SAITO-KUROKAWA LIFTS AND APPLICATIONS TO
ARITHMETIC

JIM L. BROWN

ABSTRACT. In this short survey paper we present an outline for using the
Saito-Kurokawa correspondence to provide evidence for the Bloch-Kato con-
jecture for modular forms. Specific results will be stated, but the aim is to
provide the framework for such results with an aim towards future research.

1. THE BLOCH-KATO CONJECTURE FOR MODULAR FORMS

In this section we will review the Bloch-Kato conjecture for modular forms.
The conjecture is presented in the general framework of using L-functions and
automorphic data to obtain arithmetic information. As such, we begin by reviewing
Dirichlet’s class number formula and the Birch Swinnerton-Dyer conjecture in this
framework.

Let K be a finite abelian Galois extension of Q. Of particular arithmetic interest
is the size of the class group of K, denoted by hx. In the spirit of the general
framework we are trying to establish, we associate automorphic objects to K in the
form of the group of characters X of K. Dirichlet’s class number formula gives a
precise relationship between the special values of the L-functions of these characters
and the size of the class group of K. In particular, we have
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where 71 is the number of real embeddings of K, ro the number of pairs of complex
embeddings, Rx the regulator of K, wx the number of roots of unity in K, and Dg
the discriminant of K. Note that for the trivial character in X, we write L(1,1)
to denote the residue at s = 1 of the L-function, in this case just the Riemann
zeta function. One sees that by studying the L-functions of the automorphic data
associated to K one can translate this back to the arithmetic data about K that is
of interest to us.

Let E be an elliptic curve over Q. The Mordell-Weil theorem gives that the
rational points on E are given by

E(Q) = E(Q)tors X ZT

where E(Q)tors is one of 15 possible finite groups and r is the rank of the elliptic
curve. Arithmetically, the rank of the elliptic curve is of great interest, as is the
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Shafarevich-Tate group III(E/Q) which is defined as follows:
HI(E/Q) = ker (Hl(Q E) = [[H'(@, E))
P

where we use the standard convention that H' (K, E) = H., . (Gal(K/K), B(K)).
The work of Taylor and Wiles ([TW], [W]) and subsequent work of Breuil, Conrad,
Diamond and Taylor ([BCDT]) shows that associated to E one has a weight 2
newform fg so that L(s, F) = L(s, fg). The Birch and Swinnerton-Dyer conjecture
can then be stated as

il—{q (s = 1),

L(S,fE) - (2TRE Tarn(E)
N (#E(@)tors)2

where Rg is the regulator of E, QJTE is a period associated to fg, and Tam(E) is
the Tamagawa factor.

In light of the above framework, one can consider the Bloch-Kato conjecture
as a vast generalization of Dirichlet’s class number formula and the Birch and
Swinnerton-Dyer conjecture to the framework of motives. The reader interested in
the general conjecture is directed to the original paper of Bloch and Kato ([BK]).
We begin by recalling the definition of the Selmer group. Let E be a finite extension
of Qp, O the ring of integers of F, and w a uniformizer. Let V' be a p-adic Galois
representation defined over E and let T C V be a Gal(Q/Q)-stable O-lattice. Set
W = V/T. Define spaces H}(Qq, V) by

- Hur(@fv V) ¢ 7& p
H}(le V)= { ker(Hl(qu V) — Hl(@p, Ve Bcrys)) t=p

) #111(E/Q)

where
Hy, (Q¢, M) = ker(H' (Q¢, M) — H' (I, M)

for any Gal(@/ Q¢)-module M with I, the inertia group and B,y Fontaine’s ring
of p-adic periods. The Bloch-Kato groups H:]lc (Q¢, W) are defined by

H(Qq, W) = im(H}(Qp, V) — H(Qr, W)).
The Selmer group of W is given by

1 1 H'(Q,, W)
Hf(@7 W) = ker (H (Qu W) - @ H}(Qé, W)) ’
i.e., it consists of cocycles in Hl(Q, W) that when restricted to the decomposition
group at £ lie in H}(Qg, W) for each prime £. When working with modular forms of
level greater then 1, it is often necessary to work with a larger Selmer group where
we do not require any conditions at the primes dividing the level. Suppose f is of
level is N and set 3 = {¢ | N}. The relevant Selmer group is then

