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Abstract

In this paper we study Newman’s conjecture for powers of the partition
function. While this conjecture is known for powers of primes ¢ that are
not exceptional for the power under consideration, it is an open problem
for exceptional primes. We settle this conjecture in many cases for small
powers of the partition function by generalizing results of Ono and Ahlgren.
It should be noted our method requires a case by case examination of each
power and does not yield a general method for dealing with different powers
simultaneously.

Key words: Newman’s Conjecture, partitions, modular forms
2000 MSC: 11F33, 11P83

1. Introduction and Statement of Results

A partition of a positive integer n is a non-increasing sequence of positive
integers whose sum is n. The partition function p(n) is defined to be the
number of partitions of n. By convention, p(0) = 1 and p(n) =0 for n < 0.

Euler showed that the partition function satisfies the following generating
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function relationship:

- |
n)q" = :
;p( )g L[l —

An r-colored partition of a positive integer n is a partition of n, where
one of r colors is assigned to each integer in the sequence. The rth power of
the partition function, p,(n), counts the number of r-colored partitions of n.
It satisfies a generating function relationship similar to that of p(n):

;%Pr(”)qn :Hﬁ (1)

In his 1921 paper [14], Ramanujan proved the following beautiful and
intriguing congruences, which became known as the Ramanujan congruences

p(fn—38,) =0 (mod ¢) (2)

where ¢ =5,7,11, 6, = 422—21, and n is any positive integer.

Since then, congruences similar to (2) have been extensively studied. Al-
though Ahlgren and Boylan showed in [2] that the Ramanujan congruences
are the only ones of the form (2), Kiming and Olsson [10] have shown that

congruences like (2) exist for p,.(n). They define these congruences as follows.

Definition 1.1. Let ¢/ > 5 be a prime number, r a positive integer with
1<r</landr #{¢—1,0—3. We say that ¢ is exceptional for r if there
exists an integer a such that 0 < a < ¢ —1 with p,(fn+a) =0 (mod ¢) for
all positive integers n.

In the same paper, Kiming and Olsson also proved the following theo-
rem, which makes the Ramanujan congruences special cases of exceptional
congruences

Theorem 1.2. [10, Thm. 1] If ¢ > 5 is prime and exceptional for r, then
24a = r (mod /).

In 1960, Newman made the following conjecture about the distribution
of the partition function modulo a positive integer M.

Conjecture 1.3. [11] If M is an integer, then for every integer s there are
infinitely many non-negative integers n such that p(n) = s (mod M).



Ahlgren and Boylan proved Conjecture 1.3 for M = ¢/, with £ > 5 a
prime number and j a positive integer [3]. For certain M with multiple prime
factors, conditions to check the validity of the conjecture were obtained in
[1].

Since p(n) is a special case of p,(n), we will consider the following gener-
alization of Newman’s conjecture to p,(n).

Conjecture 1.4. If M and r are positive integers, then for every integer

s there are infinitely many non-negative integers n such that p.(n) = s
(mod M).
Notice that for r = 1, we have p.(n) = p(n) and recover Newman’s

original conjecture. Using a procedure similar to the one in [2], Kilbourn [§]
proved Conjecture 1.4 for M = ¢ when ¢ > r +4 is not exceptional for r and
outlined a method to check the conjecture when ¢ is exceptional for r < 24.

In this paper, we will follow the procedure outlined in [8, §5] to verify
Conjecture 1.4 for certain M = ¢/ with ¢ a prime number and exceptional
for r < 48. All the pairs (r,¢) with ¢ exceptional for r < 48 are listed in [6].
We will look at the pairs in the following set

S = {(r,£)|¢ exceptional for r,r < 24} U

24 — —
{(r, 0)|¢ exceptional for r,24 < r < 48 and ( 7 T) = (7?") } .

Throughout this paper we will use (3) to denote the Legendre symbol and

2 .
set 6, = 5 and ¢ = €¥™=.

The main result of this paper is the following theorem.

