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Abstract

In the first part of the thesis we prove that every sufficiently large odd integer can be written

as a sum of a prime and 2 times a product of at most two distinct odd primes. Together with Chen’s

theorem and Ross’s observation, we know every sufficiently large integer can be written as a sum of

a prime and a square-free number with at most three prime divisors, which improves a theorem by

Estermann that every sufficiently large integer can be written as a sum of a prime and a square-free

number.

In the second part of the thesis we prove some results that specialize to confirm some conjec-

tures of Sun, which are related to Fermat’s theorem on sums of two squares and other representations

of primes in arithmetic progressions that can be represented by quadratic forms. The proof uses the

equidistribution of primes in imaginary quadratic fields.
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Chapter 1

Introduction

In additive number theory, we study subsets of integers and their behavior under addition.

As the building blocks of integers, prime numbers are particularly interesting. There are many

questions related to integers and prime numbers that are easy to state but hard to answer.

Goldbach’s conjecture and the twin prime conjecture are two classical examples of such

questions. In 1742 Goldbach wrote a letter to Euler to discuss his two discoveries. Goldbach

conjectured that every even integer greater than 2 can be written as the sum of two primes, and

every odd integer greater than 5 can be written as the sum of three primes. Even though his

conjectures look easy, they are very hard to prove. The odd integer case conjecture is a known as

the weak Goldbach conjecture, and it was completely solved in 2013 [12]. The even integer case

conjecture, i.e., the strong Goldbach conjecture, remains unsolved. Lemoine’s conjecture is similar

to the strong Goldbach conjecture. It states that every odd integer greater greater than 5 can be

written as the sum of a prime and 2 times another prime.

In 1846 Polignac stated the twin prime conjecture. In fact, his original conjecture was more

general. If we look at the sequence of prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, · · · , we see there are

many consecutive primes with distance 2, for example, 5 − 3 = 2, 7 − 5 = 2, 13 − 11 = 2, and

19 − 17 = 2. We call such pairs of primes “twin primes”. The twin prime conjecture states that

there are infinitely many pairs of twin primes. In the past few years, Green, Maynard, the Polymath

Project 8 group, Tao, and Zhang made some great achievements on the bounded gaps between

primes in [18, 21, 29]. It is natural to ask whether p − 2q has a bounded gap or not for prime

numbers p and q.
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In Chapter 2, I will give a short survey on sieve theory and some known results on Goldbach’s

conjecture, Lemoine’s conjecture, and the twin prime conjecture. Then I will prove some related

results that improve a theorem by Estermann, which states that every sufficiently large odd integer

is a sum of a prime and a square-free number. The work in this chapter has been published in [15].

There are a lot of new conjectures about prime numbers too, for example, in [25] Sun posed

100 new conjectures on representations involving primes. There is also a series of videos [24] by Sun

on Goldbach’s conjecture, in which he mentioned a couple of interesting conjectures. In joint work

with Brown and James, I successfully proved two of these conjectures.

Fermat’s theorem on sums of two squares states that an odd prime p can be written as a

sum of two integers squares a2p + b2p if and only if p ≡ 1 (mod 4). There is a similar result that a

prime p > 3 can be written as a sum of a2p + apbp + b2p for integers ap and bp if and only if p ≡ 1

(mod 3). When we restrict that 0 < bp < ap in both cases, such representations are unique. Sun

conjectured that

lim
x→∞

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

ap

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

bp
= 1 +

√
2

and

lim
x→∞

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<bp<ap

ap

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<bp<ap

bp
= 1 +

√
3.

In Chapter 3, I will prove of some more generalized results, which confirm these two con-

jectures by Sun. Part of the work in this chapter has been submitted in [1].
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Chapter 2

On Lemoine’s Conjecture

2.1 Notation

Let f and g be arithmetic functions, where g is positive. We write

f = O(g),

or

f � g,

or

g � f,

if there exists a constant c > 0, such that

|f(x)| ≤ cg(x)

for all x in the domain of f .

Given a constant U , we write

f = OU (g)

3



if there exists a constant c > 0 that depends on U , such that

|f(x)| ≤ cg(x)

for all x in the domain of f .

We write

f = o(g)

if

lim
x→∞

f(x)

g(x)
= 0.

We write

f ∼ g,

if

lim
x→∞

f(x)

g(x)
= 1.

The Möbius function is defined by

µ(n) =

 (−1)ν(n) if n is square-free,

0 otherwise,

where ν(n) is the number of distinct prime divisors of n.

2.2 Sieve Methods and Applications

Before stating the main results of this chapter, let me briefly introduce the sieve methods

and give a short survey on the applications related to Goldbach’s Conjecture and the twin prime

conjecture.

A classical reference for sieve methods is the book by Halberstam and Richert [11]. In the

book, the authors introduce the sieve of Eratosthenes, the combinatorial sieve, and Selberg’s sieve.

I will briefly write down some important theorems from the book, and mention their applications.

For more details please see [11].

The oldest sieve method is attributed to Eratosthenes. The idea is quite simple, for example,

4



if we want to find all primes from 2 to 100, since any non-prime number up to 100 must have a

prime divisor less than 11, we only need to cross off multiples of 2, 3, 5, and 7 from 11 to 100. Then

the left over numbers, together with 2, 3, 5, and 7, are all of the primes up to 100. See Tables 2.1,

2.2, 2.3, and 2.4 for the process. Thus, we know all primes up to 100 are 2, 3, 5, 7, 11, 13, 17, 19,

23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

11 ��12 13 ��14 15 ��16 17 ��18 19 ��20
21 ��22 23 ��24 25 ��26 27 ��28 29 ��30
31 ��32 33 ��34 35 ��36 37 ��38 39 ��40
41 ��42 43 ��44 45 ��46 47 ��48 49 ��50
51 ��52 53 ��54 55 ��56 57 ��58 59 ��60
61 ��62 63 ��64 65 ��66 67 ��68 69 ��70
71 ��72 73 ��74 75 ��76 77 ��78 79 ��80
81 ��82 83 ��84 85 ��86 87 ��88 89 ��90
91 ��92 93 ��94 95 ��96 97 ��98 99 ��100

Table 2.1: Cross off Multiples of 2

11 ��12 13 ��14 ZZ15 ��16 17 ��18 19 ��20
ZZ21 ��22 23 ��24 25 ��26 ZZ27 ��28 29 ��30
31 ��32 ZZ33 ��34 35 ��36 37 ��38 ZZ39 ��40
41 ��42 43 ��44 ZZ45 ��46 47 ��48 49 ��50
ZZ51 ��52 53 ��54 55 ��56 ZZ57 ��58 59 ��60
61 ��62 ZZ63 ��64 65 ��66 67 ��68 ZZ69 ��70
71 ��72 73 ��74 ZZ75 ��76 77 ��78 79 ��80
ZZ81 ��82 83 ��84 85 ��86 ZZ87 ��88 89 ��90
91 ��92 ZZ93 ��94 95 ��96 97 ��98 ZZ99 ��100

Table 2.2: Cross off Multiples of 3

11 ��12 13 ��14 ZZ15 ��16 17 ��18 19 ��20
ZZ21 ��22 23 ��24 ��25 ��26 ZZ27 ��28 29 ��30
31 ��32 ZZ33 ��34 ��35 ��36 37 ��38 ZZ39 ��40
41 ��42 43 ��44 ZZ45 ��46 47 ��48 49 ��50
ZZ51 ��52 53 ��54 ��55 ��56 ZZ57 ��58 59 ��60
61 ��62 ZZ63 ��64 ��65 ��66 67 ��68 ZZ69 ��70
71 ��72 73 ��74 ZZ75 ��76 77 ��78 79 ��80
ZZ81 ��82 83 ��84 ��85 ��86 ZZ87 ��88 89 ��90
91 ��92 ZZ93 ��94 ��95 ��96 97 ��98 ZZ99 ��100

Table 2.3: Cross off Multiples of 5

In order to introduce the main result on the Eratosthenes sieve, let me introduce some

5



11 ��12 13 ��14 ZZ15 ��16 17 ��18 19 ��20
ZZ21 ��22 23 ��24 ��25 ��26 ZZ27 ��28 29 ��30
31 ��32 ZZ33 ��34 ��35 ��36 37 ��38 ZZ39 ��40
41 ��42 43 ��44 ZZ45 ��46 47 ��48 ZZ49 ��50
ZZ51 ��52 53 ��54 ��55 ��56 ZZ57 ��58 59 ��60
61 ��62 ZZ63 ��64 ��65 ��66 67 ��68 ZZ69 ��70
71 ��72 73 ��74 ZZ75 ��76 ZZ77 ��78 79 ��80
ZZ81 ��82 83 ��84 ��85 ��86 ZZ87 ��88 89 ��90
ZZ91 ��92 ZZ93 ��94 ��95 ��96 97 ��98 ZZ99 ��100

Table 2.4: Cross off Multiples of 7

notation. Let

PM (z) =
∏
p<z
p-M

p,

and denote P (z) = P1(z). Let A be a finite set of integers, let X ∼ |A|, and let q be a positive

integer that satisfies (q,MPM (x)) = 1. Let

SM (A, q, z) = {n : n ∈ A, q | n, (n, PM (z)) = 1}

be the set of integers from A that are divisible by q and relatively prime to PM (z). When q = 1, we

use SM (A, z) to denote SM (A, 1, z); when M = 1, we use S(A, q, z) to denote S1(A, q, z); finally,

S(A, z) means S1(A, z). Sometimes we refer to SM (A, q, z) as the cardinality of the set SM (A, q, z)

defined above; it should be clear from the context in which way we are using SM (A, q, z). This

notation will show up throughout the rest of this chapter, so let us look at an easy example:

Example 2.2.1. When A is the set of integers from 1 to n, M = 1, q = 1, and z =
√
N , we see

SM (A, q, z) = S1({1, · · · , n} , 1,
√
n) = S({1, · · · , n} ,

√
n) is the set of integers from 1 to n that are

divisible by 1 and relatively primes to the product of all primes that are bigger or equal to 2 and less

than
√
n. Therefore, it is the set of primes from

√
n to n.

For each prime p we choose ω(p) so that (ω(p)/p)X approximates to |Ap|, where Ap =

S1(A, p, 1), and we write the remainder as

Rp = |Ap| −
ω(p)

p
X.

6



For each square-free d, we define

ω(1) = 1, ω(d) =
∏
p|d

ω(p)

so that ω(d) is a multiplicative function. For each square-free d, let Ad = S1(A, d, 1), and we define

Rd = |Ad| −
ω(d)

d
X.

With the function ω we define

W (z) =
∏
p<z

(
1− ω(p)

p

)
.

Then, we have the following theorem of the Eratosthenes-Legendre sieve:

Theorem 2.2.2 ([11, Eratosthenes-Legendre sieve, Theorem 1.1]). We have

S(A, q, z) =
ω(q)

q
XW (z) + θ

∑
d|P (x)

|Rqd|,

and, under some conditions, we have also that

S(A, q, z) = XW (z) + θ(1 +A0)z,

where |θ| ≤ 1 and A0 are constants.

Since this is a short survey, I will not list the conditions here. One can read page 32 of [11]

to see that Theorem 2.2.2 implies

π(x)� x

log log x
,

where π(x) is the number of primes up to x.

Combinatorial sieves are largely attributed to Brun. In Chapter 2 of [11], the authors discuss

Brun’s pure sieve and Brun’s sieve.

Theorem 2.2.3 ([11, Brun’s pure sieve, Equation (2.16)]). Under some conditions, we have

S(A, z) = XW (z)
(

1 + θe−
√
logX

)
+ θ′X

1
2 ,

7



where log z ≤
√

logX, |θ| ≤ 1, |θ′| ≤ 1.

One can read page 51 of [11] to see that Theorem 2.2.3 implies the series

∑
p prime

p+2=p′ prime

1

p

is convergent.

Theorem 2.2.4 ([11, Brun’s sieve, Theorem 2.1]). Let b be a positive integer, and let λ be a real

number satisfying

0 < λe1+λ < 1.

Then, under some conditions, we have

S(A, z) ≤ XW (z)

{
1 + 2

λ2b+1e2λ

1− λ2e2+2λ
e

(2b+3)c1
λ log z

}
+O

(
z
2b+ 2.01

e2λ/κ−1

)

and

S(A, z) ≥ XW (z)

{
1− 2

λ2be2λ

1− λ2e2+2λ
e

(2b+2)c1
λ log z

}
+O

(
z
2b−1+ 2.01

e2λ/κ−1

)
,

where

c1 =
A2

2

{
1 +A1

(
κ+

A2

log 2

)}
,

and κ, A1, and A2 are constants.

One can read pages 62 and 63 of [11] to see that Theorem 2.2.4 implies every sufficiently

large even integer can be written as a sum of two numbers which both have at most 7 prime factors,

and there are infinitely many numbers n such that both n and n+ 2 have at most 7 prime divisors.

If we count the largest number of prime divisors of each summand in the decomposition, then

Theorem 2.2.4 implies “7 + 7” for sufficiently large even integers and “7− 7” for every even integer.

A modified version of Theorem 2.2.4 is the following theorem:

Theorem 2.2.5 ([11, Mordified Brun’s sieve, Theorem 2.1′]). Let b be a positive integer, and let λ

and c1 be constants satisfying the conditions in the previous theorem. Let

u =
logX

log z
.

8



Then under some conditions we have

S(A, z) ≤XW (z)

{
1 + 2

λ2b+1e2λ

1− λ2e2+2λ
e

(2b+3)c1
λ log z

+O
(
Lz
−αu+2b+ 2.01

e2λ/κ−1uC0+1 logC0+κ+1 z
)

+OU

(
u−κ log−U X

)}

and

S(A, z) ≥XW (z)

{
1− 2

λ2be2λ

1− λ2e2+2λ
e

(2b+2)c1
λ log z

+O
(
Lz
−αu+2b−1+ 2.01

e2λ/κ−1uC0+1 logC0+κ+1 z
)

+OU

(
u−κ log−U X

)}
,

where κ, C0, α, and U are constants.

One can read pages 66 and 67 of [11] to see that Theorem 2.2.5 implies every sufficiently

large even integer can be written as a sum of a prime and a number having at most 7 prime divisors,

and there are infinitely many primes p such that p+ 2 have at most 7 prime divisors, i.e., Theorem

2.2.5 implies “1 + 7” for sufficiently large even integers and “1− 7” for every even integer.

Finally, Selberg’s sieve, i.e., Theorem 2.5.2, is used to prove “1 + 2” and “1− 2” in Chen’s

paper [5]. We will apply the same theorem to prove our main results, so Theorem 2.5.2 will be

introduced later in Section 2.5.

A good reference for Goldbach’s conjecture is the book by Wang [27], which is a collection

of papers on the weak Goldbach conjecture and the strong Goldbach conjecture. In particular, one

can read the third section of the book to see Rényi’s paper on “1 + c” [27, Pages 185-191], Wang’s

paper on “1 + 3” under the grand Riemann hypothesis [27, Pages 192-213], Pan’s paper on “1 + 5”

[27, Pages 214-226], Barban’s paper on “1 + 4” [27, Pages 227-237], Buchstab and Vinogradov’s

papers on “1 + 3” [27, Pages 238-248], and Chen’s paper on “1 + 2” [27, Pages 275-294].

2.3 Main Results

We say that a positive natural number is square-free if it is not divisible by the square of

any prime. Estermann proved that every sufficiently large positive integer can be written as a sum

of a prime and a square-free number in 1931 [10]. Dudek recently proved that every positive integer

9



greater than two can be written as a sum of a prime and a square-free number [9].

Chen proved in [4, 5] that every sufficiently large even integer can be represented as the sum

of two primes or the sum of a prime and the product of two primes in 1966. Ross simplified Chen’s

proof in 1975 [23], and he pointed out that every sufficiently large even integer can be represented

as the sum of a prime and a square-free number with at most two prime divisors.

