictured as follows if we let the top of
the torus be where the left and right edges identify.
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Uy U,

We have that U; and Us are diffeomorphic and are given by an annulus.
This is clearly seen to be homotopic to S!, so we know the cohomology of U;
and Us. We have that U; NUs looks like an annulus inside another annulus. It is
clear that Uy N Uy can be written as the disjoint union of open sets Wy and W,
each homotopic to S'. Thus, we have HA (U N Uy) = HAR (W) @ HER (W) =
HAR (SY) @ HAR (S1). Note that since T is connected, we have that H g (T') = R.
We can now apply Mayer-Vietoris to calculate HSR(T):

0-R—-ROER—-ROR - HiR(T) = RB®R - R®R — H3z(T) — 0.

We have that Tm(H3R (%)) = R and so necessarily ker(H)g (%)) 2 R. This gives
that Im(HYR (5°)) = (R ® R)/R = R. Thus, ker(9°) = R and so Im(9°) = (R ®
R)/R = R. Thus we see dimg Hjz(7T) > 1. We also obtain that ker(H}g (i')) =
R.

Now observe that since 9! is surjective and H3g (T) = R, we have ker(d?)
R. Thus, Im(H}z (j')) = R as well. Then this gives that ker(Hjg (1)) =
which in turn gives Im(HAg (i')) 2 R. Thus, we have Hig (T)/ ker(Hjg (i)
Im(H}g (i), i.e., Hig(T)/R = R. So we must have Hjz (T) = R @ R.

~
R,
~

Exercise 3.6.16. Calculate the cohomology groups of the “doughtnut with two
holes.”

Our next step is to discuss differential forms and de Rham cohomology with
compact support. Recall that the support of a continuous function f on a
topological space X is Cl({x € X : f(x) # 0}). We can now go through and
define the differential forms with compact support QF(M) to be the space of
differential forms on M that have compact support. Many of the same properties
hold. In particular, {QF(M)};>0 forms a complex so that we can define the
de Rham cohomology groups with compact support HﬁR)C(M) = H*(Q* (M)).
There is one major difference in the case of compact support. Let f: M — N
be smooth function and let w € QF(N). In this situation the map QF(f) is a
map QF(N) — QF(M). In particular, there is no reason that QF(f)(w) should
have compact support even if w € QF(N).

Exercise 3.6.17. Let f : M x R — M be the projection map. Show that the
of a function with compact support under f does not necessarily have compact
support.

This shows that QF is not a functor on the category of smooth manifolds
and smooth maps. We need to adjust things if we wish this to be a functor.
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There are two ways to accomplish this. The first way is to observe that QF is a
contravariant functor under proper maps. In particular, if we require f : M — N
to be a proper map, then everything works out fine. This is not the approach
we will take. The second way is to observe that we can make QF into a covariant
functor under inclusions of open sets. In particular, if 7 : U < M is the inclusion
map of an open set U € Ty into M, then i¥ : QF(U) — QF(M) is the map that
sends w € QF(M) to a differential form on M by setting w(x) =0if x € M —U.
The reason we choose this second method is that it is the natural way to frame
Poincare duality.

Exercise 3.6.18. Show that if w € QF(M) and 7 € QL(M), then w AT €
Qe ().

Exercise 3.6.19. Show that HgR)C(R) =0.
Exercise 3.6.20. Show that

(R k=0
HSR)C(pomt) = { 0 otherwise.

Our next step is to give the Mayer-Vietoris sequence in the setting of com-
pactly supported differential forms. As before, let M = U; UUsy with Uy and U,
open sets. Let ji : Uy NUs — Uy and iy, : Uy — Uy U Uz be the inclusion maps
as before. We obtain inclusions

Uy
Uy NU; M=U,UU,.

Us

Using the convariance of the functor Q¥ under inclusion maps we obtain a se-

quence

-k

K i
QF (UL N Uy) T QR (U) @ QF (Up) —— > Q(M)
W (jic,cwv _jég,cw)
(wl, WQ) } Z.IQC)CLUQ + i’icwl.
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Theorem 3.6.21. The sequence of forms with compact support

-k Z—k
0 — QX (UL N L) 25 Q8 (Uy) @ Q8 (U,) == QF (M) — 0
s exact.

We leave the proof of this theorem as an exercise. The only real difference
from the previous proof is that in this case the form w € Q¥(M) is the image of
the form (py,w, py,w) € QX (UL) @ QF(U,).

We again obtain a long exact sequence in cohomology.

Theorem 3.6.22. With M = Uy UUs as above we have a long exact sequence
in cohomology

Hir, (7¢) Hig o (ic)

k
s B J(UINU2) S W (U @A, (Us) S HAL (M) 2 HEEL(UiNUR) — -

One can explicitly write down the map 0% here as follows. Let [w] €
HgRﬁc(Ul U Us) and write w = w; + wy with w; € QF(M) and supp(w;) C Us.
Observe that we have [d*w] = [d¥w; + d*ws]. However, since w is a closed form
we have that [dw] = 0. Thus, on U; N Uy we have d*w; and —d*ws are closed
form and [d*w] and [~dFws] agree on U; N Uy. Thus, either of these closed
forms represents 9% ([w]).

One should note that if M is compact, then H§R7C(M) = HE(M). In
particular, we know the compactly supported cohomology groups of S and T
since we calculated HAg (S1) and HEy (T) above. However, if M is not compact
the cohomology groups may not be equal. For example, the above exercise gives
that Hp .(R) = 0 where Hjg (R) = R.

In order to effectively use Mayer-Vietoris to compute compactly supported
cohomology we need an analogue of the Poincare Lemma. We have the following
theorem.

Theorem 3.6.23. (Poincare Lemma for Compact Support) For n > 1 we have

k ny ~v R k=n
HdR,c(R )_{ 0 otherwise.

Proof. We begin by showing
Hig,o(R" x R) = Hig | (R")
for all k > 1. Let w € QF(R™ x R). As before, we can write

W= Z fr(z,t)dzr + Zg,](a:, t)dt A dx g
I J

where this time we have that f; and g; are compactly supported smooth func-
tions on R™ x R. Define

TrQFR" x R) — QF1(R™)
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by setting

_Z</ngtdt)d:cJ.
J
Observe that we have

8gs(z, 1)
AP0k 995@:1) 4y n g A day.
Ox; J

We also have

Ofr(x,t) dg(x,t)
dw = X Tdt/\d.@]- < Tx]dt/\dfﬂj /\dCC]

and so
UL (Fw) = —dF 1ok,

To see this, we have used that f; has compact support and so

/ﬂ@%dt = lim f(z,a) - lim f(z,b)=0.

Thus, we see that UF is a chain map and so induces a map of cohomology
Hig (%) : Hig J(R™ x R) — HiR! (R"). (Adjust the proof of Lemma 3.2.1 to
see this is true.) 7

Let 7 = ¢(t)dt be a compactly supported 1-form so that le/) = 1. Define

ko QFR™) — QFFL(R™ x R) by sending w to 7 A w. Note that the map ®*

commutes with the exterior derivative so induces a map on cohomology as well.
We also have that U¥*! o ®F is the identity map on QF(R™). It is not the case
that ®F o WF+1 is the identity map, but we will show that it is homotopic to
the identity so on the level of cohomology is the identity map, which gives that
HSR,C(Rn X R) = Hﬁi}c(Rn)

We now construct a chain homotopy =. In particular, we will show that on
QF(R™ x R) we have

(3.5) 1 — @FErTL — 4 (ghzktl — Zht2ghtly,
Set A(t) = fioo 7. Define ZF : QF(R" x R) — QF~1(R" x R) by sending w to

Z K/; gJ(I,y)dy> dry — A(t) (/R gJ(x,t)dt> d:c,]] .

J

Observe that since all of our operators are linear, it is enough to check equation
(3.5) on differential forms of the form fr(z,¢)dr; and gj(z,t)dt A dzy that
add up to w. We begin with a form fr(x,t)dz;. First, we have that (1 —
OFUFHN) (fr(z,t)dxr) = fr(x,t)dry, as can easily be seen from the definitions
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of ®* and WU**!. We now must calculate (d*ZF 1 — ZF+2dF+1)(f1(z, t)dzr). We
have that Z¥1(f;(x, t)dz;) = 0 by definition, so we have
y
(dkEk-‘rl _ Ek+2dk+1)(f[($, t)d(E]) (Ek+2dk+1)(f]($, t)dl'[)
= —EM2(dF L (fr(x,t) A dap))
F2dO(fr(2,t)) Adar + fr(z,t) AdE T day)

[1]
B

(1]

S Afi(z, ) Afr(z,t)
_=k+2 g\t
<l§_1 " dr; Ndxp + ————— n ———~dt Ndx; +0

(2 [ 2

= —f](l', t)dw]

where we have used again that f; is compactly supported. This gives the result
for differential forms of the type fr(x,t)dz;.

Now we consider differential forms of the type gj(x,t)dt A dz ;. In this case
we have

(1 — ®*T*H) (g (x, t)dt Adxy) = gy, t)dt Adxy — T A (/ gs(z, t)dt> dxj.
R

We now compute (d¥=F+1 — Zk+2gk+1) (g5 (z, t)dt A dxy):

t

d*=* (g (z, t)dt A day) = dF ((/_OO g7(z, y)dy) ANdzy— A(t) (/R g7 (z, t)dt) A d;w)

=d" (/_too gJ(x,y)dy) Adxy — d* (A(t) /HQgJ(:c, t)dt) Adzxy

" 0 t o t
= ‘ (/ 9.(z, y)dy> dx; Ndxy + e </ g (z, y)dy> dt A\ dzy

— 00

B
—TA(/RgJ(x,t)dt>de— Zn: l(/g]xt)dt>d:1:i/\d:c(]

=1

n t
- Z 36_ (/ gJ(év,y)dy> dzi Ndxy + gg(z,t)dt A dxy

0
o2, (/R gJ(:C,t)dt> dx; ANdzy

n

— () ( /R gJ(x,t)dt) Ndes = A0 Y
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—ERR2GE Y (g (a, t)dt A day) = —EF2 (d(gy(x,t) Adt A dy)

8:@»

=1

) t
= _zk+2 Z 79"(96_’ )dgci Adt A de>

- o t
- (Mdt A da; A da:J)

Thus, we see that

(dFEhtt — 22k (g (z, t)dt Aday) = gz, t)dt Adzy — 7 A (/R g7(z, t)dt) dx g
= (1 — ®FWF ) (g (x, t)dt A day)
as claimed. Thus, we have the result that
Hig,o(R" x R) 2 Hig | (R")

for k > 1.

We can now finish the result by induction. We wish to calculate HSR#‘,(R”).
We begin by showing H(liRﬁc(R) =~ R. Since we already know that HgRﬁc(R) =0,
this will give the result for n = 1. Consider the integration map

/ : Qi (R) — R.
R
This map is clearly surjective. Let f € QO(R) be a 0-form and df = %dz be

the image. Since f has compact support, we can find an interval [a, b] so that
supp(f) € [a,b]. Thus, we have

b
gdw—/ ﬁdgc

R Oz Ox
= f(b) — f(a)
=0-0
=0.

This shows that fR vanishes on the exact 1-forms. Suppose now that g(x)dx
lies in the kernel of fR. Then we have that

_iK/;%Z”dy)dxmdm_A(t) (/}R%

— _=k+2 (Z Md:ci Adt Adzy+ %dt A dt N\ dau)

dt) dx; A d:c(]]



has compact support and df = g(z)dz. Thus, we have that the kernel of fR is
exactly the exact 1-forms and so we have

Hig (R) 2 R.

This combined with the isomorphism HgRyc(R” x R) HER,C(RH) gives that
Hig .(R™) 2R for all n > 0. Similarly, using the fact that HgRyc(Rk) = 0 for
all k > 1 combined with the isomorphism and induction gives the rest of the
result. (|

In the next section we will define integration on manifolds. It is via inte-
gration that many of the results calculating the compactly supported de Rham
cohomology of manifolds are proven.

3.7 Integration on Manifolds

In this section we generalize integration from R"™ to a certain type of manifold.
Before we work on manifolds, we recall some notions for integration in R™ and
open subsets of R™.

Let z1,...,z, be the standard coordinates on R™. The Riemann integral of
a function f on R is defined by

fdxy - dxy, = Z fAzy - Ax,.

R™ Axz;—0

One learns in analysis class that the Riemann integral can be generalized to
Lebesgue integration which allows a larger class of sets and functions to be in-
cluded in the definition. We now frame integration on R” in terms of differential
forms.

Let w € Q(R™). We have seen that we can uniquely write

w(z) = f(x)dxy A+ Ndxy,

for f a compactly supported smooth function on R™ with values in R. Note that
strictly speaking we have not shown this for compactly supported differential
forms, but all of the arguments given clearly work in this case as well. We define

/w:/ fdacl/\---/\d:vn:/ fdp,
" n Rn

where dpu,, denotes Lebesgue measure on R™.
Let U C R™ be an open set and let w € Q2(U). We can again write

w(z) = f(x)dxy A+ ANday,

for f € Q%(U). We can smoothly extend f, and so w, to R™ by setting f(x) =0
for © € R™ — suppy(f). Thus, we can define

oo ke

where in the second integral it is understood that w is extended by 0 off of U.
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Lemma 3.7.1. Let U and V be open sets in R™ with ¢ : U — V a diffeomor-
phism. Assume that det(D,$) has constant sign § = +1 for all x € U. (Note
that det(D, ) is simply the Jacobi determinant.) Then for w € Q2(V) we have

free)

Proof. Let w € Q(V) and write w = fdxy A---Adx, = fAdxy A~ Adx, with
€ Q2V). We have

" (w)(x) = ¢*"(f Ndxy A+ Ndxy)(x)
= ¢"(f)(x) N o™ (dz1) A+ N §"(dzn)
= f(¢(x)) Ao (z1) A+ Ndo" (zn)
= f(¢(z)) det(Dyd)dxy A -+ Adxy,
where we have used Exercise 3.3.44. Now observe that § = % and so we
have
/d)* /5f )| det(Dy@)|dxy A -+ A day,
U
=0 diy,
/Vf(x) i
=0
/V w
O

Definition 3.7.2. Let ¢ : U — V be a diffeomorphism between open sets in
R™. If det(D,¢) > 0 for all x € U we say that ¢ is orientation-preserving.

Note that integrals on open subsets of R™ are not invariant under diffeomor-
phisms, but are invariant under orientation-preserving diffeomorphisms.

Definition 3.7.3. Let M be a m-manifold with atlas {(U;, p;)}icr. We say
that {(U;, ;)} is oriented if the transition functions ¢; o ;! are all orientation
preserving. We say M is orientable if there is an oriented atlas on M.

Proposition 3.7.4. A manifold M of dimension m is orientable if and only if
there exists w € Q™(M) with w(x) # 0 for all x € M.

Proof. As in the proof of Lemma 3.7.1, we use Exercise 3.3.44 to note that
¢ : R™ — R™ is orientation preserving if and only if ¢*(dxy A -+ Adzy,) is a
positive multiple of dz; A --- A dx,, at every point.

Suppose that M has an oriented atlas {(U;, ;) }ier. Then we know that

(@j o gp:l)*(d:cl A A dIn) = fiﬁjddfl VARERWAN dCCn
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for some positive function f; ;. In particular, we can write
ga;(darl A ANdx) = @; (fij) A @i (dey A Adey,).

Thus, if we set w; = gp;(d:cl A+ ANday,) and w; = @f(dxy A -+ Adzy,), then we
have

wj = (fiy o @i)wi
where f; j o ¢; is everywhere positive.

Let {p;} be a partition of unity with respect to the cover {U;} of M. Set
w = El piw;i. Let © € M. Then we have that for all 7 where w; is defined at x,
then w; are all positive multiples of each other. Since p; > 0 and not all p; can
vanish at any point, we must have w(z) # 0 for all z € M.

Now suppose that there is a w € Q™ (M) so that w(z) # 0 for all z € M.
Let ¢; : U; — R™ be a chart. Then there exists a nowhere vanishing real-
valued smooth function f; on U; so that ¢f(dxy A -+ Adxy,) = fiw. Thus, we
must have that f; is either positive everywhere or negative everywhere. If f;
happens to be negative everywhere, we can replace @; by ¥; = ¢ o p; where
¢ : R™ — R™ is given by ¢(z1,...,2m) = (—x1,22,...,2m). Observe that
Yi(dzy A ANdxy) = @F o™ (dza A+ ANday,) = —pf(dzr A+ Aday,) = — fiw,
we see that it is fine to assume that f; is everywhere positive for all i. Thus, we
have that any transition function

wji + (Ui NU;) — (Ui N Uy )

will pull dzq A -+ - Ada,y, back to a positive multiple of itself. Thus, {(U;, ¢;)} is
an oriented atlas. g

Definition 3.7.5. Let M be a m-manifold and w € Q™ (M) a non-vanishing
differential form. We call such a form an orientation form on M.

Definition 3.7.6. Let w; and wy be orientation forms on M. We say w; is
equivalent to ws if there exists f € Q°(M) = C>°(M,R) so that w; = fws and
f(z) > 0forall x € M. An equivalence class of orientation forms on M is called
an orientation of M. We denote it by [M].

One should note that if M if connected, since f must have a constant sign
on M we must have that there are only two possible orientations for M. Let
w be an orientation form on M. Let vi,...,v, be a basis of T,M. We say
the basis is positively oriented if w(x)(v1,...,vn) > 0 and negatively oriented if
w(@)(vy,...,vm) <O0.

Example 3.7.7. Let M = R™. Recall that the differential form dzi A-- - Adx,,
is constant and non-zero. Thus, this gives an orientation form on R™. We
call this the standard orientation of R™. Under this orientation form the basis
e1 =(1,0,...,0),...,em = (0,...,0,1) is positively oriented. To see this, recall
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that

dzi(er) -+  dxi(em)
dxy N Ndxp (e, ..., en) = det '
dem(er) - dagm(em)
=det1,,

=1
where we write 1,, for the m by m identity matrix and we have used that
dzi(ai,...,am) = a;.

Let w € Q7 (M), {(Ui, i)} an oriented atlas giving the orientation [M] on
M. Suppose that there exists ¢ € I so that the support of w lies in U;. Then it
is natural to define the integral of w over M as

o= [ ee

If the support of w does not happen to lie in a single chart, we must define the
integral in terms of a partition of unity. Let {p;} be a partition of unity with
respect to the cover {U;}. Define

/[M]w B Z/n(‘pfl)*(piw).

One should note that this is well-defined by the orientability assumption. We
will write [, w for f[ a @ When the orientation of M is fixed. Note we also write

Ju, piw for [5. (; 1)*(piw) to ease notation.

Proposition 3.7.8. The definition of fM w s independent of the choice of atlas
in the orientation as well as the choice of partition of unity.

Proof. Let {(Vj,%;)} be another atlas in the orientation and {p’} a partition of
unity with respect to the cover {V;}. Note that since ) p" = 1 we have

Zi:/[]ipiw—;/ljipif’}u)-

Now pip;w has support on U; N'V; and so we have

/mp}w:/ pipw.
U; V;

2 J

Thus,
Z/ PiWZZ/ pip;-w
i U ig Vi
=3 [ oy
i Vi
where we have used that > p; = 1. This gives the result. O
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Definition 3.7.9. Let f : M — N be a diffeomorphism. Let M be oriented
by wys and N oriented by wy. We say that f is orientation preserving if the
orientation form f*(wy) is equivalent to wys. If the orientation form f*(wy) is
equivalent to —wys we say f is orientation reversing.

Lemma 3.7.10. Let M and N be orientable m-manifolds.

1. The integral f[M] w changes sign when the orientation of M is reversed.

2. If w e QI"(M) has support contained in an open set U C M, then

Joe=

where U has the orientation induced from M.

3. If f: M — N is an orientation preserving diffeomorphism , then we have

oL

Proof. This follows immediately from the fact that the results are true for open
subsets of Euclidean space along with the fact that we can use a partition of
unity to restrict to the case that the support of w is contained in a coordinate
patch. One should fill in the details as an exercise. O

for w € QT(N).

One might note at this point that we are only able to integrate a m-form on
a m-manifold. However, we can integrate other forms over submanifolds. Let
N C M be an oriented n-submanifold. Let i : N < M be the natural inclusion
map. Let w € QL(M). We have a natural “restriction” of w to N defined by
1*(w). For instance, if w is a 0-form, i.e., a smooth function real-valued function
on M, then we have i*(w) is exactly the restriction of the function w to N. If
w happens to be a n-form that has support that intersects N in a compact set,
then we can define the integral of w over N by setting

o[

It is understood that if we are integrating a form over a submanifold that we
mean the pullback of the form under the inclusion map so we generally drop
the ¢* from the notation.

Example 3.7.11. Let w = fidx1 + fodxs + fsdzs be a smooth 1-form on R3.
We wish to integrate this one form over a simple smooth curve C given by
v : I — R?® where I = (a,b) C R. Assume that w has compact support when
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restricted to C, in particular, assume that w is supported on ([, d]) for some
[e,d] C (a,b). Thus, we have that ~y serves as local coordinates and so we have

/Cw—/n”y (@)
—/Cdv*au).

Write v(t) = (71(t),v2(t), v3(t)). Recall from Example 3.3.43 that we have

3
Z dFYJ dt.

In particular, we see that in this case we have that fcw is exactly the line
integral of F = (f1, fo, f3) over the curve C as defined in calculus, i.e.,

/wz/F-dw.
c c

Example 3.7.12. Let w € Q%(R3) be given by
w = fldCCQ A dCCg + deIg A dIl + fgdd?l A dIQ.

Let S be a surface in R? given by the graph of a function G : R? — R with
x3 = G(x1,x2). We now put the integral f g w into a familiar form from calculus
class. The map h : R? — S given by

h(z1,z2) = (w1, 22, G(71,22))
gives a parameterization of S. We have

W (dzqy A dxg) = (dCCl
h* (d:ZTQ N dilfg) dCCQ

_dCCQ/\< dI1+ad2d >

= —6—$1(d$1 A dIQ)
h*(dlfg A dIl) == —g—G

( )—dCCl /\dCCQ,

) A h*
) A h*(da )_d:cg/\dG

o (dCCl A dIQ)

Thus, we have

/w:/ h*w
S R2

oG oG
— /R2(f1,f27f3)- (_8—:171’_8—352’1) dxy A das.
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To rectify this with calculus, observe that if we set n(xq, z2,23) = (—g—g, —g—xc';, 1)

then we have that n(z1, z2, x3) is perpendicular to S at each point (21, 2, x3) €
S. Let u = ‘—g‘ be the unit normal vector. Set F = (f1, fo, f3). Let dA =
In|dxy A dzg be a 2-form. This form is normally referred to as the area form of
the surface S. Our equation then reads

[o= [ ®-waa

which is the familiar integral of a function on a surface from calculus.

We would also like to give a generalization of Stokes’ theorem to the setting
of oriented manifolds. Of course, in order to make sense of Stokes’ theorem we
need to introduce manifolds with boundary. Let H™ be the subset of R™ given
by

H™ = {(z1,...,%m) : Tm > 0}.

It is clear that the boundary of H" is given by
OH™ = {(,Tl, ey m—1, 0)}

This is clearly diffeomorphic to R™~! under the map sending (x1,...,2m,_1) €
R™ 1 to (Il, ey Tm—1, O) € oOH™.

Definition 3.7.13. A manifold of dimension m with boundary is given by an
atlas {(U;, ¢;) }ier where U; is homeomorphic to either R™ or H™.

For each point x € 9M, the tangent space T,,(0M) has codimension 1 in
T, M. Thus, there are precisely two unit vectors in T, M that are perpendicular
to T,(OM). Let 1p : W — M be a local parameterization with ¢(0) = x and
W open in H™. We have that the map (Doy)~! : T, X — R™ carries one
of the unit vectors to the unit vector at 0 in R pointing into H" and the
other to the unit vector at 0 in R™ pointing outward from H". Lemma 3.7.14
shows that this does not depend on the choice of local parameterization. We
denote the unit vector in T (X) that maps to the outward pointing unit normal
vector by n, and refer to it as the outward normal vector. The orientation
on OM is given by declaring the sign of a basis v1,...,vy,—1 of T,(OM) to be
the sign of w(z)(ng,v1,...,vx—1). For n = 1 we declare the orientation of the
0-dimensional manifold to be the sign of n,. Note what is happening here is
that the orientation on M induces two possible orientations on M and we are
fixing which one we will work with. Recall from calculus class that one always
said a curve enclosing an area in R? was a positively oriented curved if the area
was to the left as one traversed the curve. That is essentially what is happening
here, just in more generality. This orientation is the correct one so that Stokes’
theorem has the familiar statement from calculus class.

