Introduction to Drinfeld Modules and Function Field Arithmetic

Matthew Papanikolas

Texas A&M University

Clemson University

Algebra & Discrete Mathematics Seminar April 16, 2009

 Ω

 $4 \oplus 14 \oplus 14$

4 0 8

 \leftarrow \Box

重き

×

 \sim

 299

Arithmetic objects from characteristic 0

- The multiplicative group and exp(*z*)
- Elliptic curves and elliptic functions
- Abelian extensions of imaginary quadratic fields

The multiplicative group

We have the usual exact sequence of abelian groups

$$
0\to 2\pi i{\mathbb Z}\to {\mathbb C}\stackrel{exp}{\to}{\mathbb C}^\times\to 0,
$$

where

$$
\exp(z)=\sum_{i=0}^{\infty}\frac{z^i}{i!}\in\mathbb{Q}[[z]].
$$

4 0 8 1 \leftarrow \Box

 \sim œ. 299

The multiplicative group

We have the usual exact sequence of abelian groups

$$
0\to 2\pi i{\mathbb Z}\to {\mathbb C}\stackrel{exp}{\to}{\mathbb C}^\times\to 0,
$$

where

$$
\exp(z)=\sum_{i=0}^{\infty}\frac{z^i}{i!}\in\mathbb{Q}[[z]].
$$

For any $n \in \mathbb{Z}$,

which is simply a restatement of the functional equation

$$
\exp(nz)=\exp(z)^n.
$$

Torsion in the multiplicative group

The *n*-th roots of unity are defined by

$$
\mu_n:=\left\{\zeta\in\mathbb{C}^\times\mid\zeta^n=1\right\}=\left\{\exp\bigl(2\pi i a/n\bigr)\mid a\in\mathbb{Z}\right\}
$$

 299

÷

 $4\Box$ \rightarrow $4\Box$ \rightarrow $4\Box$ \rightarrow 4

Torsion in the multiplicative group

The *n*-th roots of unity are defined by

$$
\mu_n:=\left\{\zeta\in\mathbb{C}^\times\mid\zeta^n=1\right\}=\left\{\exp\bigl(2\pi i a/n\bigr)\mid a\in\mathbb{Z}\right\}
$$

Explicit class field theory for Q**:**

• Gal(
$$
\mathbb{Q}(\mu_n)/\mathbb{Q}
$$
) $\cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

 299

Ξ

4 ロ ト 4 何 ト 4 ヨ ト 4

Torsion in the multiplicative group

The *n*-th roots of unity are defined by

$$
\mu_n:=\left\{\zeta\in\mathbb{C}^\times\mid\zeta^n=1\right\}=\left\{\exp\bigl(2\pi i a/n\bigr)\mid a\in\mathbb{Z}\right\}
$$

Explicit class field theory for Q**:**

- $Gal(\mathbb{Q}(\mu_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}.$
- **Kronecker-Weber Theorem:** Every abelian extension of $\mathbb Q$ is contained in $\mathbb{Q}(\mu_n)$ for some *n*.

Torsion in the multiplicative group

The *n*-th roots of unity are defined by

$$
\mu_n:=\left\{\zeta\in\mathbb{C}^\times\mid\zeta^n=1\right\}=\left\{\exp\bigl(2\pi i a/n\bigr)\mid a\in\mathbb{Z}\right\}
$$

Explicit class field theory for Q**:**

- $Gal(\mathbb{Q}(\mu_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}.$
- **Kronecker-Weber Theorem:** Every abelian extension of $\mathbb Q$ is contained in Q(µ*n*) for some *n*.
- If ℓ is a prime $\ell \nmid n$, then the Artin automorphism $\sigma_{\ell} \in \text{Gal}(\mathbb{Q}(\mu_{n})/\mathbb{Q})$ acts by

$$
\sigma_{\ell}(\zeta)=\zeta^{\ell}.
$$

• Smooth projective algebraic curve of genus 1.

$$
E: y^2 = 4x^3 + ax + b, \quad a, b \in \mathbb{C}
$$

- $E(\mathbb{C})$ has the structure of an abelian group through the usual chord-tangent construction.
- The identity element of $E(\mathbb{C})$ is the point *O*, which lies on the line at infinity in \mathbb{P}^2 .