In this thesis, we prove that every sufficiently large odd integer can be written as a sum of

a prime and 2 times the product of at most two distinct odd primes. Together with Chen’s theorem

and Ross’s work, we know that every sufficiently large integer can be written as a sum of a prime

and a square-free number with at most three prime divisors. This answers the question at the end

of the introduction of [9], for sufficiently large integers.

Goldbach’s strong conjecture states that every even integer greater than 2 can be written

as the sum of two primes. The analogous conjecture for odd numbers is Lemoine’s conjecture, also

known as the Levy’s conjecture, which states that every odd integer greater than 5 can be written as

a sum of a prime and twice a prime. Lemoine’s conjecture has been verified up to 109 by Corbit [6].

One can easily see that Lemoine’s conjecture implies Goldbach’s weak conjecture. If we count the

largest number of prime divisors of each term in the decomposition of even numbers, then Goldbach’s

strong conjecture can be denoted as “1 + 1”, and Chen’s theorem asserts “1 + 2”, for sufficiently

large even integers. For the decomposition of odd numbers, if we denote Lemoine’s conjecture as

“1 + 2”, then we prove in this chapter that “1 + 3” is true for sufficiently large odd integers. See the

table below that represents integers from 4 to 50 as the sum of a prime and a square-free number

with at most two prime divisors.

4 = 2 + 2 5 = 3 + 2× 1
6 = 3 + 3 7 = 5 + 2× 1 8 = 3 + 5 9 = 7 + 2× 1 10 = 3 + 7

11 = 5 + 2× 3 12 = 5 + 7 13 = 3 + 2× 5 14 = 3 + 11 15 = 13 + 2× 1
16 = 3 + 13 17 = 3 + 2× 7 18 = 5 + 13 19 = 5 + 2× 7 20 = 3 + 17

21 = 11 + 2× 5 22 = 3 + 19 23 = 13 + 2× 5 24 = 5 + 19 25 = 3 + 2× 11
26 = 3 + 23 27 = 5 + 2× 11 28 = 5 + 23 29 = 3 + 2× 13 30 = 7 + 23

31 = 5 + 2× 13 32 = 3 + 29 33 = 7 + 2× 13 34 = 3 + 31 35 = 13 + 2× 11
36 = 5 + 31 37 = 3 + 2× 17 38 = 7 + 31 39 = 5 + 2× 17 40 = 3 + 37

41 = 3 + 2× 19 42 = 5 + 37 43 = 5 + 2× 19 44 = 3 + 41 45 = 5 + 2× 19
46 = 3 + 43 47 = 37 + 2× 5 48 = 5 + 43 49 = 3 + 2× 23 50 = 3 + 47

Table 2.5: “1 + 2” for Integers from 4 to 50

Moreover, Chen proved in [5] that every even integer can be represented as the difference
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of a prime and a number with at most two prime divisors infinitely often. Similarly, we show that

every odd integer can be written as the difference of a prime and a square-free number with at most

three prime divisors infinitely often, one of which is 2. Therefore, every integer can be represented

as the difference of a prime and a square-free number with at most three prime divisors.

It was conjectured by Polignac in 1849 that, for every even number N , there are infinitely

many pairs of consecutive primes which differ by N . The analogous conjecture for odd integers

should be the following: for every odd integer M , there are infinitely many pairs of primes (p, q)

such that p− 2q = M . An easy application of [26, Exercise 3.3.2] shows that every odd integer can

be represented as a prime minus the sum of two primes infinitely often, and this proposition will

be an easy corollary if the analogous Polignac’s conjecture holds. For even integers, if we denote

Polignac’s conjecture by “1−1”, then Chen’s theorem asserts “1−2”. For odd integers, if we denote

the analogous Polignac’s conjecture by “1− 2”, then we prove “1− 3” in this chapter. See the table

below that represents integers from 1 to 50 as the difference of a prime and a square-free number

with at most two prime divisors.

1 = 7− 2× 3 2 = 5− 3 3 = 13− 2× 5 4 = 7− 3 5 = 11− 2× 3
6 = 11− 5 7 = 13− 2× 3 8 = 11− 3 9 = 19− 2× 5 10 = 13− 3

11 = 17− 2× 3 12 = 17− 5 13 = 19− 2× 3 14 = 17− 3 15 = 37− 2× 11
16 = 19− 3 17 = 23− 2× 3 18 = 23− 5 19 = 29− 2× 5 20 = 23− 3

21 = 31− 2× 5 22 = 29− 7 23 = 29− 2× 3 24 = 29− 5 25 = 31− 2× 3
26 = 29− 3 27 = 37− 2× 5 28 = 31− 3 29 = 43− 2× 7 30 = 37− 7

31 = 37− 2× 3 32 = 37− 5 33 = 43− 2× 5 34 = 37− 3 35 = 41− 2× 3
36 = 41− 5 37 = 43− 2× 3 38 = 41− 3 39 = 53− 2× 7 40 = 47− 7

41 = 47− 2× 3 42 = 47− 5 43 = 53− 2× 5 44 = 47− 3 45 = 59− 2× 7
46 = 53− 7 47 = 53− 2× 3 48 = 53− 5 49 = 59− 2× 5 50 = 53− 3

Table 2.6: “1− 2” for Integers from 1 to 50

Let M be a large odd integer, let N be a large integer and let h be any odd integer. Let

R(M) be the number of primes p ≤ M − 2 for which M − p is 2 times the product of at most two

distinct odd primes. Let rh(N) be the number of primes p ≤ N for which p − h is 2 times the

product of at most two distinct odd primes. For any odd integer n, we write

Sn =

∏
p|n

p− 1

p− 2

∏
p>2

p(p− 2)

(p− 1)2
.

The main results of this chapter are the following two theorems:

11



Theorem 2.3.1. For every sufficiently large odd integer M , we have

R(M) ≥ 0.32MSM

(logM)2
.

Theorem 2.3.2. For every sufficiently large integer N and an arbitrary odd integer h, we have

rh(N) ≥ 0.32NSh

(logN)2
.

We give a detailed proof of Theorem 2.3.1; Theorem 2.3.2 follows from the same method,

and the following corollaries follow immediately:

Corollary 2.3.3. Every sufficiently large integer can be written as a sum of a prime and a square-

free number with at most three prime divisors.

Corollary 2.3.4. Every integer can be written as the difference of a prime and a square-free number

with at most three prime divisors infinitely often.

It is easy to see that Theorem 2.3.1 improves the following result by Wang:

Theorem 2.3.5 ([27, Theorem 3, Page 192]). Under the truth of the following implication of the

grand Riemann hypothesis:

π(x; k, l) =
∑
p≤x

p≡l (mod k)

1 =
li(x)

φ(k)
+O(x1/2 log x),

where (l, k) = 1 and li(x) =
∫ x
2

dt
log t , we know every sufficiently large odd integer M can be represented

as M = p + 2P3, where p is a prime number and P3 is an almost prime of not more than 3 prime

prime divisors.

The main idea of the proof in the odd number case mimics the proof in [5]. For the

decomposition of odd numbers, we make adjustments to the set we sieve from the even number case.

To estimate the main terms, we still use the linear sieve from [11]. To bound the error terms, we

use Bombieri’s theorem [8, Chapter 24] and a theorem by Ding, Pan, and Wang [20, Theorem 2].

12



2.4 The Sets We Sieve

In this section, we consider the sets we sieve. Let

A = {(M − p)/2 : p is prime, p < M, p -M,M − p ≡ 2 (mod 4)}

and

B =

{
M − 2p1p2p3 : p1, p2, p3 are all prime, p1p2p3 ≤M/2, (p1p2p3,M) = 1,

(M/2)1/10 ≤ p1 ≤ (M/2)1/3 ≤ p2 ≤ (M/(2p1))1/2
}
.

In the set B, if (M/2)1/10 ≤ p3 ≤ (M/2)1/3 with p3 6= p1 or (M/2)1/3 ≤ p3 ≤ (M/2p1)1/2 with

p3 6= p2, then elements M−2p1p2p3 and M−2p3p2p1 or M−2p1p2p3 and M−2p1p3p2 are considered

distinct. To ease notation, we let

I(M) =
{
p : p is prime, (M/2)1/10 ≤ p ≤ (M/2)1/3, p -M

}
,

and for a prime p1 ∈ I(M), we let

I(M,p1) =
{
p : p is prime, (M/2)1/3 ≤ p ≤ (M/(2p1))1/2, p -M

}
.

With a straight forward argument, we have the following proposition, which gives a lower

bound for R(M) in terms of SM (A, q, x) and SM (B, q, x). An analogous result for the even numbers

case is given in [5, (34)] and [23, (2.5)] without a proof. We include a proof here for the reader’s

convenience:

Proposition 2.4.1. For some constants B,C > 0 and a sufficiently large odd integer M , we have

R(M) ≥SM (A, (M/2)1/10)− 1

2

∑
p∈I(M)

SM (A, p, (M/2)1/10) (2.1)

− 1

2
SM (B,M1/2(logM)−B)− CM9/10.

Proof. Inequality (2.1) holds because

13



1. The number of prime divisors of M is O(logM), which is much less than the main term of

R(M) in Theorem 2.3.1. Thus, we can only count primes less than M that do not divide M .

2. We only count those (M − p)/2 ∈ A that are odd, whose odd prime divisors are all greater

than (M/2)1/10, i.e., we sieve from the set SM (A, (M/2)1/10). With the lower bound on the

odd prime divisors of (M −p)/2, for a prime p < M such that (M −p)/2 ∈ SM (A, (M/2)1/10),

we know (M − p)/2 has at most 9 prime divisors with multiplicity.

3. From SM (A, (M/2)1/10), we sieve those (M−p)/2 that are not square-free and those (M−p)/2

that are square-free with 3 or more prime divisors. This is why we subtract the last three terms.

The term

1

2

∑
p∈I(M)

SM (A, p, (M/2)1/10)

contains all (M−p)/2 ∈ SM (A, p, (M/2)1/10) with two or more distinct prime divisors between

(M/2)1/10 and (M/2)1/3. For those (M − p)/2 ∈ SM (A, p, (M/2)1/10) with three or more

distinct prime divisors but with only one prime divisor between (M/2)1/10 and (M/2)1/3,

they are counted half of the time in the above summation. Since their other prime divisors

are all greater than (M/2)1/3, these (M − p)/2 have exactly three prime divisors, and the

corresponding primes p are counted half of the time in 1
2SM (B,M1/2(logM)−B).

4. We claim that the number of integers of the form (M − p)/2 that are not square-free in

SM (A, (M/2)1/10)− 1

2

∑
p∈I(M)

SM (A, p, (M/2)1/10)− 1

2
SM (B,M1/2(logM)−B)

is O(M9/10). This is true since if (M − p)/2 ∈ SM (A, (M/2)1/10) is not square-free and it is

not sieved from the second and the third term, by the argument above, it must has the form

(M − p)/2 = pn1
1 , 2 ≤ n1 ≤ 9, or (M − p)/2 = pn2

1 p2, 2 ≤ n2 ≤ 6, or (M − p)/2 = pn3
1 p22,

1 ≤ n3 ≤ 3, or (M−p)/2 = pn4
1 p2p3, 2 ≤ n4 ≤ 3, where (M/2)1/10 ≤ p1 ≤ (M/2)1/3 ≤ p2 < p3.

Note that such integers are relatively rare, in fact, the total number is O(M9/10) by the prime

number theorem.

Therefore, Inequality (2.1) holds.
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2.5 Selberg’s Sieve with Weight

In this section, we introduce Selberg’s linear sieve theorem. Let C be a finite set of integers.

Let A1, A2, L ≥ 1 be constants. Let γ(d) be a multiplicative function satisfying

0 ≤ γ(p) ≤
(

1− 1

A1

)

if p -M and

−L ≤
∑

v≤p<ω

γ(p)

p
log p− log

(ω
v

)
≤ A2

for any 2 ≤ v ≤ ω. Let µ be the Möbius function. For µ(n) 6= 0 and (n,M) = 1, we choose γ(n)

and X > 1 so that the numbers

η(X,n) =

∣∣∣∣∣∣∣∣
∑
a∈C

a≡0 (mod n)

1− γ(n)

n
X

∣∣∣∣∣∣∣∣
are in the nature of error terms, i.e., their sum should be small. For z ≥ 2, we introduce the function

ΓM (z) =
∏
p<z
p-M

(
1− γ(p)

p

)
.

We will make use of the following lemma and theorem in our proof:

Lemma 2.5.1 ([22, Lemma 2]). We have

ΓM (z) =
M

φ(M)

∏
p-M

1− γ(p)/p

1− 1/p

e−γ0

log z

{
1 +O

(
1

log z

)}
(2.2)

for logM ≤ z1/2, where φ is the Euler’s totient function and γ0 is the Euler’s constant.

Theorem 2.5.2 ([11, Theorem 8.3]). For z � ξλ with a positive constant λ and X ∼ |C|, we have

for some constant B1 that depends on A1, A2 and some constant B(λ) that depends on A1, A2, and

λ, the following inequalities hold,

SM (C, q, z) ≤ γ(q)

q
XΓM (z)

{
F

(
log(ξ2)

log z

)
+B(λ)

L

(log ξ)1/14

}
+

∑
n≤ξ2

n|PM (z)

3ν(n)η(X, qn), (2.3)
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SM (C, q, z) ≥ γ(q)

q
XΓM (z)

{
f

(
log(ξ2)

log z

)
−B1

L

(log ξ)1/14

}
−

∑
n≤ξ2

n|PM (z)

3ν(n)η(X, qn), (2.4)

where ν(n) is the number of distinct prime divisors of n. Here, the functions F (u) and f(u) can be

defined by

F (u) = 2eγ0/u, f(u) = 0, 0 < u ≤ 2,

(uF (u))′ = f(u− 1), (uf(u))′ = F (u− 1), u ≥ 2.

2.6 First Two Terms

Now we consider the first two terms on the right hand side of (2.1), namely,

SM (A, (M/2)1/10)− 1

2

∑
p∈I(M)

SM (A, p, (M/2)1/10).

We put C = A, γ(2) = 0, γ(p) = p
p−1 for primes p > 2 and z = (M/2)1/10. Then by (2.2),

for any sufficiently large odd integer M , we have

ΓM (z) =
M

φ(M)

∏
p-M

1− γ(p)/p

1− 1/p

e−γ0

log z

{
1 +O

(
1

log z

)}

=
M

φ(M)

1− 0/2

1− 1/2

∏
2<p-M

1− 1/(p− 1)

1− 1/p

e−γ0

log z

{
1 +O

(
1

log z

)}

=
20M

φ(M)

∏
2<p-M

p(p− 2)

(p− 1)2
e−γ0

log(M/2)

{
1 +O

(
1

logM

)}

=
20e−γ0SM

logM

{
1 +O

(
1

logM

)}
,

Note that the elements in A are in one-to-one correspondence with elements in the set

A′ = {p : p is prime, p < M, p -M,M − p ≡ 2 (mod 4)},

under the map p ↔ M−p
2 , if we set π(x; q, b) to be the number of primes less than x that are

congruent to b modulo q, since the number of prime divisors of M is O(logM), we know that

|A| = |A′| ∼ π(M ;1,1)
2 ∼ M

2 logM .
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For the term SM (A, (M/2)1/10), we put q = 1, X = π(M ;1,1)
2 ∼ |A|, 0 < ε < 0.000001,

ξ2 = (M/2)1/2(log(M/2))−B
′
, where B′ is a positive constant, and let M be sufficiently large such

that

XΓM (z)

{
f

(
log(ξ2)

log z

)
−B1

L

(log ξ)1/14

}
=XΓM (z)

{
f

(
5− 10B′ log(log(M/2))

log(M/2)

)
−B1

L

(log ξ)1/14

}
≥10Me−γ0SM (1− ε)

(logM)2
f(5).

Then by (2.4) of Theorem 2.5.2, we have

SM (A, (M/2)1/10) ≥ 10Me−γ0SM (1− ε)
(logM)2

f(5)− E1,

where

E1 =
∑

n≤(M/2)1/2(log(M/2))−B
′

n|PM (z)

3ν(n)η(X,n).