Theorem 1.5. Let (r,0) € S and j a positive integer. Then for every inte-
ger s there are infinitely many non-negative integers n such that p.(n) = s

(mod 7).

The proof depends on the action of Hecke operators on certain modular
forms whose coefficients are congruent to p,(n) modulo a prime. First, we
will construct a half-integral weight modular form for each pair in S following
a similar method in [4] using eta-quotients and twists of modular forms by
characters. We then compute the action of certain Hecke operators on those
modular forms. Note that the proof of Theorem 5 in [3] has demonstrated
the cases for (r,¢) = (1,5),(1,7),(1,11), and [8, §5] has a sketch for the case
(r,€) = (3,11).



In §2, we will give some facts about modular forms modulo ¢ and eta-
quotients as in [15], [16], [9] and [13]. We will describe the construction of
the modular form in §3 and prove Theorem 1.5 in §4.

2. Preliminaries

Let Mg(T") and Sk(I") denote the space of modular forms and cusp forms
of weight k and level T" respectively for I' C SLy(Z) a congruence subgroup.

7

If f(z) =3 0 ya(n)q" € Mp(SLo(Z))NZ[q], let f(z) := .2 a(n)g" be the
coefficient-wise reduction of f(z) modulo ¢. Note that we fix £ in this section
so the reductions are always assumed modulo ¢ unless otherwise noted. Define

—

My (SL2(Z)) i= {f(2)|f(2) € My(SL2(Z))}

as the space of weight £ modular forms reduced modulo ¢.

Let f(z) € My(SL2(Z)) have nonzero reduction modulo ¢. If g(z) € Z[q]
has the property that g(z) = f(z) (mod ¢), then define the filtration w,(g)
of g(z) modulo ¢ by

we(g) := min{k'| there exists f € Mk/(SLg(Z)) st. f=3}.

Note that one clearly has we(g) < k. If g(z) = 0 (mod ¢), then we set

wilg) = —oo.
Recall the Ramanujan operator for f(z) = >
Z[q] is defined as

> pa(n)g" € M(SLy(Z)) N

n=

o(f) = Z na(n)q".

From [13, Prop. 2.44] we know that 6(\]6/) € Mk+g+1(SL2(Z)). In addition, we
have the following facts about filtrations and the effect of the theta operator
on filtrations from [15] and [16].

Lemma 2.1. Let { > 5 be a prime number and f(z) € Mx(SL2(Z)) N Z[q]
with f # 0. Then

1. we(f) =k (mod £ —1);

2. we(f*) = iwe(f) for all integers i;



3. we(O(f)) < we(f)+L+1 with equality if and only if we(f) #£ 0 (mod ¢).

Let d be a positive integer. We define the U-operator and V-operator by

(Z C(n)qn> Ud) = ) eldn)q", (3)

<Z C(n)qn> V(d) = > cln)g™ (4)

Unlike the Ramanujan operator, both U(d) and V(d) transform modular
forms to modular forms in the following manner.

Lemma 2.2. [13, Prop. 2.22] Suppose that f(z) € My(I'o(N),x) and d is a
positive integer dividing N. Then

fRIU) € Mp(To(N),x),
fWV(d) € Mp(To(dN),x).

Moreover, if f(2) is a cusp form, so are f(z)|U(d) and f(2)|V (d).

Recall Dedekind’s eta function and its g-expansion:
F= n
n(z) =g [J(1 - ") (5)
n=1

We have that n(24z) € S1/2(I'0(576), x12) where x12 = (%) One also has
that every integral weight modular form on SLy(Z) and every half-integral
weight modular form on T'g(4) can be expressed as a rational function in
n(z),n(2z), and n(4z) (see [13, Thm. 1.67] or [9, § 4.2].) In particular,
n*(z) = A(z) € S12(SLy(Z)) is the cusp form with the smallest integral
weight. Thus it is easy to see that n(z) is an important building block for
both integral and half-integral weight modular forms. Here are some facts
about eta-quotients.