Weierstrass uniformization

There exist $\omega_1, \omega_2 \in \mathbb{C}$, linearly independent over R, so that if we consider the lattice

$$
\Lambda = \mathbb{Z} \omega_1 + \mathbb{Z} \omega_2,
$$

then the *Weierstrass* \wp -function is defined by

$$
\wp_{\Lambda}(z) = \frac{1}{z^2} + \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right).
$$

The function $\wp(z)$ has double poles at each point in Λ and no other poles.

We obtain an exact sequence of abelian groups,

$$
0\to\Lambda\to\mathbb{C}\stackrel{\text{exp}_E}{\to}E(\mathbb{C})\to 0,
$$

where

$$
\exp_E(z)=(\wp(z),\wp'(z)).
$$

 299

E

4 ロ ト ィ *同* ト

 \rightarrow \pm

B

We obtain an exact sequence of abelian groups,

$$
0\to\Lambda\to\mathbb{C}\stackrel{\text{exp}_E}{\to}E(\mathbb{C})\to 0,
$$

where

$$
\exp_E(z)=(\wp(z),\wp'(z)).
$$

Moreover, we have a commutative diagram

$$
\begin{array}{ccc}\n\mathbb{C} & \xrightarrow{\exp_E} E(\mathbb{C}) \\
\downarrow^{\exp_E} & \downarrow^{\exp_E} \\
\mathbb{C} & \xrightarrow{\exp_E} E(\mathbb{C})\n\end{array}
$$

where [*n*]*P* is the *n*-th multiple of a point *P* on the elliptic curve *E*.

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Periods of *E*

How do we find ω_1 and ω_2 ?

An elliptic curve *E*,

$$
E: y^2 = 4x^3 + ax + b, \quad a, b \in \mathbb{C},
$$

has the geometric structure of a torus in $\mathbb{P}^2(\mathbb{C}).$ Let

$$
\gamma_1,\gamma_2\in H_1(E,\mathbb{Z})
$$

be generators of the homology of *E*.

4 A F

Periods of *E*

How do we find ω_1 and ω_2 ?

An elliptic curve *E*,

$$
E: y^2 = 4x^3 + ax + b, \quad a, b \in \mathbb{C},
$$

has the geometric structure of a torus in $\mathbb{P}^2(\mathbb{C}).$ Let

$$
\gamma_1,\gamma_2\in H_1(E,\mathbb{Z})
$$

be generators of the homology of *E*.

Then we can choose

$$
\omega_1=\int_{\gamma_1}\frac{dx}{\sqrt{4x^3+ax+b}},\qquad \omega_2=\int_{\gamma_2}\frac{dx}{\sqrt{4x^3+ax+b}}.
$$

Clemson University (Lecture 1) **Intro.** to Drinfeld Modules **April 16, 2009** 9/30

-4 B +

Multiplication by *n* on *E*

• Note that if $P = (x, y)$ is a point on *E*, then $[n]P$ has the form

$$
[n]P = \bigg(f_n(x,y),g_n(x,y)\bigg),
$$

where f_n and g_n are rational functions in *x*, *y*, and the coefficients of the defining polynomial for *E*.

Multiplication by *n* on *E*

• Note that if $P = (x, y)$ is a point on *E*, then $[n]P$ has the form

$$
[n]P = \bigg(f_n(x,y),g_n(x,y)\bigg),
$$

where f_n and g_n are rational functions in *x*, *y*, and the coefficients of the defining polynomial for *E*.