For the terms SM (A, p, (M/2)1/10), where p ∈ I(M), we put q = p, X and ε same as above,

ξ2 = (M/2)1/2(log(M/2))−B
′′
/p, where B′′ is a positive constant, λ = 2 in B(λ), and let M be

sufficiently large such that

XΓM (z)

{
F

(
log(ξ2)

log z

)
+B(λ)

L

(log ξ)1/14

}
=XΓM (z)

{
F

(
5− 10B′′ log(log(M/2))

log(M/2)
− 10 log p

log(M/2)

)
+B(λ)

L

(log ξ)1/14

}
≤10Me−γ0SM (1 + ε)

(logM)2
F

(
5− 10 log p

log(M/2)

)
.

Then by (2.3) of Theorem 2.5.2, we have

SM (A, p, (M/2)1/10) ≤10Me−γ0SM (1 + ε)

(logM)2
1

p− 1
F

(
5− 10 log p

log(M/2)

)
+

∑
n≤(M/2)1/2(log(M/2))−B

′′
/p

n|PM (z)

3ν(n)η(X, pn).
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Therefore, we have

∑
p∈I(M)

SM (A, p, (M/2)1/10)

≤10Me−γ0SM (1 + ε)

(logM)2

∑
p∈I(M)

1

p− 1
F

(
5− 10 log p

log(M/2)

)

+
∑

p∈I(M)

∑
n≤(M/2)1/2(log(M/2))−B

′′
/p

n|PM (z)

3ν(n)η(X, pn)

≤10Me−γ0SM (1 + ε)

(logM)2

∑
p∈I(M)

1

p− 1
F

(
5− 10 log p

log(M/2)

)
+ E2,

where

E2 =
∑

n≤(M/2)1/2(log(M/2))−B
′′

(n,M)=1

µ2(n)3ν(n)η(X,n).

The µ2(n) term is in E2 since np is square-free for p ∈ I(M) and n | PM (z).

Now, we look at the error terms E1 and E2. Recall that we take X = π(M ;1,1)
2 , γ(2) = 0,

and γ(p) = p
p−1 for primes p > 2. When n is even, since all integers of the form (M − p)/2 ∈ A are

odd and γ(n) = 0, we have

η(X,n) =

∣∣∣∣∣∣∣∣
∑
a∈A

a≡0 (mod n)

1− γ(n)

n
X

∣∣∣∣∣∣∣∣ = |0− 0| = 0.

Therefore, since PM (z) is square-free, we only need to count the 3ν(n)η(X,n) terms for odd square-

free integers n < (M/2)1/2(log(M/2))−B
′

in E1. Since µ(n) = 0 if n is not square-free, we also

only need to count the 3ν(n)η(X,n) terms for odd square-free integers n < (M/2)1/2(log(M/2))−B
′′

in E2. For such an integer n, since (M − p)/2 ∈ A and n | (M − p)/2 if and only if p < M and

p ≡M − 2n (mod 4n), we have (M − 2n, 4n) = 1 and

η(X,n) =

∣∣∣∣∣∣∣∣
∑
a∈A

a≡0 (mod n)

1− γ(n)

n
X

∣∣∣∣∣∣∣∣
=

∣∣∣∣π(M ; 4n,M − 2n)− X

φ(n)

∣∣∣∣
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=

∣∣∣∣π(M ; 4n,M − 2n)− π(M ; 1, 1)

2φ(n)

∣∣∣∣
=

∣∣∣∣π(M ; 4n,M − 2n)− π(M ; 1, 1)

φ(4n)

∣∣∣∣ .
Now, we apply the following theorem of Bombieri to estimate the error terms E1 and E2:

Theorem 2.6.1 ([8, Chapter 24], [22, equation (4.18)]). For any given positive A3 > 0, there exists

a positive constant B2 such that

∑
n≤Y 1/2(log Y )−B2

max
y≤Y

max
(l,n)=1

∣∣∣∣π(y;n, l)− π(y; 1, 1)

φ(n)

∣∣∣∣� Y (log Y )−A3 .

Let A3 = 15 and Y = M in Theorem 2.6.1. Then, there exists a positive constant B2 such

that ∑
n≤M1/2(logM)−B2

max
y≤M

max
(l,n)=1

∣∣∣∣π(y;n, l)− π(y; 1, 1)

φ(n)

∣∣∣∣�M(logM)−15.

Therefore, if we chooseB′ = B′′ > B2 such that 4n ≤M1/2(logM)−B2 for all n ≤ (M/2)1/2(M/2)−B
′
,

and let M be large enough, we have

∑
n≤(M/2)1/2(log(M/2))−B

′

n|PM (z)

η(X,n)

≤
∑

4n≤M1/2(logM)−B2

n|PM (z)

∣∣∣∣∣∣∣∣
∑
a∈A

a≡0 (mod n)

1− γ(n)

n
X

∣∣∣∣∣∣∣∣
=

∑
4n≤M1/2(logM)−B2

n|PM (z)

∣∣∣∣π(M, 4n,M − 2n)− π(M ; 1, 1)

φ(4n)

∣∣∣∣
�M(logM)−15. (2.5)

Similarly, we can obtain

∑
n≤(M/2)1/2(log(M/2))−B

′′

(n,M)=1

µ2(n)η(X,n)�M(logM)−15. (2.6)

Note that, trivially, for all n ≤ (M/2)1/2(log(M/2))−B
′

= (M/2)1/2(log(M/2))−B
′′
, we have η(X,n) ≤
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⌊
M
n + 1

⌋
< 2M/n, which implies

η(X,n)1/2 ≤
√

2M/
√
n,

i.e.,

√
nη(X,n)1/2 ≤

√
2M1/2. (2.7)

We apply the following lemma from [22]:

Lemma 2.6.2 ([22, Lemma 3]). For any real number x ≥ 1 and for any natural number h we have

∑
n≤x

µ2(n)

n
hν(n) ≤ (log x+ 1)h.

Taking h = 9 and x = (M/2)1/2 in Lemma 2.6.2, we obtain

∑
n≤(M/2)1/2

µ2(n)

n
9ν(n) � (log((M/2)1/2 + 1))9 � (logM)9. (2.8)

Now, by Inequalities (2.5), (2.7), and (2.8), and the Cauchy-Schwarz inequality, we have

E1 =
∑

n≤(M/2)1/2(log(M/2))−B
′

n|PM (z)

3ν(n)η(X,n)

=
∑

n≤(M/2)1/2(log(M/2))−B
′

n|PM (z)

3ν(n)√
n
×
√
nη1/2(X,n)× η1/2(X,n)

≤
√

2M1/2
∑

n≤(M/2)1/2(log(M/2))−B
′

n|PM (z)

3ν(n)√
n
× η1/2(X,n)

≤
√

2M1/2

√√√√√√
∑

n≤(M/2)1/2(log(M/2))−B
′

n|PM (z)

(
3ν(n)√
n

)2

×
∑

n≤(M/2)1/2(log(M/2))−B
′

n|PM (z)

η(X,n)

�M1/2
√

(logM)9 ×M(logM)−15

�M(logM)−3.
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Similarly, by Inequalities (2.6), (2.7), and (2.8), and the Cauchy-Schwarz inequality, we have

E2 �M(logM)−3.

Therefore, we can choose large enough M so that

SM (A, (M/2)1/10) ≥ 10Me−γ0SM (1− 2ε)

(logM)2
f(5)

and

∑
p∈I(M)

SM (A, p, (M/2)1/10) ≤ 10Me−γ0SM (1 + 2ε)

(logM)2

∑
p∈I(M)

1

p− 1
F

(
5− 10 log p

log(M/2)

)
.

Next, we estimate the main terms. By the definition of f(u) and F (u), we know [5, Page

173]

f(u) =

∫ u
2
F (t− 1)dt

u
=

2eγ0 log(u− 1)

u
, 2 ≤ u ≤ 4,

5f(5) = 2eγ0
(

log 4 +

∫ 4

3

du

u

∫ u−1

2

log(t− 1)

t
dt

)
≥ 2eγ0(log 4 + 0.0148),

F (u) =
2eγ0
u
, 0 < u ≤ 3,

and

F (u) =
2eγ0 +

∫ u
3
f(t− 1)dt

u
=

2eγ0
(

1 +
∫ u−1
2

log(t−1)
t dt

)
u

, 3 ≤ u ≤ 4.

Therefore, for any sufficiently large odd integer M , we have

SM (A, (M/2)1/10) ≥ 4MSM (1− 2ε)

(logM)2
(log 4 + 0.0148) ≥ 5.6043MSM (1− 2ε)

(logM)2
.

Moreover, we split the interval
[
(M/2)1/10, (M/2)1/3

]
into two subintervals I1 and I2 due to the

behavior of F (u), where

I1 =
[
(M/2)1/10, (M/2)1/5

]
and

I2 =
[
(M/2)1/5, (M/2)1/3

]
.
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Thus,

∑
p∈I(M)

SM (A, p, (M/2)1/10)

≤10Me−γ0SM (1 + 2ε)

(logM)2

∑
p∈I(M)

1

p− 1
F

(
5− 10 log p

log(M/2)

)

≤10Me−γ0SM (1 + 2ε)

(logM)2

∑
p∈I1

1

p− 1
F

(
5− 10 log p

log(M/2)

)
+
∑
p∈I2

1

p− 1
F

(
5− 10 log p

log(M/2)

) .

For a prime p ∈ I1, we have 3 ≤ 5− 10 log p
log(M/2) ≤ 4. Therefore,

∑
p∈I1

1

p− 1
F

(
5− 10 log p

log(M/2)

)

=
∑
p∈I1

2eγ0

(p− 1)
(

5− 10 log p
log(M/2)

) ×(1 +

∫ 4− 10 log p
log(M/2)

2

log(t− 1)

t
dt

)

≤e
γ0 log(M/2)(1 + ε)

5

∫ (M/2)1/5

(M/2)1/10

ds

(s− 1) log s(1/2× log(M/2)− log s)

×

(
1 +

∫ 4− 10 log s
log(M/2)

2

log(t− 1)

t
dt

)
.

Taking α = log s
log(M/2) , we know s = (M/2)α, log s = log(M/2) × α, and ds = log(M/2) × s dα =

log(M/2)× (M/2)α dα. Therefore, for sufficiently large M , we have

eγ0 log(M/2)(1 + ε)

5

∫ (M/2)1/5

(M/2)1/10

ds

(s− 1) log s(1/2× log(M/2)− log s)

×

(
1 +

∫ 4− 10 log s
log(M/2)

2

log(t− 1)

t
dt

)

=
eγ0(1 + ε)

5

∫ 1/5

1/10

(M/2)α

(M/2)α − 1
× dα

α(1/2− α)
×
(

1 +

∫ 4−10α

2

log(t− 1)

t
dt

)
≤e

γ0(1 + 2ε)

5

(∫ 1/5

1/10

dα

α(1/2− α)
+

∫ 1/5

1/10

dα

α(1/2− α)
×
∫ 4−10α

2

log(t− 1)

t
dt

)
.
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For a prime p ∈ I2, we have 5/3 ≤ 5− 10 log p
log(M/2) ≤ 3. Therefore,

∑
p∈I2

1

p− 1
F

(
5− 10 log p

log(M/2)

)
=
∑
p∈I2

2eγ0

(p− 1)
(

5− 10 log p
log(M/2)

)
≤e

γ0 log(M/2)(1 + ε)

5

∫ (M/2)1/3

(M/2)1/5

ds

(s− 1) log s(1/2× log(M/2)− log s)

=
eγ0(1 + ε)

5

∫ 1/5

1/10

(M/2)α

(M/2)α − 1
× dα

α(1/2− α)

≤e
γ0(1 + 2ε)

5

∫ 1/3

1/5

dα

α(1/2− α)
.

We combine them together and obtain

∑
p∈I(M)

SM (A, p, (M/2)1/10)

≤10Me−γ0SM (1 + 2ε)

(logM)2

∑
p∈I(M)

1

p− 1
F

(
5− 10 log p

log(M/2)

)

≤10Me−γ0SM (1 + 2ε)

(logM)2

∑
p∈I1

1

p− 1
F

(
5− 10 log p

log(M/2)

)
+
∑
p∈I2

1

p− 1
F

(
5− 10 log p

log(M/2)

)
≤2MSM (1 + 2ε)2

(logM)2

(∫ 1/3

1/10

dα

α(1/2− α)
+

∫ 1/5

1/10

dα

α(1/2− α)
×
∫ 4−10α

2

log(t− 1)

t
dt

)

≤2MSM (1 + 5ε)

(logM)2

(∫ 1/3

1/10

dα

α(1/2− α)
+

∫ 1/5

1/10

dα

α(1/2− α)
×
∫ 4−10α

2

log(t− 1)

t
dt

)

≤2MSM (1 + 5ε)

(logM)2
(4.1589 + 0.1191)

≤8.556MSM (1 + 5ε)

(logM)2
.

Since ε is chosen to be small enough, we have

SM (A, (M/2)1/10)− 1

2

∑
p∈I(M)

SM (A, p, (M/2)1/10) ≥ (1.3263− 33ε)MSM

(logM)2
≥ 1.326MSM

(logM)2
. (2.9)
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2.7 The Third Term

Now, we consider the third term on the right hand side of (2.1), namely,

SM (B,M1/2(logM)−B).

We substitute C = B, γ(2) = 0, γ(p) = p
p−1 for primes p > 2, and z = (M/2)1/2 in Lemma 2.5.1.

For any sufficiently large odd integer M we have

ΓM (z) =
4e−γ0SM

logM

{
1 +O

(
1

logM

)}
.

Let X = |B′|, where

B′ = {(p1, p2, p3) : p1, p2, p3 are all prime, p1p2p3 ≤M/2, p1 ∈ I(M), p2 ∈ I(M,p1)} .

It is easy to see |B| ∼ |B′| since the only difference of the restrictions on p3 in B and B′ is whether p3

could be a prime divisor of M or not, and the number of prime divisors of M is O(logM). We put

q = 1, ξ2 = M1/2(logM)−B where B is a positive constant, and λ = 1 in B(λ) in Inequality (2.3)

of Theorem 2.5.2. Then, for any sufficiently large odd integer M , we have

SM (B,M1/2(logM)−B) ≤8SMX

logM

{
1 +B(λ)

L

(log(M1/2(logM)−B))1/14

}
+ E3

≤8SMX(1 + ε)

logM
+ E3,

where

E3 =
∑

n≤M1/2(logM)−B

n|PM (z)

3ν(n)η(X,n).

Next, we estimate X = |B′|. By the definitions of B and B′, we can apply the prime number

theorem and estimate X analogously to [23, Inequalities (3.9) and (3.10)],

X ≤(1 + ε)

∫ (M/2)1/3

(M/2)1/10

du

log u

∫ (M/2u)1/2

(M/2)1/3

M/(2uv)

log(M/(2uv))
× dv

log v

=(1 + ε)(M/2)

∫ (M/2)1/3

(M/2)1/10

du

u log u

∫ (M/2u)1/2

(M/2)1/3

dv

v(log v) log(M/(2uv))
.
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To deal with the double integral, we substitute t = log v and w = log u
log(M/2) to obtain the

integral with variable w:

∫ (M/2)1/3

(M/2)1/10

du

u log u

∫ (M/2u)1/2

(M/2)1/3

dv

v(log v) log(M/(2uv))

=

∫ (M/2)1/3

(M/2)1/10

du

u log u

∫ log(M/2u)
2

log(M/2)
3

dt

t(log(M/2u)− t)

=

∫ (M/2)1/3

(M/2)1/10

du

u log u

∫ log(M/2u)
2

log(M/2)
3

1

log(M/2u)

(
1

log(M/2u)− t
+

1

t

)
dt

=

∫ (M/2)1/3

(M/2)1/10

du

u log u log(M/2u)
×

(− log(log(M/2u)− t) + log t)

∣∣∣∣∣
log(M/2u)

2

log(M/2)
3


=

∫ (M/2)1/3

(M/2)1/10

du

u log u log(M/2u)
×
(

log

(
log(M/2u)− log(M/2)

3

)
− log

(
log(M/2)

3

))

=

∫ (M/2)1/3

(M/2)1/10

du

u log u log(M/2u)
× log

(
3 log(M/2u)

log(M/2)
− 1

)
=

∫ 1/3

1/10

log(M/2)dw

log(M/2)w × log(M/2)(1− w)
× log (3(1− w)− 1)

=
1

log(M/2)

∫ 1/3

1/10

log(2− 3w)

w(1− w)
dw.