Lemma 3.7.14. Let f : H" — H" be a diffeomorphism with everywhere positive
Jacobian determinant. The map [ induces a map [ of the boundary of H™ with
itself. The induced map, as a diffeomorphism of R*~! also has positive Jacobian
determinant everywhere.
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Proof. Let x be an interior point of H"™. The Inverse Function Theorem shows
that the preimage of x must itself lie on the interior of H" as well. Thus, we
see that f must map the boundary to the boundary. It remains to check that f
has positive Jacobian determinant.

Consider the case n = 2. Write

w1 = f1(y1,92)
x2 = fa(y1,92)-

We have that fis given by
z1 = fi(y1,0).

As the Jacobian determinant of f is assumed to be positive, we have

Q
~

Jé)
g—{; (y1,0) ?1 (41,0)
0_yf(y150) a_w(ylvo)

NN

> 0.

Q)

For a point on the boundary we have f3(y1,0) = 0 for all y;. In particular, this

gives that g—ﬁ(yl, 0) = 0 for all y3. The fact that f maps H" to itself we must

have %(yl, 0) > 0. Therefore, we have

on

.0) > 0,
o (y1,0)

which is what we wanted to show. O

Recall that OH™ is diffeomorphic to R™~'. We have an orientation on
OH™ via the induced orientation from H™ as described above, but we also have
an orientation arising from the diffeomorphism with R¥~!. However, it is not
always the case that these two orientations agree. Let eq, .. ., e,, be the standard
basis for R™. We saw above that this is a positively oriented basis with respect
to the standard orientation. Furthermore, eq,...,e,,-1 is a positively oriented
basis for R™~! with respect to the standard orientation there. The outward
normal vector to JH™ is given by —e,, = (0,...,0,—1). Thus, in the boundary
orientation of OH™ induced from the orientation on H™ the sign of the basis
€1,...,em—1 is the sign of the ordered basis —e,,, €1, ..., €,—1 in the standard
orientation of H™. One can easily calculate that the sign is given by (—1)™.
Thus, we see that the induced orientation on OH™ differs from the standard
orientation on R™~! by the factor (—1)™.

Theorem 3.7.15. (Stokes’ Theorem) Let M be a compact oriented m-manifold
with boundary. If w € Q7Y (M) and OM is given the induced orientation, then

/dm_lw:/ w.
M oM
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Proof. First, observe that since each integral is linear, we may assume that the
support of w lies in the image of a single local parameterization (W, ) with W
open in R™ or H™. We treat each case separately.

First, suppose that W is open in R™. In this case we see the support of w
does not intersect M and so f oy w = 0. Furthermore, we have

/M e /W pHanT)

= [ ).

Write 7 = ¢*(w). As 7 € Q7" HW), we can write
7= fidui A Adzi Ao A dag,
i=1

for some f; € Q2(W). Thus, we have

Ofi
8171'

(—1)1'_1%@01 A ANdpy,.
€Lg

dm1lr de; Adzy A - ANdxy A~ A da,

M-

1

.
Il

I
NE

1

.
Il

This gives

m

_ - afi
m—1 _1)i—1 ?
/Rmd T = g (-1) /Rm 6:Eid$1/\ A dxom,

1
o af;
it ~dptn.
/]Rm 6:51- a

We know from analysis that the Lebesgue integral can be computed by a series
of integrals over R in any order. We integrate the i*? term first with respect to
dz;. Up to multiplication by (—1)*~! the i*" term is given by

Rm™ 0x; Rm—1 — 0 ox;

.

m

> (

=1

:/ (lim filxky, .ot o o) — lim fi(arl,...,s,...,xm)>d:z:l-ch:z?lww
Rm—1

t—o0 §——00

where we have used that f; has compact support. Since this holds for i =
1,...,m, we have [, d™ 'w =0 and so the result holds for U open in R".

Now suppose that W C HF is open. The argument given above works up
until the very last step, and even here the only issue is with the dz,, term. In
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particular, we have

_ _ af.
d" = (—1)™ 1/ LY P
/M ( ) Rm (9xm H

We can rewrite this integral as

(=ymt %dum = (—1)’”‘1/Rm71 (/0 gﬁdwm> dzy - dTm_1.

R™ 8$m Lm

We now use the fact that f is compactly supported to conclude that

/ d™ = (=1)m ! / —fm(@1, . X1, 0)dxy - - X1
M

Rm—1

= (-m / Fon(@1s s T, 0) 1.
Rm—1

[ o=] =
oM OH™

Observe that since we have z,,, = 0 on OH™ we have dx,, = 0 on OH™ as well
and so the form

Now consider the integral

fidzi A Adx A+ Aday =0

except in the case that ¢ = m. Thus, the restriction of 7 to OH" is given by
T|3Hm = fm(xl, ooy Im—1, O)dIl JARERIAN dCCmfl.

Recalling that the diffeomorphism between OH™ and R™~! changes the orien-
tation by (—1)™, we have

/ w= fm(@1, ooy m—1,0)dzy A+ Adxpy—q
oM SH™
= (—1)m/ (@1, o T, 0)dpty—1.
Rm—l

Thus, we have the result in this case as well. O

Exercise 3.7.16. Show that the map
/ QM) - R
M

descends to a map on cohomology.

We will finish this chapter on differential topology by proving a version of
Poincare duality and observing a couple of corollaries of it. Before we can give
Poincare duality, we need the notion of a good cover of a manifold.
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Definition 3.7.17. Let M be a m-manifold. Let & = {U;} be an open cover of
M. We say that U is a good cover if all nonempty finite intersections of elements
in U are diffeomorphic to R™, i.e., for any U;,,...,U;, with U, N---NU; #0
we have that U;, N---NU;, is diffeomorphic to R™. If there exists a good cover
U of M so that U consists of finitely many open sets we saw the cover is of finite

type.

Theorem 3.7.18. Every manifold has a good cover. If the manifold happens
to be compact then the cover may be chosen to be finite.

We omit a proof of this theorem. It is not a particularly difficult result, but
it uses the result that one can put a Riemannian metric on a manifold and that
every point in a Riemannian manifold has a geodesically convex neighborhood.
Neither are particularly difficult results, but other than for this result we will
not encounter them so for brevity we omit them. To see a proof of this theorem
one can consult Theorem 5.1 of [2].

The Mayer-Vietoris sequence allows us to prove the following result.

Proposition 3.7.19. Let M be a m-manifold of finite type. The de Rham
cohomology groups of M are all finite dimensional.

Proof. First, observe that the Mayer-Vietoris sequence gives the exact sequence

- k-1 HAR (6F
s HAR (U N U) L Wb (U3 U ) M) W () @ Hg (U) — -

From this we have
Hig (U1 U Uz) = ker(Hig (")) @ im(Hig (%)) = im(9"") @ im(Hig (i*)).

Thus, we have that if Hig(U1), Hig(Us), and Hig'(Uy N Us) are all finite
dimensional, then HX (U1 U Us) must be as well.

First suppose that M is diffeomorphic to R". Poincare’s lemma then gives
the result. We now proceed by induction on the number of sets in the cover of
M. Suppose the cohomology of any manifold covered by at most n — 1 open
sets is finite dimensional. Let M be a manifold covered by {Uy,...,U,}. We
have that (U3 U --- U U,_1) N U, has a good cover by the n — 1 open sets
UynNnU,,...,U,—1NU,. Our induction hypothesis gives that Uy U --- U Up,_1,
U,, and (U U---UU,_1)NU, all have finite dimensional cohomology groups.
Now the remark above using the Mayer-Vietoris sequence gives the result. O

Exercise 3.7.20. Show that if M is of finite type then the groups HgRﬁc(M)
are all finite dimensional.

Let M be of finite type. The Betti numbers of M are defined by
bi(M) = dimg Hg (M).
The Euler characteristic of M is defined to be

X(M) = (=1)'0:(M).

=0
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It turns out that x(M) can be computed by studying vector fields. This result
is the Poincare-Hopf theorem. This would take us too far afield to prove or even
state precisely, but is worth mentioning.

We briefly recap a few linear algebra facts now. Let V' be a R-vector space.
Recall the dual space to V is given by VY = Homg(V,R). Let {(, ) : V@W — R
be a pairing of vector spaces. We say the pairing is nondegenerate if (v,w) = 0
for all v € V implies w = 0 and (v,w) = 0 for all w € W implies that v = 0.
Another way to view this is that the pairing is nondegenerate if the map v —
(v,*) defines an injection of V' into WY and the map w +— (*,w) defines an
injection of W into VV.

Lemma 3.7.21. Let V and W be finite dimensional R vector spaces. The
pairing

LY: VoW —=R
is nondegenerate if and only if the map v +— (v,*) defines an isomorphism

VvV = WY

We leave the proof of this lemma as an exercise. It is either familiar from
linear algebra or good linear algebra practice.

Exercise 3.7.16 shows that integration descends to a map on cohomology.
Let [w] € HEL (M) and [7] € Hg};f(M) for M a m-manifold. Then we have
[w]A[r] = [wAT] € Hik .(M). Combining this with Exercise 3.6.18 we see that
we have a map

/ CHER (M) ® Hg};j(M) =R,
M

Theorem 3.7.22. (Poincare Duality) The map [, : H§R®H?RT§(M) — R
gwen by integrating the wedge product is a nondegenerate pairing if M is an
orientable manifold of finite type. Equivalently, we have that if M is an ori-
entable manifold of finite type then

Hep (M) = (Hiy (M)

Before we can prove this theorem we need two lemmas. The first is the Five
Lemma, a proof of which can be found in any book on homological algebra.

Lemma 3.7.23. Given a commutative diagram of abelian groups and group
homomorphisms

f1 f2 f3 fa

Aq Ay —— As Ay As
O O N O ¢

in which the rows are exact, if the maps a, 3, §, and € are isomorphisms, then
S0 18 7.
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Lemma 3.7.24. The map
/M H (M) @ B E (M) — R.

induces a sign-commutative diagram

k—1 ik ke "
s Hig (U UV) Hig (U) @ HiR (V) - Hiz(UNV) — .
lf’f lfzk lfé
m—k \V (‘::nik)v m—k \V m—Fk v (j;’:nik)v m—Fk \V (aénikil)v
T HdR,c (U U V) HdR,c (U) S HdR,c (V) - HdR,c (U N V)

where to ease notation we write i* for HER(ik) and similarly for the other maps
on cohomology. Note here that sign-commutative means the diagram commutes
up to a possible difference in sign when one goes around a square along the
different paths.

Proof. This proof is mainly just writing down what each of the maps does. The
first step is to determine the vertical maps and the horizontal maps in the last
row. The vertical maps are easy to write down. Given [w] € H5x(U U V) we
need to associate a linear functional to [w]. Define ff([w]) € HglRTf(U uUv)Y by
setting

k w T = w TI.
A /UUV[ A7l

The map fX is defined analogously. The map f¥ is defined by

(el oo () [l) = [

U[wl A T11] +/V[w2 A T2).

The Mayer-Vietoris sequence for compactly supported de Rham cohomology
gives the long exact sequence

Hig (i

k k
Bk, () eRk, (V) ik (ouv) 2 HE (onv) — -

Hir o (3¢)
——

- — Hig (UNV)
Recall that given a long exact sequence of vector spaces
e Ay I A T A —

one has a long exact sequence of the dual spaces

\ Vv
9 g
AV nt1 AV n, AV
: > Apt2 > Aptq » Ay v

where the maps g/ are given by setting g/ (¢) = ¢ o g,,. This gives the maps
along the bottom row of the diagram.
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We will prove the result for the square with the i and (#™~*)¥ maps and
the square with the 0¥ and (97*"*~1)¥ maps, leaving the square with the j*
and (57~%)Y maps as an exercise. Let [w] € HE (U UV). Then we have

i@ An+ [ @) An

%

F* (D) =) = [

U

:/U[win/\ﬁ]-y/V[woiv/\Tg].

We have that the map ™% takes ([71], [2]) to [r1 0 iy + T2 0dy]. Thus we have

(i ") (FE (W)l [r2)) = fE (W[ 0 iv] + [r2 0dv])

:/ [w/\Tlin]-i-[w/\TgOiv]
Uuuv

/U[WOZ'U/\Tl]—i-/V[woz'v/\Tg].

Thus, we have the result for the first square.
The square with the 9% and (97 ~%~1)V is given by

8k

HiR (U NV) HE LU UV
k o
m—k Vi (8;n7k71)v m—k—1 V2
Hig . (UNV)Y ————Hiz . (UUV)".

Now let [w] € HER (U NV). Recall that 9%([w]) satisfies that 8*([w])|r =
[—d* (pyw)] and 9% ([w])|v = [d*(prw)]. Since [w] € HiR (U N'V), we have that
0% ([w]) has support contained in U NV, we can write for [1] € Hg};ffl(U uv)

k+1 kw T = k w T
FEL@ W) () /me ) A 7]
:/ [—d*(pyw) ATl
unv

Observe that we have d*(pyw) = dpy A w + py A d*w. Since [d*w] = 0 by
definition of the cohomology group, and [py A dFw] = [py] A [d*w], we have that
[d*(pvw)] = [dpv A w]. Thus, we obtain

LM (7)) = — /U i) ntl

Recall that the map 97" F~1 : Hggf_l(U uv) — Hggf(U NV) is given by
[7] — [d™ % 1(pyT)]. As above, we have that [d" * 1(py7)] = [d(pv)T].
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Thus, for w € HiR (U NV) we have

(3?’k’1)v(f§([w]))([ﬂ):/ [w A O]
unv

- / [w A d(pv)7]
unv
— (1 /U dlp)ont)

This gives the sign-commutativity of this square as well. O
We can now prove Poincare duality.

Proof. (Proof of Theorem 3.7.22) Note that Lemma 3.7.23 along with Lemma
3.7.24 shows that if we know Poincare duality for U, V', and U NV then we will
have it for U U V. We use induction on the cardinality of the good cover of M.
If M is diffeomorphic to R™, then Poincare duality follows from the fact that
Poincare’s lemma gives

L my~ ) R k=0
Hir (R™) = { 0 otherwise
and
k my ~v R k=m
HdRyc(R )= { 0 otherwise.

Thus, we have Poincare duality in this case. Suppose now that Poincare duality
holds for any manifold having a good cover with n—1 sets. Let M be a manifold
that has a good cover with n sets, say {Ux,...,U,}. We know that (U; U---U
Un—1)NU, has a good cover with n — 1 sets, namely, {U; NU,, ..., U,—-1NU,}.
Thus, our induction hypothesis gives that Poincare duality holds for U; U - - - U
Un-1, Upn, and (U3 U---UU,—1)NU,. Thus, as was mentioned at the beginning
of the proof this gives that it holds for Uy U --- U U, as well. Hence, we have
the result by induction for any manifold of finite type. O

Corollary 3.7.25. Let M be a connected oriented m-manifold of finite type.
Then we have
Hir,o(M) =R,

In particular, if M is compact, oriented, and connected then
Hp (M) = R,

Proof. We have by Poincare duality that (Hig .(M))Y = HSR (M) = R since
we are assuming M is connected. However, we know that a finite dimensional
R-vector space V satisfies V' =2 V'V, and so we have the first statement. If M
happens to be compact, then Hfjg .(M) = Hgi (M), which gives the second
statement. O
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Note that this result justifies the statement that was used in calculating the
cohomology of the torus T, namely that H3g (T') = R.

Let M and N be compact connected oriented m-manifolds and f: M — N
a smooth map. We define the degree of f, denoted deg(f), via the diagram

m Hir () m
dr(N) — Higr (M)

l deg(f) l

R R.

In other words, deg(f) is defined to be the real number so that

| ) =aeen) [ o

Lemma 3.7.26. The degree of [ depends only on the homotopy class of f :
M — N.

Proof. This is clear as the map H%; (f) depends only on the homotopy class of
f. O

Exercise 3.7.27. Show directly from the definition that the n'® power map on
S! has degree n.

We conclude this chapter with a proof of the fundamental theorem of algebra.

Theorem 3.7.28. (Fundamental Theorem of Algebra) Let f(z) = x™+a, 12" 1+
<+ +a1x + ag be a polynomial with complex coefficients. If n > 1 then f has a
root in C.

Proof. Suppose that f has no roots. For r > 0, define
gr: St — St

L d02)
7(2)]

Note that this is a smooth map and is well-defined by our assumption. Given
r,s > 0, we have that g, is homotopic to g5 by setting

(I =t)rz + tsz)
Fi(z) = 1F((T—t)rz + tsz)|

Thus, we have that for all » > 0 that deg(g,) = deg(go). However, go(z) = 1
and so deg(g,) = 0.
Let 7 > 0 and consider now the map G : S* x [0,1] — S defined by

) U (r2) — (r2)")
) = T i) — )
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This is well-defined as long as (rz)™ + t(f(rz) — (rz)™) # 0. Observe that we
have

(r2)™ +t(f(rz) = (r2)")| = [r2|" = [t(an-1(r2)""" + -+ + a1 (rz) + ao)|
>0 —an_1(rz)" " 4 4 ai(rz) + agl

> 1" — |ap_1|r" "t — - —a1r — ag.

We know that the limit of ™ — |a,,_1|r" "' — - — |a1|r — |ag| as r — oo diverges
to oo, so certainly there exists a large r so that |(rz)"™ + t(f(rz) — (rz)™)| # 0.
Thus, choosing such a r the map Gi(z) is well-defined and gives a homotopy
between g, and the map z +— 2™. Thus, deg(g,) = n. This contradicts the fact
that n > 0. O

Though a priori we only have that deg(f) is a real number, it turns out that
if M and N are compact m-manifolds, M connected, and f smooth then deg(f)
is in fact an integer. Let f : M — N be smooth with M compact, connected,
and oriented and N compact and oriented. Let y € N be a regular value of f
and x € f~1(y). The local index is defined by

Ind(f;z) = { 1 ) if D, f .: T, M — Ty N preserves orientation
—1 otherwise.

Exercise 3.7.29. Let y € N be a regular value for the smooth map f: M — N
between m-manifolds with M compact. Show that f~!(y) consists of finitely
many points x1,...,x,. Moreover, show that there exist disjoint open neigh-
borhoods V; of z; in M and an open neighborhood U of y in N so that
f~Y(U) = U™, V; and f maps each V; diffeomorphically onto U. The Inverse
Function Theorem may be of some help here.

Theorem 3.7.30. With M, N, and f as above, for every regular value y € N
we have
deg(f)= > Ind(f;a).
zef~1(y)

In particular, we have that deg(f) € Z.

Proof. Let x1,...,7, be the elements in f~1(y). Let U and Vi,...,V, be as
in Exercise 3.7.29. We may assume that U is connected, and so each Vj is
necessarily connected as well. We have that the diffecomorphism f|y, : V; — U is
either positively or negatively oriented. This is determined by whether Ind(f; z;)
is 1 or —1. Let w € Q™(N) with supp(w) C U and [ w = 1. We necessarily
have that supp(f*(w)) C f~1(U) = U™, V;. Thus, we can write

fiw) = Zwi
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with w; € Q™(M) and supp(w;) C Vi. Note that w;|y, =

have

deg(f) = deg(/) / w

N

- / I w)

(flvi)*(w|y). Then we

where we have used that supp(w) C U and so [, wl|y = [yw =1. O

Exercise 3.7.31. Use Theorem 3.7.30 to give an alternative computation of

the degree of the n'™™ power map in Exercise 3.7.27.
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Chapter 4

Singular Homology and
Cohomology

In this chapter we provide the basics of singular homology and cohomology. We
begin with a section on simplicial homology as it is a bit easier of an introduction
to the material. For the most part we follow the presentation of [5].

4.1 Simplicial Homology

In this section we give definitions of the simplicial homology groups as well as
some basic examples. The simplicial homology groups are easier to compute
with for simple examples, so this allows us to get our hands on some computa-
tions almost immediately. However, showing basic properties such as the fact
that if X and Y are homotopic then they have the same homology groups re-
quires us to work in the setting of singular homology. Before we can define the
homology groups, we need to construct the relevant chain complex.

Our first step is to define a n-simplex. The standard n-simplex is defined by

A" = {(to,...,tn)ER"“:Ztizl,ti20fori=0,...,n}.
=0

For example, A? C R? is given by
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Note that there are arrows around the edges of A%. It will be important
for us to keep track of an ordering. A general n-simpler is the smallest convex
set in R™*! containing n + 1 points vy, ..., v, so that v, — vg,...,v; — vg are
linearly independent. The points v; are the vertices of the simplex. We denote
the simplex by [vo,...,v,]. Note that by writing the simplex in this way we
are including an ordering of the vertices. This determines an orientation on the
boundary edges: [v;, v;] is positively oriented if j > i. Note that specifying such

an ordering gives a canonical linear homomorphism from A™ to [vg, ..., v,] by
sending (to,...,tn) to >, t;v;. For the point p = >, t;v; € [vo, ..., v,], we call
(to, ..., tn) the barycentric coordinates of p.

Example 4.1.1. A 0-simplex is simply a point. The 1-simplex [vg, v1] is the
line between vy and vy oriented from vy to v;. The 2-simplex [vg, v1, v2] is the
triangle

V2

() - U1

The 3-simplex [vg, v1, 2, v3] is the tetrahedron

v3
Vo V9
U1

Observe that given a n-simplex [vg, . .., v,], if we remove a vertex we are left
with a (n — 1)-simplex. We give this the orientation induced by the orientation
of the original n-simplex. Such a (n — 1)-simplex is called a face of [vg, ..., vy].
For instance, given the 2-simplex [vg, v1,v2], we have faces [vg, v1], [vg, v2], and
[v1,v2]. The union of all the faces is referred to as the boundary of vy, ..., vy]
and denoted O[vg, ..., v,]. The interior of the simplex [vy,...,v,] is given by
Int([vo, ..., vn]) = [vo, ..., Un] — Olvo, ..., Vp].

Definition 4.1.2. Let X be a topological space. A A-complex structure on X
is a collection of maps o; : A™ — X with n depending on i so that

1. The restriction o|r¢(any is injective and each point of X is in the image
of exactly one such restriction.
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2. Each restriction of o; to a face of A™ is one of the maps o, : A1 — X.
(Note here we identify a face of A" with A"~! via the canonical linear
homomorphism between them that preserves the orientation.)

3. A set U C X is open if and only if o; ' (U) is open in A™ for each o;.
We call X with a A-complex structure a A-complex.

Example 4.1.3. We can decompose the torus into two triangles, three edges,
and one vertex as in the following picture.

i b v
U
a ¢ a
Vv
v b v

This gives T as a A-complex with six o;’s.

Example 4.1.4. We can decompose RP? into two triangles, 3 edges, and 2
vertices as in the following picture.

w Vb v
U
a ¢ a
\%
v b‘ w

This gives RP? as a A-complex with seven o;’s.

Exercise 4.1.5. Decompose the Klein bottle into simplices and show it is a
A-complex as above.

Exercise 4.1.6. The torus with two holes can be formed as a quotient space
via the following picture.
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Decompose this into simplices and show the torus with two holes is a A-complex.
(Hint: There should be six triangles.)

We can now define the simplicial homology groups. Let X be a A-complex.
Let G be an abelian group. It is typical to focus on G = Z here, but there is
really no need to specify G.

Definition 4.1.7. The n-chains of X are elements of the free abelian group
A, (X; @) generated over G by the maps o; : A™ — X. In other words, a
n-chain is a formal sum ZZ GiT;.

In order to form homology groups, we need to put the A,,(X; G) into a chain
complex. Define the boundary homomorphism

dp : A (X5G) = AL 1(X5G)

by setting

n

dn(ai):Z(_l)jUihvg ,,,,, Djrerertn]

j=0
and then extending linearly to all other elements in A, (X;G). First, observe

that each element o;|[y,,...5,,....v,,] lies in A, 1 (X; G), so the map is well-defined.
The negative signs are inserted in order to keep track of orientations.

Example 4.1.8. We look at the easiest cases.
1. Recall the 1-simplex [vg, v1]. In this case di([vg,v1]) = [v1] — [vo].

2. Recall the 2-simplex [vg,v1,v2]. In this case we have da([vg,v1,v2]) =
[v1,v2] — [vo, V2] + [vo, v1].

Exercise 4.1.9. Write out the map ds on the 3-simplex [vg, v1, va, v3].

Lemma 4.1.10. The composition

An(X3G) 25 A1 (X36) T A, La(X56)
is exactly 0.

Proof. We have

=0
= (=1 (=1)'0ljoge 5y sirn 0]
j<i
=+ (=1 (=1)0lwgr... s 5yr0n]
j>i

Now observe that the second sum is the negative of the first sum, as you should
check, and so they cancel out. O
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Thus, we have a chain complex

L A(XGG) A (XG) T AL (XG) — e ALXGG) S A (X G) 2 0.

In particular, we have im(d,,+1) C ker(d,,) and so we can form simplicial homol-
ogy groups by setting

H2(X;G) = ker(d,)/ im(dyi1).

The elements of ker(d,,) are referred to as n-cycles and the elements of im(dy,4+1)
as n-boundaries. Note that is it customary that if G = Z, we simply write
H5(X) for HY (X Z).

