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Abstract. In this short note we extend results of Kohnen and Sen-
gupta on the sign of eigenvalues of Siegel cuspforms. We show that
their bound for the first negative Hecke eigenvalue of a genus 2 Siegel
cuspform of level 1 extends to the case of level N > 1. We also discuss
the signs of Hecke eigenvalues of CAP forms.

1. Introduction

Let Sk(Sp4(Z)) be the space of Siegel cuspforms of weight k and level
Sp4(Z) ⊂ GL4(Z). Denote the space of Maass spezialchars by SM

k (Sp4(Z)) ⊂
Sk(Sp4(Z)). Let F ∈ Sk(Sp4(Z)) be a nonzero Hecke eigenform of all Hecke
operators T (n) with n > 0. Write λF (n) for the eigenvalue of T (n) acting
on F . It was shown by Breulmann in [B99] that F ∈ SM

k (Sp4(Z)) if and only
if λF (n) > 0 for all n > 0. Essentially this boiled down to an elementary
calculation combined with the fact that F ∈ SM

k (Sp4(Z)) if and only if the
Spinor L-function L(s, F, Spin) has a pole at s = k ([E81]). This result
naturally leads one to ask the question of what can be said about the signs
of λF (n) for F /∈ SM

k (Sp4(Z)). In [K07] it is shown that for such F the values
λF (n) change sign infinitely often. Furthermore, in [KS07] it is shown that
if k is odd or F /∈ SM

k (Sp4(Z)) then there exists n � k2 log20 k such that
λF (n) < 0 where the implied constant is absolute and effectively computable.
It is then natural to ask what can be said in the case of level Γ2

0(N) forN > 1.
The natural generalization of the Maass spezialchars to the case of level

Γ2
0(N) is the notion of CAP forms (see § 3.) We show (essentially a result of

[PS08]) that Breulmann’s result generalizes to the level Γ2
0(N) situation as

well. See Theorem 3.1 for the precise result. Once we have dealt with CAP
forms, we look at the case of non-CAP forms. We then generalize Kohnen
and Sengupta’s arguments from [KS07] to the case of level Γ2

0(N) to show
that their bound of n � k2 log20 k holds in this case as well. See Theorem
4.1 for the precise statement.
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2. Notation and Set-up

Throughout the paper we write A � B to mean there is an absolute
constant c so that A ≤ cB. If the constant is not absolute, say it depends
on k, we write A�k B.

Let G = GSp4, i.e.,

G = {g ∈ GL4 : tgJg = λ(g)J, λ(g) ∈ GL1}

where J =
(

02 12

−12 02

)
. We have a natural map λ : G → GL1. The

kernel of this map is the familiar group Sp4. For N a positive integer, set
Γ2

0(N) ⊂ Sp4(Z) to be the subgroup defined by

Γ2
0(N) =

{
g =

(
A B
C D

)
∈ Sp4(Z) : C ≡ 0(modN)

}
.

The group
G+(R) = {g ∈ G(R) : λ(g) > 0}.

acts on the Siegel upper half-space

h2 = {Z ∈ M2(C) : tZ = Z, Im(Z) > 0}

by linear fractional transformation in the usual way.
Let F : h2 → C be a holomorphic function. The group G+(R) acts on F

via the slash operator

(F |kg)(Z) = λ(g)kj(g, Z)−kF (gZ)

where j(g, Z) = det(CZ + D) is the usual automorphy factor. The space
of Siegel modular forms of weight k and level Γ2

0(N) is the space of such
F with the condition that (F |kg)(Z) = F (Z) for all g ∈ Γ2

0(N). This
space is denoted Mk(Γ2

0(N)) and we denote the subspace of cusp forms by
Sk(Γ2

0(N)). We have the usual Hecke operators T (n) for p - N as defined in
[A74]. We denote the Frobenius operators of Andrianov for p | N by T (p),
see [A01] for example for the definition.

Let F ∈ Sk(Γ2
0(N)) be a Hecke eigenform. Associated to F is a cuspidal

automorphic form ΦF defined as follows. Write N =
∏
prp (we set rp = 0

for p - N) and define K0(N) by

K0(N) =
∏
p-∞

K0(prp)

where

K0(prp) =
{(

A B
C D

)
∈ G(Zp) : C ≡ 0(mod prpZp)

}
.

Strong approximation for G(A) allows us to write

G(A) = G(Q) G+(R) K0(N).
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Thus, given g ∈ G(A) there exists gQ ∈ G(Q), g∞ ∈ G+(R), and k0 ∈ K0(N)
such that g = gQg∞k0. Define ΦF : G(A)→ C by

ΦF (g) = (F | g∞)(i12).