Therefore, we have

X ≤(1 + ε)(M/2)

∫ (M/2)1/3

(M/2)1/10

du

u log u

∫ (M/2u)1/2

(M/2)1/3

dv

v(log v) log(M/(2uv))

=(1 + ε)
M/2

log(M/2)

∫ 1/3

1/10

log(2− 3w)

w(1− w)
dw

≤(1 + 2ε)
M/2

logM
× 0.5024.

Therefore, for any sufficiently large odd integer M we have

SM (B,M1/2(logM)−B) <
2.0096MSM (1 + ε)(1 + 2ε)

(logM)2
+ E3.

Finally, we look at the error term E3. If n is even, we note that all numbers of the form
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M − 2p1p2p3 ∈ B are odd and γ(n) = 0, so we have

η(X,n) =

∣∣∣∣∣∣∣∣
∑
a∈B

a≡0 (mod n)

1− γ(d)

d
X

∣∣∣∣∣∣∣∣ = |0− 0| = 0.

Since PM (z) is square-free, we only need to count the 3ν(n)η(X,n) terms for odd square-free integers

n ≤M1/2(logM)−B in E3. For such an integer n, by the definition of γ(n), we have

η(X,n) =

∣∣∣∣∣∣∣∣
∑
a∈B

a≡0 (mod n)

1− γ(n)

n
X

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
a∈B

a≡0 (mod n)

1− X

φ(n)

∣∣∣∣∣∣∣∣ .
Now, we apply the following theorem by Ding, Pan, and Wang to bound the error term E3:

Theorem 2.7.1 ([27, Theorem 3, Page 295], [20, Theorem 2]). Let

π(Y ; a, n, l) =
∑
ap≤Y

ap≡l (mod n)

1

and let f(a) be a real function with f(a)� 1. For any given A4 > 0, we have

∑
n≤Y 1/2(log Y )−B3

max
y≤Y

max
(l,n)=1

∣∣∣∣∣∣∣∣
∑

a≤Y 1−δ

(a,n)=1

f(a)

(
π(y; a, n, l)− π(y; a, 1, 1)

φ(n)

)∣∣∣∣∣∣∣∣� Y (log Y )−A4 ,

where B3 = 3A4/2 + 17 and 0 < δ < 1.

Let A4 = 15, Y = M , and let δ < 1/6 so that 2p1p2 ≤ M1−δ for all p1 ∈ I(M) and

p2 ∈ I(M,p1). Let

f(a) =

 1 if a = 2p1p2, p1 ∈ I(M), p2 ∈ I(M,p1),

0 otherwise.

Then all conditions of Theorem 2.7.1 are satisfied.

Note that, when n | PM (z), p1p2 | PM (z), and 2p1p2p ≡ M (mod n), we have (n,M) = 1
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and (2p1p2, n) = 1. By the definition of X, B′, and η(X,n), we see

η(X,n) =

∣∣∣∣∣∣∣∣
∑
a∈B

a≡0 (mod n)

1− X

φ(n)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

p1∈I(M)
p2∈I(M,p1)

(
π(M ; 2p1p2, n,M)− π(M ; 2p1p2, 1, 1)

φ(n)

)∣∣∣∣∣∣∣∣ .

Therefore,

η(X,n) ≤max
y≤M

∣∣∣∣∑ p1∈I(M)
p2∈I(M,p1)

(
π(y; 2p1p2, n,M)− π(y; 2p1p2, 1, 1)

φ(n)

)∣∣∣∣
≤max
y≤M

max
(l,n)=1

∣∣∣∣∣∣∣∣∣∣∣
∑

p1∈I(M)
p2∈I(M,p1)
(2p1p2,n)=1

(
π(y; 2p1p2, n, l)−

π(y; 2p1p2, 1, 1)

φ(n)

)
∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, we can take B > B3 = 45/2 + 7 so that

∑
n≤M1/2(logM)−B

n|PM (z)

η(X,n) =
∑

n≤M1/2(logM)−B

n|PM (z), n is odd

η(X,n)

≤
∑

n≤M1/2(logM)−B

n|PM (z),n is odd

max
y≤M

max
(n,l)=1

∣∣∣∣∣∣∣∣∣∣∣
∑

p1∈I(M)
p2∈I(M,p1)
(2p1p2,n)=1

(
π(y; 2p1p2, n, l)−

π(y; 2p1p2, 1, 1)

φ(n)

)
∣∣∣∣∣∣∣∣∣∣∣

≤
∑

n≤M1/2(logM)−B3

max
y≤M

max
(n,l)=1

∣∣∣∣∣∣∣∣
∑

a≤M1−δ

(a,n)=1

f(a)

(
π(y; a, n, l)− π(y; a, 1, 1)

φ(n)

)∣∣∣∣∣∣∣∣
�M(logM)−15. (2.10)

In this case, we also, trivially, have η(X,n) ≤
⌊
M
n + 1

⌋
< 2M/n for all n ≤M1/2(logM)−B . Then,

η(X,n)1/2 ≤
√

2M/
√
n,
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i.e.,

√
nη(X,n)1/2 ≤

√
2M1/2. (2.11)

Taking h = 9 and x = M1/2 in Lemma 2.6.2, we obtain

∑
n≤M1/2

µ2(n)

n
9ν(n) � (log(M1/2) + 1)9 � (logM)9. (2.12)

By Inequalities (2.10), (2.11), and (2.12), and the Cauchy-Schwarz inequality, we have

E3 �M(logM)−3.

Therefore, for any sufficiently large odd integer M we have

SM (B,M1/2(logM)−B) ≤ 2.0096MSM (1 + ε)(1 + 2ε)

(logM)2
+ E3 ≤

2.01MSM

(logM)2
. (2.13)

2.8 Main Results

Now we perform some easy calculation and prove our main theorems. By Inequalities (2.1),

(2.9), and (2.13), for any sufficiently large odd integer M , we have

R(M) ≥SM (A, (M/2)1/10)− 1

2

∑
p∈I(M)

SM (A, p, (M/2)1/10)

− 1

2
SM (B,M1/2(logM)−B)− CM9/10

≥1.326MSM

(logM)2
− 1

2

2.01MSM

(logM)2
− CM9/10

≥0.32MSM

(logM)2
.

This completes the proof of Theorem 2.3.1.

By the same method used in estimating R(M), instead of considering

A = {(M − p)/2 : p is prime, p < M, p -M,M − p ≡ 2 (mod 4)}
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and

B =

{
M − 2p1p2p3 : p1, p2, p3 are all prime, p1p2p3 ≤M/2, (p1p2p3,M) = 1,

(M/2)1/10 ≤ p1 ≤ (M/2)1/3 ≤ p2 ≤ (M/(2p1))1/2
}
,

for a sufficiently large integer N , we consider

Ah = {(p− h)/2 : p is prime, p < N, p - h, p− h ≡ 2 (mod 4)}

and

Bh =

{
h+ 2p1p2p3 : p1, p2, p3 are all prime, p1p2p3 ≤ (N − h)/2, (p1p2p3, h) = 1,

(N/2)1/10 ≤ p1 ≤ (N/2)1/3 ≤ p2 ≤ (N/(2p1))1/2
}
.

We define

Ih(N) =
{
p : p is prime, (N/2)1/10 ≤ p ≤ (N/2)1/3, p - h

}
.

The same argument shows that

rh(N) ≥Sh(Ah, (N/2)1/10)− 1

2

∑
p∈Ih(N)

Sh(Ah, p, (N/2)1/10)

− 1

2
Sh(Bh, N1/2(logN)−B)− CN9/10

≥1.326NSh

(logN)2
− 1

2

2.01NSh

(logN)2
− CN9/10

≥0.32NSh

(logN)2
,

and Theorem 2.3.2 follows.

Corollaries 2.3.3 and 2.3.4 are obvious.

2.9 Future Projects

In the past 50 years, there have been a lot of improvements on Chen’s theorem. For example,

in 2008 Cai improved the constant 0.67 in Chen’s theorem in [2]. In 2015 Chen’s theorem with a
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small prime in the representation was proved by Cai in [3]. Also in 2015 the explicit Chen’s theorem

was proved by Yamada in [28] that every even integer greater than ee
36

is a sum of a prime and an

almost prime with at most two prime divisors.

Since Chen’s theorem deals with large even integers and Theorem 2.3.1 deals with large odd

integers, we can try to make the constant 0.32 in Theorem 2.3.1 larger, try to prove the representation

exists with a small prime, and try to make Theorem 2.3.1 explicit.

An upper bound on the exceptional set of Goldbach numbers is given in [16]. Thus, we can

look at the exceptional set of “Lemoine numbers”, i.e., the odd integers that are not the sum of a

prime and twice a prime.

Furthermore, we can try to combine Chen’s theorem and Theorem 2.3.1 to obtain a more

general result. Instead of looking at numbers represented by p± q or p± qr and p±2q or p±2qr, we

can look at numbers represented by ap± bq or ap± bqr for integers a and b, and prime numbers p,

q, and r. Moreover, we can try to obtain similar types of results as presented above on such linear

combinations.

In the twin primes conjectures setting, by Theorem 2.3.2 we know p − 2q or p − 2qr is

bounded infinitely often by 1. Inspired by the recent breakthrough on the bounded gaps between

primes, we can try to bound p− 2q infinitely often, where p, q, and r are prime numbers.

Primes of the form 2p + 1 are called safe primes. We can try to prove there are infinitely

many safe primes. Primes that are 6 apart are called sexy primes, which may give us a pair of “safe

sexy primes” that are 12 apart. We can try to prove there are infinitely many pairs of safe sexy

primes.
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Chapter 3

On Some Conjectures by Sun

In [24], Sun stated the following conjectures: we have

lim
x→∞

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

ap

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

bp
= 1 +

√
2,

lim
x→∞

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

a2p

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

b2p
= 4.5,

and

lim
x→∞

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<bp<ap

ap

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<bp<ap

bp
= 1 +

√
3.

In this chapter, we prove some results that verify his first and third conjecture, and prove

a modified version of the second conjecture.

The structure of this chapter is as follows. In Section 3.1, we discuss primes in arithmetic
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progressions that are represented by quadratic forms. In Section 3.2, we state our main results. In

Section 3.3, we prove the main theorems. We discuss future work in Section 3.4.

3.1 Representations of Primes in Arithmetic Progressions by

Quadratic Forms

3.1.1 Fermat’s theorem on sums of two squares

Fermat’s theorem on sums of two squares states that an odd prime p can be written as a

sum of two integer squares if and only if p ≡ 1 (mod 4). Fermat described his observation in a letter

to Mersenne dated December 25, 1640, so this theorem is also known as the Fermat’s Christmas

Theorem. This is the first theorem on representing primes in arithmetic progressions by quadratic

forms. We will discuss other theorems of the same flavor later in this section.

There are many interesting proofs of Fermat’s theorem on sums of two squares. One direction

is easy, i.e., if an odd prime is a sum of two squares, then it is congruent to 1 modulo 4. For the

other direction, Euler’s proof in 1749 used infinite descent. We can briefly describe his proof in the

following 5 steps:

1. Show that the product of two numbers, each of which is a sum of two squares, is itself a sum

of two squares, i.e.,

(a2 + b2)(p2 + q2) = (ap+ bq)2 + (aq − bp)2.

2. Show that if a number which is a sum of two squares is divisible by a prime which is a sum of

two squares, then the quotient is a sum of two squares, i.e.,

a2 + b2

p2 + q2
=

(
ap+ bq

p2 + q2

)2

+

(
aq − bp
p2 + q2

)2

.

3. Suppose a2 + b2 is divisible by x which is not a sum of two squares, then show their quotient

a2+b2

x = p1p2 · · · pn has a prime divisor pi that is not a sum of two squares. This follows from

the previous two steps.

4. Show that if a and b are relatively prime, then every factor of a2 + b2 is a sum of two squares.
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Suppose x | a2 + b2 is not a sum of two squares, then we can write

a = mx± c, b = nx± d, |c| ≤ x/2, |d| ≤ x/2, (c, d, x) = 1,

where c and d are at most half of x in absolute value. Then we have

a2 + b2 = m2x2 ± 2mxc+ c2 + n2x2 ± 2nxd+ d2 = Ax+ (c2 + d2).

Therefore, x divides c2 + d2, say c2 + d2 = xy. Let g be the greatest common divisor of c and

d, c = ge, and d = gf , for some e, f ∈ Z. Then we can easily show g and x are relatively

prime, and thus g2 | y. Let y = g2z, then

e2 + f2 = zx ≤ c2 + d2 ≤ x2/2,

where (e, f) = 1 and z ≤ x/2. If x is not the sum of two squares, by Step 3, there exists a

factor of z that is not a sum of two squares. Since ω | z, we have ω < x, both not the sum of

of two squares. Since an infinite descent is impossible, we complete the proof of Step 4.

5. Complete the proof. For 1 ≤ a ≤ 4n− 1, by Fermat’s Little Theorem we have

p | (a+ 1)4n − a4n =
(
(a+ 1)2n + a2n

) (
(a+ 1)2n − a2n

)
.

Since a + 1 and a are relatively prime, by Step 4, we know p itself is a sum of two squares.

If p |
(
(a+ 1)2n − a2n

)
for all 1 ≤ a ≤ 4n − 1, then it would divide all 4n − 2 differences of

successive terms, all 4n− 3 differences of the differences, and so force, which implies p | (2n)!,

which is a contradiction. This completes the proof.

Zagier gave a beautiful one-sentence proof of Fermat’s theorem on sums of two squares. If

p = 4n+1 is prime, then the set S = {(x, y, z) ∈ N3 : x2 +4yz = p} is finite and has two involutions:

an obvious one (x, y, z) → (x, z, y), whose fixed points, (x, y, y), correspond to representations of p
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as a sum of two squares, and a more complicated one,

(x, y, z) 7→


(x+ 2z, z, y − x− z), if x < y − z,

(2y − x, y, x− y + z), if y − z < x < 2y,

(x− 2y, x− y + z, y), if x > 2y,

which has exactly one fixed point, (1, 1, n).

If we look at the ring of Gaussian integers, Fermat’s theorem on sums of two squares can

be stated as follows: a rational prime p > 2 splits in Q(i) if and only if p ≡ 1 (mod 4). Dedekind

gave a proof of the Fermat’s theorem on sums of two squares using Gaussian integers, and this will

be relevant to our main results.

Here is the main idea of his proof. Suppose p | m2 + 1 for the prime p = 4n + 1 and some

integers m and n. Then p | (m + i)(m − i) in Z[i], the ring of integers of Q(i). Since p - m + i

and p - m − i, and it has norm N(p) = p2 in Z[i], which is a unique factorization domain, we

know p = (x + yi)(x − yi) for some integers x and y. Therefore, p = x2 + y2 is a sum of two

squares. Such an integer m exists since F×p is a cyclic group consisting of the roots of the polynomial

z4n − 1 =
(
z2n − 1

) (
z2n + 1

)
, we can pick a root z of the polynomial z2n + 1 in F×p . Then m = zn

satisfies p | m2 + 1.