Example 4.1.11. Let X = S'. This is a A-complex with one vertex v and one
edge e as pictured.

v

This gives that Ag(X;G) = Gv = G and A1(X;G) = Ge = G. Note that
since there are no n-simplices for n > 2, we have A, (X;G) = 0 for all n > 2.
The boundary map dy : A1(X;G) — Ag(X;G) is given by di(e) = v —v =
0. Thus, we have that HY(X; Q) = ker(dy)/im(dy) = G and H5(X;G) =
ker(dp)/im(dy) = G. In particular, we see that if we take G = Z we get

Ao [ Z k=01
Hy (X) = { 0 otherwise.

Example 4.1.12. Let X = T. As we saw above, this is a A-complex with
two 2-simplices U and V', three 1-simplices a, b, and ¢, and one 0-simplex v.
Immediately from this we see that A, (X;G) = 0 for all n > 3. Let G = Z.
Observe that dy(a) = dy1(b) = di1(c) = v—v = 0, so the map d; is exactly 0. We
know that Ag(X) is generated by v, and so we have

HA (X) = ker(dy)/ im(dy)
= ker(dp)
=Zv
= 7.

We have that do(U) = a + b — ¢ = do(V). Thus, we see that im(dy) =
Z(a+b—c) 2 Z. As a basis for A;(X) we take {a,b,a+b— c} so that we easily
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see that

H2(X) = ker(dy)/ im(ds)
= (Za+7Zb+Z(a+b—c))/Z(a+b—c)
>~ Za & Zb
~7.07.

Finally, since Az(X) = 0, we know that H(X) = ker(dy). Note that
da(mU 4+ nV) = (m + n)(a + b — ¢). This is equal to zero precisely when
m = —n. Thus, we have that ker(dy) = Z(U — V) = Z. Thus, H5' (X) = Z.

To summarize, we have

Z k=0,2
HY(X)={ Z®Z k=1
0 otherwise.

Exercise 4.1.13. Compute the homology groups HkA (T, 72/27).

Exercise 4.1.14. Show that the simplicial homology groups of RP? are given
by

Z E=0
H2(RP?) = { 7/27 k=1
0 otherwise.

One should note here that for each of the examples, there was a choice
of A-complex for the space X. It is natural to ask if the homology groups
depend upon this choice. Moreover, if X and Y are homeomorphic, are the
homology groups isomorphic? What if X and Y are only homotopic? These
are all important questions, but it turns out it is easier to work with singular
homology to answer such questions. We will study singular homology and then
show that the singular homology groups agree with the simplicial homology
groups for any A-complex X.

4.2 Definitions and Basic Properties of Singular
Homology

In this section we will define and prove many of the basic properties of singular
homology. We will also show how the singular homology groups agree with those
calculated in the previous section.

Let X be a topological space. A singular n-simplezx of X is a continuous map
o : A" — X. Note that we do not require this to be a nice embedding at all,
only that the map is continuous. Given an abelian group G, we let C,(X;G)
denote the free abelian group over GG generated by singular n-simplices of X,
i.e. Cn(X;@Q) consists of elements of the form ). g;0;. This is huge group as
we do not put requirements such as used to define a A-complex on C,(X;G).
We refer to elements of C,(X; G) as singular n-chains (or simply n-chains.)
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We define the boundary maps d,, : Cp,(X;G) — Ch_1(X;G) as in § 4.1,

namely,
n

dn(a) = Z(_l)i(ﬂ[Uo,...,ﬁi,...,vn]'
i=1
In this we are identifying A"~! with [vg, ..., T, ..., vs] and 80 01y, . 5. 0,] 19
a (n —1)-simplex. Again we see that the boundary maps form a chain complex
and so we can define singular homology groups by

H;(X; G) = ker(d,)/im(dp+1).

Proposition 4.2.1. Let {X;};cr be the path-components of X. Then we have

H;(X:;G) = @Hi(Xi; G).
i€l
Proof. First, observe that since A" is path-connected for all n and any singular
n-simplex is continuous, we have that o(A™) must be path-connected as well.
Thus, we have that C,,(X;G) = @,c; Cn(Xy; G). Furthermore, the definition
of the boundary map shows that it respects this decomposition. Thus, we have

that ker(d,,) and im(d,,+1) also decompose into direct sums, which gives the
result. O

Proposition 4.2.2. We have that Ho(X; G) splits into a direct sum of copies
of G, one for each path component of X.

Proof. In light of Proposition 4.2.1, it is enough to show that if X is path-
connected then Ho(X;G) = G.
We know that dy is the zero map, so Ho(X;G) = Co(X;G)/im(d;). Define

e:Co(X;G) = G
by setting

This map is clearly surjective and a homomorphism, so it remains to show that
ker(e) = im(dy).
Let 0 : A — X be a singular 1-simplex. We have

&(d1(0)) = (o lw,) = oljwo))
=1-1
=0.
This gives that im(d;) C ker(e). Suppose now that ¢ (3°, gioy) =0,1.e., ) . ¢, =
0. We know that the ¢;’s are singular 0-simplices, so they are points of X . Let xq

be a point in X. Choose a path 7; : I — X from x( to o;(vg), which is possible
since X is assumed to be path-connected. Let o be the singular 0-simplex with
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image xg. Then we have that v; is a singular 1-simplex, ~; : [vg, v1] — X. We
have dy(vy;) = 0; — 0p. Thus,

dy <Z gm—) = ngi - Zgzﬂo
= Zgi%

where we have used that ). g;00 = 00 >, gi = 0. Thus, we see that if ), g;o; €
ker(e), then it is a boundary and so we have ker(e) = im(d;) as claimed. O

In the particularly easy case that X is a single point, we can calculate all
the homology groups.

Proposition 4.2.3. If X is a single point then

<1 0 k>0
Hk(X;G)_{G k=0,

Proof. We already know the result in the case £ = 0. Observe that for each k
we have a unique singular n-simplex o,, since X is a single point. In particular,
we have that C,,(X;G) = G for n > 0. We have d,(0,) = Y1 s(—1)'on_1.
Thus, we get that d, = 0 if n is odd and o, _1 if n is even, n > 0. Thus, our
chain complex becomes

2 Yo=Y ag—o

This gives the result. Note here that we have used that the map go,, — gon_1
from C,(X;G) to Cp,—1(X; G) is an isomorphism to get the chain complex. [

Exercise 4.2.4. It is often desirable to have all the homology groups of a point
vanish. One can accomplish this by using reduced homology. To define the
reduced homology groups, use the chain complex

s Oo(X;G) 5 01X 6) S (X G) - G — 0.

Check that this gives a chain complex. The resulting homology groups are
referred to as the reduced homology and denoted Hy(X;G). Show that for a
space X one has Hy (X; G) 2 Hy(X; G) for k > 0 and Ho(X; G) = Ho(X; G)DG.

We would now like to show that homotopic spaces X and Y have isomor-
phic homology groups. As the set-up mirrors what we have done before for
cohomology in Chapter 3, we leave many of the verifications to exercises. Let
f X — Y be a map between topological spaces. There is an induced map
fe : Cu(X;G) — C(Y;G) defined by f.(o) = f oo and then extending lin-
early.

Exercise 4.2.5. Check that the induced maps f. satisfy f.d, = d, f«.
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dn+1 dn
> O (X5 6) ————— G (X56) ————— G (X56) —— -+

e O (V3 6) — T 0 (VG — e O (Vi G)

Thus, we have that the collection {f.} gives a chain map, i.e, the following
diagram commutes:

Exercise 4.2.6. Show that the maps f. descend to maps on the homology
groups.

Exercise 4.2.7. Show that if f : X — Y and ¢ : Y — Z are maps, then
(fog)s = foog..

Exercise 4.2.8. Show that id is the identity map, then id, = id. Be sure you
understand what id means on each side of the equation!

Theorem 4.2.9. If maps f,g : X — Y are homotopic then the induced maps
on cohomology are equal.

Proof. Our first step is to decompose A™ x I into (n+1)-simplices. For example,
if we consider the case of a 1-simplex we have

wo wq

Vo U1

So in this case we see that we can break A' x I into the 2-simplices [vg, v1, w1]
and [vg, wg, w1]. The case of a 2-simplex can be given by

w2
Wo
w1
I
Vo vy

In this case we see that we can break A? x I into the 3-simplices [vg, v1, va, wa),
[vo, v1, w1, we], and [vg, wo, w1, ws]. More generally, let [vo, ...,v,] = A™ x {0}
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and [wo,...,w,] = A™ x {1} with w; chosen so that w; and v; have the same
image under the projection A™ x I — A"™. Our goal is to show that the union
of the (n+ 1)-simplices [vg, ..., v, w;, ..., wy,] give A™ x I. Tt is easy to see this
is the case in the two examples we gave above.

For i between 0 and n — 1 define a map ¢; : A" — I by ¢;(to,...,tn) =
tit1+- - -+t, where this is defined in terms of barycentric coordinates. Note that
we define ¢,, to be 0 and ¢_1 to be 1. Observe that the graph of ¢; is precisely the
n-simplex [vg, . .., Vi, Wit1, ..., wy]. For instance, in our example above with the
1-simplex we have ¢g(to,t1) = t1, which shows that [vg,v1] maps onto [vg, w1]
and ¢1(to,t1) = 0 so [vg,v1] maps onto [vg,v1]. Note that ¢;(to,...,tn) <
¢i—1(to, ..., tn) and so the graph of ¢; lies below the graph of ¢;_1. The region
between these graphs is precisely the (n+1)-simplex [vg, . .., v;, W4, ..., w,]. We
obtain that [vg, ..., v, w;, ..., wy,] is a true (n+ 1)-simplex since w; does not lie
on the graph of ¢;. We have that

0=n(to,  stn) < dn-1(to,. .. tn) <+ < @olto, .- tn) < P-1(to, ... tn) = 1.

This shows that we get all of A™ x I.

We can now define a chain homotopy between f, and g.. Let o be a singular
n-simplex and define 0 xid : A" x I — X xI. Let F': X xI — Y be a
homotopy between f and g. Define P : C,,(X; G) — Cp11(Y; G) by setting

n

Pn(a) = Z(_l)lF © (U X id)|[vo,...,vi,wi,...,wn]'

=1

We will show that
dn+1P — Gx + f* = n+1d

which gives that P, is the chain homotopy we seek. Observe we have

dn-l-lpn(o) = dn41 (Z(_l)iF © (U X id)l[vo ,,,,, Vi, Wi, wn]>

i=1
- Z F o (0 x ld)|[U07~~~ﬁj7~~~,Ui,wz‘,~~~,wn]
1<t
+ Z ]+1 F o (U X 1d)|[ ..... Vi, Wi seney Wj,..., Wy ]
j>i

Observe that in the case that i = j, the terms in the two sums cancel except for
the terms F' o (0 X id)|[g,wp,....w,] ad —F o (o X id)|jy,.....v.,@,]- However, we
have that F'o (o xid)|5,,w,...,w.] = 900 = g«(0) and F0(0><1d)|[1,0 =
—foo = fi(o). Thus, we have that

dn—i—lpn(a) - g*(U) + f*(o) = Z(_l)J(_l)ZF o (U X 1d)|[v0 ..... Djyeney Vi Wi,y W]

j<i

+ Z J+1 F o (0 X 1d)|[’00 ..... ViyWiyeeny ﬁ)]‘ ..... wn]'

Jj>i
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However, we have

Ppi1(dno) = Z(_l)j(_l)iF o (o x id)|[vo,...,vi,wi,---ﬁj7~~-7wn]
1<J
=+ Z(_l)j(_l)i_lF © (U X id)|[vo,...,ﬁj,...,vi,wi,...,wn]’
i>7

which is precisely d,,+1 P, — g« + f« as desired.
Thus, we have a chain homotopy between f. and g.. As before, we see that
if [o] € H,(X; G), then we have

fe(lo]) = g+([0]) = dni1(Pu([o])) + Pata(dn([o]))
= dnt1(Pn([o]))
=0.

Thus, we see the maps agree on homology as claimed. O

Corollary 4.2.10. If X and Y are homotopy equivalent, then H, (X;G)
H,(Y;G) for all n.

1%

Example 4.2.11. We can combine Corollary 4.2.10 along with Proposition

4.2.3 to see that
0 k#0

He(R™ G) :{ G k=0

since Euclidean space is contractible to a point by straight-line homotopy.

Let X be a topological space and A a subspace of X. We would like to
be able to relate the groups H, (X; G), H,(A; G), and H, (X/A; G) where X/A
is the quotient space as defined in Example 2.9.5 of § 2.9. In general it is
very difficult to compute homology groups straight from the definition, so we
would like to be able to relate the homology groups of X to subspaces to help us
actually compute the homology groups. At first glance one might conjecture that
H,(X/A;G) = H,(X;G)/H,(A; G). However, this is not the case in general.
Actually, it is good that this does not happen because if it did, our theory
would be useless. For instance, we can consider X as a subspace of the cone
of X: CX = (X xI)/(X x {0}). The cone of X is contractible and so has
trivial homology groups, which would give that all the homology groups of X
as trivial as well since X embeds into its cone. In order to get a handle on how
the homology groups of X and A are related, we define the relative homology
groups.

Let A be a subspace of X. Set Cp,(X,4;G) = Cp(X;G)/Cr(A;G). Tt is
clear from the definition that d,, restricts to a map from C,,(A4; G) to Cy,—1(4; G),
and so we have a map d,, : Cp,(X, 4;G) — C,,—1(X, A; G). We again have that
dn_1 0d, =0 and so we have a chain complex

e C(X, A G) M O (X, A G) T O (XL ALG)
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which allows us to define the relative homology groups as
H, (X, A4;G) = Ho(C(X, A; G)).

Observe that elements of H,, (X, A; G) are represented by n-chains o € Cy,(X; G)
so that d,,—1(0) € Cy,—1(A; G). Furthermore, a relative cycle o € C,, (X, 4; G) is
trivial in H,, (X, 4; G) if and only if it is a relative boundary, i.e., 0 = d, 1+
for some v € Cpy1(X; G) and some 5 € C,(A; G). This allows us to view the
group H, (X, A; G) as really the homology of X modulo the homology of A.

Exercise 4.2.12. Let i : A — X be the inclusion map and j : X — X/A the
projection map. Show that for each n > 0 we have an exact sequence

0 — Co(A;G) = CL(X;G) 25 O (X, A;G) — 0.

As in the case of cohomology, we would like to have a long exact sequence
of homology. Observe that we have the following commutative diagram:

0 —= Crs1 (A; G) —= O 1 (X3 G) —L2 Oy (X, A;G) ——= 0
dn+1 dn+1 d7l+1

0 —> Cp(A;G) — > O (X G) — 2> O (X, A; G) —— 0

We have already seen that the maps ¢, and j. descend to maps on cohomol-
ogy, so it remains to define a connecting homomorphism

On - Ho(X, A;G) — H,—1(4;G)
so that we have the following long exact sequence in homology
I (A G) 5 HL (X G) 25 H (X, A3 G) 25 H, o (4,G) 2
Let [o] € H,(X, A; Q) and let 0 € C,, (X, A; G) be a representative. We know

that j. : Cn(X;G) — Cn(X, A; G) is surjective, so there exists a 7 € C,,(X; G)
so that j.(7) = 0. We have that d, (1) € C,,—1(X;G) and the fact that the
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diagram above commutes, we have j.(d, (7)) = dn(j« (7)) = dn(0) = 0 because
o € ker(d,) by assumption of it being a cycle. Thus, using the exactness of
the (n — 1)-row we see that there exists u € C,,—1(A; G) so that i.(u) = dp (7).
Define 0, ([o]) = [u].

Exercise 4.2.13. Check that 9, is well-defined. Namely, show that u is a cycle
and that the definition of 0,, does not depend on any of the choices made.

Exercise 4.2.14. Show that this definition of 0, yields a long exact sequence
of homology groups as given above.

Theorem 4.2.15. Given a topological space X and a subspace A, one has the
following long exact sequence of homology groups

UL (A Q) S Ha (X G) 5 Ha (X, A Q) 2 Hy (A;G) 2
Exercise 4.2.16. Show that for any 2o € X one has Hy(X, {zo}) = Hy(X) for
all £ > 0.

Exercise 4.2.17. Let A be a nonempty space of X. Show that the boundary
operator 97 : Hi(X, A4;G) — Ho(A;G) sends Hy(X, A; G) into the subgroup
Ho(A4; G) of Hy(4; G) and show the following sequence is exact:

(XA G) 25 Ho (A3 G) - Ho (X5 G) 25 Ho (X, A3 G) — 0.

Let f : X — Y be a continuous map and let A € X and B C Y be
subspaces. Moreover, suppose that f(A) C B. We denote this by writing
f:+(X,A) — (Y,B). We have already seen that f induces a map on chains
fi 1 Cn(X;G) — Cn(Y; G) by sending o to foo. Observe that if o € C,,(4; G),
then the assumption that f(A) C B gives that f.(c) = foo € C,(B;G). Thus,
f« maps C,,(A; G) into C,,(B;G) and so f. gives a map on the relative chains

fe 1 Cr(X, A;G) — Co(Y, B; G).

Furthermore, one can easily check that this descends to a map on the relative
homology groups
fv tHo (X, 4;G) — Hy (Y, B; G).

Proposition 4.2.18. If two maps f,g : (X, A) — (Y, B) are homotopic through
maps of pairs (X, A) and (Y, B), then

fe =g« Ho(X, A;G) — H, (Y, B; G).

Proof. One uses the same argument as in the proof of Theorem 4.2.9. The same
map P works here as well. O

Exercise 4.2.19. Let B C A C X be subspaces. Show that one has an exact
sequence

0— C,(A,B;G) — Ch(X,B;G) — C(X,4;G) — 0.
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Use this to show that one has a long exact sequence in homology

-— H,(A,B;G) — H,(X,B;G) — H,(X,A4;G) — H,,_1(A,B;G) — --- .

We recover the long exact sequence in Theorem 4.2.15 by setting B to be a
single point.

The following theorem shows that given subspaces Z C A C X, we can
“excise” the subset Z and the relative homology groups are not changed. It is
known as the Excision Theorem.

Theorem 4.2.20. (Ezcision Theorem) Let Z C A C X with CI(Z) C Int(A).
Then natural inclusion (X — Z, A — Z) — (X, A) induces isomorphisms

Hk(X - Z,A— Z,G) = Hk(X,A;G)
for all k.

We will not prove this theorem as it is fairly long and involved. It essentially
amounts to showing that one can compute homology groups by using simplices
that are small. For instance, if X is a metric space, for any € > 0 one can insist
all the simplices lie in cubes of size €. One can find a proof of this theorem in
Chapter 2 of [5].

Corollary 4.2.21. Let A, B be subspaces of X so that X C Int(A) U Int(B).
The inclusion (B, AN B) — (X, A) induces isomorphisms

Hi(B, AN B;G) 2 Hi(X, A4;G).

Proof. We reduce this to Theorem 4.2.20. Set Z = X — B. Then we have
AN B =A-Z. The condition that X C Int(A) UInt(B) implies that Cl(Z) C
Int(A). O

We can now relate the relative homology groups H,, (X, A; G) to the reduced
homology groups H, (X/A4;G), at least in the case that A is closed, nonempty

and is a deformation retract of an open neighborhood in X. We call such a pair
(X, A) a good pair.

Proposition 4.2.22. Let (X, A) be a good pair with V' an open neighborhood
of A that deformation retracts to A. Then the quotient map j induces isomor-

phisms H, (X, A; G) 2 H,,(X/A; G) for all n.

Proof. Observe that we have the following commutative diagram
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Hn(X7A7 G) Hn(Xu VvG) Hn(X_Aav_AvG)

| | |

H,(X/A, AJA; G) — H,(X/A,V/A; G) =~ H,(X/A — AJA, V/A — AJA;G)

where the horizontal maps are induced from inclusions and the vertical ones from
projection. Since A is a deformation retract of V', we have that H,,(V, A; G)
H, (A, A;G) = 0. Thus, using Exercise 4.2.19 we see that H, (X, A;G)
H,(X,V;G). Furthermore, we see that H, (X/A, A/A;G) = H,,(X/A,V/A;G)
by the exact same argument since V/A retracts to A/A. Thus, both of the left
horizontal arrows are isomorphisms. We obtain that the horizontal right two
arrows are isomorphisms from Theorem 4.2.20.

Observe that the projection map j : X — X/A is a homeomorphism when we
restrict to X — A, namely, j : X — A4 — X/A— A/A is a homeomorphism. Thus,
the right vertical arrow is an isomorphism. One can now use the commutativity
of the diagram to see that the left-most vertical arrow is an isomorphism as
well. Thus, we have that

11

H, (X, A;G) = H, (X/A, AJA; Q).

However, we know that A/A is a single point so Exercise 4.2.16 gives that
H,(X/A, A/A; G) = H,(X/A; G) as desired. O

Corollary 4.2.23. We have

G k=n,

ﬁk(S";G) = { 0 k#n.

Proof. Let X = D" = {z € R" : |z| < 1} and A = S"! s0 that A = 9X.
Observe that X/A = S™. (Be sure you understand why!) The fact that D" is

contractible gives ﬁk(D"; G) = 0 for all k. We apply the long exact sequence
given in Exercise 4.2.17 to obtain

0 — Hp(D™, 8" 1 G) — Hy 1 (8" G) — 0,
for k > 1 and
0 — Hy (D", $" 1 G) — Ho(S" 1 G) — 0.
Thus we have that
Hy, (D", S""1G) = Hyoy (S"74G)

for all k£ where we have used the homology and reduced homology groups agree
for k > 0. We have that (D", S"1) is a good pair, so Proposition 4.2.22 gives
that _

Hy, (D™, 8" G) = Hi(S™; G).
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Combining these results we see that
Hy,(S™G) = Hy_1 (S"74 Q).

Observing that S° consists of two points, we obtain the result by using Propo-
sitions 4.2.1 and 4.2.3 and induction. O

Exercise 4.2.24. Use this to give alternative proofs of Lemma 3.4.28 and The-
orem 3.4.27.

Example 4.2.25. We can construct explicit generators of the groups H,, (D", D™)
and H,,(5™) that will be useful to know. First we deal with H, (D", dD"). Ob-
serve that we can replace the pair by (A™, OA™) since they are homotopy equiv-
alent. We claim that the identity map id : A™ — A™ when viewed as a singular
n-simplex is a cycle generating H,, (A™ 0A™). We proceed by induction. The
case n = 0 is clear. Let A C A™ be the union of all but one of the (n — 1)
dimensional faces of A™. Observe that we have an isomorphism

H, (A" 0A™) = H,_1(0A",A)

that arises from considering the triple in Exercise 4.2.19 as (A", dA™ A) and
using that H, (A", A) = 0 since A™ deformation retracts onto A and so (A", A)
is homotopy equivalent to (A, A). We also have an isomorphism

H, (A" 1 0A™ 1Y) = H,_1(0A™).

To obtain this isomorphism, observe that the inclusion A"~! — GA™ of the
face not contained in A induces a homeomorphism of quotients A?~! /A1 =
OA™/A. One then uses that the pairs being considered are good pairs along
with Proposition 4.2.22 to obtain the isomorphism. We now have the result by
induction since the cycle id is sent under the first isomorphism to did, which
equals +id in Cp,_1(0A™, A).

We can now regard S™ as two n-simplices A} and A% with the boundaries
identified in the obvious way. We can then view the difference A} — A7 as a
singular n-chain that is a cycle. We claim this generates ﬁn(S") for n > 0.
Using the long exact sequence for the pair (S™, A%) we obtain an isomorphism

H, (S™) = H,,(S™, A}).

We can also use the same argument given above with quotients to obtain an
isomorphism

Under these isomorphisms, the cycle AT — A7 in the group ﬁn(S ™) corresponds
to the cycle AT in the group H,, (AT, JAT), which represents a generator of this
group. Thus, we have that AT — Al is a generator of the group H,,(S™).
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When studying topology, there is always the issue of picking the “right”
spaces to study. For instance, if we try and be too general it will be difficult to
prove any interesting theorems. Of course, we would like to be as general as is
reasonably possible to encompass as many spaces as we can. In studying singular
homology, the “right” spaces are generally CW-complexes. A CW-complex is
built up inductively. We call a set a n-cell if it is homeomorphic to U™ =
{z € R": |z| < 1}. Let Y be a Hausdorff space and X a closed subspace of Y.
Suppose that Y — X consists of a disjoint union of n-cells {el' };cs. Furthermore,
assume that for each ¢ € I there is a continuous map f; : D™ — Cl(e™) so that
fi maps U™ homeomorphically onto e and f;(S™~!) C X. If I is a finite set, we
say Y is obtained from X by attaching n-cells. If I is not finite, we require that
Y has the weak topology determined by the maps f; and the inclusion X — Y.
The weak topology condition means that A C Y is closed if and only if AN X
is closed and the sets f; ' (A) are closed for all i € I.