Note that ΦF is well defined since F has level Γ2
0(N) and

Γ2
0(N) = G(Q) ∩G+(R) K0(N).

Let VF denote the space of right translates of ΦF . The group G(A) acts on
VF by right translation. We can decompose the space VF into a finite direct
sum of irreducible cuspidal automorphic representations of G(A). Let πF
be one of these irreducible components and write πF = ⊗πF,p.

Let χ1, χ2 and σ be unramified characters of Q×p . Denote by χ1×χ2oσ the
representation of G(Qp) induced from the character of the Borel subgroup
of G(Qp) given by

a1 ∗ ∗ ∗
a2 ∗ ∗

b1a
−1
1

∗ b1a
−1
2

 7→ χ1(a1)χ2(a2)σ(b1).

Adopting the notation of [ST], for p - N we have that πF,p is isomorphic to
the Langlands quotient of an induced representation of the form χ1×χ2 oσ.

We can attach a degree 4 Spinor L-function to F as either the Langlands
Spinor L-function or the Andrianov Spinor L-function. The only difference
is at the primes p | N . When we wish to refer to the Langlands L-function
we will always use the notation L(s, πF ,Spin) and for the Andrianov L-
function we will write L(s, F, Spin). For p - N , the pth Euler factor is given
by

Lp(s, πF,p, Spin) = Lp(s, F, Spin)

= [(1− αp,0p−s)(1− αp,0αp,1p−s)(1− αp,0αp,2p−s)(1− αp,0αp,1αp,2p−s)]−1

where αp,1 = χ1(p), αp,2 = χ2(p), and αp,0 = σ(p) are the pth Satake
parameters of F . We have normalized the L-function here is a somewhat
non-standard manner. It amounts to substituting s+k−3/2 for s in Andri-
anov’s normalization. Note that by our choice of normalization here we have
α2
p,0αp,1αp,2 = 1. For p | N , the pth Euler factors defining the Andrianov

Spinor L-function are given by

Lp(s, F, Spin) = (1− λF (p)p−s)−1

where λF (p) now refers to the eigenvalue of the Frobenius operator acting
on F as defined in [A01]. Again, our normalization of the L-function here
means our λF (p) differs from Andrianov’s by a factor of pk−3/2. The Spinor
L-function satisfies the functional equation given by

ΛF (s) = (−1)kΛF (1− s)
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where

ΛF (s) = (2π)−2(s+k−3/2)Γ(s+ k − 3/2)Γ(s+ 1/2)L(s, πF ,Spin).

One has that L(s, πF ,Spin) has meromorphic continuation to C with at most
simple poles at s = 3/2 and s = −1/2.

Given any Euler product of the form L(s,X) =
∏
p Lp(s,X), we write

L(N)(s,X) :=
∏
p-N Lp(s,X) and L(N)(s,X) :=

∏
p|N Lp(s,X).

3. CAP forms

In this section we give the relevant definitions and results generalizing
those of F ∈ SM

k (Sp4(Z)) to the case of level Γ2
0(N) for N > 1. For a more

detailed exposition of the material in this section the reader is urged to
consult [PS08] or [PS].

Let P = M N be a proper parabolic subgroup of G(A) where M is the
Levi subgroup. Let τ be an irreducible cuspidal automorphic representation
of M. A cuspidal automorphic represetation π of G(A) is said to be CAP
(cuspidal associated to parabolic) if there is an irreducible component π′

of IndG(A)
P(A) τ so that πp ∼= π′p for almost all places p. Our interest in CAP

forms is that they provide the natural generalization of Saito-Kurokawa lifts
when we consider N > 1. In particular, if πF is CAP then it must be CAP
to the Siegel parabolic ([PS], Corollary 4.5). If N = 1 then πF is CAP
if and only if F is a classical Saito-Kurokawa lifting. Suppose now that
N > 1. More generallly one has π is CAP if and only if it is a theta lift or
a theta lift twisted by an idele class character. We know from [P83] that if
F ∈ SM

k (Γ2
0(N)) then it is a theta lift and so CAP forms are a generalization

of Saito-Kurokawa lifts. In general one has that π is a theta lift if and only
if L(s, π,Spin) has a pole ([P83].) If π is a twist of a theta lift by a non-
trivial character then L(s, π,Spin) has no poles. One should observe that
since we are assuming F is without character, we can say that πF is CAP
if and only if it is either a theta lift or a twist of a theta lift by a quadratic
character. In such a case, we have the following characterization of the local
representations πF,p for p - N (see [PS08].)