Now we know that any odd prime p ≡ 1 (mod 4) can be written as p = a2p + b2p for integers

ap and bp. Note that if we restrict 0 < bp < ap, such representations will be unique. Suppose for

a prime p ≡ 1 (mod 4) we have p = a2p + b2p and p = a′2p + b′2p with positive integers ap > bp and

a′p > b′p, then p = ap + bpi and p′ = a′p + b′pi are both Gaussian primes with 0 < arg(π) < π
4 and

0 < arg(π′) < π
4 . Since the only Gaussian primes with norm p are p, pi, −p, and −pi. With the

restriction on arg(p) and arg(p′), we must have p′ = p.

3.1.2 Primes congruent to 1 modulo 3

There is a classical result in number theory, which is similar to Fermat’s theorem on sums

of two squares: a prime p > 3 can be written in the form a2p + apbp + b2p for integers ap and bp if and

only if p ≡ 1 (mod 3). Moreover, if we restrict 0 < bp < ap, such representations are unique.

One direction of the proof is easy. Suppose p = x2 +xy+ y2 > 3 is a prime. Suppose 3 | xy,

without loss of generality let 3 | x, then 3 - y, otherwise 3 | p, and we would have a contradiction.
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Therefore, we know y2 ≡ 1 (mod 3), and thus p = x2 + xy + y2 ≡ 1 (mod 3). Suppose 3 - xy, then

p ≡ 1 + xy + 1 ≡ 2 + xy (mod 3). Since 3 - p, we know xy ≡ 0 (mod 3) or xy ≡ 2 (mod 3), and by

assumption, we have xy ≡ 2 (mod 3). Therefore, we have p ≡ 2 + xy ≡ 1 (mod 3).

For the other direction, let us first show the existence of such a representation. There are

elementary number theory proofs as in the previous case. Here I give a proof using algebraic number

theory.

Let p ≡ 1 (mod 3) be a prime. Consider the number field Q(
√
−3) with discriminant 3. We

know its ring of integers is Z
[
−1+

√
−3

2

]
, where −1+

√
−3

2 is a primitive third root of unity. When

p ≡ 1 (mod 3), we know p does not divide the discriminant, thus p does not ramify in Q(
√
−3).

Note that f(x) = x2 + x + 1 is the minimum polynomial of −1+
√
−3

2 , so we only need to consider

the factorization of the polynomial f(x) modulo p. To show p splits in Q(
√
−3), it suffices to show

x2 + x + 1 = 0 has a solution in Fp. Note that x = 1 is not a solution, this is equivalent to x3 = 1

has a solution in Fp other than x = 1. Note that when p ≡ 1 (mod 3), the size of the group F×p is

divisible by 3, by Sylow’s theorem we know the existence of a nontrivial solution. This shows all

primes p ≡ 1 (mod 3) split in Q(
√
−3).

Since p ≡ 1 (mod 3) splits in Q(
√
−3), we know there exists ap + bp

−1+
√
−3

2 ∈ Z
[
−1+

√
−3

2

]
with ap, bp ∈ Z, such that its normN

(
ap + bp

−1+
√
−3

2

)
= (ap−bp/2)2+3b2p/4 = a2p−apbp+b2p is equal

to p. If apbp < 0, without loss of generality, let ap > 0 and bp < 0, then a2p+ap(−bp)+(−bp)2 = p for

positive integers ap and −bp. If apbp > 0, without loss of generality let ap > 0 and bp > 0, because

otherwise we can consider −ap and −bp instead. If ap > bp, we have (ap − bp)2 + (ap − bp)ap + b2p =

a2p−apbp + b2p = p, where ap− bp > 0 and bp > 0. If bp > ap, we have (bp−ap)2 + (bp−ap)ap +a2p =

a2p− apbp + b2p = p, where bp− ap > 0 and ap > 0. Changing the order if necessary, we know a prime

p ≡ 1 (mod 3) can be written in the form a2p + apbp + b2p for positive integers ap > bp.

Next, we prove the uniqueness of such representations. Given a prime p ≡ 1 (mod 3),

suppose p = a2p + apbp + b2p and p = a′2p + a′pb
′
p + b′2p for positive integers ap > bp and a′p > b′p. We

know p = ap + bp
1+
√
−3

2 and p′ = a′p + b′p
1+
√
−3

2 are primes in Z
[
−1+

√
−3

2

]
with norm p. Since

<(p) > 0, =(p) > 0, and cot(arg p) =
ap+

1
2 bp√

3
2 bp

>
√

3, we know 0 < arg(p) < π
6 . Similarly we have

0 < arg(p′) < π
6 . Since the only primes with norm p are of the form p, pi, −p, −pi, p−1+

√
−3

2 ,

p
(
−1+

√
−3

2

)2
, −p−1+

√
−3

2 , −p
(
−1+

√
−3

2

)2
, p, pi, −p, −pi, p−1+

√
−3

2 , p
(
−1+

√
−3

2

)2
, −p−1+

√
−3

2 ,

and −p
(
−1+

√
−3

2

)2
, we know p′ has to equal one of them. With the restrictions 0 < arg(p) < π

6

and 0 < arg(p′) < π
6 , we must have p′ = p. This completes the proof of uniqueness.
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3.1.3 Primes in arithmetic progressions represented by other symmetric

quadratic forms

First, we recall the following definitions on quadratic forms in two variables from [7, Pages

24-30]:

Definition 3.1.1. A quadratic form f(x) = ax2 + bxy+ cy2 is primitive if its coefficients a, b, and

c are relatively prime.

Definition 3.1.2. An integer m is represented by a quadratic form f(x, y) if the equation m =

f(x, y) has an integer solution in x and y. If the x and y in the solution are relatively prime, we

say that m is properly represented by f(x, y).

Definition 3.1.3. We say that two quadratic forms f(x, y) and g(x, y) are equivalent if there are

integers α, β, γ, and δ such that

f(x, y) = g(αx+ βy, γx+ δy)

and αδ− βγ = ±1. We say that an equivalence is a proper equivalence if αδ− βγ = 1, and it is an

improper equivalence if αδ − βγ = −1.

Definition 3.1.4. We define the discriminant of f(x, y) = ax2 + bxy + cy2 to be D = b2 − 4ac. If

D > 0, then f(x, y) represents both positive and negative integers, and we call the form indefinite;

if D < 0 and a > 0, then f(x, y) represents only positive integers, and we call the form positive

definite; if D < 0 and a < 0, then f(x, y) represents only negative integers, and we call the form

negative definite.

Definition 3.1.5. A primitive positive definite quadratic form ax2 + bxy+ cy2 is said to be reduced

if |b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c.

Note that both x2 + y2 and x2 + xy + y2 are reduced positive definite quadratic forms,

and Sun’s conjectures are based on primes in arithmetic progressions represented by those two

positive definite symmetric quadratic forms. We want to explore primes in arithmetic progressions

represented by other positive definite symmetric quadratic forms ax2 + bxy + ay2 with coefficients

a, b ∈ Z and discriminant b2 − 4a2. We will study which primes are represented by such forms

and try to solve the same type of questions as Sun’s conjectures. We introduce the following
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theorems to relate such positive definite symmetric quadratics forms to reduced forms x2 + ny2

and x2 + xy + 1−D
4 y2:

Theorem 3.1.6 ([7, Theorem 2.8]). Every primitive positive definite quadratic form is properly

equivalent to a unique reduced form.

Theorem 3.1.7 ([7, Theorem 2.13]). Let D < 0 be fixed. Then, the number h(D) of classes of

primitive positive definite forms of discriminant D is finite, and furthermore, h(D) is equal to the

number of reduced forms of discriminant D.

Definition 3.1.8. Let f(x, y) = ax2+bxy+cy2 and g(x, y) = a′x2+b′xy+c′y2 be primitive positive

definite quadratic forms of discriminant D < 0 which satisfy gcd(a, a′, (b + b′)/2) = 1. Then, the

Dirichlet composition of f(x, y) and g(x, y) is the form

F (x, y) = aa′x2 + 2Bxy +
B2 −D

4aa′
y2,

where B is the nonnegative integer less than 2aa′ satisfying B ≡ b (mod 2a), B ≡ b′ (mod 2a′),

and B2 ≡ D (mod 4aa′).

Remark 3.1.9. The existence and uniqueness of such an integer B is proved in Lemma 3.2 of [7].

Theorem 3.1.10 ([7, Theorem 3.9]). Let D ≡ 0, 1 (mod 4) be negative, and let C(D) be the set of

classes of primitive positive definite forms of discriminant D. Then, Dirichlet composition induces

a well-defined binary operation on C(D) which makes C(D) into a finite Abelian group whose order

is the class number h(D).

Furthermore, the identity element of C(D) is the class containing the principal form x2−D4 y
2

if D ≡ 0 (mod 4) and x2 + xy + 1−D
4 y2 if D ≡ 1 (mod 4), and the inverse of the class containing

the form ax2 + bxy + cy2 is the class containing ax2 − bxy + cy2.

To make things easier, we only look at positive definite symmetric quadratic forms with

discriminant D such that h(D) is equal to 1, so we introduce the following theorem:

Theorem 3.1.11 ([7, Theorem 7.10]). If D ≡ 0, 1 (mod 4) is negative, then

h(D) = 1⇐⇒ D =− 3,−4,−7,−8,−11,−12,−16,

− 19,−27,−28,−43,−67,−163.
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Let us list all of the positive definite symmetric quadratic forms ax2 + bxy + ay2 with

discriminant -3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67, and -163, respectively.

When D is even, since D = b2 − 4a2, we know b is even. Therefore, we have a2 − (b/2)2 =

−D/4.

1. Let b2 − 4a2 = −4, then we have a2 − (b/2)2 = 1, which implies a = ±1 and b = 0. Therefore,

we have one positive definite symmetric quadratic form with discriminant -4, which is x2 + y2.

2. Let b2− 4a2 = −8, which implies a2− (b/2)2 = 2. There is no integer solution to the equation

x2 − y2 = 2, therefore, we do not have any positive definite symmetric quadratic form with

discriminant -8.

3. Let b2 − 4a2 = −12, which implies a2 − (b/2)2 = 3. Thus, a = ±2 and b = ±2. Therefore,

we have two positive definite symmetric quadratic forms with discriminant -12, which are

2x2 + 2xy + 2y2 and 2x2 − 2xy + 2y2.

4. Let b2 − 4a2 = −16, which implies a2 − (b/2)2 = 4. Thus, a = ±2 and b = 0. Therefore, we

have one positive definite symmetric quadratic form with discriminant -16, which is 2x2 + 2y2.

5. Let b2−4a2 = −28, which implies a2−(b/2)2 = 7. Thus a = ±4 and b = ±6. Therefore, we have

two positive definite symmetric quadratic form with discriminant -28, which are 4x2+6xy+4y2

and 4x2 − 6xy + 4y2.

Next we consider the odd discriminants.

1. Let b2 − 4a2 = −3, then a = ±1 and b = ±1. Therefore, we have two positive definite

symmetric quadratic form with discriminant -3, which are x2 + xy + y2 and x2 − xy + y2.

2. Let b2−4a2 = −7, then a = ±2 and b = ±3. Therefore, we have two positive definite symmetric

quadratic form with discriminant -7, which are 2x2 + 3xy + 2y2 and 2x2 − 3xy + 2y2.

3. Let b2 − 4a2 = −11, then a = ±3 and b = ±5. Therefore, we have two positive definite

symmetric quadratic form with discriminant -11, which are 3x2+5xy+3y2 and 3x2−5xy+3y2.

4. Let b2 − 4a2 = −19, then a = ±5 and b = ±9. Therefore, we have two positive definite

symmetric quadratic form with discriminant -19, which are 5x2+9xy+5y2 and 5x2−9xy+5y2.
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5. Let b2 − 4a2 = −27, then (a, b) = (±7,±13) or (a, b) = (±3,±3). Therefore, we have four

positive definite symmetric quadratic form with discriminant -27, which are 7x2 + 13xy+ 7y2,

7x2 − 13xy + 7y2, 3x2 + 3xy + 3y2, and 3x2 − 3xy + 3y2.

6. Let b2 − 4a2 = −43, then a = ±11 and b = ±21. Therefore, we have two positive definite

symmetric quadratic form with discriminant -43, which are 11x2 + 21xy + 11y2 and 11x2 −

21xy + 11y2.

7. Let b2 − 4a2 = −67, then a = ±17 and b = ±33. Therefore, we have two positive definite

symmetric quadratic form with discriminant -67, which are 17x2 + 33xy + 17y2 and 17x2 −

33xy + 17y2.

8. Let b2 − 4a2 = −163, then a = ±41 and b = ±81. Therefore, we have two positive definite

symmetric quadratic form with discriminant -163, which are 41x2 + 81xy + 41y2 and 41x2 −

81xy + 41y2.

We can study primes represented by the symmetric quadratic forms above, and make similar con-

jectures as Sun’s conjectures.

In the thesis, we will explore one of the symmetric quadratic forms, the f(x, y) = 2x2 +

3xy + 2y2 with discriminant −7. Since h(−7) = 1, by Theorem 3.1.10 we know C(−7), the set

of classes of primitive positive definite forms of discriminant -7, is an Abelian group of order 1.

Thus f(x, y) = 2x2 + 3xy + 2y2 is properly equivalent to the principal form x2 + xy + 1−(−7)
4 y2 =

x2 + xy + 2y2, and thus, they represent the same numbers by [7, Page 24]. Thus, we only need to

study primes represented by the reduced positive definite primitive quadratic form x2 + xy + 2y2.

We claim that an odd prime p > 7 can be written in the form 2a2p+3apbp+2b2p for integers ap

and bp if and only if p ≡ 1, 2, 4 (mod 7). Moreover, if we assume 0 < |bp| < ap, such representations

are unique.

One direction is easy, we only need to compute 2x2 + 3xy + 2y2 modulo 7 for all possible x

and y modulo 7. See Table 3.1 for the computation.

For the other direction, let p be an odd prime that is congruent to 1, 2, or 4 modulo 7.

We want to show the existence of integers a′p and b′p such that p = a′2p + a′pb
′
p + 2b′2p . Note that

since a′2p + a′pb
′
p + 2b′2p =

(
a′p + 1

2b
′
p

)2
+
(√

7
2 b
′
p

)2
, we see the norm of p = a′p −

−1+
√
−7

2 b′p is equal to

a′2p + a′pb
′
p + 2b′2p . Therefore, it suffices to prove the given odd prime p splits in Q(

√
−7), whose ring

39



0 1 2 3 4 5 6
0 0 2 1 4 4 1 2
1 2 0 2 1 4 4 1
2 1 2 0 2 1 1 4
3 4 2 2 0 4 1 4
4 4 1 1 4 0 2 1
5 1 4 1 1 2 0 2
6 2 1 4 4 1 2 0

Table 3.1: 2x2 + 3xy + 2y2 (mod 7)

of integers is Z
[
−1+

√
−7

2

]
. We apply the following theorem to find which primes split in Q(

√
−7):

Theorem 3.1.12 ([19, Theorem 9.29(3)]). Let Q(
√
m) have the unique factorization property. Then

an odd rational prime p satisfying (p,m) = 1 is a product π1π2 of two primes in Q(
√
m) if and only

if m is congruent to a square modulo p.

In particular, we know an odd prime p > 7 splits in Q(
√
−7) if and only if -7 is congruent

to a square modulo p. We will apply the law of quadratic reciprocity:

Theorem 3.1.13 ([13, Theorem 1, Page 53]). Let p and q be distinct odd primes. Then

1. (
−1

p

)
= (−1)

p−1
2 ,

2. (
2

p

)
= (−1)

p2−1
8 ,

3. (
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

where for any integer a, the Legendre symbol
(
a
p

)
has value 0 if p | a, 1 if a is congruent to a

non-zero square modulo p, and -1 if a is not congruent to any non-zero square modulo p.

Taking q = 7 in Theorem 3.1.13, we know

(p
7

)(7

p

)
= (−1)

p−1
2

7−1
2 = (−1)

p−1
2 .
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Since (
−7

p

)
=

(
−1

p

)(
7

p

)
and (

−1

p

)
= (−1)

p−1
2 ,

we know (p
7

)(−7

p

)
= 1.