1
HY¥(Q, W) = ker [ HY(Q, W) — H@Q,W)}
f QW) er ( Q,w) gé.é H} (Qq, W)

We are now in a position to state the Bloch-Kato conjecture for modular forms.
For each prime p, let V}, be the p-adic Galois representation arising from a weight
2k —2 newform f. Let T}, be a Gal(Q/Q)-stable lattice and W), = V},/T},,. We denote
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the j*® Tate-twist of V,, by V,(j) and similarly for W),. Let 7, be the natural map
HY(Q,V,(4)) — H(Q, W,(j)). The Shafarevich-Tate group is defined to be

I(j) = P HHQ, We(j))/m. H}(Q, Vi(5)).
4

Define the set of “global points” by
To(i) = PH(Q Wel)-
¢

One should think of these as the analogue of the rational torsion points on an
elliptic curve.

Conjecture 1.1. (Bloch-Kato) With the notation as above, one has

(IT ce(k))
Lag(k, f) = (1 — k£
where ¢, (j) are “Tamagawa factors” and we define
L(k, f)

LOTL
7TQf

Lalg(k}, f) =

and the period Q?E is chosen based on the parity of k.

Remark 1.2. 1. It is known that away from the central critical value the Selmer
group is finite ([K], Theorem 14.2). Therefore we can identify the p-part of the
Selmer group with the p-part of the Shafarevich-Tate group.

2. If Ty /wTy is irreducible, then HY(Q, W (5)) = 0.

3. The Tamagawa factors are integers. See ([BK], Section 5) for definitions and
discussion.

The results we aim to prove are of the form that if w|Laig(k, f) and w does not
divide some other product of special values of normalized L-functions, then one has

1,5
pl#H(Q,Wy(1 - k).
2. RIBET’S PROOF OF THE CONVERSE OF HERBRAND’S THEOREM

In 1976 Ribet published a short paper using modular forms and Galois rep-
resentations to prove the converse of Herbrand’s theorem ([R]). This work was
subsequently generalized by Wiles in his proof of the main conjecture of Iwasawa
theory for totally real fields. We briefly outline this argument here as it provides
a framework for recent work on the Bloch-Kato conjecture; for example see [Kl] or
[SU] for applications other then those described in this paper.

Theorem 2.1. Let p be a fized odd prime and x : (Z/NZ)* — @: an even
primitive Dirichlet character of order prime to p, x # w™2. Suppose xw I, 7 1
as a character into F); where I, denotes the inertia group at p. Set ¢ = xw and
F = QY. If L(—1,x) is not a unit in @p, then Afjl = Ar ®z,(a] F,(v™1) #0
where A = Gal(F/Q) and we write F,(¢=1) to denote F,, with an action of A by
(Can

To prove the theorem, one constructs a nontrivial unramified abelian p-extension
of F on which A acts by ¥~!. This is accomplished by constructing an appropriate
Galois representation.
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Recall that there exists an Eisenstein series Ei ,(z) € Ma(N, x) with constant

term M and /*® Fourier coefficient given by cg(f) = 1 + x(¢)¢. The first step
in Ribet’s argument is to produce a cuspidal eigenform f so that the eigenvalues of
f are congruent to those of E; ,(z) modulo a prime w that divides L(—1, x). Note
that modulo w the Eisenstein series is a semi-cusp form, i.e., it is a modular form
with a constant term of 0 in the Fourier expansion about the cusp infinity. One can
show that there is a modular form g € M(M, x) with constant term 1 for some
M with N | M by studying the geometry of the modular curve X;(p). In fact, one

can choose M so that ord,(M) < 1 and if £|M with £ { Np, then y(Froby) # (=2
modulo any prime above p. One then sets h = Eq ,(z) — MQ. The modular
form h is congruent to Ej ,(z) modulo w and is in fact a semi-cusp form. Note
that h is not necessarily an eigenform, it is only an eigenform modulo w. One then
applies the Deligne-Serre lifting lemma to obtain a semi-cusp form f’ that is an
eigenform and congruent to Ei ,(z) modulo w. A short argument then yields an
ordinary cusp form f that is an eigenform and congruent to Ej (z) modulo w.
It may be of interest to note that this can be phrased in terms of the Eisenstein
ideal if one wishes. If I = (T; — 1 — x(){) C 'IFEDM) is the Eisenstein ideal, then

equivalently one has the following isomorphism
T6" /1= O/(L(~1,%)).

