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Abstract

In this paper we study Newman’s conjecture for powers of the partition
function. While this conjecture is known for powers of primes ` that are
not exceptional for the power under consideration, it is an open problem
for exceptional primes. We settle this conjecture in many cases for small
powers of the partition function by generalizing results of Ono and Ahlgren.
It should be noted our method requires a case by case examination of each
power and does not yield a general method for dealing with different powers
simultaneously.

Key words: Newman’s Conjecture, partitions, modular forms
2000 MSC: 11F33, 11P83

1. Introduction and Statement of Results

A partition of a positive integer n is a non-increasing sequence of positive
integers whose sum is n. The partition function p(n) is defined to be the
number of partitions of n. By convention, p(0) = 1 and p(n) = 0 for n < 0.

Euler showed that the partition function satisfies the following generating
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function relationship:
∞∑

n=0

p(n)qn =
∞∏

n=1

1

1− qn
.

An r-colored partition of a positive integer n is a partition of n, where
one of r colors is assigned to each integer in the sequence. The rth power of
the partition function, pr(n), counts the number of r-colored partitions of n.
It satisfies a generating function relationship similar to that of p(n):

∞∑
n=0

pr(n)qn =
∞∏

n=1

1

(1− qn)r
. (1)

In his 1921 paper [14], Ramanujan proved the following beautiful and
intriguing congruences, which became known as the Ramanujan congruences

p(`n− δ`) ≡ 0 (mod `) (2)

where ` = 5, 7, 11, δ` = `2−1
24

, and n is any positive integer.
Since then, congruences similar to (2) have been extensively studied. Al-

though Ahlgren and Boylan showed in [2] that the Ramanujan congruences
are the only ones of the form (2), Kiming and Olsson [10] have shown that
congruences like (2) exist for pr(n). They define these congruences as follows.

Definition 1.1. Let ` ≥ 5 be a prime number, r a positive integer with
1 ≤ r < ` and r 6= ` − 1, ` − 3. We say that ` is exceptional for r if there
exists an integer a such that 0 ≤ a ≤ `− 1 with pr(`n + a) ≡ 0 (mod `) for
all positive integers n.

In the same paper, Kiming and Olsson also proved the following theo-
rem, which makes the Ramanujan congruences special cases of exceptional
congruences

Theorem 1.2. [10, Thm. 1] If ` ≥ 5 is prime and exceptional for r, then
24a ≡ r (mod `).

In 1960, Newman made the following conjecture about the distribution
of the partition function modulo a positive integer M .

Conjecture 1.3. [11] If M is an integer, then for every integer s there are
infinitely many non-negative integers n such that p(n) ≡ s (mod M).
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Ahlgren and Boylan proved Conjecture 1.3 for M = `j, with ` ≥ 5 a
prime number and j a positive integer [3]. For certain M with multiple prime
factors, conditions to check the validity of the conjecture were obtained in
[1].

Since p(n) is a special case of pr(n), we will consider the following gener-
alization of Newman’s conjecture to pr(n).

Conjecture 1.4. If M and r are positive integers, then for every integer
s there are infinitely many non-negative integers n such that pr(n) ≡ s
(mod M).

Notice that for r = 1, we have pr(n) = p(n) and recover Newman’s
original conjecture. Using a procedure similar to the one in [2], Kilbourn [8]
proved Conjecture 1.4 for M = `j when ` > r+4 is not exceptional for r and
outlined a method to check the conjecture when ` is exceptional for r < 24.

In this paper, we will follow the procedure outlined in [8, §5] to verify
Conjecture 1.4 for certain M = `j with ` a prime number and exceptional
for r < 48. All the pairs (r, `) with ` exceptional for r < 48 are listed in [6].
We will look at the pairs in the following set

S = {(r, `)|` exceptional for r, r ≤ 24} ∪{
(r, `)|` exceptional for r, 24 < r < 48 and

(
24− r

`

)
=

(−r

`

)}
.

Throughout this paper we will use (•
`
) to denote the Legendre symbol and

set δ` = `2−1
24

and q = e2πiz.
The main result of this paper is the following theorem.

