INTRODUCTION TO THE HODGE CONJECTURE

JIM BROWN

ABSTRACT. These are notes from a talk introducing the Hodge conjec-
ture to undergraduates attending the 2009 Clemson REU. The descrip-
tion given here of the Hodge conjecture was the author’s attempt to
bring the conjecture down to a reasonably understandable level to un-
dergraduates. As such, liberties have been taken with the accuracy and
generality of some of the statements. Please keep this in mind when
reading the notes.

1. INTRODUCTION

Of the Clay Mathematics Institute’s Millenium Problems, the Hodge con-
jecture is the most difficult to simplify into something understandable to
non-experts. The description of the problem on the Clay website is given
by Deligne. The first sentence of his description of the Hodge conjecture is:

“We recall that a pseudo-complex structure on a C*°-manifold X of dim
2N is a C-module structure on the tangent bundle 7'(X).”

To any non-expert in the field that sentence is surely somewhat daunting.
The conjecture itself reads as follows:

Conjecture 1.1. (Hodge Conjecture) On a projective nonsingular algebraic
variety over C, any Hodge class is a rational linear combination of classes of
algebraic cycles.

The goal of this lecture is to try and define (in some special cases) the
objects that the Hodge conjecture is about. The Hodge conjecture proposes
a deep connection between analysis, topology, and algebraic geometry. Very
roughly it is saying that certain objects that are built via analysis (differen-
tial forms) actually can be built via algebraic methods (at least when one
would actually hold out hope such a thing could be accomplished.) We begin
with the analytic side of things.

2. THE ANALYTIC SIDE OF THINGS

Though we are actually interested in statements over C, we begin by
working over R as this is more familiar to most undergraduates.

The author would like to thank Janine Janowski for taking notes during the talk and
typing them into an earlier form of these notes.
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Let V' be a finite dimensional vector space over R. We say a map f :
V — V is linear if one has f(av + w) = af(v) + f(w) for all & € R and all
v,w € V. We say that a map f: V¥ — R is k-linear if f is linear in each of
the k-variables separately.

Definition 2.1. A k-linear map f : V¥ — R is said to be alternating if
f(x1,...,2) = 0 whenever z; = x; for some i # j. The set of such maps is
denoted AltF(V).

Exercise 1. Show that for any & > 0 one has Alt*(V) is a R-vector space.

Recall that S;, denotes the symmetric group on k-letters. If ¢ € Sj, we can
factor o into a product of transpositions, say m of them. Define sgn(o) =
(=1)™. Let m and n be positive integers and define an (m,n)-shuffle to be
a0 € Sptn with 0(1) < 0(2) < ...o(m)and o(m+1) < ... < g(m+n).
The set of (m,n)-shuffles is denoted Sy, ,. We can now define the exterior
product. Given f € Alt?(V), g € Alt¥(V) we define a map

A AIP(V) x AtY(V) — AIPTI(V)

given by

(f A g)(a:l, R xp-l—q) = Z Sgn(a)f(xa(l)v R ma(p))g(xa(p—&-l)a R xa(p—i—q))'
0ESp,q

Exercise 2. Show that f A g € AltPT(V).

Exercise 3. In the special case that p = ¢ = 1 show that

(f Ng) (21, 22) = f(x1)g(22) — f(22)9(21).

Exercise 4. (1) fAg=(—1PigA f
(2) (fAg)ANh=FfN(gNAh)

We are now in a position to define differential forms. Let U C R" be an
open set. Though we continue to work over R for now, it is a good idea to
keep in mind that we would like to be working over C so one should keep in
the back of one’s mind the case that U C C".

Definition 2.2. A differential k-form on U is a smooth map

w: U — AltF(R")
The set of differential forms on U is denoted QF(U).
Exercise 5. Show that Q*(U) is a R-vector space.

Exercise 6. Show Alt°(R") = R and so Q°(U) = C°(U) where C®(U) is
the set of functions f : U — R that have continuous partial derivatives to
any order.
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Recall we have w : U — Alt*(R") and Alt*(R™) is a finite dimensional
R-vector space. As such, we can take derivatives of w as in multivariable
calculus class. For x € U, we set D,w to be the derivative of w at =x.
Observe that we have  +— D,w is a map U — (R" — Alt*(R")). The
exterior derivative is the map

d* - QF(U) — QFL(U)

defined by
k+1 '
diw(w1, .., wpy1) = Y (=17 Dpw(ay) (21, .., 25, w1
j=1
where w(z;) isreally w(0,...,0,2;,0,...,0) and (z1,...25,... Tx+1) = (21, ..