Definition 4.2.26. A structure of a CW-complez is prescribed on a Hausdorff
space X by an ascending chain of closed subspaces

X'cxtc...
that satisfy:
1. X° has the discrete topology

2. For n > 0, X" is obtained from X"~! by attaching a collection of n-cells
as described above.

3. X is the union of X for i > 0.

4. The space X and the subspaces X all have the weak topology: A subset A
is closed if and only if ANCIl(e™) is closed for all n-cells e™ forn =0, 1,....

We call the subset X© of X the vertices. The subset X" is the n-skeleton of X.
We say X is finite or infinite according to whether the number of cells is finite

or infinite. If X = X" we say X is finite dimensional and call n the dimension
of X.

Definition 4.2.27. A subset A of a CW-complex X is called a subcomplez if
A is the union of cells of X, and if for any cell e™ we have that ™ C A implies
that Cl(e™) C A.

In fact, if A is a subcomplex of X then the sets A" = AN X" define a
CW-complex structure on A. It is a fact that if A C X is a subcomplex of a
CW-complex X, then (X, A) is a good pair. One can see Appendix A of [5] for
a proof of this fact and many others about the basic topology of CW-complexes.

Definition 4.2.28. A continuous map f : X — Y of CW-complexes is called
cellular if f(X™) C Y™ for n > 0.
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Example 4.2.29. Let X = S™. Then X is a CW-complex with one ¢” and one
e™. For instance, the case n = 2 is given by identifying the boundary of the open
unit disc U? to a point, which gives the sphere. In particular, for 0 < k < n,
X" consists of a single point and X™ = S™ and the map that attaches e to
X"~ ! is by mapping the boundary of D" to a point.

Example 4.2.30. Let X be a 1-dimensional CW-complex. Then X consists of
vertices and edges, O-cells and 1-cells. This is a graph.

Example 4.2.31. The A-complexes given in § 4.1 are CW-complexes. Note
that for n > 1, Int(A"™) is homeomorphic to U™. Thus, we have that the torus,
RP?, and the Klein bottle are all CW-complexes.

Example 4.2.32. Consider RP". Observe that RP' is just a point. We also
have that RP! is the circle. For instance, one can see this via the map

[:v:y]H( = )
ViR 4yt a4y

We can use these base skeletons to build RP". We proceed by induction. Sup-
pose that we have constructed RP*~'. We can build RP” from RP"~! by
adjoining a single n-cell. We define the map

fn: D" — RP"

by setting
Sz, . zn) =210 a0 /1 — |z)?]

where © = (x1,...,2,). It now straight-forward to check that f,, maps D™ —
S™~1 homeomorphically onto RP" —RP?~! and maps S™ ' onto RP"~!, though
not homeomorphically. Thus, we have that RP™ is a CW-complex with one cell
of each dimension, i.e., RP* = e Uel U---Ue™.

Exercise 4.2.33. Show that CP" is a CW-complex with decomposition CP" =
dueluetu..-Ue?.

We have the excision property for subcomplexes of CW-complexes as well.

Corollary 4.2.34. If the CW-complex X is the union of subcomplexes A and
B, then the inclusion map (B, AN B) — (X, A) induces isomorphisms

H,(B,ANB;G) 2 H,(X,4;G)
for all n.

Proof. We know that all CW-pairs are good pairs, and so we can use Proposition
4.2.22 to pass to the quotient spaces B/A N B and X/A. These spaces are
homeomorphic since X = AU B, and so we have the result. O
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The wedge sum is a useful operation when studying CW-complexes. Let X
and Y be topological spaces and let zg € X, yo € Y. We define the wedge sum
X VY of X and Y with respect to xp and yo to be the quotient of the disjoint
union of X and Y obtained by identifying xo and yo. More generally, we can
define a wedge sum of an arbitrary collection of spaces X; with respect to points
x; € X; for i € I by forming the quotient space of the disjoint union of the X;
by identifying the x; to a single point. We denote this space by V;c;X;.

Example 4.2.35. The wedge sum S v S! is a figure eight.

Example 4.2.36. Consider the set X? = {e?, €3, el}. Attach two 1-cells e and
ed to form X' as in the following picture:

0
€7 es

Consider the quotient space X!/X". Note we identify all the vertices to one
point, say v. We have the picture:

1
e 1

Note that X'/X? is homeomorphic to S* v S*.

More generally, if X is a n-skeleton formed from X" ~! by attaching n-cells,
then X™/X"~! is homeomorphic to the wedge sum of copies of S™, one copy
for each n-cell attached.

We will return to CW-complexes in § 4.4. We finish this section by proving
that the simplicial and singular homology groups agree for a A-complex X. This
will give us the singular homology groups of the examples calculated in § 4.1. Let
X be a A-complex and A a subcomplex, i.e., A is a A-complex formed via the
union of simplicies in X. We can define relative simplicial homology groups by
setting Ag (X, 4;G) = Ap(X;G) /A, (A; G). As in the singular case this gives a
chain complex and so we define the relative simplicial homology groups via that
chain complex. We obtain a long exact sequence of simplicial homology groups
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as in Theorem 4.2.15. There is a natural map Ag (X, 4; G) — Ci(X, 4; G). Note
we include the case A = ) to recover the natural map Ax(X;G) — Cx(X; G
This natural map induces a map on homology HkA(X,A; G) — Hy(X, A, G
Note that a A-complex X is certainly a CW-complex as well.

).
).

Theorem 4.2.37. The homomorphisms HkA(X,A; G) — Hp(X, A; G) are iso-
morphisms for all k and all A-complez pairs (X, A).

Proof. We begin with the case that X is finite dimensional and A is empty. We
have the following commutative diagram of exact sequences:

Hiy (X, XFH) —— HIp (X A1) —— H (0F) —— Hp (XK, X9 ——Hy (X))

| | | | |

Hypp (XF, XF1) —— H,, (X*1) —— H, (X*) —— H, (X*, X+ 1) — H,_;(X*1).

Note that we drop the G from the notation here to save space, but the result
follows with coefficients as well.

We have that A, (X%, X¥=1: G) is zero for n # k and is a free abelian group
generated by the k-simplices when k = n. Thus, we have that Hﬁ(Xk, XF1.@)
is zero for n # k and is free abelian generated by the k-cycles for n = k. Con-
sider the map ¥ : [[,(AF,0AF) — (X*, X*~1) given by the maps A¥ — X
for each k-simplex. We have that U gives a homeomorphism of the spaces
1, A¥/11, 0AF with X*/X*~1 and so induces an isomorphism of singular ho-
mology groups. This shows that H, (X% X*~1:G) is zero for n # k. For
n = k we have that it is free abelian with basis the relative cycles given
by characteristic maps of the k-simplices of X since Hy(AF, dAF; G) is gen-
erated by the identity map A*¥ — A¥ (check this). Thus, we have the map
HL (X, XF 1. @) — H(X*, X* 1. @) is an isomorphism. This gives that the
first and fourth vertical maps in the commutative diagram above are isomor-
phisms. We may assume the second and fifth vertical maps are isomorphisms
by induction, so the Five Lemma gives that the middle one is an isomorphism
as well. This gives the result in this case.

Suppose now that X is infinite dimensional. One has that a compact set
in X can only meet finitely many open simplices of X. One can see Appendix
A of [5] for a proof of this fact. We will encounter it again when we continue
our study of CW-complexes. In the case of a A-complex it is even easier and
should be proved as an exercise. Let [z] € H, (X; G) with z a representative in
Cn(X;G). By definition this is a linear combination of finitely many singular
simplices with compact images, so it must be contained in X* for some k. Since
we already have that H5(X*;G) — H,(X*;G) is an isomorphism for all n,
we have that z is homologous to a simplicial cycle. Thus, we have that the
map H2 (X; G) — H,(X;G) is surjective. Now suppose that [o] € HS(X; Q) is
represented by o € A"(X; G) and it is the boundary of a singular chain in X. We
know this chain must have compact image, and so is contained in X* for some
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k. Thus, o represents an element in the kernel of HS (X*: Q) — H,(X*: @),
which is trivial. Thus, ¢ must be a simplicial boundary and we are done.

One can do the case when A # () by the same method as above if one
replaces the commutative diagram with the corresponding commutative diagram
of relative homology and simplicial homology groups. O

An efficient way for computing the homology groups of a CW complex is via
cellular homology, which we introduce after a few basic definitions and facts.

The following corollary of Proposition 4.2.22 will also be necessary in com-
puting the homology of CW complexes.

Corollary 4.2.38. Let X be a collection of topological spaces and Vi Xy the
wedge sum. The inclusion maps iy : X — VX induce an isomorphism

Or(ir)« : @ﬁn(Xk) — H, (Vi Xk)
k
assuming that the wedge sum is formed with respect to base points xy so that
(X, {zx}) is a good pair.
Proof. Consider the pair ([[, X;, [, {zr}). We have that

H, <H Xk,H{évk}> = P H (X, {21 })
k k k
=~ (P H,.(X).

On the other hand, Proposition 4.2.22 gives that

H,, <]%[ X, ];I{xk}> =~ ﬁn(\/ka).

Combining these gives the result. [l
Lemma 4.2.39. Let X be a CW complez.

1. Hy(X* XF=1) =0 for n # k and is free abelian for n = k with a basis in
one to one correspondence with the n-cells of X.

2. H,(X*) = 0 for n > k. In particular, if X is finite dimensional then
H,(X)=0 forn>dimX.

3. The inclusion map i : X*¥ — X induces an isomorphism i, : H,(X*) —

H,(X) ifn <k.

Proof. 1. Observe that (X*, X¥~1) is a good pair and X*/X*~1 is a wedge
sum of k-spheres. We now use Corollary 4.2.38 combined with our previous
calculations of the homology of spheres to get the result.
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2. Consider the long exact sequence arising from the pair (X%, X*~1). In
this exact sequence we have

H, 1 (XF, X1 — H,(X*1) — H,(X*) — H,(X*, X+ 1),

If n # k, k—1, then the outer two groups are 0 and so we have H,, (X*~1)
H,(X*) for all n # k,k — 1. Thus, if n > k then we have H, (X*)
H, (XN =...2H,(X') 2 H,(X° = 0. This proves the second part.

111

3. Note that we can use what we have just shown in the case that X is
finite dimensional to conclude that if n < k then H,,(X*) = H, (X**!) =
- H, (X**t™) for all m > 0, which gives the third result if X is finite
dimensional. In the case that X is not finite dimensional, we use the same
argument we've used before to observe that any singular n-chain in X
has compact image so sits inside X™ for some m. Thus, a n-cycle in X
is homologous to a cycle in X* if k& > n by the finite dimensional case.
Thus, the induced map i, : H, (X*) — H,(X) is surjective. Similarly, if
a n-cycle in X* bounds a chain in X, this chain lies in X™ for some m
with m > k, so by the finite dimensional case the cycle bounds a chain in

X*if k> n.
O

We can now build the cellular chain complex which can be very useful in
computing homology groups of CW complexes. Consider the following diagram:

/O
\ X"+1) H"(X)
H,(X™)
/ \
nOn jn—10n
s Hy g (X X didis H,, (X", X"+ - Hyog (X7 X72) s

On /

Hnil(anl)

0
Observe that the composition of two of the maps in the horizontal part of
the diagram consists of at two successive maps in one of the diagonal exact
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sequences, so must be zero. Thus, the horizontal row gives a chain complex.
This complex is known as the cellular chain complex. We denote the homology
groups of this chain by HSW (X).

Theorem 4.2.40. One has HSW (X) = H,,(X) for all n.

Proof. To ease the notation write dgw for j,_1 0 0. Observe that we have
H,(X) 2 H,(X")/ker(in) = H,(X™)/im(0p11)-

The fact that j, is injective gives that im(9,+1) maps isomorphically onto
im(jn,0p41) = im(dS}). Furthermore, we see that H,(X™) maps isomorphi-
cally onto im(j,) = ker(d,). We have that j,_1 is injective, so ker(9,) =
ker(dSWV). Thus, the map j, induces an isomorphism between the quotient
H,(X™)/im(dp+1) and ker(d$V)/im(dSYY ), which gives the result. O

Corollary 4.2.41. If X is a CW complex with k n-cells, then H, (X) is gen-
erated by at most k elements. In particular, if there are no n-cells in X then

H,,(X) = 0.

Proof. We know that H, (X", X"~ 1) is a free abelian group generated by the n-
cells. Thus, we must have that the kernel of dS"W is generated by at most these
k n-cells. Thus, HSW (X)) = H,,(X) is generated by at most k elements. O

Corollary 4.2.42. Let X be a CW complex that has no two of its cells in
adjacent dimensions. Then H, (X) is free abelian with basis in one to one cor-
respondence with the n-cells of X. In particular, this gives

n ) L fork=0,2,4,---,2n
Hy (CP™) = { 0 otherwise.
Proof. This is clear because in this case all of the maps d$" must be 0. O

Another nice application we have is to the Euler characteristic of a finite
CW complex. Define the Euler characteristic of a finite CW complex X to be

where ¢, is the number of n-cells of X. Note that this is a generalization of
the familiar formula for 2-complexes that reads x(X) is the number of vertices
- number of edges + number of faces. In fact, we can now see that x(X) can
be defined completely in terms of the homology of X and so is a homotopy
invariant of the space.

Theorem 4.2.43. For X a finite CW complex one has

X(X) = (~1)" rank(H,(X)).

n
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Proof. This result is a purely algebraic result. Let
0—>Ckﬂ>ck_1—>---—>cli>co—>0

be a descending chain complex of finitely generated abelian groups. Defining
Zn, Bn, and H,(C\) as always, we have short exact sequences

0—Z4,—C,— B,-1—0

and
0— B, — Z, — H,(C,) — 0.

We now apply the fact that if
0—A—B—C—0

is a short exact sequence of finitely generated abelian groups, then rank(B) =
rank(A) 4+ rank(C) to obtain that

rank(C,,) = rank(Z,,) 4+ rank(B,,_1)
= rank(B,,) + rank(H, (C.)) + rank(B,_1).

If we multiply this equation by (—1)" and sum over all n we obtain

Z(—l)" rank(C,,) = Z(—l)" rank(H,,(C.)).

n n

Now just apply this purely algebraic result to the complex C,, = H,, (X", X"~ 1)
to get the result. [l

4.3 The Universal Coefficient Theorem

In § 4.2 we saw that working with homology with coefficients in an arbitrary
abelian group did not add any difficulties in proving theorems. It can be the
case that using arbitrary coefficients can make working examples a little trickier,
but essentially it did not appear anything new was gained or lost by switching
from G to Z or vice versa. In this section we justify that statement by relating
the homology groups Hy (X, 4;G) to Hi(X, A) ® G. Note when a subscript is
not added to the tensor product it is understood to be a tensor product over
Z. One of the main reasons for interest in such a result for us is to prepare us
for the same result when we introduce cohomology. In that context a universal
coefficient theorem will be important when we compare different cohomology
theories.

Let X be a topological space and G an abelian group. Recall that C,,(X; G)
is the free abelian group over G generated by the chains ¢ : A" — X. In
particular, given a chain 7 € C,,(X; G), we can write 7 = ), gjo; for o; : A" —
X singular n-simplices. From this it is clear that we have

Co(X;G) = Ch(X)® G
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where the map is given by >, gio; maps to Y, 0; ® g;. From this we see that
we can write our chain complex

L Cp(X5G) M O (X Q) P O (X G — -

as

s C(X) @G O (X)) 0 G O (X) 9 G —

Thus, the homology groups we defined relative to C,(X;G) can also be given
as the homology groups of this chain complex, namely,

Hp (X3 G) = Ha(Cu(X) © G).

The group G is referred to as the coefficients of the homology group. We can
view the relative homology groups in this way as well, in particular, C,, (X, A; G) =
Cn(X,A)®G.

Before we relate H, (X, 4;G) to H,(X,A) ® G, we consider the induced
homomorphisms H,, (X, 4; G) — H, (X, A; H) when we have a homomorphism
between the groups G and H. Let ¢ : G — H be a group homomorphism.
Clearly, we have an induced homomorphism on chains given by

1®¢:Cr(X,A) @G — Cp(X,4) ® H.

These maps descend to maps on homology, though to avoid confusion we add
some details here. (Note that we do not have that H, (X, 4; G) = H, (X, A)®G!)
Let [7] € Hp(X, A;G) and let 7 = )", 0,®g; € O, (X, A)®G be a representative
of [r]. We have that (1®¢)(1) =Y, 0: @ ¢(g:;) € Cn(X, A) ® H. It is therefore
natural to define
¢y H,o (X, A;G) - Hp(X, A H)
7 (L@ 6)(r)]
There are two things to check. The first is that the image of this map is actually

a cycle, and the second is that it does not depend on the choice of representative
for [7]. To see the image is a cycle, observe that

(dn ®1) (Z ;i ® ¢(gi)> = Zdn(az‘) ® &(g:)

= 199) (Z (o) ® gi>

=(12¢)(0)
=0

where we have used that ), d,(0;) ® g; = 0 because 7 is a cycle and that
¢ is a homomorphism so takes 0 to 0. Thus, we have that the image lies in
H,(X, A H).
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Exercise 4.3.1. Check that if one chooses different representatives of [r] that
they are mapped to the same thing in H, (X, A; H).

For this induced map to be useful it is important that the map is “natural”,
i.e., it commutes with the induced maps we have already defined. Namely, given
a continuous map f : (X, A) — (Y, B) and a group homomorphism ¢ : G — H,
it is important that the following diagram commutes:

H, (X, A;G) 2~ H,(Y, B; Q)

-

H,(X,A; H) ——H,(Y,B; H).

However, this follows immediately from the definitions. It is also important that
the induced map ¢; behaves well with respect to the boundary homomorphism
On- In particular, we have that the following diagram commutes:

H, (X, A; G) —2 = H, 1 (A G)

| |+

Again, one only needs to write down the definitions of the maps to see that this
is true.

This induced map has many important uses in homology theory. For exam-
ple, let R be a ring and suppose that G is a R-module. We write the action of
R on G as left multiplication. Thus, for each r € R we have an endomorphism
of G given by g — rg. Using what we have just shown, each r € R induces a
map ry of H, (X, 4;G).

Exercise 4.3.2. Show that the induced maps 4 give the group H,, (X, 4; G) the
structure of a R-module. Furthermore, show that the commutative diagrams
above show that f. and 0,, are homomorphisms of R-modules.

A particularly nice case is when R is a field and G is a vector space over
R. In this case one has that H, (X, A; G) is a vector space over R as well and
the maps f, and 0, are linear transformations. What makes this situation
particularly nice is that one can then use all the tools of linear algebra to study
the homology groups.

We now return to studying the relation between H,, (X, 4; G) and H,, (X, 4)®
G. In order to do this we introduce some definitions and results from general
homological algebra.
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Definition 4.3.3. Let A, B, and C' be abelian groups with
0—A--B-L0—0

an exact sequence. We say the exact sequence splits if there is an isomorphism
B >~ A ® C that makes the following diagram commute
where the maps A — A@C' is the natural inclusion map and the map A&C — C

RS
7

AaC

0——A Cc——0

is the natural projection map.

Exercise 4.3.4. Show that if A, B, and C are free abelian groups then every
short exact sequence is split. In fact, given a short exact sequence, show it is
enough for C' to be free for the short exact sequence to split.

Lemma 4.3.5. Let A, B, and C be abelian groups and
0—A-S5B-L0—0
a split short exact sequence. Given any abelian group G, the sequence
0—A0G A B ceq—0

is a split exact sequence.

Proof. First, observe that the tensor product operation is right exact, namely,
we get that

A0G 2 Bec® 0o —o0
is exact for any exact sequence
0—A-5B-LCc—o.
To get the injectivity of the first map, observe that
(A C)GE=2(AG)® (C®G)
and so clearly the inclusion map
ARG —= (ARG)® (C®G)

is injective. This gives the injectivity since the sequence is split. It is also clear
now that the sequence

0—A20 B¢ cea —0
is split. O
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Let {C,,d,} be a descending chain complex of free abelian groups, i.e., a
chain complex given as

dnt1 d
i n+1—’Cn—n)Cn—1—’"'

with each C, a free abelian group. Set Z, = ker(d,) C C, and B, =
im(dy4+1) C Cp,. We can define the homology group of C,, as

H,(C.) = Zy/Bh.

We have the following commutative diagram

dn
0 Zn On Bn—l 0
dn dn dnfl
dp—
0—=Zp1—>Ch > B, 0

where each horizontal row is exact. Observe that each row is split because B,
is free as it is a subgroup of the free abelian group C,,. Let G be any abelian
group. Lemma 4.3.5 combined with the above commutative diagram gives us
an exact sequence of chain complexes

0 —Z, G —C,®G — B,1®G — 0.
This gives a long exact sequence of homology groups
- — Hy11(Bi®G) — H, (Z,0G) — H,(C.®G) — H,,(B.®G) — - -

However, we know that d,, ® 1 maps all elements of Z,, ® G and B,, ® G to 0,
so Hp(Z, ® G) = Z,, ® G and H,, (B, ® G) = B,,—1 ® G. Thus, the long exact
sequence becomes

41 -+ —B,®G—7Z,G—H,(C.®G) — B, 198G — -~

The connecting homomorphism 0,41 : Hy11(Bx ® G) — H,(Z, ® G) is the map
in®l:B,®G— Z,® G where i, is the inclusion map. One should check
this as an exercise. We break up the long exact sequence (4.1) into short exact
sequences

(4.2) 0 — coker(i, ® 1) — H,(C\, ® G) — ker(ip—1 ® 1) — 0.

214



Consider the short exact sequence defining H,,(C), namely,
0 — By, - Z, 2 H,(C,) — 0.

As was stated above, it is a fact from commutative algebra that tensoring with
G is right exact so we have the exact sequence

B,®G"% 7,062 H,(C.)® G — 0.

In particular, we see that

H,(C,) ®G=(Z,®G)/ker(j, ®1)
= (Z,®G)/im(i, ®1)
= coker (i, ® 1).

Thus, we can rewrite the short exact sequence (4.2) as
0 — H,(C,) ® G — H,(C, ® G) — ker(ip,—1 ®1) — 0.

It remains to study ker(i,—1 ® 1). This requires a little more background and
work.

Definition 4.3.6. Let H be an abelian group. A free resolution F, = {F;, f;}
of H is an exact sequence

RN ML Ny NN LNy LI 5 RN

where each F; is a free abelian group.

We know that if we tensor the free resolution of H with an abelian group G
the resulting sequence is not necessarily exact. We define

H,(F, ® G) =ker(f, ®1)/im(fp11 ® 1).

This group only depends upon G and H and not the free resolution F} used as
we will see in Lemma 4.3.8. First, we need the following result on chain maps
of free resolutions.

Lemma 4.3.7. Let E. a free resolution of an abelian group G and Fy be a
free resolution of an abelian group H. Then every homomorphism ¢ : G — H
extends to a chain map from E. to Fy, i.e., the following diagram commutes
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€0

E, E Eq G 0
P2 l b1 l o l ¢l
jo} f2 ja) f1 Fy fo 7 0.

Moreover, any two such chain maps extending ¢ are chain homotopic.

Proof. We construct the maps ¢; inductively. It is enough to define ¢; on a basis
of F; since Ej; is free. Let x € Ey be a basis element. Since fj is surjective,
there exists a y € Fy so that fo(y) = ¢(eo(x)). Define ¢1(z) = y. This defines
¢o. We would like to define ¢; in the same manner. Let x now be a basis
element in F;. We want to find y € Fy so that f1(y) = ¢o(e1(x)). We see
that such a y will exist if ¢o(ei(x)) € im(f1) = ker(fo). However, we have that
do(e1(z)) € ker(fo) because ¢o(e1(X)) = d(eo(e1(x))) = #(0) = 0. Thus, we
can define ¢ as desired. The rest of the maps are defined in the same manner.

Now suppose there is another chain map ¢’ : E, — F, extending ¢. Consider
the maps 9, : E; — F; defined by ¢; = ¢; — ¢}. This is a chain map extending
the zero map from G to H. It is enough to show that v; is chain homotopic
to 0, i.e., to construct maps T; : E; — F;y1 so that ¢, = fi1T; + Ti—1e;.
We construct the maps 7; inductively much as the maps ¢; were constructed.
For i = 0, set T_1 : G — Fj to be the zero map. The relation we need in
this case is ¢g = f1Ty. Define Ty as follows. Let x € Ey a basis element.
Note that there is a y € Fy so that f1(y) = ¢o(z) because im(f1) = ker(fo) and
fo(yo(x)) = ¥(eo(x)) = 0since 9 is the zero map. Thus, we can define Ty(z) =y
and this gives the desired relation. Now we show the inductive step. We need
to define T; so that it takes a basis element = € E; to a basis element y € F; ;150
that fi+1(y) = ¥i(x) — Ty—1e;(x). This is possible if ¥;(z) — T;_1e;(x) lies in
im(f;r1) = ker(f;), ie, if fi(v; — T;—1e;) = 0. However, using the relations
fﬂ/)l = 1/)1-,161- and 1/)1',1 = fiTifl + T%,261'71 (Wthh holds by our induction
hypothesis), we have

filthi = Timver) = fithi — fiTi—e
=16, — [iTi—1e;
= (Yi—1 — fiTi-1)ei
= 1i—1€{-16€4
=0.
Thus, we have the result. O

Lemma 4.3.8. Let E, and F, be two free resolutions of H. For each n there
s a canonical isomorphism

H,(E.® G) 2 H,(F. ® Q).