(1) If πF is a theta lift, then for p - N the local representation πF,p is
the spherical constituent of the induced representation of the form
ν1/2χ× ν1/2χ−1 o ν−1/2 with |χ| = 1 and ν the normalized absolute
value from Q×p → C×.

(2) If πF is the twist of a theta lift by a quadratic character σ0 = ⊗σ0,p,
then for each p - N for which σ0,p is unramified, the local represen-
tation is the spherical constituent of the induced representation of
the form ν1/2χ× ν1/2χ−1 o ν−1/2σ0,p with |χ| = 1.

The following theorem is essentially Theorem 3.1 of [PS08]. The second
part of the theorem is not stated there, but it is easily deduced from their
arguments. We include a proof for the reader’s convenience.
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Theorem 3.1. Let N and k be positive integers with k > 2. Let F ∈
Sk(Γ2

0(N)) be a non-zero Hecke eigenform with eigenvalues λF (n) for all
n with gcd(n,N) = 1. Let πF = ⊗πF,p be the corresponding irreducible
cuspidal automorphic representation of G(A).

(1) If πF is a theta lift, then for all p - N and all n > 0 we have
λF (pn) > 0.

(2) Suppose πF is a twist of a theta lift by a non-trivial quadratic charac-
ter σ0. For those primes where σ0(p) = 1 we have that λF (pn) > 0
for all n > 0. For those primes where σ0(p) = −1, we have that
λF (pn) > 0 for n even and λF (pn) < 0 for n odd.

Proof. Proposition 4.1 of [PS] shows that if πF,p is given by χ1 × χ2 o σ,
then for n > 0 one has

(1)
λF (pn)

(pn)k−3/2
= Aa,b(n) + (1− 1/p)

[n/2]∑
j=1

Aa,b(n− 2j)

where

Aa,b(m) =

 m∑
j=0

am−jbj

 m∑
j=0

(ab)−j


where a = σ(p) and b = σ(p)χ1(p).

In the situation of πF being a theta lift, using the characterization of πF,p
given above we have that a = ν(p)−1/2 = p1/2 and b = χ(p). Thus,

Aa,b(m) = pm/2

∣∣∣∣∣∣
m∑
j=0

(p1/2χ(p))−j

∣∣∣∣∣∣
2

> 0.

Hence, we see that λF (pn) > 0 for all n > 0 and p - N .
Suppose now that πF is the twist of a theta lift by a non-trivial quadratic

character σ0. In this case we obtain that a = p1/2σ0,p(p) and b = χ(p)σ0,p(p).
From this we calculate that

Aa,b(m) = (p1/2σ0,p(p))m

∣∣∣∣∣∣
m∑
j=0

(p1/2χ(p))−j

∣∣∣∣∣∣
2

.

From this it is clear that if σ0,p(p) = 1 then Aa,b(m) is positive for all m
used in equation (1) and so λF (pn) > 0. If σ0,p(p) = −1, then we see that
Aa,b(m) > 0 for m even and Aa,b(m) < 0 for m odd. Equation (1) then
clearly gives the result. �

Remark 3.2. One should note that it is necessary to remove the eigenvalues
λF (p) for p | N in the above theorem. For example, if F ∈ SM

k (Γ2
0(N)) is

a Saito-Kurokawa lift of f ∈ S2k−2(Γ0(N)), then λF (p) = λf (p) for all
p | N . In this case it is entirely possible that λF (p) < 0 for p | N . For
example, if N = 11 and k = 3, then the dimension of S4(Γ0(11)) is 2 and
each newform has λf (11) < 0. For N = 7 and k = 7 we have that the



6 JIM BROWN

dimension of S7(Γ0(7)) is dimension 7 and one has newforms with λf (7) > 0
and newforms with λf (7) < 0.

Finally, we note that in order to apply the results of Pitale-Schmidt it is
necessary to assume k > 2. This follows from the fact that their argument
relies in an essential way on a result of Chai-Faltings that requires k > 2.
See Proposition 3.3 of [PS] for the precise statement they need. However,
one can follow the same argument as given in [B99] (ignoring those primes
p | N) to conclude the following proposition which as least gives the “easy”
direction of the result for k ≥ 2. The “hard” direction would require a
classification of the local representations πF,p that can occur in the case
k = 2.

Proposition 3.3. Let F ∈ SM
k (Γ2

0(N)) be a non-zero Hecke eigenform with
eigenvalues λF (n). Then we have λF (n) > 0 for all n with gcd(n,N) = 1.