One would be interested in the statement in this language if one wanted to formulate
the results on the Bloch-Kato conjecture in terms of the CAP-ideal (see [K1]). We
will not pursue such a formulation here so only mention the Eisenstein ideal in
passing.

The reason we are interested in such a congruence is because of what it tells us
about the residual Galois representation of f. Let py : Gal(Q/Q) — GLy(F) be the
residual representation obtained upon composing p; with the natural map © — F =
O/w. Observe that the congruence to F; ,(z) modulo w gives trace(p,(Froby)) =

ar(f) =1+ x(€)l(mod w), i.e., p;° = 1 @ ¢ where ¢ = xw. Using the fact that f
is ordinary at p so that we have

X1 ok
ple”:(O X2)

where X2 is unramified at p and satisfies ya(Frob,) is the unit root of 22 —a¢(p)z +
x(p)p*~1, one shows that in fact
— (1 =

and is non-split. One knows that p; is unramified away from pM because f has level
M. Some relatively straight-forward calculations with tame inertia allow one to
conclude that 7 is unramified everywhere. Thus, if one defines h : Gal(Q/F) — F
by h(c) = *(c) then one can show that the splitting field Q" of h is the extension
we seek.

In the following sections we will see how this type of argument can be adapted
to our situation.
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3. SAITO-KUROKAWA LIFTS

In the previous section we outlined Ribet’s proof of the converse of Herbrand’s
theorem. The main point of the argument was to produce a cuspidal eigenform
congruent to an Eisenstein series. The reason for this was that the particularly
simple form of the Galois representation of the Eisenstein series could be used
to deduce information about the residual Galois representation of f. In order to
apply Ribet’s argument to our situation we need to find a suitable substitute for
the Eisenstein series used in Ribet’s argument. The substitute we seek is a Saito-
Kurokawa lift. One begins with a cusp form f on SL2(Z) and associates a cusp form
F; on Spy(Z). In the language of automorphic forms, Fy is a CAP form (cuspidal
associated to parabolic). What this means is that F}y is a cusp form that has
the same Hecke eigenvalues almost everywhere as the Eisenstein series obtained
by inducing the cuspidal automorphic representation m; of GLy viewed on the
Siegel parabolic to an automorphic representation on GSp,. For the details of this
construction in the language of automorphic representations one should consult
([PS]). We will be interested in the classical description of the Saito-Kurokawa
correspondence as described in ([EZ], [MRV], [MR], [Z]). As this correspondence is
well-known and the references listed provide all the details of the construction, we
content ourselves here with stating the facts we will need.

Let f € S3Y,(To(IN)) be a newform with Fourier coefficients in some ring O.
The Saito-Kurokawa lift is constructed as a series of lifts: first lifting f to a half-
integer weight form in Kohnen’s +-space, then lifting this form to a Jacobi form,
finally lifting the Jacobi form to a Siegel cuspidal eigenform we denote by Fy. The
form Fy lies in the Maass space, denoted by S;"*"(I'$(N)). The precise result is
as follows.

Theorem 3.1. ([MRV], Theorem 8) The space S;"" (L$(N)) is isomorphic to the
space S35 (To(N)) for N odd and square-free. Given a newform f € S5, (To(N)),
the corresponding Fy € S;"" (T'§(N)) has modified Spinor L-function satisfying

(1) spin(8: F) = C(s =k +1)¢(s =k +2)L(s, f)
where the modified Spinor L-function is defined by

(s, ) = [ TTI =710 =p*27) 7 | Lopin(s, F).
pIN
We will be interested in the arithmetic properties of this correspondence, so we
will need the following result as well.

Corollary 3.2. ([B5|, Corollary 2.7) If f has Fourier coefficients in O, there is a
normalization of the Saito-Kurokawa lift so that Fy has Fourier coefficients in O.
In particular, if O is o discrete valuation ring, Fy has a Fourier coefficient in O .

