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Arithmetic objects from characteristic 0

The multiplicative group and exp(z)

Elliptic curves and elliptic functions

Abelian extensions of imaginary quadratic fields
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The multiplicative group
We have the usual exact sequence of abelian groups

0→ 2πiZ→ C exp→ C× → 0,

where

exp(z) =
∞∑

i=0

z i

i!
∈ Q[[z]].

For any n ∈ Z,

C
z 7→nz

��

exp // C×

x 7→xn

��
C

exp // C×

which is simply a restatement of the functional equation

exp(nz) = exp(z)n.
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Roots of unity
Torsion in the multiplicative group

The n-th roots of unity are defined by

µn :=
{
ζ ∈ C× | ζn = 1

}
=
{

exp
(
2πia/n

)
| a ∈ Z

}

Explicit class field theory for Q:
Gal(Q(µn)/Q) ∼= (Z/nZ)×.
Kronecker-Weber Theorem: Every abelian extension of Q is
contained in Q(µn) for some n.
If ` is a prime ` - n, then the Artin automorphism
σ` ∈ Gal(Q(µn)/Q) acts by

σ`(ζ) = ζ`.
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Elliptic curves over C

Smooth projective algebraic curve of genus 1.

E : y2 = 4x3 + ax + b, a,b ∈ C

E(C) has the structure of an abelian group through the usual
chord-tangent construction.
The identity element of E(C) is the point O, which lies on the line
at infinity in P2.
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Weierstrass uniformization

There exist ω1, ω2 ∈ C, linearly independent over R, so that if we
consider the lattice

Λ = Zω1 + Zω2,

then the Weierstrass ℘-function is defined by

℘Λ(z) =
1
z2 +

∑
ω∈Λ
ω 6=0

(
1

(z − ω)2 −
1
ω2

)
.

The function ℘(z) has double poles at each point in Λ and no other
poles.
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We obtain an exact sequence of abelian groups,

0→ Λ→ C
expE→ E(C)→ 0,

where
expE (z) = (℘(z), ℘′(z)).

Moreover, we have a commutative diagram

C

z 7→nz
��

expE// E(C)

P 7→[n]P
��

C
expE// E(C)

where [n]P is the n-th multiple of a point P on the elliptic curve E .

Clemson University (Lecture 1) Intro. to Drinfeld Modules April 16, 2009 8 / 30



We obtain an exact sequence of abelian groups,

0→ Λ→ C
expE→ E(C)→ 0,

where
expE (z) = (℘(z), ℘′(z)).

Moreover, we have a commutative diagram

C

z 7→nz
��

expE// E(C)

P 7→[n]P
��

C
expE// E(C)

where [n]P is the n-th multiple of a point P on the elliptic curve E .

Clemson University (Lecture 1) Intro. to Drinfeld Modules April 16, 2009 8 / 30



Periods of E
How do we find ω1 and ω2?

An elliptic curve E ,

E : y2 = 4x3 + ax + b, a,b ∈ C,

has the geometric structure of a torus in P2(C). Let

γ1, γ2 ∈ H1(E ,Z)

be generators of the homology of E .

Then we can choose

ω1 =

∫
γ1

dx√
4x3 + ax + b

, ω2 =

∫
γ2

dx√
4x3 + ax + b

.
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Multiplication by n on E
Note that if P = (x , y) is a point on E , then [n]P has the form

[n]P =

(
fn(x , y),gn(x , y)

)
,

where fn and gn are rational functions in x , y , and the coefficients
of the defining polynomial for E .

For example,

[2]P =

(
x4 − 2ax2 − 8bx + a2

4y2 ,

x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − a3 − 8b2

8y3

)

In particular, if x , y ,a,b are all in a field K , then [n]P has
coordinates in K .
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Torsion points on elliptic curves
The group E [n]

Suppose E is defined over a field K ⊆ C. For a field L with
K ⊆ L ⊆ C, we set

E(L) := {(x , y) ∈ E | x , y ∈ L}.

Then E(L) is a subgroup of E .

For each n ∈ Z, we define the torsion subgroup

E [n] := {P ∈ E(C) | [n]P = O} ⊆ E(C).

Then as an abstract group,

E [n] ∼= Z/nZ⊕ Z/nZ.
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Division fields

Since E [n] is a finite group, the field K (E [n]) satisfies

[K (E [n]) : K ] <∞.

Moreover, K (E [n])/K is Galois: for σ ∈ Gal(K/K ),

[n](σP) = σ([n]P)⇒ σ(E [n]) ⊆ E [n].