Proof. Let E, and F, be two free resolutions of H. We tensor these free reso-
lutions with G to obtain chain complexes E, ® G and F, ® G with maps ¢, ® 1
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giving the chain map between them. These maps descend to maps on homology
¢y Hy (B @ G) — Hy(Fe @ G).

Note that the maps on homology are independent of the chain maps ¢. as if
one has a different sent of chain maps, we have that they are chain homotopic,
which in homology means they agree.

Suppose that we have a composition H; 2, Hy 2, Hj3 with free reso-
lutions F., F’, and F! respectively. The induced maps on homology satisfy
(V@) = 1huds. One can see this by choosing the chain map F, — F}' to be
the composition of chain maps F, — F, — F.. Now if ¢ is an isomorphism
and ¢ the inverse of ¢, then we have ¥.¢. = (¥¢), = 1. = 1 and likewise for
¢«.. Now take ¢ to be the identity with two different free resolutions. Then
we obtain a canonical isomorphism

1, Hy (B @ G) — Hy (Fe @ G).
O

Since the group H,(F. ® G) depends only on H and G, we denote it as
Tor,(H,G). One always has a free resolution given by

00— F, —Fy—H—0

for any abelian group G. In particular, choose a set of generators for H and let
oy be the free abelian group with basis in one to one correspondence with the
generators of H. Then we have a surjective map Fy — H. Let F; be the kernel
of this map. We have that F} is free abelian since it is a subgroup of Fy, which
gives the resolution. This free resolution shows that Tor, (H,G) = 0 for n > 1.
Thus, we write Tor(H, G) for Tori(H, G) as it is the group of interest. In fact,
Tor(H, G) measures the common torsion of G and H, which is where the “Tor”
comes from.

Note that in this current definition, we have that Torg(H,G) = 0 because
tensoring is right exact. This is not entirely what we would like, so instead we
set Tor,, (H, @) to be the homology groups of the sequence

— G — G — Fy G — 0,

where we remove the H ® G term. This does not effect the groups Tor, (H, G)
for n > 1, but it sets Torg(H, G) = H ® G, which is more suitable for our theory.

We have the following theorem, known as the universal coefficient theorem
for homology.

Theorem 4.3.9. Let C, be a chain complex of free abelian groups. Then for
all n > 0 there are short exact sequences

0— H,(C,) ®G— H,(C, ® G) — Tor(H,,—1(C%),G) — 0
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that are split. Moreover, the maps in the short exact sequence are natural with
respect to chain maps and coefficient homomorphisms, i.e., given a chain map
Cy — Dy, the chain map induces a map between the short eract sequences
with commuting squares and given a homomorphism ¢ : G — H between abelian
groups, ¢ induces a chain map between the short exact sequences with commuting
squares.

Proof. Note that we have already proven that we have such an exact sequence, it
is simply the short exact sequence (4.2) combined with the fact that coker(i,, ®
1) 2 H,(C\) ® G and ker(ip—1 ® 1) = Tor(H,—1(Cy),G). Checking that the
maps are natural is just a matter of running through the definitions.

It remains to check that the short exact sequences split. Recall that we have
already seen that the short exact sequence

0—Z4,—C,— B,-1—0

splits. In particular, this implies there is a projection map p : C,, — Z,, that
restricts to the identity on Z,,. Furthermore, we can use p to give an extension of
the quotient map Z,, — H,,(C,) to a map C,, — H,(C,). Thus, as we vary n we
obtain a chain map from the chain C, to the chain of homology groups H.(C\)
where we regard H,(C\) as a chain with trivial boundary maps. Tensoring this
with G we obtain a chain map C, ® G — H,(C) ® G. We now take homology
groups and using that H,(C) is a chain with trivial boundary maps we obtain
the induced homomorphisms

H,(Cy;G) — H,(C) ® G.

These homomorphisms give the splitting when combined with the following
exercise and the fact that these homomorphisms are trivial on cycles by the
definition of p. O

Exercise 4.3.10. Let A, B, and C be abelian groups and
0—A-SB-L0—0

be an exact sequence.

1. Show that the exact sequence is split if and only if there is a homomor-
phism p: B — A so that poi: A — A is the identity map.

2. Show that the exact sequence is split if and only if there is a homomor-
phism s: C'— B so that jos:(C — C is the identity map.

Corollary 4.3.11. Let X be a topological space, A a subspace of X, and G an
abelian group. Then for each n > 0 there is a split exact sequence

0 — H,(X,4)®G— H,(X,A;G) — Tor(H,,—1(X, A),G) — 0.
Moreover, these sequences are natural with respect to maps (X, A) — (Y, B) and

coefficient homomorphisms ¢ : G — H.
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For this corollary to be useful, it is important that we can actually calculate
the groups Tor(H,,—1(X, A), G) for abelian groups G. We have the following
calculations.

Proposition 4.3.12. Let A, B,C, D, and A; for i € I be abelian groups.
1. Tor (B, Ai, B) = @, Tor(A;, B).
2. Tor (Z/nZ, A) = ker(A — A).
3. Tor(A,B) =0 if A or B is torsion-free.
4. For each short exact sequence
0—B—C—D—0,
there is naturally associated an exact sequence

0 — Tor(4, B) — Tor(A,C) — Tor(A,D) — A®B — A®C — A®D — 0.

5. Tor(A, B) = Tor(B, A).
6. Tor(A, B) = Tor(T'(A), B) where T(A) is the torsion subgroup of A.

Proof. 1. We can choose a free resolution of @), A; to be a direct sum of free
resolutions of the A;, which gives this result immediately.

2. Consider the free resolution
0 —7Z "7 — 7/n7 — 0
of Z/nZ. If we tensor this with A we obtain
0— A A—7Z/nZ®A—D0.

Thus, we have that Tor(Z/nZ, A) = ker(A -~ A) as claimed.

3. We prove the third statement here in the case that A or B is free and then
return to prove the general case momentarily. Assuming A is free, it has
a free resolution with F; = 0 for ¢ > 0 and so Tor(A, B) = 0 for all B. If
B is free, then tensoring a free resolution of A with B preserves exactness
and so Tor(A, B) = 0 in this case as well.

4. Let
0—F —F)—A—0

be a free resolution of A. We tensor with the given short exact sequence
to obtain a commutative diagram
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0—FMN®B——FMRC—=FN®D——0

NN

0—FH®B—FC——Fy®D——0.

We have that the rows are exact because tensoring an exact sequence with
a free group preserves exactness. We can now extend this diagram to the
diagram

0—FM®B——HN®C—FN®D——0

0——=IHRB——FC——Fy®D——=0

This gives a short exact sequence of chain complexes. The associated long
exact sequence is the desired sequence.

. We now apply the exact sequence just shown to the free resolution
0— F, — Fy — B — 0.

We know that Tor(A, Fy) and Tor(A, Fy) both vanish because F and Fy
are free, so the sequence reduces to

0— Tor(A,B) — A®@F — A®Fy— A® B — 0.

We can combine this with the definition of Tor(B, A) to obtain the diagram

0——=Tor(A,B) —= A F —= AQFy—=A®B——=0

|

0——=Tor(BJA) —FI®A——F @ A——=BA——=N0.

IR
IR

Since all of the squares commute, we have that the induced map from
Tor(A, B) to Tor(B, A) is an isomorphism by the five lemma.

We also are now able to prove the rest of 3 in the torsion free case. Let

0—F —Fyp—A—0
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be a free resolution of A. Suppose that B is torsion free and Y z; ® b; lies
in the kernel of f1®1: F1 ® B — Fy® B. Then we have that > f1(z;) ®b;
can be reduced to 0 after a finite number of applications of the defining
relations for a tensor product. Only a finite number of elements of B
are involved in this process. These lie in a finitely generated subgroup
By C B, so Y. x; ®b; lies in the kernel of f; ® 1 : F} ® By — F1 ® By.
This kernel must be 0 because Tor(A, By) = 0 as By is finitely generated
and torsion free, hence free. Thus, we have Tor(A, B) = 0 as claimed.

6. To obtain this last statement we just apply the six term exact sequence
already shown to the short exact sequence

0—TA) —A— A/T(A) — 0

and use the fact that A/T(A) is torsion free.
O

Exercise 4.3.13. Show that Tor(Z/mZ,Z/nZ) = 7/ gcd(m,n)Z. Use this to
show that for finitely generated A and B, Tor(A, B) is the tensor product of the
torsion subgroups of A and B and so is the common torsion of the groups.

As vector spaces are often easier to work with than modules, it is often easier
to calculate the homology of a space with coefficients in a field. For example, it
is usually easier to work with coefficients in Q or Z/pZ than with coefficients in
Z. We often lose information in doing this, but sometimes what remains is still
enough to work with.

Corollary 4.3.14. We have H,(X; Q) = H,,(X)®Q. Thus, if H,(X) is finitely
generated, the dimension of H,,(X; Q) as a Q-vector space over Q equals the rank

of Hy(X).

Proof. This follows immediately from Corollary 4.3.11 and the fact that Q is
torsion free. O

Corollary 4.3.15. Let p be a prime and assume that Hy, (X) and H,,_1(X) are
finitely generated. Then we have that H,, (X ;7Z/pZ) consists of

1. a Z/pZ summand for each Z summand of H,(X);
2. a Z/pZ summand for each Z/p*Z summand of H,(X) with k > 1;
3. a Z/pZ summand for each Z/p*Z summand of H,_1(X) with k > 1.

Proof. This amounts to just writing down the exact sequence in Corollary 4.3.11.
O

We also have the following local to global type result for checking the van-
ishing of a homology group.

Proposition 4.3.16. We have ﬁn(X) = 0 if and only if ﬁn(X;Q) =0 and

H,(X;Z/pZ) =0 for all n and all primes p.
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Proof. We know that if ﬁn(X) = 0 for all n then the homology groups ﬁn(X; Q)
and ﬁn(X; Z/pZ) vanish for all n and all primes p by Corollary 4.3.11. For the
other direction, it is enough to show that if A is an abelian group and A®Q = 0
and Tor(A,Z/pZ) = 0 for all primes p, then A = 0. Consider the short exact
sequence

0 —Z 27— 7/pZ — 0.

The six term exact sequence of Proposition 4.3.12 gives
0 — Tor(A, Z/pZ) — A X5 A — A® Z/pZ — 0.

If Tor(A,Z/pZ) = 0 for all p, we see that the map on A given by multiplication
by p is injective for all p. This shows that A must be torsion free.
Similarly, the short exact sequence

0—Z—Q—Q/Z—0
yields the exact sequence
0— Tor(A,Q/Z) — A— ARQ — AR Q/Z — 0.

Since A is torsion free, we must have Tor(A4,Q/Z) = 0 by Proposition 4.3.12,
and so we have that the map A — A ® Q is injective, hence A = 0.
O

4.4 Singular Cohomology

In defining relative homology with coefficients in a group G of a space X with
respect to a subspace A there were three steps that were taken. The first was
that we formed a chain complex C, = {C, (X, A),d,}. The second step was
to tensor this chain complex with the group G to obtain a new chain complex
Ci(X,A4;G) = Cu(X,A) ® G. Finally, we took the homology groups of this
chain complex. In order to define cohomology groups, we replace tensoring with
G in the second step by applying the functor Hom(, G) instead.

Let X be a topological space and G an abelian group. Define C"(X, 4;G) =
Hom(C, (X, A), G). The elements of C"(X, A; G) are referred to as the singular
n-cochains with coefficients in G. Note that ¢ € C"(X, A;G) is a map that
sends each chain o : A™ — X to a point in G. The coboundary maps d"™ :
C™"(X,A;G) — C"M(X, A; G) are the dual maps to the boundary maps d,, 1,
i.e., they are the composition d"(¢) = ¢ o dp4+1. In particular, given ¢ €
C"(X, A;G), we define

d"(@)(0) =D (=130, .50, 00 11])

i

for 0 € Cpi1(X, A;G). We immediately get that d"*! o d® = 0 because they
are the dual maps to the maps d.. Thus, we obtain a chain complex

()—)CO(X,A,G)—’—>Cn(X7A’G) d_n,OnJrl(X,A,G) —_ .,
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From this we can form the singular cohomology groups
H"(X,A;G) =H"(C*"(X, 4; Q)).
Exercise 4.4.1. Show that H(X, 4; G) = Hom(Hy(X, A), G).

Let f: (X,A) — (Y, B) be a continuous map. Recall we have an induced
map

fe: Cn(X, 4;G) — Co(Y, B; G)

given by composition, namely, for o : A” — X a chain in C,, (X, A; G), we define
f«(o) by foo: A™ — Y. From this we obtain an induced map

. CY,B;G) — C"(X, A;G)

by setting f* = fY, i.e., f*(¢) = ¢o f.. Thus, we obtain an induced map f* on
the cohomology groups.
Consider a short exact sequence

0—A—B—C—0.

In general we know that the functor Hom(,G) is not an exact functor and
applying this to the short exact sequence yields an exact sequence

0 — Hom(C,G) — Hom(B,G) — Hom(A, G).

However, if the original short exact sequence happens to be split then we will
obtain a short exact sequence

0 — Hom(C,G) — Hom(B, G) — Hom(A,G) — 0.
Recalling that
0— Ch(A) — Cp(X) — Cr(X,A) — 0
is a split exact sequence, we obtain a split exact sequence of cochain complexes
0— C"(X,A4;G) — C"(X;G) — C"(4;G) — 0.
Thus, we obtain a long exact sequence of cohomology groups as well
L HTY A Q) IS HY(X, A G) L B G) S B (A G) 2 BN (X A G) s

We define the reduced cohomology groups by using the augmented chain
used to define the reduced homology groups. As in the case of homology,
ﬁn(X,A;G) = H"(X,A;G) if n > 0 and in the case n = 0 we have a split
short exact sequence

0— G — H" (X, A4,G) — ﬁO(X,A;G) — 0.
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Our next step is a universal coefficient theorem in the case of cohomology.
This will relate the cohomology groups of X with coefficients in G to the ho-
mology groups. This will be useful right from the start of the theory so we do
not delay in proving it. We proceed generally here as we did in § 4.3.

Consider a descending chain complex C. = {C,,,d,,} of free abelian groups.
Set C"™ = Hom(C),, G). As above, we obtain a cochain complex C* = {C™,d"}
and we can form the cohomology groups H"(C*;G) of this cochain complex.
We define a product between H, (C.) and H"(C*;G). Let [z] € H,(C\) and
[¢] € H"(C*;G) with « € C,, a representative of [z] and ¢ € Hom(C,,G) a
representative of [¢]. Define

([9], []) = o(x) € G.

Exercise 4.4.2. Show that the product ([¢], [z]) is independent of the choice
of representatives. Furthermore, show that it is additive in each variable sepa-
rately, i.e.,

([¢1 + @2, [2]) = ([01], [2]) + ([¢2], [x])
([¢], [x1 + w2]) = (], [21]) + ([¢]; [x2])-

This product allows us to define a homomorphism
a:H"(C*;G) — Hom(H,(C\),G)

by setting

(o)) () = ([9], [])
for [¢] € H"(C*; G) and [z] € Hy,(C,). This map is a natural map. In particular,
we have the following results.

Exercise 4.4.3. Let f : C. — D, be a chain map. Show that the following
diagram commutes:

Exercise 4.4.4. Let
0—C,—D,—FE,—0

be a split short exact sequence of chain complexes. Show that the following
chain complex is also exact

0 — Hom(E,,G) — Hom(D,,G) — Hom(C,,G) — 0

and the following diagram commutes
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H"(C*; G) —*— Hom(H,,(C.), G)

B"l l‘?warl

H" 1 (E*; @) —> Hom(H,11(E;), G).

Exercise 4.4.5. Let ¢ : G — H be a homomorphism of abelian groups. Show
there is a natural induced map

o' H(C*; G) — H™(C*; H).

Moreover, show the following diagram commutes

H"(C*; G) —%= Hom(H,(C,),G)

/ }

H"(C*, H) —*= Hom(H,,(C.), H).

As we needed some homological algebra to state the universal coefficient
theorem for homology, we need some additional homological algebra in this case
as well. The dual notion to a free abelian group is that of a divisible group.

Definition 4.4.6. An abelian group G is said to be divisible if given any g € G
and any nonzero integer n, there exists h € G so that nh = g.

The typical example of a divisible group is Q.

Exercise 4.4.7. Show that quotients of divisible groups are divisible and direct
sums of divisible groups are divisible.

We have used that any abelian group is isomorphic to a quotient of a free
abelian group when studying free resolutions in § 4.3. We have the corresponding
result for divisible groups.

Proposition 4.4.8. Any group is isomorphic to a subgroup of a divisible group.

Proof. Let G be an abelian group. We know there is a free abelian group F so
that G = F/R for some subgroup R of F. We can consider F' as a subgroup of
a divisible group. For instance, let {z;} be a basis for F. The rational vector
space D with basis {x;} is divisible and F' is a subgroup of this group. Then G
is isomorphic to a subgroup of the divisible group D/R. O

Let H be an abelian group and consider a free resolution of H:

'—’F2£>F1 L>Fo£>H—>O.
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We can take the dual of this long exact sequence with respect to an abelian
group G to obtain a chain complex

0 — Hom(H, G) 2% Hom(Fy, ) 2 Hom(F,,G) — - - .
The cohomology groups of this chain are denoted by Ext(H, G), i.e.,
Ext"(H,G) = H"(Hom(Fi, G)).

One can show, much as was done with the Tor groups, that the group Ext(H, G)
is independent of the choice of free resolution used. Furthermore, using that we
can always write a free resolution of H as

0— F, — Fy— H — 0,

we have again that Ext"(H,G) = 0 for n > 1. Thus, write Ext(H,G) =
Ext'(H, Q).

Exercise 4.4.9. Show that Ext’(H,G) = Hom(H, G).

Proposition 4.4.10. Let A, B, C, and D be abelian groups.
1. If A is free then Ext(A, B) = 0.

If B is divisible then Ext(A, B) = 0.

Ext(Z/nZ,B) = B/nB.

o

Given an exact sequence
0—B—C—D—0,
we have an exact sequence

0 — Hom(D, A) — Hom(C, A) — Hom(B, A) — Ext(D, A) — Ext(C, A) — Ext(B,A) — 0.
Proof. The proof of this proposition follows the same lines as those used to
prove Proposition 4.3.12 and so is left as an exercise. (|

Definition 4.4.11. An abelian group G is called injective if given any injection
t: B — A and any homomorphism ¢ : B — @, there exists a homomorphism
1 : A — G so that the following diagram commutes:
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Proposition 4.4.12. An abelian group is injective if and only if it is divisible.

Proof. First, suppose that G is injective. Let ¢ € G and n € Z. Define a
homomorphism ¢ : nZ — G by sending n — ¢g. We have that nZ — Z, and
since G is injective there is an extension ¥ of ¢ from nZ to Z. Thus, using the
commutativity of the diagram we have g = ¢(n) = n¢(1), and so G is divisible.

Suppose now that G is divisible. Let A, B, (¢, and ¢ be as in the definition
given for an injective group. We may assume that B is a subgroup of A and ¢ is
the inclusion map. Consider the set of pairs (G, ¢;) where G; is a subgroup of A
that contains B and ¢; : G; — G is a homomorphism so that ¢;|p = ¢. This set
is nonempty as the pair (B, ¢) satisfies the hypotheses. Write (G, ;) < (G, ¢5)
it G; C G; and ¢j]g, = t;. We can apply Zorn’s lemma to conclude there
exists a maximal pair, (Gmax, tmax). We claim Guax = A. If not, there exists
a € A — Gpax. Since G is divisible, we can extend ty,, to the subgroup of A
generated by Gax and a. This contradicts the maximality of Gpax. O

Proposition 4.4.13. If G is a divisible group then the homomorphism
a:H"(C*;G) — Hom(H,(C\),G)
is an isomorphism for any chain complex C\.

Proof. We have already shown such a homomorphism exists, it only remains to
show it is bijective. We sketch this, leaving the details to the interested reader.
Let ¢ € Hom(H,,(C4), G). Then we can view ¢ as a homomorphism ¢ : Z,, — G
that vanishes on B,,. The fact that Z, injects into C,, and that G is divisible
allows us to lift ¢ to a homomorphism ¢ : C;, — G. Thus, we have a map
¥ € Hom(C,,, G) that extends the map ¢. To prove surjectivity, it only remains
to check that ¢ is a cocycle, which we leave as an exercise. We leave injectivity
as an exercise as well. O

We now have the following universal coefficient theorem for cohomology
groups.

Theorem 4.4.14. Let C. be a descending chain complex of free abelian groups
and let G be an arbitrary abelian group. There exists a split exact sequence

0 — Ext(H,_1(C,),G) - H"(C*; Q) - Hom(H,(C,), G) — 0.

Note that the map ( is natural with respect to coefficient homomorphisms and
chain maps. The splitting is natural with respect to coefficient homomorphisms,
but not with respect to chain maps.

Applying this to the case of interest where C, = C.(X, A), we have the
following.

Corollary 4.4.15. For any pair (X, A) and any abelian group G, there exists
a split exact sequence

0 — Ext(H,_1(X, 4),G) -5 H"(X, A; G) - Hom(H,, (X, A), G) — 0.
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The homomorphisms « and 3 are natural with respect to homomorphisms in-
duced by continuous maps of pairs and coefficient homomorphisms. The splitting
can be chosen to be natural with respect to coefficient homomorphisms, but not
with respect to homomorphisms induced by continuous maps.

As cohomology is obtained by dualizing the construction for homology, we
can recover many of the results from homology for cohomology. For example,
we have the excision property.

Theorem 4.4.16. Let Z C A C X with CI(Z) C Int(A). The inclusion (X —
Z,A—7)— (X,A) induces an isomorphism

H"(X,A;G) = H"(X — Z,A - Z;Q).

Proof. Let (X, A) be a pair and Z C A. Recall that for each n we have a split
short exact sequence

0 —C(X-Z,A-27) — C (X,4) — C(X,A)/)Cr(X-Z,A-Z) — 0.
We pass to the long exact sequence in homology groups to see that
H,(X —Z, A—Z) = H,(X,A)

if and only if
H,(Cu(X,A)/)C.( X -Z,A-2Z))=0

for all n. This is precisely what is proven when proving the excision theorem
for homology groups.

Instead of passing to the long exact sequence in homology, apply the func-
tor Hom(,G) to the split exact sequence above to obtain the following exact
sequence

0 — Hom(C, (X, A)/C.(X-Z,A-2),G) - C"(X,4;G) - C(X-Z,A-Z;G) — 0.
If we now take cohomology groups, we see that
H'(X, A;G) = H"(X — Z,A— Z,C)
if and only if H" (Hom(C,. (X, A)/C(X — Z,A—Z),G)) = 0 for all n. However,
we can apply Corollary 4.4.15 along with the fact that we know H,, (C\ (X, A)/C. (X —

Z,A—Z)) =0 for all n by excision for homology to conclude that we must have
H"(Hom(Cu(X,A)/C(X — Z,A— Z),G)) = 0 for all n. O
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Chapter 5

Sheaves and Cech
Cohomology

In this chapter we will introduce sheaves and Cech cohomology and see how
de Rham and singular cohomology are special cases of Cech cohomology. We
will also introduce algebraic sheaves, Serre’s GAGA theorems, and give a brief
introduction to the theory of algebraic curves. We will end with a short expos-
itory section on the Hodge conjecture. Most of the material in this chapter can
be found in [4], [7], or [12].

NOTE: When I have time I will go back and introduction sheaf cohomology
theory generally using “fine” sheaves and then insert the proofs of the com-
parison isomorphisms between singular, de Rham, and Cech cohomologies on a
smooth manifold.

5.1 Sheaves

We begin by introducing presheaves as they are the natural precursor to sheaves
and are a bit easier to grasp and work with. In our settings most all the
presheaves we work with will also be sheaves, but in general this is not the case
so it is important to understand the distinction. Throughout this section X
stands for a topological space.

Definition 5.1.1. Let X be a topological space. A presheaf of groups F on X
is a collection of groups {F(U)}yer, along with a collection of group homo-
morphisms p¥ : F(U) — F(V) for each V C U satisfying

1. F(0) is the trivial group with one element,
2. pY =id on F(U),

3. if W CV CU, then pl, = ply o p¥.

229



The maps pg are referred to as the restriction maps. The elements of F(U) are
referred to as the sections of F over U. The elements in F(X) are referred to
as the global sections. Global sections are often denoted as I'(X, F) as well.

One can define a presheaf of rings in the same manner, one just requires the
F(U) to be rings and the restriction maps to be ring homomorphisms. Clearly
any presheaf of rings is also a presheaf of groups just by restricting to the group
operation.