Therefore, -7 is congruent to a square modulo p if and only if p congruent to a square modulo 7, i.e., if

and only if p is congruent to 1, 2, or 4 modulo 7. Therefore, the given odd prime p splits in Q(
√
−7),

and thus, there exist integers a′′p and b′′p such that p = a′′2p + a′′pb
′′
p + 2b′′2p . Since 2x2 + 3xy + 2y2 is

properly equivalent to the reduced form x2 + xy + 2y2, p can be represented by 2a2p + 3apbp + 2b2p

for integers ap and bp. Without loss of generality, we can assume that 0 < |bp| < ap, since we can

consider −ap and −bp instead, or change the order of ap and bp, if necessary.

Note that we can not assume that 0 < bp < ap in the representation. One example is when

p = 11 ≡ 4 (mod 7), it is easy to check there are no positive integers solutions to the equation

2x2 + 3xy + 2y2 = 11, but we have (x, y) = (3,−1) as a solution.

Finally, we prove the uniqueness of such representations. Suppose p = 2a2p + 3apbp + 2b2p =

1
4 (ap − bp)

2 + 7
4 (ap + bp)

2 =
(
ap
2 −

bp
2

)2
+ 7

(
ap
2 +

bp
2

)2
and p = 2a′2p + 3a′pb

′
p + 2b′2p = 1

4 (a′p −

b′p)
2 + 7

4 (a′p + b′p)
2 =

(
a′p
2 −

b′p
2

)2
+ 7

(
a′p
2 +

b′p
2

)2
with 0 < |bp| < ap and 0 < |b′p| < a′p. Then, both

ap + (ap + bp)
−1+

√
−7

2 and a′p + (a′p + b′p)
−1+

√
−7

2 in Z
[
−1+

√
−7

2

]
have norm p. Their ratio must be

a unit in Z
[
−1+

√
−7

2

]
, which could only be 1 or -1, since N

(
a+ b−1+

√
7

2

)
=
(
a− b

2

)2
+ 7

4b
2 = 1 if

and only if a = ±1 and b = 0. With the restrictions on ap, bp, a
′
p, and b′p, we can see that ap = a′p

and bp = b′p. This completes the proof of uniqueness of the representations.

Now, we can consider the same type of questions as Sun’s conjectures stated above. Let

c ≥ 1 and n ≥ 1 be constants. Given a prime p that is congruent to 1, 2, or 4 modulo 7, let ap and

bp be integers such that p = 2a2p + 3apbp + 2b2p and 0 < |bp| < ap. Then, for the primes satisfying
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0 < c|bp| < ap, we can ask for the value of

lim
x→∞

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<c|bp|<ap

anp

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<c|bp|<ap

bnp
.

Theorem 3.2.3 will answer this question.

3.1.4 Primes in arithmetic progressions represented by quadratic forms

of the form x2 + ny2

Note that Sun’s conjectures are about the sum of the larger terms over the sum of the

smaller terms in certain representations, so we need symmetric quadratic forms ax2 + bxy + ay2 to

form similar conjectures. We can consider a more general type of problems when the quadratic form

is not symmetric. In this subsection we consider quadratic forms with the form x2 + ny2.

Primes of the form x2 + ny2 are very well studied in [7], here we quote a couple of results

from the first three pages of the book:

p = x2 + 2y2 ⇐⇒ p ≡ 1 or 3 (mod 8),

p = x2 + 5y2 ⇐⇒ p ≡ 1 or 9 (mod 20),

p = x2 + 27y2 ⇐⇒ p ≡ 1 (mod 3) and x3 ≡ 2 (mod p) has an integer solution,

p = x2 + 27y2 or p = 4x2 + 2xy + 7y2 ⇐⇒ p ≡ 1 (mod 3),

p = x2 + 14y2 ⇐⇒

−14 is congruent to a square modulo p and (x2 + 1)2 ≡ 8 (mod p) has an integer solution.

The main theorem of the book [7] characterizes which prime can be written of the form x2 + ny2.

Theorem 3.1.14 ([7, Theorem 9.2]). Let n > 0 be an integer. Then, there is a monic irreducible

polynomial fn(x) ∈ Z[x] of degree h(−4n) such that if an odd prime p divides neither n nor the
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discriminant of fn(x), then

p = x2 + ny2 ⇐⇒

−n is congruent to a square modulo p and fn(x) ≡ 0 (mod p) has an integer solution.

Furthermore, fn(x) may be taken to be the minimal polynomial of a real algebraic integer α for which

L = K(α) is the ring class field of order Z[
√
−n] in the imaginary quadratic field K = Q(

√
−n).

Finally, if fn(x) is any monic integer polynomial of degree h(−4n) for which the above

equivalence holds, then fn(x) is irreducible over Z and is the minimal polynomial of a primitive

element of the ring class field.

We are not going into the details of the above theorem in the thesis, as it would take us too

far afield. For a proof of the theorem and the definitions of the discriminant of a polynomial, the

ring class field, the order of a number field, the primitive element of a ring class field, etc., please

see Chapter 9 of [7].

Let us continue with Sun’s conjectures and deal with the specific case

p = x2 + 2y2 ⇐⇒ p ≡ 1 or 3 (mod 8).

We claim that an odd prime p can be written in the form a2p + 2b2p for integers ap and bp if and only

if p ≡ 1 or 3 (mod 8). Moreover, if we assume ap and bp to be positive, such representations are

unique.

One direction is easy, we only need to compute x2 + 2y2 modulo 8 for all possible x and

y modulo 8. See Table 3.2 for the computation, where the even congruence classes are crossed off

since we want x2 + 2y2 to be a prime number.

0 1 2 3 4 5 6 7
0 �0 1 �4 1 �0 1 �4 1
1 �2 3 �6 3 �2 3 �6 3
2 �0 1 �4 1 �0 1 �4 1
3 �2 3 �6 3 �2 3 �6 3
4 �0 1 �4 1 �0 1 �4 1
5 �2 3 �6 3 �2 3 �6 3
6 �0 1 �4 1 �0 1 �4 1
7 �2 3 �6 3 �2 3 �6 3

Table 3.2: x2 + 2y2 (mod 8)
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For the other direction, let p be a prime that is congruent to 1 or 3 modulo 8. We want

to show the existence of integers ap and bp such that p = a2p + 2b2p. Note that since a2p + 2b2p =(
ap +

√
−2bp

) (
ap −

√
−2bp

)
, we see the norm of p = ap +

√
−2bp is equal to a2p + 2b2p. Therefore,

it suffices to prove the given prime p splits in Q(
√
−2), whose ring of integers is Z[

√
−2]. By

Theorem 3.1.12, we know an odd prime p splits in Q(
√
−2) if and only if -2 is a square modulo p.

By Theorem 3.1.13, we have

(
−2

p

)
=

(
−1

p

)(
2

p

)
= (−1)

p−1
2 (−1)

p2−1
8 = (−1)

(p+5)(p−1)
8 .

Therefore, -2 is congruent to a square modulo p if and only if p is congruent to 1 or 3 modulo 8.

Therefore, the given prime p splits in Q
[√
−2
]
, and thus, there exist integers ap and bp such that

p = a2p + 2b2p. Without loss of generality, we can assume that ap > 0 and bp > 0, since otherwise we

can consider −ap and −bp instead.

Finally, we prove the uniqueness of such representations. Suppose p = a2p + 2b2p = a2p +

(
√

2bp)
2 and p = a′2p + 2b′2p = a′2p + (

√
2b′p)

2 with positive integers ap, bp, a
′
p, and b′p. Then, both

ap +
√
−2bp and a′p +

√
−2b′p in Z[

√
−2] have norm p. Their ratio must be a unit in Z[

√
−2], which

could only be 1 or -1, since N
(
a+
√
−2b

)
= a2 + 2b2 = 1 if and only if a = ±1 and b = 0. With the

restrictions on ap, bp, a
′
p, and b′p, we can see that ap = a′p and bp = b′p. This completes the proof of

uniqueness of the representations.

Now, we can consider the same type of questions as Sun’s conjectures. Let c > 0 and n ≥ 1

be constants. Given a prime p that is congruent to 1 or 3 modulo 8, let ap and bp be positive integers

such that p = a2p + 2b2p. Then, for the primes satisfying 0 < cbp < ap, we can ask for the value of

lim
x→∞

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<cbp<ap

anp

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<cbp<ap

bnp
.

Theorem 3.2.4 will answer this question.
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3.2 Main Results

In this chapter, we prove the following main theorems. For primes congruent to 1 modulo

4 represented by x2 + y2, we have:

Theorem 3.2.1. Let c ≥ 1 and n ≥ 1 be constants. Given a prime p that is congruent to 1 modulo 4,

let ap and bp be positive integers such that p = a2p+b2p. Then, for the primes satisfying 0 < cbp < ap,

we have

lim
x→∞

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

anp

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp
=

∫ arccot(c)

0
cosn(t)dt∫ arccot(c)

0
sinn(t)dt

.

In particular, for c = 1 and n = 1, we have

lim
x→∞

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

ap

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

bp
= 1 +

√
2,

and for c = 1 and n = 2, we have

lim
x→∞

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

a2p

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<bp<ap

b2p
=
π + 2

π − 2
≈ 4.5039.

Note that Sun conjectured the value of the limit for c = 1 and n = 1 to be 1 +
√

2, so this verifies

his conjecture. In the case of c = 1 and n = 2 he conjectured the value of the limit to be 4.5, which

is close to the actual value π+2
π−2 .
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For primes congruent to 1 modulo 3 represented by x2 + xy + y2, we have the following

theorem:

Theorem 3.2.2. Let c ≥ 1 and n ≥ 1 be constants. Given a prime p that is congruent to 1 modulo

3, let ap and bp be positive integers such that p = a2p + apbp + b2p. Then, for the primes satisfying

0 < cbp < ap, we have

lim
x→∞

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<cbp<ap

anp

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<cbp<ap

bnp
=

∫ arccot
(

2c+1√
3

)
0

(
cos(t)− sin(t)√

3

)n
dt∫ arccot

(
2c+1√

3

)
0

(
2 sin(t)√

3

)n
dt

.

In particular, for c = 1 and n = 1, we have

lim
x→∞

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<bp<ap

ap

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<bp<ap

bp
= 1 +

√
3,

and for c = 1 and n = 2, we have

lim
x→∞

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<bp<ap

a2p

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<bp<ap

b2p
=

2π

2π − 3
√

3
.

Note that Sun conjectured the value of the limit for c = 1 and n = 1 to be 1 +
√

3, so this verifies

his conjecture.

For primes in arithmetic progressions represented by other symmetric quadratic forms, in

particular for primes congruent to 1, 2, or 4 modulo 7 represented by 2x2 + 3xy + 2y2, we have the

following theorem:
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Theorem 3.2.3. Let c ≥ 1 and n ≥ 1 be constants. Given a prime p that is congruent to 1, 2, or

4 modulo 7, let ap and bp be integers such that p = 2a2p + 3apbp + 2b2p and 0 < |bp| < ap. Then, for

the primes satisfying 0 < c|bp| < ap, we have

lim
x→∞

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<c|bp|<ap

anp

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<c|bp|<ap

bnp
=

∫ arccot
(

c+1√
7(c−1)

)
arccot

(
c+1√
7(c−1)

) ( sin(t)√
7

+ cos(t)
)n

dt

∫ arccot
(

c+1√
7(c−1)

)
arccot

(
c+1√
7(c−1)

) ( sin(t)√
7
− cos(t)

)n
dt

.

In particular, for c = 1 and n = 1, we have

lim
x→∞

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<|bp|<ap

ap

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<|bp|<ap

bp
=

1 +
√

7

1−
√

7
,

and for c = 1 and n = 2, we have

lim
x→∞

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<|bp|<ap

a2p

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<|bp|<ap

b2p
=

2π +
√

7

2π −
√

7
.

For primes in arithmetic progressions represented by non-symmetric quadratic forms, in

particular for primes congruent to 1 or 3 modulo 8 represented by x2 + 2y2, we have the following

theorem:

Theorem 3.2.4. Let c > 0 and n ≥ 1 be constants. Given a prime p that is congruent to 1 or 3

modulo 8, let ap and bp be positive integers such that p = a2p + 2b2p. Then, for the primes satisfying
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0 < cbp < ap, we have

lim
x→∞

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<cbp<ap

anp

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<cbp<ap

bnp
=

∫ arccot
(
c√
2

)
0 (cos(t))

n
dt∫ arccot

(
c√
2

)
0

(
sin(t)√

2

)n
dt

.

In particular, for c = 1 and n = 1, we have

lim
x→∞

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<bp<ap

ap

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<bp<ap

bp
=
√

3 + 1,

and for c = 1 and n = 2, we have

lim
x→∞

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<bp<ap

a2p

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<bp<ap

b2p
= 2×

3 arccot
(

1√
2

)
+
√

2

3 arccot
(

1√
2

)
−
√

2
.

3.3 Proof of the Theorems

3.3.1 Equidistribution of primes in imaginary quadratic fields

The key ingredient in the proof of the theorems is equidistribution of primes in imaginary

quadratic fields. We introduce a modified version of Maknys’s theorem [17].

Theorem 3.3.1 ([14, Prop 2]). Let K be an imaginary quadratic field. Fix µ, ν ∈ OK with µ 6= 0

and with ν (mod µ) an invertible residue class. Let η = 0.735. As X →∞,

∑
N(ω) prime

X<N(ω)≤X+Xη

ω≡ν (mod µ)
θ1<arg(ω)<θ2

1 ∼ wK
hKϕ(µ)

× θ2 − θ1
2π

× Xη

logX
,
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when Xη−1 < θ2 − θ1 ≤ 2π, where N(ω) is the norm of ω in K, wK is the number of units in K,

hK is the class number of K, and ϕ(µ) is the number of invertible residue classes modulo µ. Here

the estimate is uniform in the θi’s.

Remark 3.3.2 ([14, Remark, Page 3]). Maknys claims that in place of the exponents 0.735 and

-0.265, one can take any fixed constants larger than 11
16 and 11

16 − 1, respectively. It was noted by

Heath-Brown in Math Reviews that Maknys’s argument is mistaken, and that, when corrected, 11
16

becomes (221 +
√

201)/320 = 0.7349.... We have used these corrected values above.

3.3.2 Proof of Theorem 3.2.1

Let c ≥ 1 be a constant. If a prime p ≡ 1 (mod 4) satisfies p = a2p + b2p for positive integers

ap and bp such that 0 < cbp < ap, then ω = ap + ibp ∈ Z[i] satisfies 0 < argω < arccot(c).

Let K = Q(i), and let µ = ν = 1 in Theorem 3.3.1. Then, we have hK = 1, wK = 4, and

ϕ(µ) = 1. For a constant c ≥ 1, we set

R(X) = {z ∈ C : 0 < arg z ≤ arccot(c), X < |z|2 ≤ X +Xη}.

Then, we have ∑
ω=ap+ibp∈R(X)
N(ω) prime
θ1<arg(ω)<θ2

1 =
∑

p≡1 (mod 4) prime
X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

θ1<arccot(ap/bp)<θ2

1 ∼ (θ2 − θ1)× 2Xη

π logX
,

as X →∞, when 0 < θ1 < θ2 < arccot(c) and Xη−1 < θ2 − θ1.

Let nX =
⌊
arccot(c)
θX

⌋
+1 for θX = 2Xη−1 > Xη−1. We divide R(X) into nX smaller regions:

R(X)j = {z ∈ C : (j − 1)θX < arg z ≤ jθX , X < |z|2 ≤ X +Xη}

for 1 ≤ j ≤ nX − 1, and

R(X)nX = {z ∈ C : (nX − 1)θX < arg z ≤ arccot(c), X < |z|2 ≤ X +Xη}.

See Figure 3.1 that explains how the region R(X) is divided into smaller regions.