Because E [n] ∼= Z/nZ⊕ Z/nZ, we find that

Gal(K (E [n])/K ) ↪→ GL2(Z/nZ).
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Abelian extensions of imaginary quadratic fields
Elliptic curves with complex multiplication (CM)

Consider the example

E : y2 = x3 − x .

Then for i =
√
−1, the morphism [i](x , y) := (−x , iy) induces and

embedding
Z[i] ⊆ End(E).

In this case we say E has CM by Z[i].

Let K = Q(i) and n ≥ 3. Then
I Gal(K (E [n])/K ) is abelian (and explicitly given depending on the

primes dividing n),
I Every abelian extension of K is contained in K (E [n]) for some n.
I For a prime ` - 2n and P ∈ E [n], we have

σ`(P) = [`]P.
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General imaginary quadratic fields

Let K = Q(
√
−d) for some d ≥ 1. Let hK be the class number of K .

There are exactly hK isomorphism classes (over C) of elliptic
curves with CM by OK .
For any such curve E : y2 = x3 + ax + b, set

jE =
6912a3

4a3 + 27b2 .

The field H := K (jE ) is the Hilbert class field of K ; that is, H is the
maximal abelian unramified extension of K .
Morever, as long as jE 6= 0 or 1728,

K ab =
⋃
n

K
(
jE , x(E [n])

)
=
⋃
n

H
(
x(E [n])

)
.

Clemson University (Lecture 1) Intro. to Drinfeld Modules April 16, 2009 14 / 30



Function fields and Drinfeld modules

Function fields

Drinfeld modules

I The Carlitz module

I Drinfeld modules of rank 1 and abelian extensions

I Drineld modules of higher rank
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Function fields

Let p be a fixed prime; q a fixed power of p.

A := Fq[θ] ←→ Z

k := Fq(θ) ←→ Q

k ←→ Q

k∞ := Fq((1/θ)) ←→ R

C∞ := k̂∞ ←→ C

|f |∞ = qdeg f ←→ | · |
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Twisted polynomials

Let τ : C∞ → C∞ be the q-th power Frobenius map: τ(x) = xq.
For a subfield Fq ⊆ K ⊆ C∞, the ring of twisted polynomials over
K is

K [τ ] = polynomials in τ with coefficients in K ,

subject to the conditions

τc = cqτ, ∀ c ∈ K .

In this way,

K [τ ] ∼= {Fq-linear endomorphisms of K +}.

For x ∈ K and φ = a0 + a1τ + · · · arτ
r ∈ K [τ ], we write

φ(x) := a0x + a1xq + · · ·+ ar xqr
.
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Functions on algebraic curves

Let X be a smooth projective curve over Fq, with function field
K = Fq(X ).
Suppose we have fixed maps,

X → P1 ⇔ Fq(θ) ↪→ K .

Fix a point∞ on X that sits above the infinite point on P1.
Throughout the following we set

A := {f ∈ K | f is regular on X away from∞}.

So if X = P1, then A = Fq[θ].
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Drinfeld modules
Function field analogues of Gm and elliptic curves
Fix a curve X/Fq and ring A ⊆ K = Fq(X ) as above.

Definition
A Drinfeld A-module is an Fq-algebra homomorphism,

ρ : A→ C∞[τ ],

such that
ρf = f + a1τ + · · · asτ

s, ∀ f ∈ A.

ρ makes C∞ into an A-module in the following way:

f ∗ x := ρf (x), ∀f ∈ A, x ∈ C∞.

If a1, . . . ,ar ∈ K ⊆ C∞ for all f ∈ A, we say ρ is defined over K .
s = r deg(f ), where r is called the rank of ρ.
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The Carlitz module
The analogue of Gm

We define a Drinfeld Fq[θ]-module C : Fq[t ]→ C∞[τ ] by

Cθ := θ + τ.

Thus, for any x ∈ C∞,

Cθ(x) = θx + xq.

And for example,

Cθ2 = CθCθ = (θ + τ)(θ + τ) = θ2 + (θ + θq)τ + τ2,

Cθ2(x) = θ2x + (θ + θq)xq + xq2
.
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Carlitz exponential

We set

expC(z) = z +
∞∑

i=1

zqi

(θqi − θ)(θqi − θq) · · · (θqi − θqi−1)
.

expC : C∞ → C∞ is entire, surjective, and Fq-linear.
Functional equation:

expC(θz) = θ expC(z) + expC(z)q,

expC(f (θ)z) = Cf (expC(z)), ∀f (t) ∈ Fq[t ].
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Carlitz uniformization and the Carlitz period

We have a commutative diagram of Fq[t ]-modules,

C∞
z 7→θz

��

expC // C∞
x 7→θx+xq

��
C∞

expC // C∞

The kernel of expC(z) is

ker(expC(z)) = Fq[θ]π̃,

where

π̃ = θ
q−1
√
−θ

∞∏
i=1

(
1− θ1−qi

)−1
.
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Torsion points on the Carlitz module
Recall k = Fq(θ), A = Fq(θ).