Theorem 2.3. [13, Thms. 1.6/, 1.65]

L If f(z) = [lsnn(62)" is an eta-quotient with k = 3 575 € Z and
with the additional properties that

Z ors =0 (mod 24)

SIN



and

Z %7’5 =0 (mod 24),

S|N
then f(z) satisfies

FEE) = e + a2

for every <CCL 2) € I'o(N). Here the character x is defined by x(d) :=

((72)%), where s := [[5y 0™.

2. Let c,d and N be positive integers with d|N and ged(c,d) = 1. If f(2)
1s an eta-quotient satisfying the conditions above for N, then the order
of vanishing of f(z) at cusp § is

ged(d, §)%rs
24 Z ged(d, %)

5|IN

Proposition 2.4. Lett be a positive integer. Define the eta-quotient Ey4(2)

as o
n"(2)

Bl = ey

One has Eii(z) € Mlt (Co(€h), xe1) where xop = (M) Further-

more, E;.(z) vanishes at every cusp not equivalent to oo under To(¢%). Also,
Ef;fl(z) =1 (mod ¢™) for every positive integer m.

Proof. From Theorem 2.3, we know that E,;(z) transforms correctly under
Lo(¢") with weight ”T_l. Also, one easily checks that Ey;(z) is holomorphic
at every cusp and vanishes at every cusp not equivalent to oo under T'g(¢").

To show that Ef;"il(z) = 1 (mod (™), notice E;;(z) has the following

expansion
t
[ (- qn)é

S | O}

(6)



By the binomial theorem, we have (1 — ¢)* = (1 — ¢*) (mod /) and equation
(6) implies that Ey;(2) = 1 (mod ¢). Now with an induction on m, we see
that for every positive integer m

[mfl

By (2)=1 (mod ™). (7)
0

3. Construction

We assume throughout this section that ¢ > 5 is a prime number that is
exceptional for r. This allows us to assume that r is odd by work of Kiming
and Olsson [10]. We define

—67
Goe=|—1].
7[ E

We begin this section by proving the existence of a half-integral weight
modular form F, ; ;(2) whose coefficients are congruent to values of p, modulo
¢7. One can see [4, Thm. 2.1] for the statement in terms of the partition
function.

Lemma 3.1. Let ¢ > 5 be prime and j a positive integer. If (r,{) € S, then
there is a modular form F,,;(z) € S)\Mr%(f‘o(576€3), XesXexi2) N Z[q] such

that
n+ry\ ., ;
Frej(z) = Z Pr< 54 )q (mod ¢7)
(2)=—(=")

(_1)(%71)/2”

where A ; is an integer, xp = (3), Xey = ( . >, and x12 = (42).

Proof. Consider the following eta-quotient

o= (1)

From Theorem 2.3 we know that f,,(2) € M.« (Fo(¢), x¢) where we have

used that xj = x, since 7 is necessarily odd. Using equations (1), (5) and
the fact that f,,(z) vanishes at co, we can write

Fra(z) = <Z pr(n)Q””‘”) TTa =™ =>"anln)g" (8)

n=1

7



Given a modular form f and a character x, we denote the twist of f by
x as f ® x. Consider the function

gr,€<z) = fr,é(z) - 6r,€fr,€<z) X Xe

= Z(l —€roxe(n))aye(n)q".

Standard facts (c.f. [9, § 3.3]) imply that g,¢(2) € Mre_1) (To(¢€?), x¢). Since

all of the exponents of the ¢’s in the product [J(1 — ¢**)"* are divisible by ¢,
we can conclude that

o0

ge2) = | D pem)g™ w2y p(m)g [ [T =g (9)

Ln+rdy (%f‘s[):_erl n=1

Consider f,¢(2)|U(O)|V(£) = D07, are(fn)g™. By Lemma 2.2, we know
that f,.(2)|U(0)|V () € M- (To(€?), x¢). Since £ divides the exponent of
2
every term in the g-expansion of f,,|U(¢)|V(¢) in equation (8), it has the
following g-expansion:

FreNU@OIV ) = | > pe(mg ™ | [T g™ (10)
Lin+rd, n=1

Now we are able to show that for sufficiently large m the following function
has the desired property

o1 (BT @) — LA@UOIV©) V1)
Frejm(z) = ——=" ¢ (240z) ’

(11)

(In particular, we require that m > j.) Using equations (7), (9) and (10), we



can compute the g-expansion of F,.;,,(z) modulo ¢ (using m > j)

41 ner
Frpjm(z) = 2 Y pn)g*

I
=
| 4
—_
[(\V)
=
=
VR
3
N1+
M
N——
ta)
3

[
=
=
VR
S
2|+
3
N———
<
3
=
o
oL
.