4. Non-CAP forms

Let F ∈ Sk(Γ2
0(N)) be such that πF is not CAP. Let F have Satake pa-

rameters αp,0, αp,1 and αp,2 as in § 2. The Ramanujan-Petersson conjecture
states that

|αp,1| = |αp,2| = 1
for all p - N . A proof of this conjecture has been announced in [W93] and
we assume its validity throughout this section. We assume F is a newform,
where we take the definition of newform given in [A00]. We closely follow
the arguments of [KS07] in this section. The goal of this section is to prove
the following theorem.

Theorem 4.1. Let N > 1 and let F ∈ Sk(Γ2
0(N)) be a non-zero Siegel

newform such that πF is not CAP. There exists a positive integer n with

n� k2 log20 k

such that λF (n) < 0.

Write
L(s, πF ,Spin) =

∑
n≥1

aF (n)n−s

and
L(s, πF ,Spin) = L(N)(s, πF ,Spin)

∑
n≥1

bF (n)n−s

where we recall L(N)(s, πF ,Spin) =
∏
p|N Lp(s, πF,p, Spin). From our nor-

malization of the Satake parameters along with the Ramanujan-Petersson
conjecture we see that

|bF (n)| ≤ d4(n)
where

ζ4(s) =
∑
n≥1

d4(n)n−s.
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We have that L(N)(1, πF , Spin) is bounded as it is a finite product and
L(s, πF , Spin) has analytic continuation as πF is not CAP. We combine this
with the fact that ζ4(s) has a pole of order 4 at s = 1 to conclude by a
standard Tauberian argument that∑

x0≤n≤x
|aF (n)| �x0 x log3 x

for x0 > 1. From this estimate we conclude exactly as in [KS07] that we
have:

Proposition 4.2. For c > 1 we have

|L(c+ it, πF ,Spin)| � 1 +
c

(c− 1)4

for all t ∈ R.

One can see Proposition 1 of [KS06] for a proof of this type of result in
a slightly different setting. We can apply the same argument as in (Page
56-57, [KS07]) to conclude the following result.

Proposition 4.3. Let F ∈ Sk(Γ2
0(N)) be a non-zero newform such that πF

is not CAP. Let 0 < δ < 1/2. Then for all t ∈ R we have

(2) |L(δ + it, πF ,Spin)| � k1−δ log4 k

∣∣∣∣1 +
1

2 log k
+ δ + it

∣∣∣∣2−2δ+1/ log k

.

We obtain following generalization of Proposition 2 of [KS07].

Proposition 4.4. Let F ∈ Sk(Γ2
0(N)) be a non-zero newform such that πF

is not CAP. We have∑
n≤x

gcd(n,N)=1

λF (n) log2
(x
n

)
� (k log8 k)x

2
3 log k .

Proof. This is essentially the same proof as in [KS07] combined with Propo-
sition 4.3. The only difference in this case is in the application of Per-
ron’s formula one must use ζ(N)(2s+1)−1L(N)(s, πF ,Spin) instead of ζ(2s+
1)−1L(s, πF ,Spin). One then uses that ζ(N)(2s+ 1) and L(N)(s, πF ,Spin)−1

are both absolutely bounded for s = δ + it with δ = 2
3 log k to achieve the

same bound as in Proposition 2 of [KS07]. �

Finally, we give a lower bound for the sum of eigenvalues.

Proposition 4.5. Let F ∈ Sk(Γ2
0(N)) be a non-zero newform such that πF

is not CAP. Suppose that λF (n) ≥ 0 for 1 ≤ n ≤ x with gcd(n,N) = 1.
Then we have ∑

n≤x
gcd(n,N)=1

λF (n) log2
(x
n

)
�
√
x

log2 x
.
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Proof. It is straightforward to show that∑
n≤x

gcd(n,N)=1

λF (n) log2
(x
n

)
�

∑
n≤x/2

gcd(n,N)=1

λF (n).

Thus, if we can show that ∑
n≤x

gcd(n,N)=1

λF (n)�
√
x

log2 x

we will be done.
For p - N we have

Lp(X,F, Spin)−1 = 1−λF (p)X+(λF (p)2−λF (p2)−1/p)X2−λF (p)X3+X4

and for p | N we have

Lp(X,F, Spin)−1 = 1− λF (p)X.

We can use the fact that

ζ(2s+ 1)−1L(s, F, Spin) =
∑
n≥1

λF (n)n−s

to conclude that for all p we have

(1−X2/p)Lp(X,F, Spin) =
∑
n≥0

λF (pn)Xn.