Theorem 1.5. Let (r, `) ∈ S and j a positive integer. Then for every inte-
ger s there are infinitely many non-negative integers n such that pr(n) ≡ s
(mod `j).

The proof depends on the action of Hecke operators on certain modular
forms whose coefficients are congruent to pr(n) modulo a prime. First, we
will construct a half-integral weight modular form for each pair in S following
a similar method in [4] using eta-quotients and twists of modular forms by
characters. We then compute the action of certain Hecke operators on those
modular forms. Note that the proof of Theorem 5 in [3] has demonstrated
the cases for (r, `) = (1, 5), (1, 7), (1, 11), and [8, §5] has a sketch for the case
(r, `) = (3, 11).
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In §2, we will give some facts about modular forms modulo ` and eta-
quotients as in [15], [16], [9] and [13]. We will describe the construction of
the modular form in §3 and prove Theorem 1.5 in §4.

2. Preliminaries

Let Mk(Γ) and Sk(Γ) denote the space of modular forms and cusp forms
of weight k and level Γ respectively for Γ ⊆ SL2(Z) a congruence subgroup.

If f(z) =
∑∞

n=0 a(n)qn ∈ Mk(SL2(Z))∩ZJqK, let f̃(z) :=
∑∞

n=0 a(n)qn be the
coefficient-wise reduction of f(z) modulo `. Note that we fix ` in this section
so the reductions are always assumed modulo ` unless otherwise noted. Define

M̃k(SL2(Z)) := {f̃(z)|f(z) ∈ Mk(SL2(Z))}

as the space of weight k modular forms reduced modulo `.
Let f(z) ∈ Mk(SL2(Z)) have nonzero reduction modulo `. If g(z) ∈ ZJqK

has the property that g(z) ≡ f(z) (mod `), then define the filtration ω`(g)
of g(z) modulo ` by

ω`(g) := min{k′| there exists f̃ ∈ M̃k′(SL2(Z)) s.t. f̃ = g̃} .

Note that one clearly has ω`(g) ≤ k. If g(z) ≡ 0 (mod `), then we set
ω`(g) = −∞.

Recall the Ramanujan operator for f(z) =
∑∞

n=0 a(n)qn ∈ Mk(SL2(Z))∩
ZJqK is defined as

Θ(f) :=
∞∑

n=1

na(n)qn.

From [13, Prop. 2.44] we know that Θ̃(f) ∈ M̃k+`+1(SL2(Z)). In addition, we
have the following facts about filtrations and the effect of the theta operator
on filtrations from [15] and [16].

Lemma 2.1. Let ` ≥ 5 be a prime number and f(z) ∈ Mk(SL2(Z)) ∩ ZJqK
with f̃ 6= 0. Then

1. ω`(f) ≡ k (mod `− 1);

2. ω`(f
i) = iω`(f) for all integers i;
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3. ω`(Θ(f)) ≤ ω`(f)+`+1 with equality if and only if ω`(f) 6≡ 0 (mod `).

Let d be a positive integer. We define the U -operator and V -operator by
(∑

n≥n0

c(n)qn

)
|U(d) :=

∑
n≥n0

c(dn)qn, (3)

(∑
n≥n0

c(n)qn

)
|V (d) :=

∑
n≥n0

c(n)qdn. (4)

Unlike the Ramanujan operator, both U(d) and V (d) transform modular
forms to modular forms in the following manner.

Lemma 2.2. [13, Prop. 2.22] Suppose that f(z) ∈ Mk(Γ0(N), χ) and d is a
positive integer dividing N . Then

f(z)|U(d) ∈ Mk(Γ0(N), χ),

f(z)|V (d) ∈ Mk(Γ0(dN), χ).

Moreover, if f(z) is a cusp form, so are f(z)|U(d) and f(z)|V (d).

Recall Dedekind’s eta function and its q-expansion:

η(z) = q
1
24

∞∏
n=1

(1− qn). (5)

We have that η(24z) ∈ S1/2(Γ0(576), χ12) where χ12 =
(

12
•
)
. One also has

that every integral weight modular form on SL2(Z) and every half-integral
weight modular form on Γ0(4) can be expressed as a rational function in
η(z), η(2z), and η(4z) (see [13, Thm. 1.67] or [9, § 4.2].) In particular,
η24(z) = ∆(z) ∈ S12(SL2(Z)) is the cusp form with the smallest integral
weight. Thus it is easy to see that η(z) is an important building block for
both integral and half-integral weight modular forms. Here are some facts
about eta-quotients.