There are two other main results we will need about Saito-Kurokawa lifts. The
first is the calculation of the inner product (F, Fy) in terms of (f, f). We will need
this result as one of the main steps in our argument is to produce a congruence
between a Saito-Kurokawa lift and a Siegel eigenform that is not a CAP form. This
is the analogous step to Ribet’s construction of a cuspidal eigenform congruent to
to the Eisenstein series E1 , (z). In the case of level 1 this inner product calculation
is a well-known result, see for example [F] or [KS]. For the case of square-free level
N > 1 the result is as follows.
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Theorem 3.3. ([B2], Theorem 1.1) Let N = p;y...p, with the p; odd distinct
primes, [ € S5 (To(N)) a newform, and Fy € 8" (L§(N)) the Siegel mod-
ular form associated to f wvia the Saito-Kurokawa correspondence. Let D be a
fundamental discriminant with (—=1)*=1D > 0, gcd(N,D) = 1, xp the associated
quadratic character, and cy(|D]) # 0 where the ¢, are the Fourier coefficients of
the half-integral weight modular form associated to f via the Saito-Kurokawa cor-
respondence. Then one has

(2) (Ff,Fy) = Byn |Cg(|D|)|2 L(k, f)

N FDIESR LG 1 o) T

where
o NER DT, ()
BN T ont3g [Sp4(Z) : I‘g(N)] [To(N) : To(4N)]

One should note here that this calculation really only relies on the explicit nature
of the Saito-Kurokawa correspondence and contains no deep results. It is possible
to calculate such inner products in other similar situations. For example, the cor-
responding statement in terms of unitary groups and Hermitian modular forms can
be found in [KI]. In the symplectic case, more generally one can calculate a similar
relation for the Ikaeda lift Fy on Sp,,, (Z) where in this case the relation is between
(Ff, Fy) and (f, f)™. This result is given in [CK] where the explicit formula is not
worked out, but the foundations for such a calculation are set.

Finally, to complete the analogy with the Eisenstein series as used by Ribet we
should have a particularly simple form for the 4-dimensional Galois representation
associated to Fy (see Theorem 5.1). This is in fact the case and follows from
the factorization of the Spinor L-function of Fy. We have pp, = e¥72 @ py @ eh~1
where ¢ is the p-adic cyclotomic character and py is the p-adic Galois representation
associated to f. Comparing this with the fact that pg, , = 1 ® xw we see that
the Saito-Kurokawa lift is a suitable replacement for the Eisenstein series in our
situation.

4. CONGRUENCES

In this section we will give a general outline for producing congruences between
Saito-Kurokawa lifts and cuspidal Siegel eigenforms that are not CAP forms. These
congruences rely on being able to calculate certain inner products of pullbacks of
Eisenstein series and Saito-Kurokawa lifts. We will stick to giving a general outline
of the argument. We outline the method in much greater generality then it is
known to work for, thereby providing an outline for future research. For a detailed
treatment of such an argument in the cases it is known to work the reader can
consult [B3], [B4], or [B5].

One begins by defining a Siegel Eisenstein series E on some symplectic space
SPom(Z) with the Eisenstein series normalized to have p-integral Fourier coeffi-
cients. The specific Eisenstein series and symplectic space vary depending on the
application. The important part is that one must be able to form the pullback of
this Eisenstein series to some product of the symplectic groups Sp,(Z) and Sp,(Z).
We need at least one copy of Sp,(Z) to occur since we are interested in Saito-
Kurokawa lifts. If one wanted to work with Ikaeda lifts, one would want copies of
Spy(Z) and Sp,,, (Z) instead.
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Suppose we have such a pullback. Write our pullback as E(Z;, Zs,...,Z,) for
Z; € b™ where h™ is the Siegel upper half-space on which Sp,,, (Z) acts and we
have 2n1 +2ns+- - -+ 2n,. = 2m. For simplicity assume that n; = 2 so that the first
factor will correspond to Sp,(Z). For example, the two cases in which we will state
concrete results are the case of the space Spg(Z) pulled back to Sp,(Z) X Sp,(Z)
and the space Sp;,(Z) pulled back to Sp,(Z) x Sp,(Z) x Spy(Z). The important
and difficult (at least from the author’s point of view) step is now to calculate the
inner product of E(Z1,..., Z,) with particular forms of our choosing on Sp,,, (Z).
For the factors of Sp,(Z), we choose our particular form to be Fy. For the factors
of Spy(Z), any newform will do as we will ultimately allow this form to vary. Write
FO for our “particular” form at the ith place. One hopes to obtain a relationship
of the form