We denote the number of Gaussian primes in the region R(X)j by m(X)j for 1 ≤ j ≤ nX .
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<(ω)

=(ω)

R(X)1

R(X)2

R(X)3

R(X)nX

θX
θX

θX

· · ·

· · ·

√
X

√
X +Xη

Figure 3.1: Split the Region R(X)

Let mX = 2θXX
η

π logX . Theorem 3.3.1 gives m(X)j = (1 + o(X))mX for 1 ≤ j ≤ nX − 1, and m(X)nX ≤

(1 + o(1))mX . For rational primes X < p ≤ X + Xη that are congruent to 1 modulo 4, we know

they correspond to Gaussian primes

ω = ap + bpi ∈ R(X) =

nX⊔
j=1

R(X)j .

As shown in Figures 3.2 and 3.3, if ω ∈ R(X)j for 1 ≤ j ≤ nX−1, there are upper and lower bounds

on its real and imaginary parts:

√
X cos(jθX) ≤ ap = <(ω) <

√
X +Xη cos((j − 1)θX),

√
X sin((j − 1)θX) < bp = =(ω) ≤

√
X +Xη sin(jθX).

50



<(ω)

=(ω)

ω ∈ R(X)j

(j − 1)θX < arg(ω) ≤ jθX
ω = ap + bpi ∈ R(X)j√

X cos(jθX) ≤ ap = <(ω) <
√
X +Xη cos((j − 1)θX)

√
X

√
X +Xη

Figure 3.2: Bounds on the Real Parts of Gaussian Primes in R(x)j

<(ω)

=(ω)

ω ∈ R(X)j

(j − 1)θX < arg(ω) ≤ jθX
ω = ap + bpi ∈ R(X)j√

X sin((j − 1)θX) < bp = =(ω) ≤
√
X +Xη sin(jθX)

√
X

√
X +Xη

Figure 3.3: Bounds on the Imaginary Parts of Gaussian Primes in R(x)j
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Therefore, we know there exists an o(1) term that only depends on X, such that

(1 + o(1))mXX
n
2

nX−1∑
j=1

cosn(jθX) ≤
∑

p≡1 (mod 4) prime
X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

anp

≤ (1 + o(1))mX(X +Xη)
n
2

nX∑
j=1

cosn((j − 1)θX),

and

(1 + o(1))mXX
n
2

nX−1∑
j=1

sinn((j − 1)θX) ≤
∑

p≡1 (mod 4) prime
X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

bnp

≤ (1 + o(1))mX(X +Xη)
n
2

nX∑
j=1

sinn(jθX).

By the definition of nX and θX , we know that 0 < (nX − 1)θX ≤ arccot(c) ≤ nXθX < π/2 for all

X. Therefore, we have

nX−1∑
j=1

cosn(jθX) ≥ 1

θX

∫ nXθX

θX

cosn(t)dt

=
1

θX

(∫ arccot(c)

0

cosn(t)dt−
∫ θX

0

cosn(t)dt+

∫ nXθX

arccot(c)

cosn(t)dt

)

≥ 1

θX

(∫ arccot(c)

0

cosn(t)dt− θX

)
,

and similarly,

nX∑
j=1

cosn((j − 1)θX) ≤ 1

θX

(∫ arccot(c)

0

cosn(t)dt+ θX

)
,

nX−1∑
j=1

sinn((j − 1)θX) ≥ 1

θX

(∫ arccot(c)

0

sinn(t)dt− 2θX

)
,
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and

nX∑
j=1

sinn(jθX) ≤ 1

θX

(∫ arccot(c)

0

sinn(t)dt+ 2θX

)
.

Therefore, we obtain

(1 + o(1))mXX
n
2

1

θX

(∫ arccot(c)

0

cosn(t)dt− θX

)
≤

∑
p≡1 (mod 4) prime

X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

anp

≤ (1 + o(1))mX(X +Xη)
n
2

1

θX

(∫ arccot(c)

0

cosn(t)dt+ θX

)
,

and

(1 + o(1))mXX
n
2

1

θX

(∫ arccot(c)

0

sinn(t)dt− 2θX

)
≤

∑
p≡1 (mod 4) prime

X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

bnp

≤ (1 + o(1))mX(X +Xη)
n
2

1

θX

(∫ arccot(c)

0

sinn(t)dt+ 2θX

)
.

For sufficiently large X, since θX = o(1), we have

∑
p≡1 (mod 4) prime

X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

anp ≤ (1 + o(1))(1 +Xη−1)
n
2

∫ arccot(c)

0
cosn(t)dt+ θX∫ arccot(c)

0
sinn(t)dt− 2θX

∑
p≡1 (mod 4) prime

X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

bnp

≤ (1 + o(1))(1 +Xη−1)
n
2

∫ arccot(c)

0
cosn(t)dt∫ arccot(c)

0
sinn(t)dt

∑
p≡1 (mod 4) prime

X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

bnp ,
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and

∑
p≡1 (mod 4) prime

X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

anp ≥(1 + o(1))(1−Xη−1)
n
2

∫ arccot(c)

0
cosn(t)dt− θX∫ arccot(c)

0
sinn(t)dt+ 2θX

∑
p≡1 (mod 4) prime

X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

bnp

≥ (1 + o(1))(1−Xη−1)
n
2

∫ arccot(c)

0
cosn(t)dt∫ arccot(c)

0
sinn(t)dt

∑
p≡1 (mod 4) prime

X<p≤X+Xη

p=a2p+b
2
p, 0<cbp<ap

bnp .

Next, we consider the region

R(x) = {z ∈ C : 0 < arg z ≤ arccot(c), 0 < |z|2 ≤ x}.

We split R(x) as the union of smaller regions

R(Xi) = {z ∈ C : 0 < arg z ≤ arccot(c), Xi < |z|2 ≤ Xi +Xη
i },

where 1 ≤ i ≤ k, X1 + Xη
1 = x, Xi + Xη

i = Xi−1 for 2 ≤ i ≤ k, and Xk < x1/2 ≤ Xk−1, which

implies Xk = O(x1/2). See Figure 3.4 which illustrates how the region R(x) is divided into smaller

pieces.

<(ω)

=(ω)

√
x

√
Xk

√
Xk+1

· · ·√X2
√
X1

R(X1)

R(X2)

· · ·
R(Xk)

X1 +Xη
1 = x

Xj +Xη
j = Xj−1, 2 ≤ j ≤ k
Xk < x1/2

Figure 3.4: Split the Region R(x)
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Then for sufficiently large x, we have

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

anp

=
∑

p≡1 (mod 4) prime
p≤Xk

p=a2p+b
2
p, 0<cbp<ap

anp +
∑

p≡1 (mod 4) prime
Xk<p≤x

p=a2p+b
2
p, 0<cbp<ap

anp

≤
∑

p≡1 (mod 4) prime

p≤x1/2

p=a2p+b
2
p, 0<cbp<ap

anp + (1 + o(1))
(

1 +Xη−1
k

)n
2

∫ arccot(c)

0
cosn(t)dt∫ arccot(c)

0
sinn(t)dt

∑
p≡1 (mod 4) prime

Xk<p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp

≤
∑

p≡1 (mod 4) prime

p≤x1/2

p=a2p+b
2
p, 0<cbp<ap

anp + (1 + o(1))
(

1 +O
(
x(η−1)/2

))

×
∫ arccot(c)

0
cosn(t)dt∫ arccot(c)

0
sinn(t)dt

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp ,

and

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp

=
∑

p≡1 (mod 4) prime
p≤Xk

p=a2p+b
2
p, 0<cbp<ap

bnp +
∑

p≡1 (mod 4) prime
Xk<p≤x

p=a2p+b
2
p, 0<cbp<ap

bnp

≤
∑

p≡1 (mod 4) prime

p≤x1/2

p=a2p+b
2
p, 0<cbp<ap

bnp +
1

(1 + o(1))
(

1−Xη−1
k

)n
2
×
∫ arccot(c)

0
sinn(t)dt∫ arccot(c)

0
cosn(t)dt

∑
p≡1 (mod 4) prime

Xk<p≤x
p=a2p+b

2
p, 0<cbp<ap

anp

≤
∑

p≡1 (mod 4) prime

p≤x1/2

p=a2p+b
2
p, 0<cbp<ap

bnp +
1

(1 + o(1))
(
1 +O

(
x(η−1)/2

))

×
∫ arccot(c)

0
sinn(t)dt∫ arccot(c)

0
cosn(t)dt

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

anp .
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By the prime number theorem, we know

∑
p≡1 (mod 4) prime

p≤x1/2

p=a2p+b
2
p, 0<cbp<ap

anp ≤
∑

p≤x1/2 prime

p
n
2 = (1 + o(1))

x1/2

log x1/2
x
n
4 = o

(
x(2+n)/4

)
.

For large enough x, we have

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp =
∑

N(ω)<x prime
0≤argω≤arccot(c)

bnp

≥
∑

x−xη<N(ω)≤x−xη+(x−xη)η prime
arccot(2c)<arg(ω)≤arccot(c)

bnp

≥ sinn(arccot(2c))(x− xη)
n
2

∑
x−xη<N(ω)≤x−xη+(x−xη)η prime

arccot(2c)<arg(ω)≤arccot(c)

1

=O

(
(x− xη)(n/2+η)

log(x− xη)

)
=O

(
x(n/2+η)

log(x)

)
.

Therefore, for n ≥ 1, note that (2 + n)/4− (n/2 + η) = (2− n− 4η)/4 < 0, and so we have

∑
p≡1 (mod 4) prime

p≤x1/2

p=a2p+b
2
p, 0<cbp<ap

anp = o
(
x(2−n−4η)/4 log(x)

) ∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp = o(1)
∑

p≡1 (mod 4) prime
p≤x

p=a2p+b
2
p, 0<cbp<ap

bnp .

Similarly, we obtain

∑
p≡1 (mod 4) prime

p≤x1/2

p=a2p+b
2
p, 0<cbp<ap

bnp = o
(
x(2−n−4η)/4 log(x)

) ∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

anp = o(1)
∑

p≡1 (mod 4) prime
p≤x

p=a2p+b
2
p, 0<cbp<ap

anp .

Therefore, noting that (1 + o(1))
(
1 +O

(
x(η−1)/2

))
= 1 + o(1), we have

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

anp ≤ (1 + o(1))

∫ arccot(c)

0
cosn(t)dt∫ arccot(c)

0
sinn(t)dt

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp ,
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and

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp ≤
1

1 + o(1)

∫ arccot(c)

0
sinn(t)dt∫ arccot(c)

0
cosn(t)dt

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

anp .

Therefore, for large enough x, we have

(1 + o(1))

∫ arccot(c)

0
cosn(t)dt∫ arccot(c)

0
sinn(t)dt

≤

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

anp

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp
≤ (1 + o(1))

∫ arccot(c)

0
cosn(t)dt∫ arccot(c)

0
sinn(t)dt

.

Now, letting x→∞, we have

lim
x→∞

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

anp

∑
p≡1 (mod 4) prime

p≤x
p=a2p+b

2
p, 0<cbp<ap

bnp
=

∫ arccot(c)

0
cosn(t)dt∫ arccot(c)

0
sinn(t)dt

.

This completes the proof.

3.3.3 Proof of Theorem 3.2.2

The proof follows the same strategy as the proof of Theorem 3.2.1.

Let c ≥ 1 be a constant. Suppose a prime p ≡ 1 (mod 3) satisfies p = a2p + apbp + b2p for

positive integers ap and bp such that 0 < cbp < ap. Let ω = ap + bp
1+
√
−3

2 = cos(t) + sin(t)i. We

have ap = cos(t)− sin(t)√
3

and bp = 2 sin(t)√
3

, which implies that ω = ap+ 1+
√
−3

2 bp ∈ Z
[
1+
√
−3

2

]
satisfies

0 < argω < arccot
(

2c+1√
3

)
. In particular, when c = 1, we have 0 < argω < π

6 . We summarize the

difference between the two situations in Table 3.2:

Let K = Q(
√
−3), and let µ = ν = 1 in Theorem 3.3.1. Then, we have hK = 1, wK = 8,
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p ≡ 1 (mod 4) p ≡ 1 (mod 3)
p = a2p + b2p p = a2p + apbp + b2p
ω = ap + bpi ω = ap + bp

1+
√
−3

2

is a prime in Z[i] is a prime in Z
[
1+
√
−3

2

]
c = 1 c = 1
0 < bp < ap 0 < bp < ap

1 <
ap
bp

= cot(arg(ω))
√

3 <
ap+

bp
2√

3bp
2

= cot(arg(ω))

0 < arg(ω) < π
4 0 < arg(ω) < π

6

general c general c
0 < cbp < ap, c ≥ 1 0 < cbp < ap, c ≥ 1

c <
ap
bp

= cot(arg(ω)) 2c+1√
3
<

ap+
bp
2√

3bp
2

= cot(arg(ω))

0 < arg(ω) < arccot(c) 0 < arg(ω) < arccot
(

2c+1√
3

)
Table 3.3: x2 + y2 vs. x2 + xy + y2

and ϕ(µ) = 1. For a constant c ≥ 1, we denote

R(X) = {z ∈ C : 0 < arg(z) < arccot

(
2c+ 1√

3

)
, X < |z|2 ≤ X +Xη}.

Then, we have

∑
ω=ap+bp

1+
√
−3

2 ∈R(X)
N(ω) prime
θ1<arg(ω)<θ2

1 =
∑

p≡1 (mod 3) prime
X<p≤X+Xη

p=a2p+apbp+b
2
p, 0<cbp<ap

θ1<arccot

(
ap+

bp
2√

3bp
2

)
<θ2

1 ∼ (θ2 − θ1)× 4Xη

π logX
,

as X →∞, when 0 < θ1 < θ2 < arccot
(

2c+1√
3

)
and Xη−1 < θ2 − θ1.

Let nX =

⌊
arccot

(
2c+1√

3

)
θX

⌋
+ 1 for θX = 2Xη−1. Again, we divide R(X) into nX smaller

regions:

R(X)j = {z ∈ C : (j − 1)θX < arg z ≤ jθX , X < |z|2 ≤ X +Xη}

for 1 ≤ j ≤ nX − 1, and

R(X)nX =

{
z ∈ C : (nX − 1)θX < arg z ≤ arccot

(
2c+ 1√

3

)
, X < |z|2 ≤ X +Xη

}
.

For all primes inside the small region R(X)j , we bound their real parts and imaginary parts accord-
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ingly, sum them up and use Riemann sums to bound the sums from above and below. Arguing as

before, we obtain

∑
p≡1 (mod 3) prime

X<p≤X+Xη

p=a2p+apbp+b
2
p, 0<cbp<ap

anp

≤(1 + o(1))(1 +Xη−1)
n
2

∫ arccot
(

2c+1√
3

)
0

(
cos(t)− sin(t)√

3

)n
dt∫ arccot

(
2c+1√

3

)
0

(
2 sin(t)√

3

)n
dt

∑
p≡1 (mod 3) prime

X<p≤X+Xη

p=a2p+apbp+b
2
p, 0<cbp<ap

bnp ,

and

∑
p≡1 (mod 3) prime

X<p≤X+Xη

p=a2p+apbp+b
2
p, 0<cbp<ap

anp

≥(1 + o(1))(1−Xη−1)
n
2

∫ arccot
(

2c+1√
3

)
0

(
cos(t)− sin(t)√

3

)n
dt∫ arccot

(
2c+1√

3

)
0

(
2 sin(t)√

3

)n
dt

∑
p≡1 (mod 3) prime

X<p≤X+Xη

p=a2p+apbp+b
2
p, 0<cbp<ap

bnp .

Next, we consider the region

R(x) =

{
z ∈ C : 0 < arg z ≤ arccot

(
2c+ 1√

3

)
, 0 < |z|2 ≤ x

}
.

We split R(x) into the union of smaller regions

R(Xi) =

{
z ∈ C : 0 < arg z ≤ arccot

(
2c+ 1√

3

)
, Xi < |z|2 ≤ Xi +Xη

i

}
,

where 1 ≤ i ≤ k, X1 + Xη
1 = x, Xi + Xη

i = Xi−1 for 2 ≤ i ≤ k, and Xk < x1/2 ≤ Xk−1, which

implies Xk = O(x1/2).