The fact that n"*(24¢z) € M (To(5760), x12) with x12 := (12) gives that

Fr1jm(z) transforms correctly under I'g(576¢%) with weight % -1

and character g 3xexi2. To check that it vanishes at the cusps, consider the

function
B2 () (gra(2) = Fra(2)| U0V (£))%

where A(z) is the unique normalized cusp form on SLy(Z) of weight 12.
Clearly, h(z) transforms correctly under T'o(£?). At oo, we can use (9)
and (10) to obtain the g-expansion for g, ¢(z) — f..(2)|U(€)|V (£):

9ri(2) = fre()U OV () = | 2 Z pr(n)g" H(l—o/”)M (13)
(M) = e, n=1

When 7 < 24, the first term in the summation of equation (13) has order at
least 1 + rd, since (OJFZ(S@) =€ F# —€y. When 24 <r <48 and r € S, the
first two terms, with n = 0 and 1, have the property that

<O+7“5@) <1+7“(5@)
- = €y 7é —€r -
n n

by the definition of S. So it has order at least 2 + rd,. Since Ey3(z) is
holomorphic at oo, we see from equation (12) that ord.(h(z)) > 24(1 +
rdy) — rf? and ord..(h(2)) > 24(2 + rdy) — rf* for r < 24 and 24 < r < 48
respectively. In both cases, we have ords(h(z)) > 0. Since Ef; (z) will




vanish at cusps not equivalent to oo under I'g(¢?), we can choose m large
enough so that h(z) also vanishes at those cusps.
By Lemma 2.2, h(24z) = h(2)|V(24) is a cusp form, hence vanishes at

all cusps. Since F, 4 ;(z) = ”T+1(h(24z))i, it also vanishes at all the cusps.

Thus, F,4;(z) € er’g,j—%(F0(576€3)7 Xe3Xexi2), where A, = M is an
integer. (Note that it may look odd to have a dependence on j on the left
hand side but the right hand side in terms of m. We write it this way to
emphasize that the m can be arbitrary as long as it is large enough to ensure

cuspidality and m > j.) O

We now construct a modular form P, ¢(z) such that its level is not divisible
by ¢ and P,.,(2) = F,,;(2) (mod ¢). The construction for r = 1 is carried
out in [5] and an analogous result is sketched for » < 24 in [8, § 5].

Lemma 3.2. Suppose (r,¢) € S. Then there is a cusp form P,,(z) €
S, 1 (Lo(576), x12) N Z[q] such that

Py(z)=F,u;(2) (mod ).

Proof. Let f.,(z) = > 7 are(n)g" be defined as in Lemma 3.1. By consid-
ering its g-expansion in equation (8) and applying the binomial theorem, we
have f,,(2) = A™(2) (mod ). Now Lemma 2.1 implies that

we(fre) = wg(A’"‘SZ) = rwe(A).

The fact that My (SLy(Z)) is either 0 or a one-dimensional vector space for

k < 12 allows one to easily check that wy(A) = 12. Thus we(f,¢) = @
Since @ + k(0 + 12 # 0 (mod ¢) for Kk =0,1,--- ,K_Tl, we can apply

the Ramanujan operator 5% times and conclude from Lemma 2.1(3) that

wz(@%(fr,e)) = (r+ 1)562 — 1). (14)

By considering the g-expansion of © = ( fre(2)), we have

OF (fre(2) = Y (7) anelmq”  (mod 0). (15)

n=1

10



Combining equations (14) and (15), we know that there is a cusp form
Qri(2) € Spne2-1) (SLa(Z)) such that
2

Qre(2) = i (%) are(n)q" = fre(2) @ (%) (mod ¢). (16)

Let Fx(z) be the normalized Eisenstein series of weight k. Using the fact
that Ey_1(z) = 1 (mod ¢), we can define the cusp form R,y in S 1y02 1) (SL2(Z))N
2

Z[q] as
Rog(2) := A" (2)E, 2, (2) — ,4Qr0(2).