Example 5.1.2. Let X be a real manifold and set C¥(U) to be the set of
functions f : U — R that are C*°. This presheaf is known as the presheaf of
C*° functions and is a presheaf of rings. We denote it by C¥.

Example 5.1.3. Let X be a complex manifold and set Ox (U) to be the set of
holomorphic functions f : U — C. This presheaf of rings is known as the sheaf
of holomorphic functions and is denoted Ox.

Example 5.1.4. Let X be a complex manifold and set O% (U) to be the set
of nowhere vanishing holomorphic functions f : U — C*. This is a presheaf of
groups with the operation being multiplication of functions and is denoted O%.

Example 5.1.5. Let X be a complex manifold and set Mx (U) to be the set
of meromorphic functions f : U — C. This is a presheaf of rings known as the
the sheaf of meromorphic functions and is denoted M x.

Example 5.1.6. Let X be a complex manifold and set Mgzl)(U) to be the set
of meromorphic n-forms on X. This is a presheaf of rings known as the sheaf
of meromorphic n-forms and is denoted ./\/lg?).

Example 5.1.7. Let X be a real manifold and set Q% (U) to be the set of C*°
differential n-forms on U as studied in Chapter 3. This is a presheaf of groups
known as the sheaf of C*° differential n-forms on X and denoted Q%.

Example 5.1.8. Let X be a complex manifold and set Q% ; ,(U) to be the set
of holomorphic differential n-forms on U. The difference between these and the
ones studied in Chapter 3 is that we require the forms to be holomorphic and not
just C*°. This gives a presheaf of groups known as the holomorphic differential
n-forms on X. We can also define a presheaf Q' ;, by setting Oy ,;(U) to be
the complex conjugates of the forms in Q’)‘()hol(U ) '

Example 5.1.9. Recall that in § 3.3 we saw that if we are given a complex
manifold X of dimension n we can consider it as a real manifold of dimension
2n. (Technically we just saw this for X = C™, but it is clear it generalizes to
any complex manifold.) In this case, we can take dz1,...,dz,,dz1,...,dz, as
a basis for the space of C*° differential 1-forms. We write QX7 for the presheaf
of C* differential (p + q)-forms that are generated by p of the forms dz; and ¢
of the forms dz;. For example, Q%?(U) consists of sums of the form

WZZfLJdZ[/\dEJ
I,J
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where f; jis a C° function, I runs over sets of the form (i1, ...,i,) and J runs
over sets of the form (j1,...,7jq)-

Example 5.1.10. Let G be a group and X any topological space. Define a
presheaf GX on X by setting GX(U) to be the set of all functions f : U — G.
We place no restrictions at all on the functions. The group structure on GX (U)

is point-wise multiplication of functions. This presheaf is known as the constant
presheaf GX.

Example 5.1.11. Let X be a topological space and for each z € X assign a
group G. Define S by setting

SW) =[] G-

xzelU

This is a presheaf on X. One particular case of this of interest is called the
skyscraper sheaf. We obtain this by assigning a single group at a single point x
and then the trivial group to all other points. We denote this presheaf by G,.

Thus, one has
[ {0} fxg¢U
Gz(U)—{ G ifzel.

In particular, we will use the presheaf C, which is C around the point z and 0
everywhere else.

Example 5.1.12. Let X be a Riemann surface. A divisor on X is function
D : X — 7Z whose support is a discrete subset of X. The divisors on X form a
group under pointwise addition denoted by Div(X). We write D > 0if D(z) > 0
for all z. Write D > 0 if D > 0 and D # 0. For divisors D1 and D> we write
Dy > D5 if D1 — Dy > 0. One generally denotes a divisor as

D:ZD(I)'I.

zeX

One has a presheaf of divisors by setting Div(U) to be the divisors on U.
Let f: X — C be a function that is meromorphic at x € X. By choosing
local coordinates around x, we can expand f in a Laurent expansion so that

near x one has
f(z)=> enlz—2)"

n

We define the order of f at x by
ord;(f) = min{n : ¢, # 0}.

We define the divisor associated to f by setting

div(f) = Z ord,(f) - x.

reX
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Let D be a divisor on X. Let Ox[D](U) be the set of meromorphic functions
on U that satisfy the condition

ord,(f) > —D(x)

for all z € U. This is a presheaf of groups on X. Note that Ox[D](U) are the
functions with poles no worse than D on U. The global sections of this sheaf are
often denoted by L(D). For instance, this shows up in the classical statement
of the Riemann-Roch theorem.

Example 5.1.13. Let X be a Riemann surface and D a divisor on X. We can
consider the sheaf Qx no1[D] where Qx noi[D](U) consists of 1-forms on U that
have poles bounded by D.

Example 5.1.14. Let X be a Riemann surface and D a divisor on X. We can
consider the sheaf of meromorphic 1-forms with poles bounded by D, i.e., the
sheafj\/lg;) [D] given by where the sections J\/lg;) [D](U) are 1-forms w € Mf)? (U)
that satisfy div(w)(z) > —D(z) for all x € U. The global sections of this sheaf
are denoted in the classical literature as LM (D).

Example 5.1.15. Let X be a Riemann surface and D a divisor on X. In this
case there is a particular skyscraper sheaf we will be interested in. Given any
x € X, one can choose local coordinates around z. Assign to each x the group
of Laurent polynomials in the local coordinates that whose top term has degree
strictly less than —D(z). In other words, this is the group of Laurent tails
truncated at —D(x). We denote the skyscraper sheaf with these groups at each
point by 7x[D].

Given two divisors D; and Do with D1 < Ds, we can form a skyscraper
sheaf 7x[D1/Ds] as follows. For each point x, associate the group of Laurent
polynomials that have top term with degree strictly less than — D1 (z) and lowest
term has degree at least —Dy(z).

Exercise 5.1.16. Show that Ox|[0] is the presheaf of holomorphic functions on
X.

Note that all of the presheaves given, and presheaves in general, arise from
the fact that if F(U) is defined to be functions with some property, it is the case
that when one restricts to a smaller domain the property remains valid. For a
presheaf to be a sheaf, we require that this can be reversed. Namely, if U is an
open set with an open covering {U;} and the property holds for all U;, then it
must hold on U as well.

Definition 5.1.17. Let F be a presheaf on X. We say F is a sheaf on X if for
any open set U and any open covering {U;} of U, whenever there are elements
s; € F(U;) that agree on overlaps, namely, one has

Ui . U;
Pu,nu; (si) = PUZmUj (s5)
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for every i, j, then there exists a unique s € F(U) so that

pur,(s) = s
for each 1.

Exercise 5.1.18. Let U be an open set with open covering {U; };c;. If F is a
sheaf and there is a section s € F(U) so that pj (s) = 0 for all i € I, show that
s =0.

Definition 5.1.19. Let F be a sheaf. We say a sheaf G is a subsheaf of F if
G(U) is a subgroup of F(U) for every U and the restriction maps of the sheaf
G are induced by those of F.

It is straightforward to check that the presheaves defined above are all ac-
tually sheaves except the constant sheaf. This is not a sheaf as being constant
is not a local property for a function. For example, if X is the disjoint union
of two open sets U and V', a function can be constant on U and constant on V'
without being globally constant if it happens to take different values on U and
V. This shows in particular that a constant presheaf on a space X is never a
sheaf unless the group is trivial or the space enjoys the property that any two
open sets have to intersect. However, we can associate a sheaf to the constant
sheaf by setting G(U) to be the set of f: U — G that are locally constant, i.e.,
for any point 2 € U there is an open neighborhood V of 2 with V' C U and f|y
a constant function. The locally constant sheaves we will encounter most often
are Z, R and C.

Example 5.1.20. Let X be a compact Riemann surface, i.e., X is a compact
complex manifold of dimension 1. Then Ox (X) = C since the only holomorphic
functions a compact Riemann surface are constant.

Exercise 5.1.21. Let X be a connected topological space. Show that G(X) =
G for any group G.

Exercise 5.1.22. Let F be a sheaf on a space X and let Y be an open subset
of X. Show that the restriction sheaf Fl|y defined by

Fly(U) = FU)
for any U open in Y defines a sheaf on Y.

Exercise 5.1.23. Let F and G be sheaves on a space X. Define the direct sum
F &G by

FagU)=FU)egU)
for an open set U C X. Define the restriction maps for F@G using the restriction
maps for F and G. Show that F @ G is a sheaf on X.

In order for sheaves to be useful, we will need a notion of maps between
sheaves. This is a fairly straightforward thing to define as we want any morphism
to respect the structures we already have.
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Definition 5.1.24. Let F and G be sheaves on a space X. A sheaf homomor-
phism from F to G is a collection of homomorphisms

¢v : F(U) = G(U)

for each open set U so that the following diagram commutes

for V.C U any open set.

One can generally obtain inclusion maps of sheaves whenever F(U) C G(U)
for all open sets U. When we have an inclusion map of sheaves F — G we write
F C G. In terms of the examples above, we have the following inclusions.

Example 5.1.25. Regardless of the space X, we have the following inclusions
of constant sheaves:

zZzZcRcC.
Example 5.1.26. For X a real manifold, we have
Rc CY.
Example 5.1.27. For X a complex manifold, we have
CcOx c Mx.

We also have
Ox Cc CY%.

Example 5.1.28. For X a Riemann surface, if D; < D, are divisors on X,
then

Ox[Dl] C Ox[Dg]
Furthermore, we also have
TX [Dg] C TX [Dl]

and
TX [Dl/Dg] C TX [Dl]

Example 5.1.29. For X a real manifold, the differentiation maps d" are sheaf
maps from Q% to Q%
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Example 5.1.30. Let X be a Riemann surface and x € X a point. We can
define a sheaf map by evaluation

eval, : CY — C,

which on any open set U containing x sends the C'* function f defined on U
to be the constant f(x). On an open set not containing x the sheaf map is the
Zero map.

Example 5.1.31. Let X be a Riemann surface and D a divisor on X. Let
f € Ox[D](U). Then the Laurent series for f near x € U has terms with
degrees at least —D(z), i.e., we can write for z near x

)= Y elz—a)

n>—D(x)
For x € U we can define a map
eval, : Ox[D|(U) — C,(U)

by sending f to c_p). If © ¢ U, we define eval, to be the zero map. This
gives a sheaf homomorphism from Ox[D] to C,.

Example 5.1.32. Let X be a Riemann surface and U an open set in X. Let f
be a holomorphic function on U. Then g(z) = €27/ (2) is a holomorphic function
on U that is nonvanishing on U. This gives a map

Ox(U) — Ox(U)

for each U C X open. This commutes with restriction so gives the exponential
map exp(2mi—) of sheaves:

exp(2mi—) : Ox — O%.

Exercise 5.1.33. Let X be a Riemann surface and fix a divisor D on X. Let
f € Mx(X). Show that multiplication by f gives a sheaf homomorphism

Ox[D] — Ox[D — div(f)].

Exercise 5.1.34. Let X be a Riemann surface and fix a divisor D on X. Let
w be a nonzero global meromorphic 1-form on X. Show that the multiplication
by w map gives a sheaf isomorphism

Ox[D] — Q%(,hol[D —div(w)].

Example 5.1.35. We also have several truncation maps. Let D be a divisor
on a Riemann surface X. One clearly obtains a truncation map

ap MX — Tx[D]
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by truncating any meromorphic function.
Similarly, if D; < D, are divisors, given a Laurent tail divisor in 7x[D1], we
can truncate this at —Dsy(z) for each € X and obtain a sheaf homomorphism

Finally, given a meromorphic function with poles bounded by D>, we may
truncate the Laurent series at —D; and obtain a sheaf map

ap,/p, : Ox[Da] — Tx[D1/Ds].

Let X be a topological space and F, G sheaves on X. Let ¢ : F — G be a
sheaf homomorphism. We can define a kernel presheaf ker(¢) by setting

ker(¢)(U) = ker(¢v).
Exercise 5.1.36. Check that ker(¢) is a presheaf.
Proposition 5.1.37. The presheaf ker(¢) is a sheaf on X.

Proof. Let U be an open set with open covering {U;}. Let s; € ker(¢)(U;)
be sections so that the s; agree on overlaps. The fact that F is a sheaf and
ker(¢)(U;) € F(U;) gives that there exists s € F(U) so that pp (s) = s;. It
remains to show that s € ker(¢)(U), i.e., ¢u(s) = 0.

Let t; = pg (¢u(s)). Since ¢ is a sheaf homomorphism it commutes with
restriction maps, so we have

since each s; € ker(¢y,). Now we use the fact that G is a sheaf to see that ¢y (s)
must be 0 as well. O

One can define presheaves U +— im(¢y) and U +— coker(¢y) as well. How-
ever, unlike the kernel sheaf, it turns out that these are not sheaves! One can
associate a sheaf to them, as we will see later.

The definition for injective and surjective for sheaf homomorphisms is not
the one that first comes to mind, but is the correct one when one remembers
that properties of sheaves should reflect locally properties. Namely, we do not
require that ¢y be injective (resp. surjective) for each U, only that for small
enough U we have ¢p is injective (resp. surjective.) In particular, we define
injective and surjective as follows.

Definition 5.1.38. Let ¢ : F — G be a sheaf homomorphism. We say ¢ is
injective if for every z € X and every open set U containing x, there is an open
subset V' C U containing x so that ¢y is injective. We say ¢ is surjective if for
every x € X and every open set U containing z and every section f € G(U),
there is an open V C U containing x so that p¥/(f) is in the image of ¢y .
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Example 5.1.39. Let X = C— {0} = C*. Let g(2) =1/z € O%(X). It is well
known from complex analysis there is no function f so that e**/(*) = 1/ for
all z € X. Thus, we see the exponential map is not surjective for the set U = X.
However, at any point € C* there is a branch of the logarithm defined in a
neighborhood V of z and so f(z) = —18G) haps under the exponential map to

21
1/z. Thus, as a sheaf map the exponential map is a surjective map.

This type of issue does not arise when talking about injectivity.

Proposition 5.1.40. Let ¢ : F — G be a sheaf homomorphism. The following
are equivalent:

1. ¢ s injective;
2. ¢y 1is injective for every open set U C X ;
3. The kernel sheaf for ¢ is the identically 0 sheaf.

Proof. 1t is clear that the second and third statements are equivalent and that
the second statement implies the first. Thus, it only remains to show that if ¢
is injective then ¢y is injective for every open set U C X. Let U be an open
set and let s € F(U) so that ¢y (s) = 0. Using the fact that F is a sheaf, it is
enough to show that p¥(s) = 0 in F(V) for each subset V in an open covering
of U.

Let x € U. Since ¢ is injective, there exists an open set V,, C U containing
x so that ¢y, is injective. Let s, = pgx(s). Since the V, cover U, it is enough
to show that s, is 0 for each x. However, we have

=, (¢u(s))
=y, (0)
=0.
However, since ¢y, is injective this gives the result. O

Another way to deal with injectivity and surjectivity of sheaf homomor-
phisms is to work with stalks, which we introduce now.

Definition 5.1.41. Let I be a nonempty set with a partial order <. For each
i € I, let G; be an additive abelian group. Suppose for every pair i, ;5 € I with
1 < j there is a map p;; : A; — A, so that

1. pjr © pij = pir. whenever 7 < j < k and
2. pii=1foralliel.

Let H be the disjoint union of all the ;. Define an equivalence relation ~ on H
by setting g ~ h if and only if there exists a k with 4,7 < k and pi(9) = p;x(h)
for g € G, h € Gj. The set of equivalence classes is called the direct limit of
the G; and is denoted h_H)li G;.
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Definition 5.1.42. Let F be a presheaf on a space X. Let z € X. Define the
stalk F, of F at x to be the direct limit of the groups F(U) for all open sets U
containing x via the restriction maps p.

One should view the stalk F, as zooming in to see what is happening at the
point 2. An element of F, is represented by a pair (U, s) where U is an open
neighborhood of z and s is an element of F(U). We denote such an equivalence
class by s,. Two such pairs (U, s) and (V,t) define the same element in F, if
there is an open neighborhood W C U NV so that s|w = t|w. This generalizes
the classical notion of germs of functions from complex analysis. One should
think of this as kind of like a Taylor series, you just use local information
(derivatives) to get information about the function in the form of a power series.

Example 5.1.43. Let X be a complex manifold of dimension n. Let xz € X.
Then Ox . is the ring of convergent power series in n variables.

Exercise 5.1.44. Show that the stalks of a locally constant sheaf G are all
isomorphic to the group G.

Let ¢ : F — G be a sheaf homomorphism. Thus, for open sets U C V we
have a commuting diagram

This shows that for any x € X the map ¢ induces a map of stalks
We set supp(¢) to be the set of x € X so that ¢, is not the zero map.

Theorem 5.1.45. The sheaf homomorphism ¢ : F — G is injective if and only
if op  Fu — Gy is injective for all x € X. Similarly, ¢ is surjective if and only
if ¢ is surjective for every x € X.

Proof. First, suppose that ¢ is injective so that ker(¢) = 0. Thus, we have that
each map ¢y is injective. Upon passing to the direct limit we see that ¢, must
be injective for each z € X as well. Conversely, suppose that ¢, is injective for
each € X. Let U be an open set and let s € F(U) be such that ¢y(s) = 0.
Thus, for every x € U we have that ¢y (s), = 0 in the stalk G,. Since we have
that ¢, is injective, we must have s, = 0 in the stalk F, for each x € U. The
statement that s, = 0 means that there exists an open neighborhood W, C U
of = so that p%z(s) = 0. The fact that U is covered by such neighborhoods
along with the fact that ker(¢) is a sheaf gives that s = 0 and so ¢y is injective.
Since U was arbitrary, this gives that ¢ is injective.
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Suppose now that ¢ is surjective. Let x € X and let t, € G,. Let t, be
represented by the pair (U, t). Since ¢ is surjective, there is an open neighbor-
hood V' C U of x so that ¢y is surjective. Thus, there is a s € F(V) so that
oy (s) = t. In particular, we have that ¢, maps (V,s) to (V,t), which clearly
represents t,. Thus, ¢, is surjective as well. Conversely, suppose that ¢, is
surjective for each € X. Let t € G(U) and let ¢, be the image of ¢ in G,. The
fact that ¢, is surjective implies there exists a s, € F, so that ¢, (s;) = t,. Let
(V, s) represent s, and set W = U NV. Then (W, s) represents s, and we have
pw(s) =t € G(W). Thus, we have that ¢ is surjective since we have found an
element in F (W) mapping to t € G(W) for a small enough open set . O

Definition 5.1.46. We say a sequence of sheaf homomorphisms

is a short exact sequence of sheaves if the sheaf map ¢ is surjective and K =

ker (o).
We have the following corollary immediately from Theorem 5.1.45.
Corollary 5.1.47. A sequence of sheaf homomorphisms
¢

0 —K—F—G—0
is a short exact sequence of sheaves if and only if the sequence of stalks
0— Ky — Fr 255G, — 0
is a short exact sequence of abelian groups for each x € X.
Example 5.1.48. Let X be a real manifold. The sequence
0—R—CY 4, QY —0

is a short exact sequence of sheaves. We have seen that for any open set U
the space Q% (U) is generated by dz;’s, and so clearly d is a surjective map of
sheaves. The kernel is precisely the locally constant functions, which gives the
exact sequence.

Example 5.1.49. Let X be a complex manifold. The sequence
0—>Q—>0Xi>Qﬁ(7hol—>0

is a short exact sequence of sheaves for the same reasons as the last example
was short exact.

Example 5.1.50. Let X be a Riemann surface. The sequence

exp(2mi—)
—

0—Z%Z— Ox 0y —0

is a short exact sequence of sheaves.
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Exercise 5.1.51. Let X be a Riemann surface and let D be a divisor on X.
Show that the sequence

0 — Ox[D—12] — Ox[D] — C, — 0

is a short exact sequence of sheaves.
Show that the sequence

0 — Ox[D] — Mx 22 Tx[D] — 0

is a short exact sequence of sheaves.
If Dy < D5 are divisors, then the sequence

0 — Ox[D1] — Ox[Ds] 22 T [D1/Ds] — 0
is a short exact sequence of sheaves.
Finally, show that the sequence

O — Tx[Dl/DQ] — Tx[Dl] — Tx[DQ] — O

is a short exact sequence of sheaves where the map from 7x[D;] to Tx[Ds] is
the truncation map.

Definition 5.1.52. A sheaf homomorphism ¢ : F — G is an isomorphism if it
has an inverse, i.e., if there exists a sheaf homomorphism ¥ : G — F so that
¢o1y =1id and 9 o ¢ = id.

Proposition 5.1.53. A sheaf homomorphism ¢ : F — G is a sheaf isomorphism
if and only if it is injective and surjective.

Proof. First, suppose that ¢ has an inverse ). By definition one has that ¥y
is the inverse of ¥y for each U, and so each ¢y must be bijective. Thus, ¢ is
bijective.

Now suppose that ¢ is bijective. If we show that each ¢ is an isomorphism,
then we can define i to be the collection of inverse maps and we will be done.
Let U be an open set. Since ¢ is injective we know that each ¢ is also injective
by Proposition 5.1.40. So it only remains to show that ¢ is surjective.

Let g € G(U). Since ¢ is surjective, for each € X there is an open set U, so
that ¢y, is surjective. Thus, there exists f, € F(U,) so that ¢y, (fz) = pf_(9)-
We claim that the sections f, agree on overlaps. Let W = U, N U, for = # y.
Observe that we have

ow (P (f2)) = prit (B, (fz))

Similarly, we obtain that QSW(ng}’ (fy)) = % (g) and so

Sw (092 (f2)) = dw (vt (f,)-
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However, we can now use that ¢y is injective to conclude that

PYz(fo) = Pt (fy)

for all x,y € X. Thus, the sections agree on overlaps and so we can use the fact
that F is a sheaf to glue them together into a section f € F(U).

It only remains to show that ¢y (f) = g. We can again use that we have
sheafs to reduce to checking this locally on each U,. But this is clear because
we have

i, (Pu(f)) = du, (prr, (f))
= ¢u, (fz)
.
= pp,(9)-

Thus, ¢y (f) and g agree on each U, and so must be equal by the fact that G is
a sheaf. O

Exercise 5.1.54. Show ¢ : F — G is a sheaf isomorphism if and only if
¢z + Fr — G, is an isomorphism for all z € X.

Exercise 5.1.55. Let F and G be sheaves of abelian groups on X. For any open
U C X show that the set Hom(F|y, G|y ) of morphisms of restricted sheaves has
the structure of an abelian group. Show that the presheaf U +— Hom(F|y, G|v)
is a sheaf. It is referred to as the sheaf of local morphisms of F into G, or “sheaf
homs” for short. It is denoted by Hom(F,G).

As we saw with the constant presheaf, there are times one has a presheaf of
interest that is not a sheaf. It turns out that one can always associate a sheaf
to a presheaf.

Definition 5.1.56. Let F be a presheaf on a space X. For any open set U in

X, define F(U) to be the set of functions s : U — [], ., F so that

1. for each z € U, s(z) € Fy,

2. for each x € U, there is a neighborhood V of z, contained in U, and an
element t € F(V) so that for all y € V, the germ ¢, is equal to s(y).

Exercise 5.1.57. Check that F is actually a sheaf on X.

Exercise 5.1.58. Show that the sheafification of the constant presheaf gives
the locally constant sheaf as defined above.

One should think of F as the sheaf that best approximates the presheaf F.
In particular, one has the following theorem that follows almost immediately
from the definition.
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Theorem 5.1.59. Let F be a presheaf. There is a natural morphism 0 : F — F
of presheaves that satisfies the universal property that given any morphism ¢ :
F — G of presheaves where G is a sheaf, there is a unique sheaf homomorphism
Y F — G so that ¢ = 1 o 6. Furthermore, the pair (F,0) is unique up to
unique isomorphism.

Exercise 5.1.60. Let ¢ : 7 — G be a morphism of presheaves so that ¢y is
injective for each U. Show that the induced map ¢ : F — @G is injective. In
particular, use this to show that if 7 and G happen to be sheaves then the sheaf
im(¢) associated to the presheaf U +— im(¢y) can be naturally identified with
a subsheaf of G.

We end this section with a particular type of sheaf that we will need in
subsequent sections.

Definition 5.1.61. A sheaf F on X is fine if for each locally finite cover U =
{U;} of X by open sets there exists for each i an endomorphism ¢; of F so that

1. supp(¢;) C U;
2. Y ¢ =1id.
We call {¢;} a partition of unity for F with respect to the cover U.

Example 5.1.62. Let X be a smooth manifold (real or complex) and consider
the sheaf F = C¥. Let U be a cover and let {¢;} be a partition of unity with
respect to this cover. We define sheaf maps ¢; by setting

&i(f) = (¢ilv) - f

for f € C*°(U). These form a partition of unity and show that this is a fine
sheaf.