Example 2.3. Let U € R" and let x; : U — R be the projection onto the
ith coordinate map, i.e.,

xi(al, v ,an) = ;.

Then one has z; € Q°(U) and so d’z; € Q'(U). One can check that d°z; is
the constant map that takes all the values x to ¢; where the ¢; are the dual
basis to the vector space Alt'(R"). Note that if U C R then we have the
normal “dx” from calculus class.

Example 2.4. Let U C C" be an open set. Take z; be the projection map
onto the j* coordinate. We can also define a map zj to be the composition
of the projection to the j*" coordinate with the complex conjugation map,
i.e.,
Zj(al, e ,an) = aj.

Note that these maps are not holomorphic maps where the maps z; were.
Taking derivatives of these maps gives dz1, . ..,dz,, dz1, . ..dz, € QY(U).

Recall we defined A to be the wedge product on Alt*(R™). We can also
define A on Q*(U) via this previous definition.

Exercise 7. Show that dz; Adz; =0 and dz; ANdz; =0 for all 1 < j < n.

If we have U C C then we have dz and dz. One can show that a C*
1-form on U must be of the form

w= f(z,2)dz+ g(2,z)dz

for some f,g € C°°(U). Similarly, one can show that a C* 2-form can be
written

w= f(z,2)dz Ndz

for some f € C>(U). In this case one has that Q¥(U) = 0 for any k > 3
because one will necessary get either dz A dz or dz A dz in any expression
for a C°° k-form when k > 3.

L1, Tjqly e Thp1)-
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Suppose now that U € C". Let p, ¢ be positive integers. Let QP2(U) be
the space of forms generated by

dzl-/\.../\dzip/\dfjl /\-~/\d§jq.
In this case one can write

(1) U)= P @IU).

pt+q=k
In particular, this shows the space Q¥ (U) breaks down into component vector
spaces that are somewhat easier to study.

Going back to the general case, one can show from the definition that the
composition

2) k() L o) S k()

is actually identically O for all k. If one has any experience with algebraic
topology ones knows this is a very nice situation to be in!

Definition 2.5. (1) If w € Q¥(U) is such that d*w = 0, then w is called
a closed form.
(2) If w € QF(U) and w € d*1(QFL(U)) we say w is ezact.

Note that the fact that the composition given by equation (2) is identically
0 gives that the space of exact forms sits inside the space of closed forms.
Using this we define the deRham cohomology groups by

HER (U) = closed forms/exact forms.

Exercise 8. Show that HY (U) is the set of maps that are constant on each
connected component of U. Thus, dim HJ (U) is the number of connected
components of U.

An incredibly important and deep theorem in this subject is the Hodge
decomposition theorem:

Theorem 2.6. (Hodge Decomposition Theorem) One has that
HII%R(U) = @p+q=kH1%1%(U)

where HEE(U) are the closed forms coming from QP4(U) modulo the ezact
forms coming from QP4(U).

This is truly an astounding theorem. We know that QF(U) has such
a decomposition, but it is not at all clear that given a closed form f €
QF(U) and decompose it via the decomposition given in equation (1) that
the resulting forms in Q”9(U) would in fact also all be closed as well!

We now have an idea of the analytic side of things. However, one cannot
hope that all of the cohomology classes constructed in this way are in any
sense algebraic. As such, we need a way to pick out the ones that have a hope
of being constructed via algebraic methods. This is the notion of a “Hodge
class.” In order to define a Hodge class, we need some more cohomology.
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Our cohomology so far, namely deRham cohomology, lives over R or C as it
was constructed via calculus. This is in no way an algebraic construction,
so if we hope to single out classes that might come from algebra we need
some “algebraic” cohomology. We do not have time to give definitions of
these cohomology groups, so we merely state that they exist and arise via
more algebraic methods. We denote the k" singular (or Betti) cohomology
group over Z by Hg(U, Z). While one can do all of these using singular
cohomology, the “better” way is to use sheaf cohomology. Given a ring R,
we denote the k" cohomology group over the sheaf R by H*(U, R) where R
is the constant sheaf associated to R. One has

o HE(U.Z) = HU,Z),
s Hk(U7Z) ®C~ HI%R(U)v
e H¥(U,Z) ® Q ~ H*(U, Q).
The rational Hodge classes are the classes in the deRham cohomology
group that have a hope of being algebraic, i.e., they are the classes in

Hdg(U) := H*(U,Q) N HER (V).