Using equation (16), we can calculate the g-expansion of R, ¢(z) as

R,y(2) = Z pr(n —rog)qg" + 2 Z pr(n —1dp)q" H(l — g
n=0 (mod ¢) (7)=—€rp n=1

(mod ?).

When ¢ is exceptional for r, we can find an integer a such that p,(¢fn+a) =
0 (mod ¢) for every integer n. If ¢|n, then we can deduce from Theorem 1.2
that n —rd, = a (mod ¢). So we can write n —rd, = ¢m + a for some integer
m. Since ¢ is exceptional for r, p,(n — rd;) = 0 (mod ¢) whenever ¢ divides
n. Thus the g-expansion of R, ,(z) modulo ¢ is as follows:

Ru=2( 3 pme | [[0-a)® (mod). (1)
(2472—7"):_(%) n=1
Define
. 14 -+ 1 R,ﬂ’g(242)
2 r®(242)
From equation (17), we see that P.,(z) = F,,;(2) (mod £). To check
that it is a cusp form, consider the space S, 1) 2_1) (SLa(Z)). It is generated

P, (z) -

by Ei(z)AI(z) with 4i + 125 = %ﬂ_l) Also, the first nonzero term of
R, (%) has exponent at least rd, + 1 for r < 24 and rd, + 2 for 24 < r < 48
by construction. So we can write

Rry(2) = A™F(2)Ci(2)

11



with C1(z) € M 255 (SLa(Z)) for r < 24 and

R,(2) = AT 2(2)Cy(2)
with Cy(2) € Mp2_4(SLo(Z)) for 24 < r < 48. In either case, P, (z) is
2

the product of some power of 7(24z) and another modular form. (See the

appendix for some examples of expressing P, ,(z) explicitly in terms of 7(24z)
and E4(24z).) Hence we have P, ,(2) € S2_,_, (T'0(576), x12) N Z[q]. O
2

4. Proof of Main Theorem

The proof of Theorem 1.5 is similar to that of [3, Thm. 5] and the sketch
in [8, § 5]. First, we need the following definition from [3].

Definition 4.1. Let M be a positive integer and F'(z) a half-integral weight
modular form with

n=1
The coefficients of F'(z) are said to be well-distributed modulo M if for every
integer s, we have
VX ifr£0  (mod M),

1<n<X = d M)} > log X
#{l <n < Xla(n) =s (mo )} ’M{X ifr=0 (mod M).

Clearly, if the form F) ,;(z) constructed in the previous section is well-
distributed modulo M = ¢/, then Conjecture 1.4 is true for p,(n) modulo
M = ¢7. Furthermore, we would have a lower bound for how often p,(n)
falls into each congruence class of M = ¢/. The following lemma, which is
a direct consequence of [3, Thm. 1], gives a condition on when F, ;(z) is
well-distributed modulo M = /.

Lemma 4.2. Let F,;;(z) = > o0 arej(n)q" be defined as in Lemma 3.1.
If M = {7 is the power of a prime number and r is a positive integer with
(r,0) € S, then at least one of the following is true:

(1) F,;;(z) is well-distributed modulo M = ¢7;

(2) There are finitely many square-free integers ny, ng, - -+ ,ny for which

t o]
Foi(z) = Z Z a%j(nim2)q”im2 (mod ¢). (18)

i=1 m=1

12



One should note here that conditions (1) and (2) can be simultaneously
satisfied. The point here is that if condition (2) fails, then we must have the
validity of condition (1).