• For example,

$$
[2]P = \left(\frac{x^4 - 2ax^2 - 8bx + a^2}{4y^2}, \frac{x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - a^3 - 8b^2}{8y^3}\right)
$$

Multiplication by *n* on *E*

• Note that if $P = (x, y)$ is a point on *E*, then $[n]P$ has the form

$$
[n]P = \bigg(f_n(x,y),g_n(x,y)\bigg),
$$

where *fⁿ* and *gⁿ* are rational functions in *x*, *y*, and the coefficients of the defining polynomial for *E*.

• For example,

$$
[2]P = \left(\frac{x^4 - 2ax^2 - 8bx + a^2}{4y^2}, \frac{x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - a^3 - 8b^2}{8y^3}\right)
$$

• In particular, if x, y, a, b are all in a field K , then $[n]P$ has coordinates in *K*.

Clemson University (Lecture 1) [Intro. to Drinfeld Modules](#page-0-0) April 16, 2009 10/30

Torsion points on elliptic curves The group *E*[*n*]

Suppose *E* is defined over a field *K* ⊆ C. For a field *L* with $K \subseteq L \subseteq \mathbb{C}$, we set

$$
E(L) := \{(x, y) \in E \mid x, y \in L\}.
$$

Then *E*(*L*) is a subgroup of *E*.

Torsion points on elliptic curves The group *E*[*n*]

Suppose *E* is defined over a field *K* ⊆ C. For a field *L* with $K \subseteq L \subseteq \mathbb{C}$, we set

$$
E(L) := \{(x, y) \in E \mid x, y \in L\}.
$$

Then *E*(*L*) is a subgroup of *E*.

• For each $n \in \mathbb{Z}$, we define the torsion subgroup

$$
E[n]:=\{P\in E(\mathbb{C})\mid [n]P=O\}\subseteq E(\mathbb{C}).
$$

Then as an abstract group,

$$
E[n] \cong \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}.
$$

Division fields

• Since $E[n]$ is a finite group, the field $K(E[n])$ satisfies

 $[K(E[n]): K] < \infty$.

э

 299

イロト イ母 トイラト イラト

Division fields

Since *E*[*n*] is a finite group, the field *K*(*E*[*n*]) satisfies $[K(E[n]): K] < \infty$.

• Moreover, $K(E[n])/K$ is Galois: for $\sigma \in Gal(\overline{K}/K)$,

 $[n](\sigma P) = \sigma([n]P) \Rightarrow \sigma(E[n]) \subseteq E[n].$

 Ω

イロト イ押 トイヨ トイヨ トーヨー

Division fields

Since *E*[*n*] is a finite group, the field *K*(*E*[*n*]) satisfies $[K(E[n]): K] < \infty$.

• Moreover, $K(E[n])/K$ is Galois: for $\sigma \in Gal(\overline{K}/K)$,

$$
[n](\sigma P) = \sigma([n]P) \Rightarrow \sigma(E[n]) \subseteq E[n].
$$

Because *E*[*n*] ∼= Z/*n*Z ⊕ Z/*n*Z, we find that

 $Gal(K(E[n])/K) \hookrightarrow GL_2(\mathbb{Z}/n\mathbb{Z}).$

KEL KALE KEL KEL DI MAG

Abelian extensions of imaginary quadratic fields

Elliptic curves with complex multiplication (CM)

• Consider the example

$$
E:y^2=x^3-x.
$$

Then for $i =$ √ -1 , the morphism $[i](x, y) := (-x, iy)$ induces and embedding

 $\mathbb{Z}[i] \subseteq \mathsf{End}(E).$

In this case we say E has CM by $\mathbb{Z}[i]$.

Abelian extensions of imaginary quadratic fields

Elliptic curves with complex multiplication (CM)

• Consider the example

$$
E:y^2=x^3-x.
$$

Then for $i =$ √ -1 , the morphism $[i](x, y) := (-x, iy)$ induces and embedding

 $\mathbb{Z}[i] \subseteq \mathsf{End}(E)$.

In this case we say E has CM by $\mathbb{Z}[i]$.