For f ∈ Fq[θ], we set

C[f ] = {x ∈ C∞ | Cf (x) = 0},
= f -torsion submodule of C.

For example,

C[θ] = {x ∈ C∞ | θx + xq = 0}

= {expC

(a
θ

)
| a ∈ Fq}

= {ζ q−1
√
−θ | ζ ∈ Fq}.

Preliminary observations:
I C[θ] ∼= A/θ as an A-module;
I k(C∞[θ])/k is an abelian extension.
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Explicit class field theory for Fq(θ)

For every f ∈ A,

Gal(k(C[f ])/k) ∼= (A/f )×.

Indeed, given ` ∈ A irreducible with ` - f , the Frobenius
automorphism σ` ∈ Gal(k(C[f ])/k) acts by

σ`(ζ) = C`(ζ), ζ ∈ C[f ].

Moreover, every abelian extension of k that is unramified away
from∞ is contained in k(C[f ]) for some f ∈ A.
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Drinfeld A-modules for general A

Do they always exist? In general, defining a ring homomorphism
A→ S to some target ring S is non-trivial.

Yes, in fact for any A, there are Drinfeld A-modules of every
possible rank.
Example (Thakur): Let A = F3[θ, η]/(η2 − θ3 + θ + 1). Then there
is a rank 1 Drinfeld A-module,

ρ : A→ C∞[τ ],

with

ρθ = θ + η(θ3 − θ)τ + τ2,

ρη = η + η(η3 − η)τ + (η9 + η3 + η)τ2 + τ3.

In fact ρ is defined over the fraction field of A.
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Rank 1 Drinfeld A-modules

Let A be given, K its fraction field. For simplicity, assume the point∞
has degree 1.

Let h be the class number of A. Let H be the Hilbert class field of
A (maximal abelian unramified extension).
Then there exist h isomorphism classes of rank 1 Drinfeld
A-modules. Moreover, representatives ρ1, . . . , ρh for these classes
can be chosen (uniquely) so that each is defined over H:

ρi : A→ H[τ ].

(Uniqueness arises from normalizing the leading coefficients to be
specific constants.)

Clemson University (Lecture 1) Intro. to Drinfeld Modules April 16, 2009 26 / 30



Explicit class field theory for K

Fix such a rank 1 Drinfeld A-modules, ρ : A→ H[τ ].
For any ideal f ⊆ A, the extension H(ρ[f])/H is abelian and

Gal(H(ρ[f])/H) ∼= (A/f)×.

Moreover, H(ρ[f])/K is abelian. (Recall that Gal(H/K ) is
isomorphic to the class group of A, so we can pin down the total
Galois group precisely.)
As in previous cases, the Artin automorphisms act via the ρ-action
on the torsion points:

σ`(ζ) = ρ`(ζ), ζ ∈ ρ[f], ` - f.
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Drinfeld modules of arbitrary rank

Suppose ρ : A→ C∞[τ ] is a rank r Drinfeld A-module.
Then there is an unique, entire, Fq-linear function

expρ : C∞ → C∞,

so that
expρ(fz) = ρf (expρ(z)), ∀f ∈ A.
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Periods of Drinfeld modules

Furthermore, there are ω1, . . . , ωr ∈ C∞ and ideals I1, . . . , Ir ⊆ A,
so that

ker(expρ(z)) = I1ω1 + · · ·+ Irωr =: Λ,

where Λ is a discrete A-submodule of C∞ of projective rank r .

Chicken vs. Egg:

expρ(z) = z
∏

06=ω∈Λ

(
1− z

ω

)
.

Again we have a uniformizing exact sequence of Fq[t ]-modules

0→ Λ→ C∞
expρ→ C∞ → 0.

How do we find the periods?
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Torsion points on higher rank modules

In reality, expρ is the unique power series that makes the following
diagram commute for f ∈ A:

C∞
z 7→fz

��

expρ // C∞
x 7→ρf (x)

��
C∞

expρ // C∞

Furthermore, the f -torsion submodule is isomorphic to r copies of
A/f , which leads to a Galois representation

Gal(Lsep/L)→ GLr (A/f ),

where L is a field of definition for ρ.
One can develop a theory of “`-adic” Galois representations (see
Pink, Taguchi, Tamagawa, et al.)
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