The following proposition gives us a way to check the validity of condition
(2) in Lemma 4.2 for each pair (r,¢) € S. It combines the results [3, Lem.
4.1] and [7, Thm. 1].

Proposition 4.3. Suppose P,¢(z) = > 77 a,4(n)q" € St 2 (Lo(576), x12)
can be written in the form of equation (18) and a,¢(nym?) #Z 0 (mod ) for
some positive integers my and n; € {ny,...,ns}. Without loss of generality
we assume ¢ = 1. Then the following condition is true

anslpPman) ~ () (“2) Xp)p ™ ane(mm?) =0 (mod £), (19)

where p is a prime number with p { 576fn;m; and p Z 1 (mod ¢).

Proof. By [3, Lem. 4.1] there exist primes py, - -, p, distinct from ¢ and p,
and a modular form G,(z) € Sy ,.1(To(576p] - -~ p), x12) N Z[q] with

Gri(2) = Z aT7g(n1m2)q"1m2 Z0 (mod /). (20)
m=1
ng(mva)zl
Now we can study the action of the Hecke operator T'(p?, A.r, X12) on

G,(2). Recall the Hecke operator T'(p?, \, x) acts on a half-integral weight
modular form F(z) =>"" a(n)q" € My, 1(To(N),x) by

2 _ - 2 Ny« A—1 x 221 2 n
F)T(P* X)) =) (a(p n)+ <]—)) X (p)p*a(n) + X ()™ aln/p )> q",

n=0
(21)
—_1)A .

where y*(p) = (%) x(p) and a(n/p?) = 0 if p? | n.

By the choices of pi,---,ps, we have ged(¢,576p?---p?) = 1 and p ¢
576p7 - - - p2L. Using equation (20), we can write G,.¢(z) in the following form

Gri(z) = Z are(n)g" (mod ¢).

(2)e{0,("1)}

13



Applying [7, Thm. 1], we have

n . _
(P=D)Gre(2)IT(0*, At x12) = (?1> Xi2(p) (P +p™ ) (p=1)Gre(2) - (mod 0).
(22)
Since p? t nym? and p # 1 (mod /), we can combine equations (21) and (22)
to obtain equation (19). O

Since P,(2) = F, (%) (mod ¢), we can use Proposition 4.3 to check that
condition (2) in Lemma 4.2 does not hold by finding p, n; and m; that do
not satisfy equation (19). In Table 1 below, we list the choices of p, n; for
each pair (r,¢) € S. For simplicity, we choose m; = 1 in all cases. Since
the equation (19) does not hold, condition (1) of Lemma 4.2 is true, and
Theorem 1.5 is proved.

Table 1: Table for values of p, nq, and (r,£) € S.

’ (r,0) e S ‘ P ‘ ny ‘ Eq. (19) H (r,0) e S ‘ D ‘ n ‘ Eq. (19) ‘
(1.5) |7123] 120 mod5 || (15,29) | 5] 33 |27 20 mod 290
(1,7) |5]23] 4%#0 mod7 (17,23) | 5| 7 | 11#0 mod 23
(I,11) | 5|23 420 mod 11 | (19,23) | 7| 5 | 2#0 mod 23
(3,11) |5/93| 420 mod 11 | (21,29) | 5| 123 | 6£0 mod 290
(3,17) |5 |21 [11£0 mod 17| (21,31) | 5| 3 | 7#0 mod 31
(5, 11) 5167 |10#0 mod 11 | (21,47) |5 | 3 4 # 0 mod 47
(5,23) |5 191220 mod 23 || (25,29) | 5| 47 | 6 Z0 mod 29
(7,11) |5 17| 8#0 mod 11 || (25,31) | 5| 47 | 290 mod 31
(7, 19) 7117118 %0 mod 19 || (27,31) | 5] 21 [25# 0 mod 31
(9.17) | 739 16 £0 mod 17 | (27,41) | 5| 21 | 1220 mod 41
(9,19) | 5[39 160 mod 19 || (33,41) | 7| 15 |36 # 0 mod 41
(9, 23) 7139 90 mod 23 (39,47) | 7| 57 | 37#0 mod 47

(13,17) |5 |11 | 10£0 mod 17 || (39, 61) | 7| 33 | 46 Z0 mod 61
(13,19) [ 5|59 | 420 mod 19 || (43,47) | 5| 29 | 9£0 mod 47
(13,23) | 5|59 |18 %0 mod 23 | (45,53) | 7] 195 | 33#0 mod 53
(15,23) | 5|33 |11#0 mod 23| (45,59) | 5| 3 |42%#0 mod 59

14



A.