• Let $K = \mathbb{O}(i)$ and $n > 3$.

Abelian extensions of imaginary quadratic fields

Elliptic curves with complex multiplication (CM)

• Consider the example

$$
E:y^2=x^3-x.
$$

Then for $i =$ √ -1 , the morphism $[i](x, y) := (-x, iy)$ induces and embedding

 $\mathbb{Z}[i] \subseteq \mathsf{End}(E)$.

In this case we say E has CM by $\mathbb{Z}[i]$.

- Let $K = \mathbb{O}(i)$ and $n > 3$. Then
	- \blacktriangleright Gal($K(E[n])/K$) is abelian (and explicitly given depending on the primes dividing *n*),
	- Every abelian extension of *K* is contained in $K(E[n])$ for some *n*.
	- ► For a prime ℓ \nmid 2*n* and $P \in E[n]$, we have

$$
\sigma_{\ell}(P)=[\ell]P.
$$

 Ω

イロト イ押ト イヨト イヨト ニヨー

General imaginary quadratic fields

Let $K = \mathbb{Q}(\sqrt{2})$ −*d*) for some *d* ≥ 1. Let *h^K* be the class number of *K*.

- There are exactly h_K isomorphism classes (over \mathbb{C}) of elliptic curves with CM by \mathcal{O}_K .
- For any such curve $E: y^2 = x^3 + ax + b,$ set

$$
j_E=\frac{6912a^3}{4a^3+27b^2}.
$$

- The field $H := K(j_F)$ is the Hilbert class field of K; that is, H is the maximal abelian unramified extension of *K*.
- Morever, as long as $j_F \neq 0$ or 1728,

$$
K^{ab} = \bigcup_n K(j_E, x(E[n])) = \bigcup_n H(x(E[n])).
$$

э

Function fields and Drinfeld modules

- **•** Function fields
- • Drinfeld modules
	- \blacktriangleright The Carlitz module
	- \triangleright Drinfeld modules of rank 1 and abelian extensions
	- \triangleright Drineld modules of higher rank

Function fields

Let *p* be a fixed prime; *q* a fixed power of *p*.

э

 299

÷

41

4 ロ ト 4 何 ト 4 ヨ ト

Twisted polynomials

Let $\tau: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be the *q*-th power Frobenius map: $\tau(x) = x^q$.

For a subfield F*^q* ⊆ *K* ⊆ C∞, the ring of *twisted polynomials* over *K* is

 $K[\tau] =$ polynomials in τ with coefficients in *K*,

subject to the conditions

$$
\tau c = c^q \tau, \quad \forall \ c \in K.
$$

Twisted polynomials

- Let $\tau: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be the *q*-th power Frobenius map: $\tau(x) = x^q$.
- For a subfield F*^q* ⊆ *K* ⊆ C∞, the ring of *twisted polynomials* over *K* is

 $K[\tau] =$ polynomials in τ with coefficients in *K*,

subject to the conditions

$$
\tau c = c^q \tau, \quad \forall \ c \in K.
$$

 \bullet In this way,

 $K[\tau] \cong {\mathbb{F}}_q$ -linear endomorphisms of K^+ }.

For $x \in K$ and $\phi = a_0 + a_1\tau + \cdots a_r\tau^r \in K[\tau]$, we write

$$
\phi(x):=a_0x+a_1x^q+\cdots+a_rx^{q^r}.
$$

 Ω

EXIBY B

Functions on algebraic curves

- Let *X* be a smooth projective curve over \mathbb{F}_q , with function field $K = \mathbb{F}_q(X)$.
- Suppose we have fixed maps,

$$
X\to \mathbb{P}^1 \quad \Leftrightarrow \quad \mathbb{F}_q(\theta)\hookrightarrow K.
$$

Functions on algebraic curves

- Let X be a smooth projective curve over \mathbb{F}_q , with function field $K = \mathbb{F}_q(X)$.
- Suppose we have fixed maps,

$$
X\to \mathbb{P}^1 \quad \Leftrightarrow \quad \mathbb{F}_q(\theta)\hookrightarrow K.
$$

- Fix a point ∞ on X that sits above the infinite point on $\mathbb{P}^1.$
- Throughout the following we set

 $A = \{f \in K \mid f \text{ is regular on } X \text{ away from } \infty\}.$

• So if
$$
X = \mathbb{P}^1
$$
, then $A = \mathbb{F}_q[\theta]$.