Exercise 5.1.63. Show that if F and G are fine sheaves over X then F ® G is
itself a fine sheaf.

5.2 Abstract Sheaf Cohomology

Note that the class decided not to see these proofs in class, just the statements
so the proofs are omitted for now. They will be added later.

In the next section we will construct Cech cohomology groups, which are very
useful for computations. However, in order to show that the Cech cohomology
groups agree with the singular and de Rham theories for smooth manifolds, we
need an abstract set-up. We provide that in this section.

Let X be a topological space and U = {U;} an open cover of X. A refinement
V ={V;} of U is an open cover so that for each j there is an ¢ so that V; C U,.
We say a collection of subsets {U;} is locally finite if for each x € X there is a
neighborhood W, of x so that W, NU; # 0 for only finitely many i. We restrict
here to the case that X is paracompact, i.e., if every open cover of X has a
locally finite refinement. In particular, smooth manifolds are all paracompact
so one can restrict to that case.
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Definition 5.2.1. Let X be a paracompact space and K a principal ideal
domain. A sheaf cohomology theory H for X with coefficients in sheaves of
K-modules over X consists of

1. a K-module H" (X, F) for each sheaf F and each integer n,

2. a homomorphism ¢, : H"(X,F) — H"(X,G) for each sheaf homomor-
phism ¢ : F — G and each integer n,

3. a homomorphism 0" : H" (X, F3) — H"(X,F;) for each short exact se-
quence

0—=F —F2—F3—0
of sheaves,
so that the following properties hold

(a) H*(X,F) = 0 for all n < 0, and there is an isomorphism H°(X,F) =
D(X,F) so that for each sheaf homomorphism ¢ : F — G the following
diagram commutes:

HO(X, F) —= (X, F)

.

H(X,G) —=T(X,G).

(b) If F is a fine sheaf then H"(X, F) = 0 for all n > 0.

(c) It
0—>.7:1 i>.7:2i>.7:3—>0

is an exact sequence of sheaves, then one the following long exact sequence
in cohomology is exact:

S S HY(X,F) 25 HY(X, F) L5 HY(X, Fa) 2 HPN(X Fr) — e

(d) The identity sheaf homomorphism id : F — F induces the identity homo-
morphism H" (X, F) — H" (X, F) for all n.

(e) If the diagram

commutes, then for each n so does the diagram

(f) For each homomorphism of short exact sequences of sheaves

the following diagram commutes:
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Fa

T

F3

H"(X,F) ——=H"(X, F)

I

H" (X, F3).

0 Fi Fa F3 0

L

0 g1 Go Gs 0,

H™(X, F3) —= H"TY(X, F))

l |

H"(X,G3) —= H"" (X, G)).

A bunch of material needs to be added here, but the result we are after is
the following.

Theorem 5.2.2. Any two cohomology theories on X with coefficients in sheaves
of K-modules over X are uniquely isomorphic.

Add stuff about singular and de Rham cohomology here. Provide proofs for
de Rham, probably not singular...

5.3 Cech Cohomology

In this section we define the the Cech cohomology groups. Again we assume
that X is paracompact. Let F be a sheaf of abelian groups on X. Let U = {U;}
be an open cover of X. Fix an integer n. Given a set of indices (ig,i1,...,n).
Set

U, :Uioﬂ-"ﬁUi

05--50n n*

Observe that we have
cU

105 eslhseesln

for any 0 < k < n.

Definition 5.3.1. A Cech n-cochain for the sheaf F over the open cover U is a
collection of sections of F, one over each Uj,, . ;. The space of Cech n-cochains

.....

244



for F over U is denoted by C™(U, F), i.e.,

We denote a n-cochain by (fi,.... i, )-

From the definition we see that a O-chain is a collection of sections f; €
F(U;), i.e., a section for each open set in the cover.
We define the coboundary map d" : C"™(U, F) — C™" (U, F) by setting

d((flo »»»»» Zn)) = (gio »»»»» in+1)

where
n+1
_ Z k
Giossint1 = (_1) p(fio,~~~;k,~~~,in+1)
k=0
where the p here is the restriction map from U, - . to Uiy . ,i,,- In

general we will drop the restriction maps from the notation in this case and they
will be understood to be there. Note that d°((fi)) = (gi ;) where g;; = f; — fi

and d'((fi;)) = (9ij,k) where g; jr = fix — fir + fij-

Definition 5.3.2. Let ¢ € C™(U, F) be a n-cochain satisfying d"(c) = 0. We
call such a cochain a n-cocycle. The space of n-cocycles is denoted by Z" Uu,Fr).
If c € C™(U, F) is in the image of "~ we call ¢ a n-coboundary. The space of
n-coboundaries is denoted by B™(U, F).

Exercise 5.3.3. Check that d"t! o d™ = 0 for all n.

Using the exercise, we obtain the Cech cochain complex
. 0 . 1.
0— C'WU, F) L MU, F) L U, F) — -

Definition 5.3.4. The nth Cech cohomology group of F with respect to the
cover U is given by

0"U,F)=2"U,F)/B"U,F).
Of course, at this point the cohomology groups depend on the open cover U.
We will return to this momentarily.

Lemma 5.3.5. Let U be an open cover of X. Then we have
0 (U, F) = T(X, F).

Proof. We know that B(U,F) = 0, so it only remains to compute Z°(U, F).
Define a map

a:T(X,F)— C'(U,F)
by sending a global section f to f; = pf,i (f). Observe that d°(f;) = 0 for all i
because d°(fi) = (f;— fi) and since these are just restrictions of a global section,
they are equal on overlaps. Thus, the image of « lies in Z° (U, F). The fact that
a is injective and surjective is exactly the definition of F being a sheaf. O
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Let ¢ : F — G be a sheaf homomorphism. Clearly this induces a map on
cochains 3 3
¢:C"U,F)—C"U,G)
given by
(fi07~~~;in) = (¢(fi0,~~~7in))'

Moreover, since the coboundary map commutes with any map induced by a
sheaf homomorphism, we have an induced map on the cohomology groups

¢ H'U,F)—H'U,G).

Example 5.3.6. Consider X = S! and let F = Z. Consider the open cover
U consisting of two sets U and V that overlap on small intervals as when we
computed the cohomology of S' before. In this case, we have

C'U,F)=FU)x FV)=2U)x Z(V) = Z x Z,

C'U,F)=FUNV)=ZUNV)=ZxZ,

and
C"U,F)=0

for all n > 2. Furthermore, we see that the map d° : C°(U,F) — CY(U,F)
takes (a,b) to (b — a,b— a). Thus, we have that

U, F) = ker(d°) = 7

and
' (U, F) = ker(d")/ im(d°) = Z.

Thus, we see that the cohomology groups agree with those computed using
singular cohomology with Z-coefficients in this case.

We would like to have cohomology groups attached to X and F that do not
depend on the choice of cover . To do this, we must introduce the notion of
refinements.

Definition 5.3.7. Let U = {U,},c; and V = {V; };es be two open covers of X.
Recall that we say V is a refinement of U if every open set V; € V is contained

in some open set U; € U. We write V < U to denote that V is a refinement of
U.

Let V be a refinement of &. We can define a function r: J — I by r(j) =1
where V; C U;. We call such a function a refining map. Note that the refining
map is not unique!

Exercise 5.3.8. Let X be a Hausdorff space. Let &/ be an open cover of X.
Show that for any point € X there is a refinement V of U so that x is in only
one open set of V.
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Exercise 5.3.9. Show that any two open coverings have a common refinement.

Let V be a refinement of I and let r be a refining map. We obtain an induced

map on cochains
7 C"U,F) — C"(V, F)

,,,,, i, ). Since V is a refinement, there are indices
Jo, - -5 Jn sO that r(ji) = ix. Set gj,....5, to be fi,,.. s, restricted to Vj, . ;. so
that gj,....., € F(Viy,....in,). Doing this for each f;, . ;. for a cochain (f;,. . i.)
gives the desired map. This map induces a map on cohomology. We leave the
proof of the following proposition to the reader.

.....

Proposition 5.3.10. The map 7 induces a map
H(r) :H'U,F) — 0" (V,F)
for each n.

This gives a way to compare cohomology groups with respect to different
covers, at least if one is a refinement of the other. However, it is not very useful
if it depends upon the refining map. It turns out that it only depends on the
covers Y and V and not the refining map r!

Proposition 5.3.11. The map H(r) depends only upon U and V and not the
refining map .

Proof. Let V be a refinement of an open cover U of X. Let r and r’ be refine-
ments of V. First, since we know that HO(U, F)=T(X,F)= HO(V, F), we have
that Hr is just the identity map on the 0-cocycles so there is nothing to prove
in that case.

Let h € H" (U, F) and let h be represented by the cocycle (f;, ...
we have that H(r)(h) is represented by the n-cocycle (gj,.... ;) Where

iosesin = Fr(jo),r(in)

and H(r")(h) is represented by the n-cocycle (g7 . ) where

! — . .
gj()v“')jn - fr,(JO)r'w"‘l(]n)

for every set of (n 4 1)—indices (jo,...,jn). In order to show that H(r) is
independent of the choice of r, it is enough to show that the difference g, —
9jo.....jn 15 @ n-coboundary.

Consider the n-cochain (h,,... x, ,) defined by

n—1
i=0
One now uses that (f,,..:,) is a cocycle to see that

dn_l((hk;()r")knfl)) = (93’0,...,jn - gj0;~~~7jn)'

Thus, we have that the two cocycles differ by a coboundary and so are equal as
cohomology classes, as desired. O
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As the map H(r) depends only on the open covers U and V, we denote it as
HY from now on. Note that if W <V < U, then

HY, = H},, o HY .

It is also not hard to check that these maps commute with any ¢, induced by
a map ¢ of sheaves.

Definition 5.3.12. Let F be a sheaf on X. For any n > 0, we define the nth
Cech cohomology group of F on X to be
0" (X, F) = limH" (U, F).
—
u

Note that we have Ho(u, F) =T(X,F) for all open covers . Thus, we have
that H' (X, F) = ['(X, F) as well. This combined with the fact that we clearly
have Hn(X ,F) =0 for all n < 0 gives that these cohomology groups satisfy
condition (a) of Definition 5.2.1.

We have natural maps from H" (U, F) to H" (X, F) for each open cover U
and each n > 0 by the definition of a direct limit. Thus, given a cohomology
class h € H' (U, F), we obtain a cohomology class in H' (X, F). Moreover, the
image of h in fln(X, F) is zero precisely if there is a refinement V of U so that
HY(h) = 0.

As one should expect, there is a universal property for direct limits. One
can use this to see that given a sheaf map ¢ : F — G, the induced maps
¢, :H'(U,F) — H'(V, F) induce a map

¢ H'(X,F) —H"(X,0)

for each n > 0. This induced map is functorial, i.e., we have that id, = id and
(po1)s = ¢px 0 1h. This gives conditions (d) and (e) of Definition 5.2.1.
Our next step is to give a long exact sequence in cohomology.
Let
0—K-LF g0

be a short exact sequence of sheaves. From this we obtain, for each n and each
open cover U, an exact sequence

0— C"U,K) - CmU, F) -2 C™(U, G).

As usual, we do not know that the last map is surjective. However, we can write
exact sequences

0 — C"(U,K) 2 C™U, F) 25 ¢(C™ (U, F)) — 0

for each U and each n. Thus, we obtain a short exact sequence of chain com-
plexes

0 — C*U,K) -2 C* (U, F) -5 6(C* (U, F)) — 0.
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00— C* (U, K) —= C* (U, F) —2= (C* (U, F)) — 0

l | |

0 —= C*(V, K) —2> C*(V, F) — 2= $(C*(V, F)) —= 0.

Let V be a refinement of &. Then we obtain a commutative diagram

Thus, from our general cohomology theory in § 3.2 we see that there exists a
map 6" so that the following diagram commutes:

s HY (O UL F))) e B U, K) —2 T (U, F) — B ($(C (U, F))) —— -

I

e B (O(CF(V, F)) L 1 (0, K) e 1 (0, F) L B (0(CF (0, F)))

Thus, taking direct limits we obtain the long exact sequence

o lim HY N (0(C (U, F))) Y B (X K) 5 7YX, F) 2 lim HY (6(CF (U, F))) — -
u u

Thus, to obtain the desired long exact sequence it remains to show that

H"(X,6) = im H"(¢(C* (U, F))).
u

Set C™(U) = C™(U,G)/$(C™ (U, F)). From this we obtain an exact sequence of
cochain complexes

0— ¢(C* (U, F) — H(X,G) — C*(U) — 0.

By taking the long exact sequence in cohomology for this short exact sequence
of chain complexes we see it is enough to show that

lim H"(C*(U)) = 0
1z

for all n. We will show this by showing that for each f € C™(U,G), there a
refinement ) of U so that the restriction of f lies in ¢(C™(V, F)). Let V = {V;}
be a refinement of U so that Cl(V;) C U; for each ¢ € I. For each = € X, choose
an open neighborhood W, satisfying

1. W, C V; for some i.

2. f W, NV; #0 then W, C U,.
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3. W, lies in the intersection of all the U; containing x.

4. Let Uiy, ...,U;, be in U so that Uj,
restriction of f from Uj,
W

.....

.....

Note that it is possible to satisfy the last condition since there are only finitely
many sets U, ...,U;, so that © € Uy, . ; . Let W= {W,}. For every z € X,
choose V, € V and U, € U so that W, C V, C U,. Thus, we have that W is
a refinement of U. Let Wy,,..., Wy, be in W so that Wy, 5, # 0. Then for
0 <i < n we have W,, NU,, # 0 and so by the above conditions we see that
Wio C Uy, and so Wy, C Uy,,...2,- Now we have that by (4) above that W is
the refinement we seek so that the restriction of f lies in ¢(C™(W, F)). This
gives condition (d) of Definition 5.2.1. We can also use this construction to get
(f) as well.

It only remains to prove condition (b) to see that the Cech cohomology
groups as defined give a sheaf cohomology theory as in Definition 5.2.1. Let F
be a fine sheaf and let n > 0. It is enough to prove that H" (U, F) = 0 for a
locally finite cover U. Let {¢;} be a partition of unity for F with respect to
the cover . We will define homomorphisms ¥,, : C™(U, F) — C"~ (U, F) for
each n > 1. Let f € C™"(U,F) and let {Uy,...,U,_1} be sets in U so that
Uop,...n—1 # 0. We have that ¢; o f;o n—1. Thus, we
_____ n—1. Consider

...............
.....

.....

Then it follows that
d" oW, + ¥, 0d" ! =id

for all n > 1. Thus, if f is a n-cocycle with n > 0, there is a (n — 1)-cochain
W,,(f) so that d*~'W,, (f) = f. Hence we have that H" (U, F) = 0 and so we
have the result.

Thus, we have that Cech cohomology gives a sheaf cohomology theory for X
as given in Definition 5.2.1. In particular, we have the following results (need
to justify why the others give sheaf cohomology theories as well).

Theorem 5.3.13. Let X be a smooth manifold. Given an abelian group G we
have

0"(X,G) 2 HE(X;G)

where we denote the singular cohomology group as Hg to represent the fact that
these groups are often referred to as the Betti cohomology groups. If we define
singular cohomology in terms of differentiable simplices instead of continuous
ones, we obtain cohomology groups denoted by Has. In this case we have

H"(X,R) 2 Hip (X) 2 Hi~(X;R).
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Even though the previous result allows us to compute many Cech cohomol-
ogy groups from what we have already done, we add a few examples here before
moving on to algebraic sheaves in the next section.

Theorem 5.3.14. Let X be a Riemann surface. For any n > 1 we have

n

1. H'(X,C>®) =0,

n

2. (X, QL) =

n

R
5. H

XQOl)_O

n

(
(
3 H"(X Qlo)_o
(
(

X,0%) =

Proof. We prove that f{l(u ,C) = 0 for every open covering. The same argu-
ment works for H" (U, C*°) by just keeping track of more indices. Furthermore,
the other results follow with similar arguments and are left as an exercise. Al-
ternatively, one can view that each of these sheaves is fine and so the result
follows from what was shown above.

Fix an open cover U = {U;} of X. Let (f;;) be a 1-cocycle for the sheaf
C* and the covering U. Let {¢;} be a partition of unity with respect to the
cover Y. Consider the function ¢; f;; and extend it by 0 outside of supp(¢;) and
consider it as a C'°° function on all of U;. Set g; = — Zj @; fi;, which is also
a C> function defined on U;. Now, we can use that (f;;) is a 1-cocycle to see

that
|~ 9 = Z brfik + Z¢kfzk
:me—m>
k
= oty
k
However, we know that d°((gx)) = (g; — g;) and so (fi;) is a coboundary. Since
every cocycle is a coboundary, we obtain the result. O

We can use a variation of the above method to prove the analogous result
for skyscraper sheaves. However, we first need an integer-valued version of a
partition of unity.

Lemma 5.3.15. Let X be a topological space andU = {U; }icr be an open cover
of X. There is a collection of integer-valued functions {¢;} on X satisfying

1. every point x € X lies in only finitely many of the support sets of the ¢;,
2. for everyx € X, Y, ¢i(x) =1,
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3. supp(¢;) C U; for everyi € I.

Proof. Put an order on the index set I. Define

1 ifze Ui_Uj<in
0 otherwise.

¢i(z) = {

These functions work. O

Theorem 5.3.16. Let X be a topological space and F a skyscraper sheaf on X .
Then H" (X, F) =0 for alln > 1.

Proof. Again we only prove this for n = 1 as the general case follows from the
same arguments, one just needs to keep track of more indices.

Note that if f is a section of F over U and ¢ is any Z-valued function defined
on U, then ¢f is also a section of F over U. This allows us to use the integer-
valued partition of unity constructed above. This statement would not be true
if one used a regular partition of unity as ¢ f would not necessarily be a section
of F over U anymore.

Let U = {U;} be an open cover of X and let {¢;} be an integer-valued
partition of unity. Let (f;;) be a l-cocycle for F for this covering. Consider
the section ¢; f;; and extend it by zero outside of supp(¢;), considering it as a

section of F over U;. As above, set g; = — Zj @; fi;. Then g; is also a section
of F defined over U;. We have that (fi;) = d°(g;) exactly as above, which gives
the result. (|

In particular, we have the following corollary which lists the cases of most
interest.

Corollary 5.3.17. Let X be a Riemann surface. Then:
1. for anyz € X, I[In(X,(Cw) =0 foralln>1,
H"(X, Divx) =0 for alln > 1,
for any divisor D on X, H"(X,Tx[D]) = 0 for all n > 1,

o

for any pair of divisors Dy and Do with D1 < Ds, Hn(X, Tx[D1/D3]) =0
foralln > 1.

We can use Theorem 5.3.13 and our previous results calculating singular
cohomology groups to give the Cech cohomology groups for locally constant
sheaves.

Corollary 5.3.18. Let X be a contractible Riemann surface and let G be an
abelian group. Then

1. 1(X,6) =G
2. H'(X,G) =0 for all n > 1.
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Corollary 5.3.19. Let X be a compact Riemann surface of genus g, i.e., the
torus with g holes. Let G be an abelian group. Then

1 H(X,GQ) =G,

2. H'(X,G) = G,

3. M (X,G) =G,

4. H'(X,G) =0 for all n > 2.

We can use these results to show that H" (X, Ox[D]) = 0 for n > 2.

Theorem 5.3.20. Let X be a Riemann surface and let D be a divisor on X.
Then for n > 2 we have H" (X, Ox[D]) = 0.

Proof. We begin with the case that D = 0 so we are just dealing with the sheaf
of holomorphic functions Ox. Given a form w = Y7, ; f1 sdzr NdzZ; € QRIU),
we define 3

d: QRUU) — QRT(U)

by setting

= 0
d(w) = Z gfl,J(Z)dEj ANdzr NdzZ .
1,05 77

This gives the short exact sequence

0— O0x — CF -L 0% — 0.
We now use the long exact sequence in cohomology to obtain sequences

~n—+1

H"(X,Qggl) 6_">H 1

(X,0x) —H (X,C%)

for every n > 0. However, we know that the first and last terms of the sequence
vanish for n > 1, so the result follows in this case.
For the general case we consider the short exact sequence

0— Ox[Dl] — Ox[Dg] aD1—>/D2 Tx[Dl/DQ] —0
for D; < D,. Using the associated long exact sequence we obtain

ﬁn—l(

X, Tx[D1/Do]) — H'(X, Ox[D1]) — H'(X, Ox[Ds]) — H"(X, Tx[D1/Ds)).

Now for n > 2 we know that the two sequences on the end vanish. Thus, we
have 3 3
H'(X,0x[D1]) = H (X, Ox[Ds])

for all n > 2 as long as Dy < D».
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Let D be a divisor and write D = Dy — Dy with Dy, Ds > 0. Then we have

1" (X, 0x[D])

1%

H"(X,0x[Dy])  (since D < Dy)
H(X,0x)  (since 0 < Dy)
0

1%

where the last equality uses the base case D = 0. Thus, we have the result. [

Corollary 5.3.21. Let X be a Riemann surface and D a divisor on X. Then
forn > 2 we have H" (X, Q% potlP]) = 0.

Proof. Let w be a meromorphic 1-form on X and consider the canonical divisor
associated to w given by

K = Zordz(w) -
Then one can check that there is an isomorphism of sheaves
Ox[K + D] = Q}(,hol[‘D]

given by multiplication by w. Combining this with the previous proposition
gives the result. O

5.4 Algebraic Sheaves

In this section we will study the analogous algebraic theory for Riemann sur-
faces. As such, we will consider our spaces with the Zariski topology. We say
U C X is a cofinite if X — U is a finite set.

Definition 5.4.1. Let X be a compact Riemann surface. The Zariski topology
on X is the topology where open sets are given by cofinite sets along with the
empty set. When we consider X with the Zariski topology we write Xza,.

We recall the following basic facts about the Zariski topology that will be
useful:

1. Xz., is not Hausdorff,
2. Xgzar is compact,
3. Any two nonempty open sets of Xz, intersect nontrivially.

Note that if U is open in the Zariski topology, it also open in the classical
topology. Thus, for a compact manifold we have that the Zariski topology is a
subtopology of the classical topology. In particular, given a sheaf F on X, we
obtain an algebraic sheaf Faz on Xza, by restricting the sheaf to the Zariski
open sets. We can determine what these algebraic sheaves look like fairly easily.
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Example 5.4.2. The sheaf Ox .z on X is given by
Ox.ag(U) = {f € M(X) : f € Ox(U)}.

Note here that we are requiring the functions to be globally meromorphic and
holomorphic on U, where the sheaf Ox only required the functions to be holo-
morphic on U and made no global constraints. This follows because of the
property above that any two nonempty open sets in Xyz,, have nontrivial inter-
section. We call Ox a1z the sheaf of reqular functions on X. The terminology
arises from algebraic geometry, but applies here as well. Observe that we have
an inclusion of sheaves given by

OX,alg C OX'

Example 5.4.3. Consider a divisor D on X. We define the sheaf of rational
functions with poles bounded by D on X by setting

Ox a1g|D] = {f € M(X) : div(f) > —D for all points of U}.
We have a natural inclusion here as well given by
OX,alg[D] C Ox [D]

Note that in each of the definitions above of the associated algebraic sheaves
we had that the functions were globally meromorphic. The algebraic version of
Mx is Mx e, and is a constant sheaf since every two open sets intersect in
X7zar- Thus, the sections of My .1, are given by M x (X) for any open set U.

Example 5.4.4. We can also consider the algebraic forms as well. For instance,

consider the group of meromorphic 1-forms ./\/lg})(X ). This is a 1-dimensional
vector space over the field M x (X) generated by any non-zero 1-form. One can

associate an algebraic sheaf to Mg), which is again a constant sheaf. The global

sections of Mg?alg is given by J\/lg;) for any open set. Similarly, we have the
sheaf of reqular 1-forms

Ok e (0) = {w e MP(X) 1w € Ok, (U)}

and given a divisor D on X the sheaf of rational 1-forms with poles bounded by
D is given by

Qk)alg[D](U) ={we M%’(X) : div(w) > —D for all points in U}.
We again have the natural inclusions

Q%(,alg — Q}(,hol
Q}X,alg[D] — Q.IX,hol [D]
1 1

Mg(?alg - Mg()
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Exercise 5.4.5. Check that the algebraic “sheaves” defined above are actually
sheaves.

Exercise 5.4.6. Show that the stalk Ox .ig,o of the sheaf Ox .1, at the point x
is the subring of the rational function field M x(X) consisting of those rational
functions which are holomorphic at the point .

We can now given the motivation for the definition of the Zariski topology.
The following proposition shows that when considering sections of algebraic
sheaves, ones only needs the cofinite sets.

Proposition 5.4.7. Let D be a divisor on X and consider the algebraic sheaf
Ox,aig[D]. For any open set U and any f € Ox ag[D](U) there is a cofinite
open set V with U C V C X so that the restriction map

Pg : Ox,a1g[D](V) — Ox aig[D](U)

so that f lies in the image of the restriction map. The same statement holds
for the algebraic sheaves Q}()alg [D].