3)  (--(E(Z,...,Z.), FV(Z,))--YF"(Z,)) =C H L-fctns Hperiods

where C is an explicitly determined constant and the product over periods is a
product containing terms of the form (F(®), F(®) for some of the i. For example,
using the inner product given in [Shim95] for Sp,(Z) x Sp,(Z) one obtains

<<E(Z1a Z2)7Ff(Zl)>Ff(Z2)> =C- L(3 - k?X)L(lva X)L(27f7 X)<Ff7Ff>

where x is a character that is used in the definition of F and f is of weight 2k — 2.
One should note that Shimura’s formula is true for Sp,, (Z) X Sps,,(Z) so a similar
statement holds for Ikaeda lifts. The product of L-functions that occur will play an
important role in our divisibility conditions needed to ensure our congruence exists.

Choose an orthogonal basis Fy = FY, Fy,...,Fy of weight k Siegel forms on
Sp,(Z) and an orthogonal basis g1, ...,g: of weight k elliptic modular forms on

Sps(Z) with g1 being a newform. For each Z;, write Hl(j) for the i;th basis element.
Thus, if Z; corresponds to Sp,(Z) then HY = F;; and if Z; corresponds to Spy(Z)

25

then Hl(j) = gi;- We can expand E(Zy, ..., Z,) in terms of these bases:

1 T
(4) E(Zy,....Z0) =Y e H(Z) - H(Z,).

For example, in the case of Spy(Z) x Sp4(Z) x Spy(Z) we write
B(Zy,22,Z3) = Y, Ciryinis Fir (Z1) Fiy (Z2) 95 (Z3).

11,22,13
In order to ensure the congruence we construct does not produce a congruence
betwween Fy and another Saito-Kurokawa lift, it is necessary to kill all the other
Saito-Kurokawa lifts that occur in the above expansion. This is accomplished by
constructing an appropriate Hecke operator and then applying it to the expansion
in equation (4). We omit the details and assume hereafter that this has been
performed. For the details of such a construction see [B3] or [B5].

The coefficient ¢; 1.1 is the coefficient that “controls” the congruence we seek
to establish. Suppose that we are able to write ¢1,1,..1 = w1 A for w a uniformizer
of some finite extension O of Z, and A € O*. Multiplying equation (4) through by
w and using that E has p-integral Fourier coefficients and a little work we obtain
a congruence modulo w of the form

AHM(Z0) - B(Z) = = Y wey,

.....

W HY(21)- BT (Z,)(mod w).
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For j > 1, we expand the Z; terms in their Fourier expansions and equate the
appropriate Fourier coefficients to obtain a congruence

Fy(Z1) =Y & Fi(Z)(mod @),
i>1

Thus, it only remains to study the coefficient ¢;1,... 1. To do this we combine
equation (3) with equation (4). Using these equations and the fact that Z; corre-
sponds to Sp,(Z), we will obtain a (Fy, Fy) in the denominator of ¢1 1, 1. Thus, we
can apply Theorem 3.3 to replace (F, Fy) and obtain L(k, f) in the denominator of
c1,1,...,1. Therest of ¢ 1,... 1 will consist of things that are p-units and then the rest
of the L-functions coming from equation (3) and the L-function L(k—1, f, xp) from
Theorem 3.3. The periods occurring are used to normalize the L-functions. Thus,
we obtain statements of the form that if w|Laig(k, f) and @ does not divide some
product of L-functions, then there is a congruence between F'y and a Siegel modular
form G that is not a Saito-Kurokawa lift. In order to make G into a cuspidal eigen-
form some more work is required, but we omit the details. One should also note
that we assume p; is irreducible and so one cannot have Fy congruent to a CAP
form that is not a Saito-Kurokawa lift because of the shapes of the corresponding
Galois representations.

We now list two specific results as an illustration of theorems proven in this
manner.