Drinfeld modules

Function field analogues of G*^m* and elliptic curves Fix a curve X/\mathbb{F}_q and ring $A \subseteq K = \mathbb{F}_q(X)$ as above.

Definition

A *Drinfeld A-module* is an F*q*-algebra homomorphism,

 $\rho: \mathcal{A} \to \mathbb{C}_{\infty}[\tau],$

such that

$$
\rho_f = f + a_1 \tau + \cdots a_s \tau^s, \quad \forall \, f \in A.
$$

Drinfeld modules

Function field analogues of G*^m* and elliptic curves Fix a curve X/\mathbb{F}_q and ring $A \subseteq K = \mathbb{F}_q(X)$ as above.

Definition

A *Drinfeld A-module* is an F*q*-algebra homomorphism,

 $\rho: \mathcal{A} \to \mathbb{C}_{\infty}[\tau],$

such that

$$
\rho_f = f + a_1 \tau + \cdots a_s \tau^s, \quad \forall f \in A.
$$

• ρ makes \mathbb{C}_{∞} into an A-module in the following way:

$$
f * x := \rho_f(x), \quad \forall f \in A, x \in \mathbb{C}_{\infty}.
$$

• If $a_1, \ldots, a_r \in K \subseteq \mathbb{C}_{\infty}$ for all $f \in A$, we say ρ is *defined over K.*

 \bullet *s* = *r* deg(*f*), where *r* is called the *rank* of ρ [.](#page-33-0)

The Carlitz module

The analogue of G*^m*

• We define a Drinfeld $\mathbb{F}_q[\theta]$ -module $C : \mathbb{F}_q[t] \to \mathbb{C}_{\infty}[\tau]$ by

$$
C_{\theta}:=\theta+\tau.
$$

Thus, for any $x \in \mathbb{C}_{\infty}$,

$$
C_{\theta}(x) = \theta x + x^{q}.
$$

Þ

 Ω

4 ロ ト 4 何 ト 4 ヨ ト

The Carlitz module

The analogue of G*^m*

• We define a Drinfeld $\mathbb{F}_q[\theta]$ -module $C : \mathbb{F}_q[t] \to \mathbb{C}_{\infty}[\tau]$ by

$$
C_{\theta}:=\theta+\tau.
$$

Thus, for any $x \in \mathbb{C}_{\infty}$,

$$
C_{\theta}(x) = \theta x + x^{q}.
$$

• And for example,

$$
C_{\theta^2} = C_{\theta}C_{\theta} = (\theta + \tau)(\theta + \tau) = \theta^2 + (\theta + \theta^q)\tau + \tau^2,
$$

$$
C_{\theta^2}(x) = \theta^2x + (\theta + \theta^q)x^q + x^{q^2}.
$$

Clemson University (Lecture 1) **Intro.** to Drinfeld Modules **April 16, 2009** 20/30

Þ

 Ω

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A}

œ.

Carlitz exponential

We set

$$
\exp_C(z) = z + \sum_{i=1}^{\infty} \frac{z^{q^i}}{(\theta^{q^i} - \theta)(\theta^{q^i} - \theta^q) \cdots (\theta^{q^i} - \theta^{q^{i-1}})}.
$$

• \exp_{C} : \mathbb{C}_{∞} → \mathbb{C}_{∞} is entire, surjective, and \mathbb{F}_{q} -linear.