Here are some examples of expressing P,,(z) in terms of n(24z) and
E4(24z) for some (r,f) € S. These examples have less than 20 terms in
their summation. Note: P;5(2), Pi7(2) and P 11(z) appeared as equations

(5.4), (5.5) and (5.6) in [3].

P 5(2)
P177(Z)
P1,11(Z)

P3,11(Z)

P9,17(Z)

N

2 (242),

2(242)E3(242) + 3n*7(242),

2(242)E2(242) + 5n*7(242) B (242) + 4n™ (242) ES (242)
+n?(242) E3(242) + 8n'19(242)

I (242) E (242) + 61°%(242) ES(242) 4+ Tn™ (242) E3 (242)
+6n17(242)

3% (242) B33 (242) + 0 (242) E3°(242) + 21°°(242) B (242)
+150"(242) B34 (242) + 5n''7(242) BT (242) + ' (242) E;®(242)
+107'%(242) E;° (242) + 90" (242) E;?(242) + 8n*1?(242) E (242)
+147*%7(242) ES(242) + 14091 (242) E3(242) + 14n**°(242)
10757(242) ES(242) + ' (242) E3(242) + 5n''°(242)

n'T(242) E;*(242) + 3n* (242) EY(242) + 1005 (242) ES(242)
+2n%(242) B3 (242) + 8n''3(242)

' (242) E2(242) + 11n* (242) E3%(242) + 2150 (242) E3°(242)
+50%9(242) E3*(242) + 5037 (242) BT (242) + 16n'%(242) E3*(242)
+170"%(242) EF' (242) + 607" (242) E;®(242) + 18n**3(242) E,°(242)
+4n*7(242) E{%(242) + 9n*1(242) B} (242) + 17T°% (242) ES (242) +
1472 (242) B3 (242) + 141°°3(242)

3% (242) E3°(242) + 5n%(242) E77(242) + 6n° (242) E3*(242)
+6n"1(242) B3 (242) + 500 (242) E18(242) + 3n'°%(242) E°(242)
16n°Y7(242) B3 (242) + 3n*'(242) ES(242) + 817 (242) B (242)
+119%7(242)

n
n
n
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Pyig(2) = 160*(242)E%(242) + 3n°%(242) EJ%(242) + 40 (242) B} (242)

+60M11(242) E3°(242) + 307 (242) BT (242) + 130 (242) E3*(242)
+4n'3(242) B3 (242) + 81°07(242) E;3(242) + 5n*!(242) B} (242)
+50*%(242) E}%(242) + 5n*™0(242) B (242) + 213 (242) E$(242)
+4nP¥(242) B3 (242) + 1Tn*1 (242)

Pisair(2) = 13n'1(242)E$(242) + 161°°(242) B (242) + 121°°(242) E57 (242)

+97%3(242) E3*(242) + 3031 (242) E;3(242) + 110'%°(242) E;° (242)
+3n'70(242) B} (242) + Tn%3(242) B (242) + n**7(242) ES(242)
+130%°1(242) E3(242) + 41°™(242)

Piz1o(2) = 100n°(242)EJ%(242) + 130> (242) EJ*(242) + 8n'7(242) E}°(242)

+140131(242) EF7(242) + 9% (242) B3 (242) + 4n'™ (242) EF(242)
+30*7(242)E}°(242) + 130°7(242) Ef (242) + 15m*°(242) ES(242)
+107°%(242) B3 (242) + 14047 (242)
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