Theorem 2.3. [13, Thms. 1.64, 1.65]

1. If f(z) =
∏

δ|N η(δz)rδ is an eta-quotient with k =
∑

δ|N rδ ∈ Z and
with the additional properties that

∑

δ|N
δrδ ≡ 0 (mod 24)
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and ∑

δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for every

(
a b
c d

)
∈ Γ0(N). Here the character χ is defined by χ(d) :=

( (−1)ks
d

), where s :=
∏

δ|N δrδ .

2. Let c, d and N be positive integers with d|N and gcd(c, d) = 1. If f(z)
is an eta-quotient satisfying the conditions above for N , then the order
of vanishing of f(z) at cusp c

d
is

N

24

∑

δ|N

gcd(d, δ)2rδ

gcd(d, N
d
)dδ

.

Proposition 2.4. Let t be a positive integer. Define the eta-quotient E`,t(z)
as

E`,t(z) =
η`t

(z)

η(`tz)
.

One has E`,t(z) ∈ M `t−1
2

(Γ0(`
t), χ`,t) where χ`,t =

(
(−1)(`

t−1)/2`t

•

)
. Further-

more, E`,t(z) vanishes at every cusp not equivalent to ∞ under Γ0(`
t). Also,

E`m−1

`,t (z) ≡ 1 (mod `m) for every positive integer m.

Proof. From Theorem 2.3, we know that E`,t(z) transforms correctly under

Γ0(`
t) with weight `t−1

2
. Also, one easily checks that E`,t(z) is holomorphic

at every cusp and vanishes at every cusp not equivalent to ∞ under Γ0(`
t).

To show that E`m−1

`,t (z) ≡ 1 (mod `m), notice E`,t(z) has the following
expansion

E`,t(z) =

∏∞
n=1(1− qn)`t

∏∞
n=1(1− q`tn)

. (6)
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By the binomial theorem, we have (1− q)` ≡ (1− q`) (mod `) and equation
(6) implies that E`,t(z) ≡ 1 (mod `). Now with an induction on m, we see
that for every positive integer m

E`m−1

`,t (z) ≡ 1 (mod `m). (7)

3. Construction

We assume throughout this section that ` ≥ 5 is a prime number that is
exceptional for r. This allows us to assume that r is odd by work of Kiming
and Olsson [10]. We define

εr,` =

(−6r

`

)
.

We begin this section by proving the existence of a half-integral weight
modular form Fr,`,j(z) whose coefficients are congruent to values of pr modulo
`j. One can see [4, Thm. 2.1] for the statement in terms of the partition
function.

Lemma 3.1. Let ` ≥ 5 be prime and j a positive integer. If (r, `) ∈ S, then
there is a modular form Fr,`,j(z) ∈ Sλr,`,j− 1

2
(Γ0(576`3), χ`,3χ`χ12)∩ZJqK such

that

Fr,`,j(z) ≡
∑

(n
`
)=−(−r

`
)

pr

(
n + r

24

)
qn (mod `j)

where λr,`,j is an integer, χ` =
(•

`

)
, χ`,t =

(
(−1)(`

t−1)/2`t

•

)
, and χ12 =

(
12
•
)
.

Proof. Consider the following eta-quotient

fr,`(z) :=

(
η`(`z)

η(z)

)r

.

From Theorem 2.3 we know that fr,`(z) ∈ M r(`−1)
2

(Γ0(`), χ`) where we have

used that χr
` = χ` since r is necessarily odd. Using equations (1), (5) and

the fact that fr,`(z) vanishes at ∞, we can write

fr,`(z) =

( ∞∑
n=0

pr(n)qn+rδ`

) ∞∏
n=1

(1− q`n)r` =
∞∑

n=1

ar,`(n)qn. (8)
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Given a modular form f and a character χ, we denote the twist of f by
χ as f ⊗ χ. Consider the function

gr,`(z) := fr,`(z)− εr,`fr,`(z)⊗ χ`

=
∞∑

n=1

(1− εr,`χ`(n))ar,`(n)qn.