Up to this point everything has been done for U an open subset of R" or
C™. This is the simplest case and is not really what the Hodge conjecture
is all about. Quickly we give an idea of how one needs to generalize this.

The main idea is that we replace R™ or C" be a real or complex manifold.

Definition 2.7. A real (resp. complex) manifold of dimension n is a topo-
logical space X along with a collection of open sets {U;} covering X and
maps ¢; : Uy — R" (resp. ¢; : U; — C") so that ¢; gives a homeomorphism
of U; with an open set V; C R" (resp. V; C C"). One also requires that the
maps be compatible, i.e.,

¢i0d; ' ¢;(UinU;) — ¢i(Ui N U;)
is C*° (resp. holomorphic.)

In short, a real (resp. complex) manifold of dimension n is a topological
space that locally looks like R™ (resp. C".)

Example 2.8. (1) The unit circle S* = {(z,y) € R? : 22 +y?> =1} is a
real 1-manifold, i.e., a real manifold of dimension 1.
(2) The unit sphere S? = {(z,y,2) € R® : 22 4 ¢ + 22 = 1} is a real
2—manifold or a complex 1-manifold.

Manifolds arise very naturally when working in complex variables. For
instance, suppose we want to define a continuous function log z on C that
generalizes the familiar natural logarithm function on R. Given any nonzero
z € C, one can write z = re? for some r > 0. Thus, it seems natural to

define
log z = logr + i6
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where logr means the usual natural logarithm of r as a function on R.
However, this is not a well-defined function. For instance, one has r =

ret0 = re?™ and so one would have

logr =logr +i-0=logr + 2mi.

This clearly does not make sense since 2mi # 0. One can eliminate this
problem if one defines log on a complex manifold instead so that instead of
going around in a circle back to the same point, one goes upwards on the
spiral as given in the following graphic:

Recall that in defining differential forms we had to consider Alt*(V') for
V' a vector space. In our previous set-up of U being an open subset of R"
or C*, we had V = R"™ or V = C". However, in general a manifold is not
a vector space. The correct way to generalize is to realize that given any
point z € X, the tangent space T,(X) is a vector space. For our previous
cases, given any x € R" or x € C", one has T, (R") = R" or T,(X) = C"
so we did not actually need to consider the tangent space. Now to define
differential forms on manifolds we consider maps

w: X — Alth(T,(X)).

We use the fact that X locally looks like a Fuclidean space to define dif-
ferentiability, continuity, etc. For our purposes one can take it on faith it
all works out. One then defines QF(X) and HER(X) as before. There is
one major difference though. In this level of generality one does not have
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a Hodge Decomposition Theorem. Thus, one must restrict to Kéahler man-
ifolds. One can think of these as manifolds where one does have a Hodge
Decomposition Theorem. Though this is not the definition, all of the mani-
folds we will be interested, namely complex projective manifolds, are Kahler
manifolds so the exact definition is not needed here.

3. ALGEBRAIC SIDE OF THINGS

To work on the algebraic side of things one must know a little algebraic
geometry. In particular, one needs to know what complex projective space
is. Consider the set of (n + 1)-tuples (21,...,2,41) in C*"T1\ {(0,...,0)}.
One defines an equivalence relation on this set by declaring

(21, 2n+1) ~ (W1, .., Wpt1)
if there exists a non-zero A € C so that z; = \w; for all 1 <7 <n -+ 1. The
equivalence class containing (z1,...,2p+1) is denoted by [z1 : -+ ¢ zp41].

The set of these equivalence classes is denoted CP". Recall that CP? was
defined when studying elliptic curves and defining the point at infinity.

The space CP" is a complex n-manifold. In particular, for z = [z1 : -+ - :
zp| € CP™ one has that at least one z; # 0. One can scale this equivalence
class so one has

T Tj—1 Tj+1 Tn+1
[z21: i) =[— o =— Lo —— . —]
Ly Ly Ly Ly
In other words, z lies in the set U; = {[wy : -+t wj—1 : 1t wjqq 1 -

Wp+1] : w; € C}, which is homeomorphic to C". Since z was an arbitrary
point, we have that CP" is a complex n-manifold.