Thus, for p - N we have

λF (pn) =λF (p)λF (pn−1)− (λF (p)2 − λF (p2)− 1/p)λF (pn−2)(3)

+ λF (p)λF (pn−3)− λF (pn−4)

where we put λF (pn) = 0 for n < 0 and for p | N we have

λF (p2) = λF (p)2 − 1/p,

λF (pn) = λF (p)λF (pn−1) (n > 2).

With our normalization of the Satake parameters, the Ramanujan-Petersson
conjecture, and equation (3) we have

(4) |λF (p)|, |λF (p2)|, |λF (p3)| � 1.

Let S = {p : p - N, p ≤ 4
√
x}. Since we are assuming that λF (n) ≥ 0 for

n ≤ x with gcd(n,N) = 1, we have

(5)
∑
n≤x

gcd(n,N)=1

λF (n) ≥
∑
p,q∈S

λF (p2q2) +
∑
p,q∈S

λF (p2q) +
∑
p,q∈S

λF (pq).
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As is shown in [KS07], for p ∈ S we have

λF (p4)� λF (p2)2 − c1
λF (p3)� λF (p)λF (p2)− c2
λF (p2)� λF (p)2 − c3

where c1, c2 and c3 are absolute constants each greater then 0. Let π(x)
denote the number of primes p ≤ x for any x > 1. Then we have

∑
p,q∈S

λF (p2q2)�

∑
p∈S

λF (p2)

2

− c1π( 4
√
x),

∑
p,q∈S

λF (p2q)�

∑
p∈S

λF (p2)

∑
p∈S

λF (p)

− c2π( 4
√
x),

∑
p,q∈S

λF (pq)�

∑
p∈S

λF (p)

2

− c3π( 4
√
x).

Combining these equations with equation (5) we obtain

(6)
∑
n≤x

gcd(n,N)=1

λF (n)�

∑
p∈S

λF (p2) +
∑
p∈S

λF (p)

2

− cπ( 4
√
x)

with c > 0 an absolute constant.
We claim that there exists an absolute constant d > 0 so that for any

p ∈ S we have
λF (p2) + λF (p) ≥ d.

Suppose not. By assumption λF (p2) and λF (p) are both greater than or
equal to 0, so we must have that λF (p2) and λF (p) are both small. Equation
(3) gives

λF (p3) = λF (p)λF (p2)− (λF (p)2 − λF (p2)− 1/p)λF (p) + λF (p),

and so λF (p3) must be small as well. However, equation (3) also shows that
λF (p4) is given by

λF (p4) = (λF (p2)2 + λF (p)λF (p3) + λF (p2)(1/p− λF (p)2) + λF (p)2)− 1.

This contradicts λF (p4) ≥ 0 if λF (p2) and λF (p) are arbitrarily small. Thus,
such a d > 0 exists. We combine this fact with equation (6) along with the
prime number theorem to conclude that∑

n≤x
gcd(n,N)=1

λF (n)�
√
x

log2 x
.

�
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Combining the previous two propositions we see that if F ∈ Sk(Γ2
0(N))

is a newform such that πF is not CAP and λF (n) ≥ 0 for n ≤ x with
gcd(n,N) = 1 we have

(7)
√
x

log2 x
� (k log8 k)x

2
3 log k .

However, this equation cannot hold for large enough x. In particular, fol-
lowing [KS07] we see that for equation (7) to hold we must have

x� k2 log20 k,

which finishes the proof of Theorem 4.1.

Remark 4.6. For F ∈ Sk(Sp4(Z)) a Hecke eigenform, it was shown in [K07]
that λF (n) changes sign infinitely often. This result has been generalized in
[PS08] to the case N > 1. Their result shows that if F is a Hecke eigenform
for all T (n) with gcd(n,N) = 1 such that πF is not CAP, then there exists
an infinite set SF of primes numbers p - N such that if p ∈ SF , then there
are infinitely many r such that λF (pr) > 0 and infinitely many r such that
λF (pr) < 0.
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[ST] P. Sally and M. Tadić, Induced representations and classifications for GSp(2, F )
and Sp(2, F ), Bull. Soc. Math. France 121, 209-240 (2005).



EIGENVALUES OF SIEGEL CUSPFORMS 11

[W93] R. Weissauer, The Ramanujan conjecture for genus 2 Siegel modular forms (an
application of the trace formula), preprint , Mannheim, (1993).

Department of Mathematics, Clemson University, Clemson, SC 29634
E-mail address: jimlb@clemson.edu