Standard facts (c.f. [9, § 3.3]) imply that gr,`(z) ∈ M r(`−1)
2

(Γ0(`
3), χ`). Since

all of the exponents of the q’s in the product
∏

(1− q`n)r` are divisible by `,
we can conclude that

gr,`(z) =




∑

`|n+rδ`

pr(n)qn+rδ` + 2
∑

(
n+rδ`

`
)=−εr,`

pr(n)qn+rδ`




∞∏
n=1

(1− q`n)r`. (9)

Consider fr,`(z)|U(`)|V (`) =
∑∞

n=1 ar,`(`n)q`n. By Lemma 2.2, we know
that fr,`(z)|U(`)|V (`) ∈ M r(`−1)

2

(Γ0(`
2), χ`). Since ` divides the exponent of

every term in the q-expansion of fr,`|U(`)|V (`) in equation (8), it has the
following q-expansion:

fr,`(z)|U(`)|V (`) =


 ∑

`|n+rδ`

pr(n)qn+rδ`




∞∏
n=1

(1− q`n)r`. (10)

Now we are able to show that for sufficiently large m the following function
has the desired property

Fr,`,j,m(z) :=
`j + 1

2
·

(
E`m−1

`,3 (z)(gr,`(z)− fr,`(z)|U(`)|V (`))
)
|V (24)

ηr`(24`z)
. (11)

(In particular, we require that m ≥ j.) Using equations (7), (9) and (10), we
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can compute the q-expansion of Fr,`,j,m(z) modulo `j (using m ≥ j)

Fr,`,j,m(z) ≡ `j + 1

2


2

∑

(
n+rδ`

`
)=−εr,`

pr(n)q24n−r




≡ `j + 1

2


2

∑

(n
`
)=−(−r

`
)

pr

(
n + r

24

)
qn




≡
∑

(n
`
)=−(−r

`
)

pr

(
n + r

24

)
qn (mod `j).

The fact that ηr`(24`z) ∈ M r`
2
(Γ0(576`), χ12) with χ12 :=

(
12
•
)

gives that

Fr,`,j,m(z) transforms correctly under Γ0(576`3) with weight (`3−1)`m−1

2
− 1

2

and character χ`,3χ`χ12. To check that it vanishes at the cusps, consider the
function

h(z) :=
E24`m−1

`,3 (z)(gr,`(z)− fr,`(z)|U(`)|V (`))24

∆r`(`z)
, (12)

where ∆(z) is the unique normalized cusp form on SL2(Z) of weight 12.
Clearly, h(z) transforms correctly under Γ0(`

3). At ∞, we can use (9)
and (10) to obtain the q-expansion for gr,`(z)− fr,`(z)|U(`)|V (`):

gr,`(z)− fr,`(z)|U(`)|V (`) =


2

∑

(
n+rδ`

`
)=−εr,`

pr(n)qn+rδ`




∞∏
n=1

(1− q`n)r` (13)

When r < 24, the first term in the summation of equation (13) has order at
least 1 + rδ` since

(
0+rδ`

`

)
= εr,` 6= −εr,`. When 24 < r < 48 and r ∈ S, the

first two terms, with n = 0 and 1, have the property that

(
0 + rδ`

n

)
=

(
1 + rδ`

n

)
= εr,` 6= −εr,`.

by the definition of S. So it has order at least 2 + rδ`. Since E`,3(z) is
holomorphic at ∞, we see from equation (12) that ord∞(h(z)) ≥ 24(1 +
rδ`) − r`2 and ord∞(h(z)) ≥ 24(2 + rδ`) − r`2 for r < 24 and 24 < r < 48
respectively. In both cases, we have ord∞(h(z)) > 0. Since E`m−1

`,3 (z) will

9



vanish at cusps not equivalent to ∞ under Γ0(`
3), we can choose m large

enough so that h(z) also vanishes at those cusps.
By Lemma 2.2, h(24z) = h(z)|V (24) is a cusp form, hence vanishes at

all cusps. Since Fr,`,j(z) = `j+1
2

(h(24z))
1
24 , it also vanishes at all the cusps.