Among the many brilliant ideas of Descartes was that one could relate
geometry and algebra. Suppose one wishes to study a circle with radius a.
One can study this using the tools of geometry as the ancient Greeks did,
or one can study the solutions of f(z,y) = 0 where f(x,y) = 2> + y?> — a?
algebraically. Once one gets used to the fact that one can study geometry in
this way, namely, algebraically, there is no reason to limit oneself to equation
f(z,y) = 0 where the f(x,y) arises from a familiar geometric object. One
can just as easily study f(x,y) = 0 for any polynomial f(x,y). Moreover,
there is no reason to restrict to polynomials of two variables. In fact, there
is no reason to consider only the solution set of a single polynomial, one can

study fi(x1,...,2n41) = fo(z1, ... Zpy1) = - = fm(21,...,2py1) = 0 for

fiyoooy fm € Clz1, ..., xp41]. This is now moving into the world of algebraic

geometry. Let fi,..., f;, be homogeneous polynomials. Define
V(fi,- s fm) ={P €CP": fi(p) = ... = fm(p) = 0}

If this set is smooth and irreducible we call it an complez projective algebraic
variety. The algebraic variety V (f1,..., fim) has a topology on it called the
Zariski topology induced from the Zariski topology on CP". We will not
describe this topology here as it can be found in any basic algebraic geometry
text. One can see the references given at the end of these notes for example.
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Recall when studying elliptic curves one considers the equation y? = x° +
ax + b. We said this equation (along with a distinguished point at infinity)
gave an elliptic curves, call this curve E. Set f(z,y) = y*> — 2> — ax — b.
Then studying the elliptic curve F amounts to studying f(z,y) = 0. In
order to properly take into account the point at infinity, one should instead
study the homogeneous equation F(z,y,z) = zy? — 23 — axz? — bz3. Recall
that when studying elliptic curves one is particularly interested in F(Q),
i.e., the points (X,Y, Z) € Q3 that satisfy F(X,Y,Z) = 0. Similarly, given
any complex projective algebraic variety V' := V(fi,..., fm) and ring R,
one can consider the points P € R"** NCP" so that f1(P) = ... fm(P) = 0.
We denote this set by V(R).

Let X be a complex projective algebraic variety. We want to consider
the space X (C). This set is a complex manifold which we denote as Xap.
While this is really just the set X (C), we use this notation to indicate we
are now considering it as a complex manifold and so it no longer has the
Zariski topology.

Let Y C X be a subvariety, i.e., it is a subset that is itself an algebraic
variety. For example, if we consider the variety given by the sphere, any
circle contained in the sphere is a subvariety. Let X have dimension 7.
Given a subvariety Y of codimension p, i.e., of dimension r» — p, we obtain a
complex submanifold Y, of X,, of codimension p.

Note that the “proper” way to proceed here would be to define the Chow
groups of X and then show we can consider these cycles as cycles in our
original framework. However, since we have focused more on the analytic
side we will continue to do so.

Let X be a complex projective algebraic variety of dimension r and Y a
subvariety of codimension p. One can associate to Y,, a cohomology class
Y] € H]%pR(X) as follows. (Note that one can take this on faith as the
reasoning is quite advanced.) Since Y,, has dimension r — p, there is a
natural map

Q2P (X)) — Q2P (vy,)

which gives a map on cohomology
2(r— 2(r—
HEE) (Xon) — HEEP (Yan).

Since Y, has dimension r — p, one has Q2" ~?)(Y,,) has dimension 1 and so
there is a natural map

HEW P (Yan) — C.
Thus, one has a map

le)(}g_p) (Xan) — HIZD(PQ_p) (Yan) — C,

i.e., an element in the dual of H]%(;p ) (Xan). One now applies Serre duality
to obtain an element [V] € HZ2, (Xan).

We have now covered enough to give an alternate statement of the Hodge
conjecture in a form that uses what we have done.
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Conjecture 3.1. (Hodge Conjecture again) Let X be a smooth complex
projective algebraic variety and associate X,, as above. Recall the Hodge
classes of X,, are given by

Hdg(Xan) = H*”(Xan, Q) N HEE (Xan)-

Given such a Hodge class, one can find algebraic subvarieties {Y;} so that
the Hodge class is a rational sum of the algebraic cycles [Y;] € H%%(Xan).

Remark 3.2. (1) Note that it is important that X be algebraic. The

statement is NOT true for an arbitrary Kahler manifold.

(2) Originally when the conjecture was proposed by Hodge in the 50’s
it was over Z instead of Q. However, Grothendieck constructed a
counterexample over Z so he reformulated the conjecture over Q.

(3) The Hodge conjecture is known for elliptic curves and even products
of elliptic curves. However, those are about all of the cases it is
known. It is not even known in general for abelian varieties!

Some references for those interested in reading more about the background
material presented here are given in the bibliography.
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