• Functional equation:

$$
\exp_C(\theta z) = \theta \exp_C(z) + \exp_C(z)^q,
$$

\n
$$
\exp_C(f(\theta)z) = C_f(\exp_C(z)), \quad \forall f(t) \in \mathbb{F}_q[t].
$$

Clemson University (Lecture 1) **Intro.** to Drinfeld Modules **April 16, 2009** 21/30

 QQ

÷ \mathbf{r} э

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} ÷

4 0 8

Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_q[t]$ -modules,

Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_q[t]$ -modules,

The kernel of $exp_C(z)$ is

$$
\ker(\exp_C(z)) = \mathbb{F}_q[\theta]\widetilde{\pi},
$$

where

$$
\widetilde{\pi} = \theta^{q-1} \sqrt{-\theta} \prod_{i=1}^{\infty} \left(1 - \theta^{1-q^i}\right)^{-1}.
$$

 Ω

 \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow

Torsion points on the Carlitz module

- Recall $k = \mathbb{F}_q(\theta)$, $A = \mathbb{F}_q(\theta)$.
	- For $f \in \mathbb{F}_q[\theta]$, we set

$$
C[f] = \{x \in \mathbb{C}_{\infty} \mid C_f(x) = 0\},
$$

= *f*-torsion submodule of *C*.

э

 QQ

イロト イ母 トイラト イラト

Torsion points on the Carlitz module

- Recall $k = \mathbb{F}_q(\theta)$, $A = \mathbb{F}_q(\theta)$.
	- For $f \in \mathbb{F}_q[\theta]$, we set

$$
C[f] = \{x \in \mathbb{C}_{\infty} \mid C_f(x) = 0\},
$$

= *f*-torsion submodule of *C*.

• For example,

$$
C[\theta] = \{x \in \mathbb{C}_{\infty} \mid \theta x + x^{q} = 0\}
$$

$$
= \{\exp_{C}\left(\frac{a}{\theta}\right) \mid a \in \mathbb{F}_{q}\}
$$

$$
= \{\zeta^{q-1}\sqrt{-\theta} \mid \zeta \in \mathbb{F}_{q}\}.
$$

- Preliminary observations:
	- \blacktriangleright *C*[θ] ≅ *A*/ θ as an *A*-module;
	- \triangleright *k*($\mathbb{C}_{\infty}[\theta]/k$ is an abelian extension.

э

 Ω

REPAREM

Explicit class field theory for $\mathbb{F}_q(\theta)$

For every *f* ∈ *A*,

$$
Gal(k(C[f])/k) \cong (A/f)^{\times}.
$$

• Indeed, given $\ell \in A$ irreducible with $\ell \nmid f$, the Frobenius automorphism $\sigma_{\ell} \in \text{Gal}(k(C[f])/k)$ acts by

$$
\sigma_{\ell}(\zeta)=C_{\ell}(\zeta), \quad \zeta\in C[f].
$$

Moreover, every abelian extension of *k* that is unramified away from ∞ is contained in $k(C[f])$ for some $f \in A$.

Drinfeld *A*-modules for general *A*

• Do they always exist? In general, defining a ring homomorphism $A \rightarrow S$ to some target ring *S* is non-trivial.

 QQ

Drinfeld *A*-modules for general *A*

- Do they always exist? In general, defining a ring homomorphism $A \rightarrow S$ to some target ring *S* is non-trivial.
- Yes, in fact for any *A*, there are Drinfeld *A*-modules of every possible rank.
- Example (Thakur): Let $\boldsymbol{A} = \mathbb{F}_3[\theta,\eta]/(\eta^2 \theta^3 + \theta + 1).$ Then there is a rank 1 Drinfeld *A*-module,

$$
\rho: \textit{A} \rightarrow \mathbb{C}_{\infty}[\tau],
$$

with

$$
\rho_{\theta} = \theta + \eta(\theta^{3} - \theta)\tau + \tau^{2},
$$

$$
\rho_{\eta} = \eta + \eta(\eta^{3} - \eta)\tau + (\eta^{9} + \eta^{3} + \eta)\tau^{2} + \tau^{3}.
$$

In fact ρ is defined over the fraction field of *A*.