Thus, Fr,`,j(z) ∈ Sλr,`,j− 1
2
(Γ0(576`3), χ`,3χ`χ12), where λr,`,j = (`3−1)`m−1

2
is an

integer. (Note that it may look odd to have a dependence on j on the left
hand side but the right hand side in terms of m. We write it this way to
emphasize that the m can be arbitrary as long as it is large enough to ensure
cuspidality and m ≥ j.)

We now construct a modular form Pr,`(z) such that its level is not divisible
by ` and Pr,`(z) ≡ Fr,`,j(z) (mod `). The construction for r = 1 is carried
out in [5] and an analogous result is sketched for r < 24 in [8, § 5].

Lemma 3.2. Suppose (r, `) ∈ S. Then there is a cusp form Pr,`(z) ∈
S `2−r−1

2

(Γ0(576), χ12) ∩ ZJqK such that

Pr,`(z) ≡ Fr,`,j(z) (mod `).

Proof. Let fr,`(z) =
∑∞

n=1 ar,`(n)qn be defined as in Lemma 3.1. By consid-
ering its q-expansion in equation (8) and applying the binomial theorem, we
have fr,`(z) ≡ ∆rδ`(z) (mod `). Now Lemma 2.1 implies that

ω`(fr,`) = ω`(∆
rδ`) = rδ`ω`(∆).

The fact that Mk(SL2(Z)) is either 0 or a one-dimensional vector space for

k < 12 allows one to easily check that ω`(∆) = 12. Thus ω`(fr,`) = r(`2−1)
2

.

Since r(`2−1)
2

+ k(` + 1) 6≡ 0 (mod `) for k = 0, 1, · · · , `−1
2

, we can apply
the Ramanujan operator `−1

2
times and conclude from Lemma 2.1(3) that

ω`(Θ
`−1
2 (fr,`)) =

(r + 1)(`2 − 1)

2
. (14)

By considering the q-expansion of Θ
`−1
2 (fr,`(z)), we have

Θ
`−1
2 (fr,`(z)) ≡

∞∑
n=1

(n

`

)
ar,`(n)qn (mod `). (15)
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Combining equations (14) and (15), we know that there is a cusp form
Qr,`(z) ∈ S (r+1)(`2−1)

2

(SL2(Z)) such that

Qr,`(z) ≡
∞∑

n=1

(n

`

)
ar,`(n)qn ≡ fr,`(z)⊗

(•
`

)
(mod `). (16)

Let Ek(z) be the normalized Eisenstein series of weight k. Using the fact
that E`−1(z) ≡ 1 (mod `), we can define the cusp form Rr,` in S (r+1)(`2−1)

2

(SL2(Z))∩
ZJqK as

Rr,`(z) := ∆rδ`(z)E
`+1
2

`−1 (z)− εr,`Qr,`(z).

Using equation (16), we can calculate the q-expansion of Rr,`(z) as

Rr,`(z) ≡

 ∑

n≡0 (mod `)

pr(n− rδ`)q
n + 2

∑

(n
`
)=−εr,`

pr(n− rδ`)q
n




∞∏
n=1

(1− qn)r`2

(mod `).

When ` is exceptional for r, we can find an integer a such that pr(`n+a) ≡
0 (mod `) for every integer n. If `|n, then we can deduce from Theorem 1.2
that n− rδ` ≡ a (mod `). So we can write n− rδ` = `m+ a for some integer
m. Since ` is exceptional for r, pr(n − rδ`) ≡ 0 (mod `) whenever ` divides
n. Thus the q-expansion of Rr,`(z) modulo ` is as follows:

Rr,`(z) ≡ 2


 ∑

( 24n−r
`

)=−( r
`
)

pr(n)qn+rδ`




∞∏
n=1

(1− qn)r`2 (mod `). (17)

Define

Pr,`(z) :=
` + 1

2
· Rr,`(24z)

ηr`2(24z)
.