Summing up the corresponding anp and bnp from all small regions R(Xi), and using the prime

number theory to show that the inner most sector does not contain many primes, arguing as in the
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previous section, we obtain that for large enough x,

(1 + o(1))

∫ arccot
(

2c+1√
3

)
0

(
cos(t)− sin(t)√

3

)n
dt∫ arccot

(
2c+1√

3

)
0

(
2 sin(t)√

3

)n
dt

≤

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<cbp<ap

anp

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<cbp<ap

bnp

≤ (1 + o(1))

∫ arccot
(

2c+1√
3

)
0

(
cos(t)− sin(t)√

3

)n
dt∫ arccot

(
2c+1√

3

)
0

(
2 sin(t)√

3

)n
dt

,

Now, letting x→∞, we have

lim
x→∞

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<cbp<ap

anp

∑
p≡1 (mod 3) prime

p≤x
p=a2p+apbp+b

2
p, 0<cbp<ap

bnp
=

∫ arccot
(

2c+1√
3

)
0

(
cos(t)− sin(t)√

3

)n
dt∫ arccot

(
2c+1√

3

)
0

(
2 sin(t)√

3

)n
dt

.

3.3.4 Proof of Theorem 3.2.3

We only give a sketch of the proof since the idea is the same as the previous two proofs.

Let c ≥ 1 be a constant. Suppose a prime p ≡ 1, 2, or 4 (mod 7) satisfies p = 2a2p+3apbp+

2b2p for integers ap and bp, such that 0 < c|bp| < ap. Let ω = ap+ −1+
√
−7

2 (ap+bp) = cos(t)+sin(t)i.

We have ap = cos(t) + sin(t)√
7

and bp = sin(t)√
7
− cos(t), which implies that ω = ap + −1+

√
−7

2 (ap + bp) ∈

Z
[
1+
√
−7

2

]
satisfies arccot

(
c+1√
7(c−1)

)
< argω < arccot

(
c−1√
7(c+1)

)
. We summarize the difference

between the two situations in Table 3.3.

Let K = Q(
√
−7), and let µ = ν = 1 in Theorem 3.3.1. Then, we have hK = 1, wK = 2,

and ϕ(µ) = 1. For a constant c ≥ 1, we denote the region

R(X) =

{
z ∈ C : arccot

(
c+ 1√
7(c− 1)

)
< arg(ω) < arccot

(
c− 1√
7(c+ 1)

)
, X < |z|2 ≤ X +Xη

}
.
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p ≡ 1 (mod 4) p ≡ 1, 2, 4 (mod 7)
p = a2p + b2p p = 2a2p + 3apbp + 2b2p
ω = ap + bpi ω = ap + (ap + bp)

−1+
√
−7

2

is a prime in Z[i] is a prime in Z
[
−1+

√
−7

2

]
c = 1 c = 1
0 < bp < ap 0 < |bp| < ap
1 <

ap
bp

= cot(arg(ω)) 0 <
ap−bp√
7(ap+bp)

= cot(arg(ω)) <∞
0 < arg(ω) < π

4 0 < arg(ω) < π
2

general c general c
0 < cbp < ap, c ≥ 1 0 < c|bp| < ap, c ≥ 1

c <
ap
bp

= cot(arg(ω)) c−1√
7(c+1)

<
ap−bp√
7(ap+bp)

= cot(arg(ω)) < c+1√
7(c−1)

0 < arg(ω) < arccot(c) arccot
(

c+1√
7(c−1)

)
< arg(ω) < arccot

(
c−1√
7(c+1)

)
Table 3.4: x2 + y2 vs. 2x2 + 3xy + 2y2

Then, we have

∑
ω=ap+(ap+bp)

−1+
√
−7

2 ∈R(X)
N(ω) prime
θ1<arg(ω)<θ2

1 =
∑

p≡1,2,4 (mod 7) prime
X<p≤X+Xη

p=2a2p+3apbp+2b2p, 0<c|bp|<ap

θ1<arccot

(
ap−bp√
7(ap+bp)

)
<θ2

1 ∼ (θ2 − θ1)× Xη

π logX
,

as X →∞, when arccot
(

c+1√
7(c−1)

)
< θ1 < θ2 < arccot

(
c−1√
7(c+1)

)
and Xη−1 < θ2 − θ1.

Let nX =

⌊
arccot

(
c−1√
7(c+1)

)
−arccot

(
c+1√
7(c−1)

)
θX

⌋
+ 1 for θX = 2Xη−1. Again, we divide R(X)

into nX smaller regions:

R(X)j =

{
z ∈ C : arccot

(
c+ 1√
7(c− 1)

)
+ (j − 1)θX < arg z ≤ arccot

(
c+ 1√
7(c− 1)

)
+ jθX ,

X < |z|2 ≤ X +Xη

}

for 1 ≤ j ≤ nX − 1, and

R(X)nX =

{
z ∈ C : arccot

(
c+ 1√
7(c− 1)

)
+ (nX − 1)θX < arg z < arccot

(
c− 1√
7(c+ 1)

)
,

X < |z|2 ≤ X +Xη

}
.

For all primes inside the small region R(X)j , we bound their real parts and imaginary parts accord-
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ingly, sum them up and use Riemann sums to bound the sums from above and below. Arguing as

before, we obtain

∑
p≡1,2,4 (mod 7) prime

X<p≤X+Xη

p=2a2p+3apbp+2b2p, 0<c|bp|<ap

anp

≤(1 + o(1))(1 +Xη−1)
n
2

∫ arccot
(

c−1√
7(c+1)

)
arccot

(
c+1√
7(c−1)

) ( sin(t)√
7

+ cos(t)
)n

dt

∫ arccot
(

c−1√
7(c+1)

)
arccot

(
c+1√
7(c−1)

) ( sin(t)√
7
− cos(t)

)n
dt

∑
p≡1,2,4 (mod 7) prime

X<p≤X+Xη

p=2a2p+3apbp+2b2p, 0<c|bp|<ap

bnp ,

and

∑
p≡1,2,4 (mod 7) prime

X<p≤X+Xη

p=2a2p+3apbp+2b2p, 0<c|bp|<ap

anp

≥(1 + o(1))(1 +Xη−1)
n
2

∫ arccot
(

c−1√
7(c+1)

)
arccot

(
c+1√
7(c−1)

) ( sin(t)√
7

+ cos(t)
)n

dt

∫ arccot
(

c−1√
7(c+1)

)
arccot

(
c+1√
7(c−1)

) ( sin(t)√
7
− cos(t)

)n
dt

∑
p≡1,2,4 (mod 7) prime

X<p≤X+Xη

p=2a2p+3apbp+2b2p, 0<c|bp|<ap

bnp .

Next, we consider the region

R(x) =

{
z ∈ C : arccot

(
c+ 1√
7(c− 1)

)
≤ arg z ≤ arccot

(
c− 1√
7(c+ 1)

)
, 0 < |z|2 ≤ x

}
.

We split R(x) as the union of smaller regions

R(Xi) =

{
z ∈ C : arccot

(
c+ 1√
7(c− 1)

)
≤ arg z ≤ arccot

(
c− 1√
7(c+ 1)

)
, Xi < |z|2 ≤ Xi +Xη

i

}
,

where 1 ≤ i ≤ k, X1 + Xη
1 = x, Xi + Xη

i = Xi−1 for 2 ≤ i ≤ k, and Xk < x1/2 ≤ Xk−1, which

implies Xk = O(x1/2).

Summing up the corresponding anp and bnp from all small regions R(Xi), and using the prime

number theory to show the inner most sector does not contain many primes, arguing as in the
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previous sections, we obtain that for large enough x,

(1 + o(1))

∫ arccot
(

c+1√
7(c−1)

)
arccot

(
c−1√
7(c+1)

) ( sin(t)√
7

+ cos(t)
)n

dt

∫ arccot
(

c+1√
7(c−1)

)
arccot

(
c−1√
7(c+1)

) ( sin(t)√
7
− cos(t)

)n
dt

≤

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<c|bp|<ap

anp

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<c|bp|<ap

bnp

≤ (1 + o(1))

∫ arccot
(

c+1√
7(c−1)

)
arccot

(
c−1√
7(c+1)

) ( sin(t)√
7

+ cos(t)
)n

dt

∫ arccot
(

c+1√
7(c−1)

)
arccot

(
c−1√
7(c+1)

) ( sin(t)√
7
− cos(t)

)n
dt

.

Now, letting x→∞, we have

lim
x→∞

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<c|bp|<ap

anp

∑
p≡1,2,4 (mod 7) prime

p≤x
p=2a2p+3apbp+2b2p, 0<c|bp|<ap

bnp
=

∫ arccot
(

c−1√
7(c+1)

)
arccot

(
c+1√
7(c−1)

) ( sin(t)√
7

+ cos(t)
)n

dt

∫ arccot
(

c−1√
7(c+1)

)
arccot

(
c+1√
7(c−1)

) ( sin(t)√
7
− cos(t)

)n
dt

.

3.3.5 Proof of Theorem 3.2.4

Again we only give a sketch of the proof.

Let c > 0 be a constant. Suppose a prime p ≡ 1 or 3 (mod 8) satisfies p = a2p + 2b2p

for positive integers ap and bp, such that 0 < cbp < ap. Let ω = ap +
√
−2bp = cos(t) + sin(t)i.

We have ap = cos(t) and bp = sin(t)√
2

, which implies that ω = ap +
√
−2bp ∈ Z

[√
−2
]

satisfies

0 < arg(ω) < arccot
(

c√
2

)
. We summarize the difference of the two situations in Table 3.4.

Let K = Q(
√
−2), and let µ = ν = 1 in Theorem 3.3.1. Then, we have hK = 1, wK = 2,

and ϕ(µ) = 1. For a constant c ≥ 1, we denote the region

R(X) =

{
z ∈ C : 0 < arg(z) < arccot

(
c√
2

)
, X < |z|2 ≤ X +Xη

}
.
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p ≡ 1 (mod 4) p ≡ 1, 3 (mod 8)
p = a2p + b2p p = a2p + 2b2p
ω = ap + bpi ω = ap + bp

√
−2

is a prime in Z[i] is a prime in Z
[√
−2
]

c = 1 c = 1
0 < bp < ap 0 < bp < ap
1 <

ap
bp

= cot(arg(ω)) 1√
2
<

ap√
2bp

= cot(arg(ω))

0 < arg(ω) < π
4 0 < arg(ω) < arccot

(
1√
2

)
general c general c
0 < cbp < ap, c ≥ 1 0 < cbp < ap, c > 0
c <

ap
bp

= cot(arg(ω)) c√
2
<

ap√
2bp

= cot(arg(ω))

0 < arg(ω) < arccot(c) 0 < arg(ω) < arccot
(

c√
2

)
Table 3.5: x2 + y2 vs. x2 + 2y2

Then, we have

∑
ω=ap+

√
−2bp∈R(X)

N(ω) prime
θ1<argω<θ2

1 =
∑

p≡1,3 (mod 8) prime
X<p≤X+Xη

p=a2p+2b2p, 0<cbp<ap

θ1<arccot(ap/
√
2bp)<θ2

1 ∼ (θ2 − θ1)× Xη

π logX
,

as X →∞, when 0 < θ1 < θ2 < arccot
(

c√
2

)
and Xη−1 < θ2 − θ1.

Let nX =

⌊
arccot

(
c√
2

)
θX

⌋
+1 for θX = 2Xη−1. Again, we divide R(X) into nX smaller regions:

R(X)j = {z ∈ C : (j − 1)θX < arg z ≤ jθX , X < |z|2 ≤ X +Xη}

for 1 ≤ j ≤ nX − 1, and

R(X)nX =

{
z ∈ C : (nX − 1)θX < arg z ≤ arccot

(
c√
2

)
, X < |z|2 ≤ X +Xη

}
.

For all primes inside the small region R(X)j , we bound their real parts and imaginary parts accord-

ingly, sum them up and use Riemann sums to bound the sums from above and below. Similarly, we
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obtain

∑
p≡1,3 (mod 8) prime

X<p≤X+Xη

p=a2p+2b2p, 0<cbp<ap

anp

≤(1 + o(1))(1 +Xη−1)
n
2

∫ arccot
(
c√
2

)
0 (cos(t))

n
dt∫ arccot

(
c√
2

)
0

(
sin(t)√

2

)n
dt

∑
p≡1,3 (mod 8) prime

X<p≤X+Xη

p=a2p+2b2p, 0<cbp<ap

bnp ,

and

∑
p≡1,3 (mod 8) prime

X<p≤X+Xη

p=a2p+2b2p, 0<cbp<ap

anp

≥(1 + o(1))(1 +Xη−1)
n
2

∫ arccot
(
c√
2

)
0 (cos(t))

n
dt∫ arccot

(
c√
2

)
0

(
sin(t)√

2

)n
dt

∑
p≡1,3 (mod 8) prime

X<p≤X+Xη

p=a2p+2b2p, 0<cbp<ap

bnp .

Next, we consider the region

R(x) =

{
z ∈ C : 0 < arg(z) ≤ arccot

(
c√
2

)
, 0 < |z|2 ≤ x

}
.

We split R(x) as the union of smaller regions

R(Xi) =

{
z ∈ C : 0 < arg z ≤ arccot

(
c√
2

)
, Xi < |z|2 ≤ Xi +Xη

i

}
,

where 1 ≤ i ≤ k, X1 + Xη
1 = x, Xi + Xη

i = Xi−1 for 2 ≤ i ≤ k, and Xk < x1/2 ≤ Xk−1, which

implies Xk = O(x1/2).

Summing up the corresponding anp and bnp from all small regions R(Xi), and using the prime

number theory to argue that the inner most sector does not contain many primes, arguing as in the
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previous sections, we obtain that for large enough x,

(1 + o(1))

∫ arccot
(
c√
2

)
0 (cos(t))

n
dt∫ arccot

(
c√
2

)
0

(
sin(t)√

2

)n
dt

≤

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<cbp<ap

anp

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<cbp<ap

bnp
≤(1 + o(1))

∫ arccot
(
c√
2

)
0 (cos(t))

n
dt∫ arccot

(
c√
2

)
0

(
sin(t)√

2

)n
dt

.

Now, letting x→∞, we have

lim
x→∞

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<cbp<ap

anp

∑
p≡1,3 (mod 8) prime

p≤x
p=a2p+2b2p, 0<cbp<ap

bnp
=

∫ arccot
(
c√
2

)
0 (cos(t))

n
dt∫ arccot

(
c√
2

)
0

(
sin(t)√

2

)n
dt

.

3.4 Future Projects

The main theorems in this chapter are related to very specific quadratic forms, which are

x2 + y2, x2 + xy + y2, 2x2 + 3xy + 2y2, and x2 + 2y2. We can generalize the results in many ways.

For symmetric quadratic forms ax2 + bxy + ay2, we discussed in Section 3.1.3 symmetric

quadratic forms with discriminant D such that h(D) = 1. Those forms are easier to deal with. It is

natural to ask whether we can deal with quadratic forms with discriminant D such that h(D) ≥ 2.

In that case, the primes might be harder to describe, but we can still try to evaluate the same type

of ratios as in Sun’s conjectures.

For non-symmetric quadratic forms, we discussed in Section 3.1.4 quadratic forms of the

form x2 + ny2, in particular, Theorem 3.2.4 is related to the quadratic form x2 + 2y2. We can try

to prove a general result that deals with all quadratic forms x2 + ny2. More generally, for primes in

arithmetic progressions represented by ax2p + bxpyp + cy2p, where a 6= c and b 6= 0, we can again sum

up all xp, divide the sum by the sum of all yp, and see whether the limit exists or not.

After we deal with all quadratic forms, we can move on to explore primes represented by

cubic forms with two variables, and forms of higher degrees with two variables, and even with more

than two variables. As they do not relate directly to quadratic forms, we will need to explore other

avenues to solve the questions.
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