Rank 1 Drinfeld *A*-modules

Let *A* be given, *K* its fraction field. For simplicity, assume the point ∞ has degree 1.

- Let *h* be the class number of *A*. Let *H* be the Hilbert class field of *A* (maximal abelian unramified extension).
- Then there exist *h* isomorphism classes of rank 1 Drinfeld A-modules. Moreover, representatives ρ^1,\ldots,ρ^h for these classes can be chosen (uniquely) so that each is defined over *H*:

$$
\rho^i: A \to H[\tau].
$$

(Uniqueness arises from normalizing the leading coefficients to be specific constants.)

Explicit class field theory for *K*

Fix such a rank 1 Drinfeld *A*-modules, $\rho : A \rightarrow H[\tau]$.

For any ideal f ⊆ *A*, the extension *H*(ρ[f])/*H* is abelian and

 $Gal(H(\rho[f])/H) \cong (A/f)^{\times}.$

- Moreover, *H*(ρ[f])/*K* is abelian. (Recall that Gal(*H*/*K*) is isomorphic to the class group of *A*, so we can pin down the total Galois group precisely.)
- \bullet As in previous cases, the Artin automorphisms act via the ρ -action on the torsion points:

$$
\sigma_{\ell}(\zeta) = \rho_{\ell}(\zeta), \quad \zeta \in \rho[f], \ell \nmid f.
$$

Drinfeld modules of arbitrary rank

- Suppose $\rho : A \to \mathbb{C}_{\infty}[\tau]$ is a rank *r* Drinfeld *A*-module.
- Then there is an unique, entire, \mathbb{F}_q -linear function

$$
\exp_\rho:\mathbb{C}_\infty\to\mathbb{C}_\infty,
$$

so that

$$
\exp_{\rho}(fZ)=\rho_f(\exp_{\rho}(Z)),\quad \forall f\in A.
$$

Periods of Drinfeld modules

 \bullet Furthermore, there are $ω_1, \ldots, ω_r ∈ ℂ_∞$ and ideals $I_1, \ldots, I_r ⊂ A$, so that

$$
\ker(\exp_{\rho}(z))=I_1\omega_1+\cdots+I_r\omega_r=:\Lambda,
$$

where Λ is a discrete *A*-submodule of C[∞] of projective rank *r*.

Periods of Drinfeld modules

 \bullet Furthermore, there are $ω_1, \ldots, ω_r ∈ ℂ_∞$ and ideals $I_1, \ldots, I_r ⊂ A$, so that

$$
\ker(\exp_{\rho}(z))=I_1\omega_1+\cdots+I_r\omega_r=:\Lambda,
$$

where Λ is a discrete *A*-submodule of C[∞] of projective rank *r*.

Chicken vs. Egg:

$$
\exp_{\rho}(z) = z \prod_{0 \neq \omega \in \Lambda} \left(1 - \frac{z}{\omega}\right).
$$

• Again we have a uniformizing exact sequence of $\mathbb{F}_q[t]$ -modules

$$
0\to\Lambda\to\mathbb{C}_\infty\stackrel{\text{exp}_\rho}{\to}\mathbb{C}_\infty\to 0.
$$

• How do we find the periods?

Torsion points on higher rank modules

In reality, exp $_{\rho}$ is the unique power series that makes the following diagram commute for $f \in A$:

Furthermore, the *f*-torsion submodule is isomorphic to *r* copies of *A*/*f*, which leads to a Galois representation

$$
\textnormal{Gal}(L^{\textnormal{sep}}/L) \to \textnormal{GL}_r(A/f),
$$

where *L* is a field of definition for ρ.

 \bullet One can develop a theory of " ℓ -adic" Galois representations (see Pink, Taguchi, Tamagawa, et al.)