From equation (17), we see that Pr,`(z) ≡ Fr,`,j(z) (mod `). To check
that it is a cusp form, consider the space S (r+1)(`2−1)

2

(SL2(Z)). It is generated

by Ei
4(z)∆j(z) with 4i + 12j = (r+1)(`2−1)

2
. Also, the first nonzero term of

Rr,`(z) has exponent at least rδ` + 1 for r < 24 and rδ` + 2 for 24 < r < 48
by construction. So we can write

Rr,`(z) = ∆rδ`+1(z)C1(z)
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with C1(z) ∈ M `2−25
2

(SL2(Z)) for r < 24 and

Rr,`(z) = ∆rδ`+2(z)C2(z)

with C2(z) ∈ M `2−49
2

(SL2(Z)) for 24 < r < 48. In either case, Pr,`(z) is

the product of some power of η(24z) and another modular form. (See the
appendix for some examples of expressing Pr,`(z) explicitly in terms of η(24z)
and E4(24z).) Hence we have Pr,`(z) ∈ S `2−r−1

2

(Γ0(576), χ12) ∩ ZJqK.

4. Proof of Main Theorem

The proof of Theorem 1.5 is similar to that of [3, Thm. 5] and the sketch
in [8, § 5]. First, we need the following definition from [3].

Definition 4.1. Let M be a positive integer and F (z) a half-integral weight
modular form with

F (z) =
∞∑

n=1

a(n)qn.

The coefficients of F (z) are said to be well-distributed modulo M if for every
integer s, we have

#{1 ≤ n ≤ X|a(n) ≡ s (mod M)} Às,M

{ √
X

log X
if r 6≡ 0 (mod M),

X if r ≡ 0 (mod M).

Clearly, if the form Fr,`,j(z) constructed in the previous section is well-
distributed modulo M = `j, then Conjecture 1.4 is true for pr(n) modulo
M = `j. Furthermore, we would have a lower bound for how often pr(n)
falls into each congruence class of M = `j. The following lemma, which is
a direct consequence of [3, Thm. 1], gives a condition on when Fr,`,j(z) is
well-distributed modulo M = `j.

Lemma 4.2. Let Fr,`,j(z) =
∑∞

n=1 ar,`,j(n)qn be defined as in Lemma 3.1.
If M = `j is the power of a prime number and r is a positive integer with
(r, `) ∈ S, then at least one of the following is true:

(1) Fr,`,j(z) is well-distributed modulo M = `j;
(2) There are finitely many square-free integers n1, n2, · · · , nt for which

Fr,`,j(z) ≡
t∑

i=1

∞∑
m=1

ar,`,j(nim
2)qnim

2

(mod `). (18)
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One should note here that conditions (1) and (2) can be simultaneously
satisfied. The point here is that if condition (2) fails, then we must have the
validity of condition (1).

The following proposition gives us a way to check the validity of condition
(2) in Lemma 4.2 for each pair (r, `) ∈ S. It combines the results [3, Lem.
4.1] and [7, Thm. 1].

Proposition 4.3. Suppose Pr,`(z) =
∑∞

n=1 ar,`(n)qn ∈ Sλr,`+
1
2
(Γ0(576), χ12)

can be written in the form of equation (18) and ar,`(n1m
2
1) 6≡ 0 (mod `) for

some positive integers m1 and ni ∈ {n1, . . . , nt}. Without loss of generality
we assume i = 1. Then the following condition is true

ar,`(p
2n1m

2
1)−

(
n1

p

) (
(−1)λr,`

p

)
χ12(p)pλr,`ar,`(n1m

2
1) ≡ 0 (mod `), (19)

where p is a prime number with p - 576`n1m1 and p 6≡ 1 (mod `).

Proof. By [3, Lem. 4.1] there exist primes p1, · · · , ps distinct from ` and p,
and a modular form Gr,`(z) ∈ Sλr,`+

1
2
(Γ0(576p2

1 · · · p2
s), χ12) ∩ ZJqK with

Gr,`(z) ≡
∞∑

m=1
gcd(m,

∏
pi)=1

ar,`(n1m
2)qn1m2 6≡ 0 (mod `). (20)

Now we can study the action of the Hecke operator T (p2, λr,`, χ12) on
Gr,`(z). Recall the Hecke operator T (p2, λ, χ) acts on a half-integral weight
modular form F (z) =

∑∞
n=1 a(n)qn ∈ Mλ+ 1

2
(Γ0(N), χ) by

F (z)|T (p2, λ, χ) =
∞∑

n=0

(
a(p2n) +

(
n

p

)
χ∗(p)pλ−1a(n) + χ∗(p)p2λ−1a(n/p2)

)
qn,

(21)

where χ∗(p) =
(

(−1)λ

p

)
χ(p) and a(n/p2) = 0 if p2 - n.