Proof. Let f € Ox ag[D](U). Since f € Mx(X), we know that f has a finite
number of poles overall, and so in particular a finite number of poles not lying
in U. Let x1,...,2, be the poles of f outside U. The divisor D has finite
support by definition, so there are finitely many points yi, ..., y, outside of U
with D(yz) < 0.

Set V' to be the complement of {z; }U{y;}. By construction we have div(f) >
—D on all of V since it is on all of U and at any point x € V — U we have
div(f)(z) > 0 and D(z) > 0. Thus, we have f € Ox a15[D](V).

The same proof works for QY ,.[D]. O

Let f be a meromorphic function on X. We say that f has multiplicity 1 at
x € X if either f is holomorphic at x and ord,(f — f(x)) =1 or f has a simple
pole at z.

Definition 5.4.8. Let S be a set of meromorphic functions on X. We say that
S separates points of X if for every pair of points z,y € X with x # y there is
a meromorphic function f € S so that f(x) # f(y). We say that S separates
tangents of X if for every x € X there is a meromorphic function f € S which
has multiplicity 1 at x.

We call X an algebraic curve if the field M(X) of global meromorphic func-
tions separates the points and tangents of X. The following is a deep theorem,
but one that we will assume.

Theorem 5.4.9. FEvery compact Riemann surface is an algebraic curve.

We can construct Cech cohomology on Xz, in the exact same manner as
was used in § 5.3, the only difference being the open sets under consideration
here. In this way we obtain the Cech cohomology groups of the sheaf F on Xy,,

H" (Xzar, F).
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Proposition 5.4.10. Let G be an abelian group and G the associated sheaf on
Xzar- For everyn > 1 we have

Hn(XZar7 Q) = O

Proof. Note that since all open sets in Xz,, have nontrivial intersection, the
locally constant sheaf G is actually a constant sheaf and G(U) = G for all open
U in Xz,,. We prove the result in the case that n = 1. As in the computations
in § 5.3, the arguments for general n are the same up to keeping track of more
indices.

Let f be a cohomology class in ﬁl(XZar,Q). We can represent f as (fij;)
for some open cover U = {U;}. We can assume that I/ is a finite open cover
since Xz, is compact. Write U = {Uy,...,U,}. Since f is a cocycle we have
fis = 0for 0 <7 < n and f;; = —f;; for all ¢ # j. Thus, the cocycle f is
completely determined by the f;; with ¢ < j. In fact, one can do better. The
cocycle condition gives that for i < j < k,

fir = fij + fin

and each of these elements make sense since all open sets intersect. Moreover,
if one has f; ;41 chosen arbitrarily in G one recovers the cocycle condition by

setting
j—1
fij = Z S kt1
k=i

for all ¢ < j. Thus, the cocycle f is completely determined by the f; ;41 for each
0<i<n-—1.
Set go = 0 and for i > 1, set

1—1
9i = E Sreky1-
k=0

Then we have that (g;) is a 0O-cocycle for the sheaf G and we clearly have
fij = gi—gj for i < j. Thus, f is coboundary and so is zero in ﬁl(XZar,Q). O

The particular case of this proposition we are interested in is the following
corollary.

Corollary 5.4.11. Forn > 1 we have
I:In(XZarvMX,alg) =0

and . )
0" (Xzar, MY,,) = 0.

It turns out that in this case one does not necessarily obtain a long exact
sequence of cohomology groups for Xyz,, from a short exact sequence of sheaves
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on Xy, because Xy, is not paracompact. One does have a long exact sequence
S .
up through H | i.e., given a short exact sequence of sheaves

on Xz,;, one obtains a long exact sequence
0— F(XZarvlC) - F(XZar;f) - F(XZarv g) - Hl (XZar; ’C) - ﬁl(XZar;f) - I:Il()(Zarv g)

We now have two ways to view the space X, as a Riemann surface with stan-
dard topology or with the Zariski topology. As is standard when working in both
settings, we write X,, when we are working in the analytic setting considering
X with standard topology. Given a divisor D on X, it would be nice if there
was a way to compare the groups ﬁn(Xan, Ox|[D]) and ﬁn(XZar, Ox a1g[D]) as
well as the groups H" (Xan, Q% har[D]) and H" (X7zar, Q}()alg [D]).

Recall that Ox a15[D] is a subsheaf of Ox[D]. The inclusion map induces a
map on cohomology

g1 H (Xan, Ox.a1g[D]) — H" (Xan, Ox[D]).

We also have that the Zariski topology is a subtopology of the standard topology
in this case, so any Zariski open cover is a classical open cover and so any cochain
for the Zariski topology is a cochain for the standard topology as well. Thus,
we obtain a map

o H" (Xzar, Ox a1g[D]) — H" (Xan, Ox a1g[D]).
We can compose jo with j; to obtain a map
j M (Xzar, Ox,a1g[D]) — H" (Xan, Ox[D]).
The same construction yields a map
jt Hn(XZaDQ}X,alg[D]) - Hn(Xanvﬂ}(,hol[D])'

It turns out that a deep result of Serre, known as a GAGA theorem (Geometrie
Analytique et Geometrie Algebrique), gives that these maps are actually iso-
morphisms. Serre’s theorem is much more general, but for our set-up it is given
as follows.

Theorem 5.4.12. ([10]) Let X be an algebraic curve. Then for any divisor D,
the comparison maps

j : Hn(XZaraoX,alg[D]) — Hn(XanaoX[D])'

and
jl : Hn(XZarv Q}X,alg[D]) - Hn(Xanv Q}X,hol[D])'

are group isomorphisms for all n.
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Note that the theorem does not say we get the same thing for any sheaf!
For example, if we look at the sheaf G, we have seen that

Hl(XZanQ) =0

but )
H (X,G)=G%

if g is the genus of X.

5.5 Further applications and computations

In this section we summarize some applications of the previous sections. Many
of the results will be statements without proofs as they require a more thorough
study of Riemann surfaces than the previous chapters provide at this point. As
in the previous section, we assume X is a compact Riemann surface throughout
this section.

Let D be a divisor on X. As in the analytic setting, we obtain a map of
sheaves

D alg - MX,alg — TX,alg[D]

given by truncation of Laurent series. In terms of the classical theory, we con-
sider only the global sections for a moment. In this case we have a map

ap Mx(X) — Tx[D](X)

Given a Laurent tail f € Tx[D](X), a natural question to ask is if it is in the
image of ap. Note that f is a collection of Laurent tails, one for each point. So
we are asking if there is a global meromorphic function that when expanded in a
Laurent series at each point gives the Laurent tail at that point. The problem of
constructing a meromorphic function g € Mx(X) so that ap(g) = f is known
as the Mittag-Leffler problem. We set

H'(D) = coker(ap).

This can be studied classically. For instance, it is known that H*(D) is a finite
dimensional C-vector space ([7], Chapter VI, Proposition 2.7.)

Recall that a canonical divisor K on X is the divisor associated to a nonzero
w € ./\/lg;) (X). One has the following version of Serre duality. For a more general
version, see ([4], Chapter III, Theorem 7.6).

Theorem 5.5.1. ([7], Theorem 3.3) For D a divisor on X, and K a canonical
divisor on X, one has that there is an isomorphism

LW (—D) =~ HY(D)".
In particular,

dime H' (D) = dim LM (- D) = dim¢ L(K — D).
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This theorem provides a crucial step in the proof of the Riemann-Roch the-
orem.

Theorem 5.5.2. ([7], Theorem 3.11) Let X have genus g. Then for any divisor
D and any canonical divisor K, we have

dim¢ L(D) — dim¢ L(K — D) =deg(D) +1—g
where the degree of a divisor D =3 ng - x is given by > ng.

Corollary 5.5.3. With X and K as in the previous theorem, let D be a divisor
of degree at least deg(K)+ 1. Then H'(D) =0 and

dim¢ L(D) = deg(D) +1 — g.

Proof. The fact deg(D) > deg(K) implies that L(K — D) = 0. To see this, we
prove the following more general result: if Dy is a divisor on X with deg(D;) < 0,
then L(D;) = 0. Suppose that f € L(D;) and f is not identically 0. Consider
the divisor E = div(f) + D;. Since f € L(D1), E > 0 and so deg(E) >
0. However, since deg(div(f)) = 0 we have deg(F) = deg(D) < 0. This
contradiction gives the result modulo the result that deg(div(f)) = 0, which we
omit the proof of as it would take us too far afield.

Thus, we have by Serre-duality that H'(D) = 0. The other result is imme-
diate from the Riemann-Roch theorem. O

One should note that deg(K) = 2g — 2 for any canonical divisor K, so we
can make the previous corollary more precise if we grant this result.

Example 5.5.4. Let X be an algebraic curve of genus ¢ = 1 and let P be a
point on X. Observe that deg(K) = 0 in this case. Thus, if D is a divisor with
deg(D) > 0, then L(K — D) = 0. Thus, Riemann-Roch in this case reads:

dim L(D) = deg(D).

Consider the divisor D = P. Then deg(P) = 1 and so L(P) is the field C. We
can take 1 as a basis for L(P). Now consider the divisor D = 2P, which has
degree 2 and so dim(2P) = 2. Thus, there is a nonconstant function x € L(2P),
i.e.,  is a meromorphic function with a degree two pole at P. We can take {1, z}
as a basis for L(2P). We have that L(3P) has dimension 3. Since {1, z} are both
in L(3P), we have a function y € L(3P) with a degree 3 pole at P. Continuing
in this pattern, we have L(4P) is spanned by {1,z,2%,y} and L(5P) is spanned
by {1,2,22%,y,ry}. Things change when we reach L(6P). We have that the set
{1, 2,22, 2%, y,y%, zy} is contained in L(6P). However, since dim L(6P) = 6,
this set cannot be linearly independent. Thus, there are constants in C so that

y2 + a1y + agy + a3x3 + a4:102 +asx +ag = 0.

Note that this is precisely the equation giving an elliptic curve.
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We can give a cohomological interpretation of H (D) via the following propo-
sition. Note that this proposition is really saying that if one allows an arbitrarily
bad pole outside of U, then one can arrange for any finite set of Laurent tails
inside U.

Proposition 5.5.5. Let D be a divisor on X. The map ap aig s an onto map
of sheaves on Xz with kernel Ox aig [D]. Thus, we have a short exact sequence
of sheaves

0— OX,alg[D] I MX,alg aﬂg TX,alg[D] — 0.

Proof. The fact that Ox as[D] is the kernel of ap a1 is clear. The real issue
is showing that ap a1z is surjective. We will show that ap . is surjective on
any open set U that is properly contained in X. This is clearly enough to show
surjectivity.

Let x € X —U and let f € Tx a4[D](U), i.e., f is a finite Laurent tail divisor
supported on U. Let D, be the divisor given by D,, = D + n - x. Now, for
large n we know that Hl(Dn) = 0 by Corollary 5.5.3. Thus, for large n we have
that the map ap, on global sections is surjective. Observe that f € Tx[D,](X)
since f does not have x in its support. Thus, there is a global meromorphic
function g with ap, (¢g) = f. Thus, if we restrict g to U, then g is a preimage
of f as well. O

Recall that we do not have a long exact sequence of cohomology for algebraic
sheaves, but that we do have a long exact sequence through the first cohomology
groups. Thus, the short exact sequence gives rise to

0 — L(D) — Mx(X) 22 Tx[D])(X) — H' (Xzar, Ox,a1g[D]) — 0

where we have used that i (XZar, Mx alg) = 0. This gives that i (Xzar, Ox a1g[D])
is isomorphic to the cokernel of ap, i.e., that we have

Hl(D) = Hl(XZara OX,alg[D])'

Proposition 5.5.6. Let X be an algebraic curve of genus g. Let D be a divisor
on X. The spaces i (Xan, Ox[D]) and i (Xan, Q% poil D) are finite dimen-
sional. Moreover,

dimH' (Xan, Ox) = g

and .
dim H' (Xan, QX po1) = 1.

If deg(D) > 29 — 1, then T (Xan, Ox[D]) = 0.

Proof. Observe that by Serre’s GAGA theorem we have that

' (Xan, Ox[D]) 2 H' (Xzar, Ox a1 [D]).
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Combining this with the fact that
-1
H (Xzar, Ox a1g[D]) = H' (D)

and H'(D) is finite dimensional, gives the first result. For the second statement,
recall that for any divisor £ and K a canonical divisor associated to a global
nonzero meromorphic 1-form w, we have an isomorphism of sheaves Ox[E] —
QL 1 [E — K]. In particular we have

H' (Xan, Ox[D + K]) 2 H' (Xan, 2k 4ot [D]).

Using that ﬁl(Xan,OX [E]) is finite dimensional for any divisor E gives the
result.

In the case that D = 0, we apply Theorem 5.5.1 to see that dim L(K) =
dimH'(0) = dim ' (Xan, Ox). We have that dim L(0) = 1 because f € L(0)
means that f has no poles, which on a compact Riemann surface means it must
be a constant function. Thus, applying Riemann-Roch we obtain

dim L(K) = g.
Thus, we have dim ﬁl(Xan, Ox) = g as claimed. Furthermore, we have that
B (Xan, Qo) = H' (X, Ox [K]) = H(K).
Now apply Theorem 5.5.1 again to see that
dim H'(K) = dim L(0),

and so has dimension 1 as claimed.

Finally, we must deal with the case when deg(D) > deg(K)+1. We again use
that dim H' (D) = dim L(K — D). The latter space vanishes since deg(K — D) <
0 by the assumption on D, and so using the above isomorphisms we have the
result. (|

Consider the exact sequence
0 — Ox[D] — Mx =2 Tx[D] — 0.
Taking the associated long exact sequence we obtain
0 — L(D) = Mx(X) — Tx[D](X) — H' (X, 0x[D]) - H' (X, Mx) — 0

where we have used that ﬁl(X ,7x[D]) = 0. For D a divisor with large enough

degree, the previous proposition gives that i (X,Ox[D]) = 0. Thus, we obtain
that .
H (Xa MX) - Oa
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a result we already had for the pair (Xzay, Mx alg), but did not know for the
analytic space and sheaf.

Our next application is to discuss Abel’s theorem. Recall that Div(X) =
Divx(X) is the group of divisors on the Riemann surface X. The divisors
D that satisfy deg(D) = 0 form a subgroup of Div(X) denoted by Div’(X).
A divisor D is said to be a principal divisor if there exists a meromorphic
function f € Mx(X) so that D = div(f). The set of principal divisors forms
a subgroup PDiv(X) of Div(X). In the case that X is compact we have that
PDiv(X) € Div'(X). A natural question to ask is when is a degree 0 divisor a
principal divisor? This is answered via Abel’s theorem. We need to introduce
some more concepts before we can state the theorem.

Our first step is to define a map from H; (X;Z) to Q% (X)V. Let w be a
smooth closed 1-form on X. Let U be a triangulated subset of X, i.e., U can
be covered by simplices. Applying Stoke’s theorem to this setting we have

oL oo

Thus, we see that the integral of w around a boundary chain is 0 and so the
integral of w around any closed chain depends only on the homology class of the
chain. We see that for any homology class [¢] € Hi(X, Z), the integral

-
[c] c

is well-defined. Note that since X is a Riemann surface, i.e., a complex manifold
of dimension 1, we have that every holomorphic 1-form is closed. Thus, given
any w € Q1 (X) and any homology class [c] € Hi(X,Z), the integral

[
[e]

is well-defined. Thus, we obtain a map from H; (X, Z) to Q% ;,,,(X)" defined by

(] ( /[C] O (X) c) |

We denote the image of this map by A and refer to it as the subgroup of periods
of 1-forms. This construction allows us to attach a group called the Jacobian
to any algebraic curve.

Definition 5.5.7. Let X be a compact Riemann surface. The Jacobian of X,
denoted by Jac(X), is the quotient group
Lo (X

Jac(X) = A
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Note that by choosing a basis of Q% ;,,(X) and H;(X,Z), we can identify

the Jacobian of X with
Y

Jac(X) = T

Exercise 5.5.8. Let X be the complex torus C/L for some lattice L. Show
that Jac(X) = X. In particular, this gives that the Jacobian of an elliptic curve
is just the elliptic curve itself.

We can now define the Abel-Jacobi map. Fix a basepoint xg € X. For each
x € X we choose a path ~, from zy to . The Abel-Jacobi map

AT X — Qx pa(X)Y

(e [)

This map is not well-defined because it depends on the choice of ~,; if one
chooses a different path one will obtain a different integral. However, we can
remedy this by considering the map into Jac(X) instead of Q}()hol (X)V. In this
case the map is well-defined. It is easy to extend this from a map on X to a
map on Div(X) by setting

AlJ (Z Ny a:) = an AJ(z).

Thus, we obtain a group homomorphism from Div(X) to Jac(X). We can
restrict this map to Div®(X), which we denote as AJy.

is defined by sending

Lemma 5.5.9. The Abel-Jacobi map Ay is independent of the basepoint x.

Proof. Set AJg.,, to be the Abel-Jacobi map restricted to Div®(X) defined
relative to the basepoint xy. Let x(, be a different basepoint. For z € X, let v,
be a path from xy to z and 7/, a path from zo to zj. Let v be a path from xj,
to xg. Then we have v, — 4, —~v =0 in Hy(X,Z). Thus, we have

Ao (@)(0) = AT (@)e) = [ - / g

= Ly, W

_Lw,

Observe that the element fvw is independent of the point z. Now if D =
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S 1y - @ € DivY(X), then

AJo.zo(D)(w) = Aoy (D) (w) = > e / w

I
S/~

Thus, we have lemma. [l
We can now state Abel’s theorem.

Theorem 5.5.10. Let X be a compact Riemann surface of genus g. Let D €
Din’(X). Then D € PDiv(X) if and only if AJo(D) = 0 in Jac(X).

Consider the exact sequence arising from the exponential map:
0—Z— O0Ox — 0%y — 0.

Using the fact that the exponential map from C to C* is surjective, the long
exact sequence in cohomology gives

0 H'(X,Z) — H'(X,0x) — H (X,0%) - H'(X, D).
In particular, we can write this exact sequence as an exact sequence
0 — ' (X, 0x)/I(X,2) — I (X,0%) — (X, 2).
We also have a short exact sequence of sheaves
0— Oy — M% — Divy — 0

where the map M% — Divx is given by sending a meromorphic function to
its divisor. The associated long exact sequence here begins as

0— C* — Mx(X)* — Div(X) — H' (X, 0%).

Note that the image of the map Mx(X)* — Div(X) is precisely the set of

principal divisors. Moreover, using that i (X,Z) =2 7Z, we have a map
Div(X) — 0 (X,0%) —» 0 (X,2) = Z

In particular, one can check that this map is given by sending a divisor to its
degree. Combining all of this gives the following commutative diagram:
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0 0

|

PDiv(X) —— =~ PDiv(X)

l deg

0 ———— Div’(X) ————— Div(X) 7 0

deg .92

0—H'(X,0x)/H'(X,2) —= H' (X, 0%) —= H(X, 2).

y =

We can apply Serre duality (Theorem 5.5.1) to see that i (X,0x) = O 1,,(X)Y,

and so [’ (X, OX)/ﬁl (X,Z) = Jac(X). Composition of this map with the Abel-
Jacobi map gives a map

Div’(X) — H' (X, 0x)/H' (X, 2).

We denote this map as AJg as well. One then can work out that this map fits
into the diagram so that the diagram commutes:

PDiv(X)

|

0 ———— Div’(X) ———— Div(X) T

0— ' (X,0x)/H (X,2) —= 0 (X,0%) —= 1(X,2) —= 0.

It is now clear that if D € Div®(X) then D € PDiv(X) since Div"(X) injects
into Div(X) and the above diagram is commutative. Similarly, it is clear that
it D € PDiv(X) then D is in the kernel of the map AJy. Thus, we have Abel’s
theorem up to the nontrivial checking that the maps are the appropriate ones
and that the above diagram commutes after inserting the map AJy.

5.6 The Hodge Conjecture

The Hodge conjecture is one of the Clay Mathematics Institute’s Millenium
problems. It is probably more difficult to state than any of the other millenium
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problems as it states a deep relationship between analysis, algebraic geometry,
and topology. Very little is known about this conjecture. In this section we
outline the statement of the conjecture.

Let X be a complex manifold of dimension n. Viewing X as a real manifold
of dimension 2n, for any € X we have an associated tangent space T, (X) as
defined in § 3.5. By choosing coordinates z1 = x1+iy1, . .., 2n = Tn+iyn, We can
realize T, (X)) as the space of R-linear derivations on the ring of C*°(U,R) for
U an open neighborhood of z, i.e., T,(X) is generated over R by the operators
% and ‘Z for 1 <i < n. As T (X) is a real vector space, it is natural to
consider the complexified vector space

Teo(X) = Tu(X) @z C.

Choosing coordinates, this vector space can be realized as the space of C-linear
derivations on the ring of smooth complex valued functions in a neighborhood
of z. In particular, we have that Tc ,(X) is generated over C by f and a

for 1 <i < n. If we write
0 1/ 0 — 0

0z; ox; 0y;
and 0 1 0 — 0
0z; - 5 (8.%1 * _18y1) ’

then T¢ . (X) is generated over C by 2 7. and 6— for 1 < i < n. Finally, we define
the holomorphic tangent space to X at z by setting Ty hot(X) to be the vector
space over C generated by the B—Zi i.e., the space of derivations that vanish on

antiholomorphic functions (functions f where f is holomorphic.) Similarly, one
can define the antiholomorphic tangent space, which is isomorphic to T ho1(X).
Thus, we can write

TC,z(X> = Tx,hol(X) S¥ Tx,hol(X)-

Recall, given a complex vector space V, a hermitian inner product is a
bilinear form

,): VeV —=C

that for any o € C and u, v, w € V satisfies

o (u+v,w) = (u,w) + (v,w)

u, v+ w) = (u,w) + (u,v)

{
{
o (au,v) = alu,v)
{
{
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A hermitian metric on X is a positive definite hermitian inner product
<a >z : Tz,hol(X) ® Tz,hol(X) —C

that depends smoothly on z, i.e., if we choose local coordinates around z as

above and set h;;(z) = <%, %> , then the h;;(z) are smooth functions of z.
i i/ 5

If we write (, ), in terms of the basis {dz; ® dz;} of (T ho1(X) ® T hot(X))Y =

Tohol(X)Y @ Ty not(X)Y, then the hermitian metric is given by

d82 = Z hij (z)dzz & dfj.
]

A coframe for the hermitian metric ds? is a n-tuple of forms (w1, ...,w,) with

w; € QY (X) so that
ds? = Zwi X W;.

We say that the metric ds? is Kahler if the (1, 1)-form
v—1
W = T Z Wy A DZ-

is d-closed, i.e., d*(w) = 0. A complex manifold X is said to be a Kahler manifold
if it admits a Kéhler metric. There are many other equivalent conditions one
can give on ds? to ensure it is Kihler, including many that are more useful for
geometric insight. However, we choose the easiest version to state to keep from
going to far afield.

We have already seen that for any m, we have

QX not(X) = @ Q%1 (X).
ptq=m

In general one does not have the same decomposition for the de Rham coho-
mology groups. However, on a Kéhler manifold one does!

Theorem 5.6.1. (Hodge Decomposition Theorem) Let X be a compact Kahler
manifold. Then we have for the complex de Rham cohomology groups

Hiz(X.C) = D HEX)
ptg=m
HE(X) = ATE (X0,
One does not get the same decomposition in terms of the real cohomology,
in this case one gets

iR(X,R) = [ P (HE(X) @ HIF(X)) | N HiR (X R).

ptg=m
P<q
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We define the rational Hodge classes to be the set

Hdg(X) = J (B”(X,Q) N HZ (X)) .

p

These are the classes in the de Rham cohomology groups that have any hope of
being “algebraic”.

For the algebraic side of things, we now let X be a smooth projective alge-
braic variety of dimension n. The space of C-valued points X (C) is a complex
n-manifold, which we denote as X,,. Given a subvariety Y C X of codimen-
sion p, we obtain a submanifold Y,, of X,, of codimension p by considering
the C-valued points. Since Y, is a submanifold of X,,, so we have a natural
injection

Yan — Xanu

which gives a natural map of sheaves
Q%hol - Q?},hol
for each m > 0. Consequently, we have a map
R (Xan, €) — Hijg (Yan, C).

We specialize to the case that m = n — p. We apply the fact that Y,, has
dimension n — p to see that Hjz” (Yan, C) — C. Combining this with the map

above, we have a map
H " (Xan,C) — C,

i.e., for each subvariety Y of X of codimension p we obtain an element of
Hr"(Xan,C)¥. We now apply Poincare duality to obtain an element [Y] in
HE R (Xan, C). We call these elements algebraic cycles.

Conjecture 5.6.2. (Hodge Conjecture) Let X be a smooth complex projec-
tive algebraic variety. Every Hodge class can be written as a rational sum of
alegebraic cycles.
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