By the choices of p1, · · · , ps, we have gcd(`, 576p2
1 · · · p2

s) = 1 and p -
576p2

1 · · · p2
s`. Using equation (20), we can write Gr,`(z) in the following form

Gr,`(z) ≡
∑

(n
p
)∈{0,(

n1
p

)}
ar,`(n)qn (mod `).
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Applying [7, Thm. 1], we have

(p−1)Gr,`(z)|T (p2, λr,`, χ12) ≡
(

n1

p

)
χ∗12(p)(pλr,`+pλr,`−1)(p−1)Gr,`(z) (mod `).

(22)
Since p2 - n1m

2
1 and p 6≡ 1 (mod `), we can combine equations (21) and (22)

to obtain equation (19).

Since Pr,`(z) ≡ Fr,`,j(z) (mod `), we can use Proposition 4.3 to check that
condition (2) in Lemma 4.2 does not hold by finding p, n1 and m1 that do
not satisfy equation (19). In Table 1 below, we list the choices of p, n1 for
each pair (r, `) ∈ S. For simplicity, we choose m1 = 1 in all cases. Since
the equation (19) does not hold, condition (1) of Lemma 4.2 is true, and
Theorem 1.5 is proved.

Table 1: Table for values of p, n1, and (r, `) ∈ S.

(r, `) ∈ S p n1 Eq. (19) (r, `) ∈ S p n1 Eq. (19)

(1, 5) 7 23 1 6≡ 0 mod 5 (15, 29) 5 33 27 6≡ 0 mod 29
(1, 7) 5 23 4 6≡ 0 mod 7 (17, 23) 5 7 11 6≡ 0 mod 23
(1, 11) 5 23 4 6≡ 0 mod 11 (19, 23) 7 5 2 6≡ 0 mod 23
(3, 11) 5 93 4 6≡ 0 mod 11 (21, 29) 5 123 6 6≡ 0 mod 29
(3, 17) 5 21 11 6≡ 0 mod 17 (21, 31) 5 3 7 6≡ 0 mod 31
(5, 11) 5 67 10 6≡ 0 mod 11 (21, 47) 5 3 4 6≡ 0 mod 47
(5, 23) 5 19 12 6≡ 0 mod 23 (25, 29) 5 47 6 6≡ 0 mod 29
(7, 11) 5 17 8 6≡ 0 mod 11 (25, 31) 5 47 29 6≡ 0 mod 31
(7, 19) 7 17 18 6≡ 0 mod 19 (27, 31) 5 21 25 6≡ 0 mod 31
(9, 17) 7 39 16 6≡ 0 mod 17 (27, 41) 5 21 12 6≡ 0 mod 41
(9, 19) 5 39 16 6≡ 0 mod 19 (33, 41) 7 15 36 6≡ 0 mod 41
(9, 23) 7 39 9 6≡ 0 mod 23 (39, 47) 7 57 37 6≡ 0 mod 47
(13, 17) 5 11 10 6≡ 0 mod 17 (39, 61) 7 33 46 6≡ 0 mod 61
(13, 19) 5 59 4 6≡ 0 mod 19 (43, 47) 5 29 9 6≡ 0 mod 47
(13, 23) 5 59 18 6≡ 0 mod 23 (45, 53) 7 195 33 6≡ 0 mod 53
(15, 23) 5 33 11 6≡ 0 mod 23 (45, 59) 5 3 42 6≡ 0 mod 59

14



A.

Here are some examples of expressing Pr,`(z) in terms of η(24z) and
E4(24z) for some (r, `) ∈ S. These examples have less than 20 terms in
their summation. Note: P1,5(z), P1,7(z) and P1,11(z) appeared as equations
(5.4), (5.5) and (5.6) in [3].

P1,5(z) = η23(24z),

P1,7(z) = η23(24z)E3
4(24z) + 3η47(24z),

P1,11(z) = η23(24z)E12
4 (24z) + 5η47(24z)E9

4(24z) + 4η71(24z)E6
4(24z)

+η95(24z)E3
4(24z) + 8η119(24z)

P3,11(z) = 9η45(24z)E9
4(24z) + 6η69(24z)E6

4(24z) + 7η93(24z)E3
4(24z)

+6η117(24z)

P3,17(z) = 3η21(24z)E33
4 (24z) + η45(24z)E30

4 (24z) + 2η69(24z)E27
4 (24z)

+15η93(24z)E24
4 (24z) + 5η117(24z)E21

4 (24z) + 7η141(24z)E18
4 (24z)

+10η165(24z)E15
4 (24z) + 9η189(24z)E12

4 (24z) + 8η213(24z)E9
4(24z)

+14η237(24z)E6
4(24z) + 14η261(24z)E3

4(24z) + 14η285(24z)

P5,11(z) = 10η67(24z)E6
4(24z) + η91(24z)E3

4(24z) + 5η115(24z)

P7,11(z) = 7η17(24z)E12
4 (24z) + 3η41(24z)E9

4(24z) + 10η65(24z)E6
4(24z)

+2η89(24z)E3
4(24z) + 8η113(24z)

P7,19(z) = 7η17(24z)E42
4 (24z) + 11η41(24z)E39

4 (24z) + 2η65(24z)E36
4 (24z)

+5η89(24z)E33
4 (24z) + 5η137(24z)E27

4 (24z) + 16η161(24z)E24
4 (24z)

+17η185(24z)E21
4 (24z) + 6η209(24z)E18

4 (24z) + 18η233(24z)E15
4 (24z)

+4η257(24z)E12
4 (24z) + 9η281(24z)E9

4(24z) + 17η305(24z)E6
4(24z) +

14η329(24z)E3
4(24z) + 14η353(24z)

P9,17(z) = 3η39(24z)E30
4 (24z) + 5η63(24z)E27

4 (24z) + 6η87(24z)E24
4 (24z)

+6η111(24z)E21
4 (24z) + 5η135(24z)E18

4 (24z) + 3η159(24z)E15
4 (24z)

16η207(24z)E9
4(24z) + 3η231(24z)E6

4(24z) + 8η255(24z)E3
4(24z)

+11η279(24z)
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P9,19(z) = 16η39(24z)E39
4 (24z) + 3η63(24z)E36

4 (24z) + 4η87(24z)E33
4 (24z)

+6η111(24z)E30
4 (24z) + 3η135(24z)E27

4 (24z) + 13η159(24z)E24
4 (24z)

+4η183(24z)E21
4 (24z) + 8η207(24z)E18

4 (24z) + 5η231(24z)E15
4 (24z)

+5η255(24z)E12
4 (24z) + 5η279(24z)E9

4(24z) + 2η303(24z)E6
4(24z)

+4η327(24z)E3
4(24z) + 17η351(24z)

P13,17(z) = 13η11(24z)E33
4 (24z) + 16η35(24z)E30

4 (24z) + 12η59(24z)E27
4 (24z)

+9η83(24z)E24
4 (24z) + 3η131(24z)E18

4 (24z) + 11η155(24z)E15
4 (24z)

+3η179(24z)E12
4 (24z) + 7η203(24z)E9

4(24z) + η227(24z)E6
4(24z)

+13η251(24z)E3
4(24z) + 4η275(24z)

P13,19(z) = 10η59(24z)E36
4 (24z) + 13η83(24z)E33

4 (24z) + 8η107(24z)E30
4 (24z)

+14η131(24z)E27
4 (24z) + 9η155(24z)E24

4 (24z) + 4η179(24z)E21
4 (24z)

+3η227(24z)E15
4 (24z) + 13η275(24z)E9

4(24z) + 15η299(24z)E6
4(24z)

+10η323(24z)E3
4(24z) + 14η347(24z)
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