Theorem 4.1. ([B3], Theorem 6.5) Let k > 3 be an even integer and p a prime
so that p > 2k — 2. Let f € Sop_2(SLa(Z),O) be a newform with real Fourier
coefficients and Fy the Saito-Kurokawa lift of f. Suppose that p; is irreducible and
f is ordinary at p. If there exists an integer M > 1, a fundamental discriminant
D so that (=1)*"1D > 0, xp(—1) = =1, pt MD[Sp4(Z) : T¢(M)], and a Dirichlet
character x of conductor M so that

w™ | Lalg(ka f)
with m > 1 and

w" || L(?) - k? X)Lalg(k - 17 f7 XD)Lalg(lu f7 X)Lalg(27 f7 X)

with n < m, then there exists a cuspidal Siegel eigenform G on Spy(Z) of weight
k that is not a CAP form so that F;y = G(modw) where the congruence is a
congruence of eigenvalues.

Theorem 4.2. ([B4]) Let k € 2Z, k > 6 and let p > 2k + 3 be a regular prime. Let
f € Sop—2(SL2(Z)) and h € Sk (To(M)) be newforms with Fy the Saito-Kurokawa
lift of f. Assume further that f is ordinary at p. If

@™ | Lag(k, f)
and
@"||Laig(2k — 4, f)Lag(2k — 3, Ff @ h)
with n < m, then then there exists a cuspidal Siegel eigenform G on Sp,(Z) of

weight k that is not a CAP form so that Fy = G(mod w) where the congruence is
a congruence of eigenvalues. Note that Lag(s, Fy @ h) is a convolution L-function.

Note the essential difference in the two theorems is the L-function we want our
prime w to “miss”. In the first theorem we have the freedom to move a character x
around to try and cause w to miss the L-values. The second theorem allows us to
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move a modular form around instead, providing more freedom and hopefully more
instances where the L-values are “missed” by w. It should also be mentioned that
Theorem 4.2 will appear in [B4] only in the case of h having level 1. The general
case is still work in progress and will appear in a future paper.

5. (GALOIS REPRESENTATIONS AND SELMER GROUPS

This final section deals with the problem of using an eigenvalue congruence of
the form F; = G(modw) between a Saito-Kurokawa lift and a cuspidal Siegel
eigenform that is not a CAP form to produce nontrivial p-torsion elements in an
appropriate Selmer group. We begin with the following result stating the existence
of the desired Galois representations.

Theorem 5.1. ([SU], Theorem 3.1.3) Let F € S,(Ta(N)) be an eigenform, Kp
the number field generated by the Hecke eigenvalues of F', and p a prime of Kp
over p. There exists a finite extension E of the completion Kp, of Kr atp and a
continuous semi-simple Galois representation

prp : Gal(@/Q) — GLa(E)
unramified at all primes £t pN and so that for all £+ pN, we have

det(X - T — ppp(Froby)) = LY. (X).

spin
We also need the following result.

Theorem 5.2. ([Falt], [U]) Let F' be as in Theorem 5.1 with p a prime not dividing
the level of F'. The restriction of pr, to the decomposition group D, is crystalline
at p. In addition if p > 2k — 2 then pp, is short.

Recall that in section 3 it was stated that for 'y a Saito-Kurokawa lift, the Galois
representation associated to FY is of the form
k—2
€

PFpp = Pf.p

where ¢ is the p*" cyclotomic character. This fact along with the eigenvalue con-
gruence Fy = G(mod w) allows one to deduce that
k—2
w

PGy = Prpp = Pt

where we use w to denote the reduction of € modulo w. The goal is to use this
result on the semi-simplification of p; , to deduce the form of p; ,. In particular,
simple matrix calculations allow one to conclude that there is a Gal(Q/Q)-stable
lattice so that one has
whk—2 *1 *9
Pap =1 *3 Prp *4
wk—
where either %7 or *3 is zero. For the details of these calculations one can consult
[B1].
In analogy with Ribet’s result, we would like to show that %4 gives a non-zero
class in the Selmer group H}’Z(Q, Wy p(1—E)). We first need the following result.
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The proof of this proposition is a direct generalization of the corresponding result
in [R].

Proposition 5.3. Let pg , be such that it does not have a sub-quotient of dimension
1 and p&, = w2 @ Prp @ wk=L. Then there exists a Gal(Q/Q)-stable O-lattice
in Vg having an O-basis such that the corresponding representation p = pgp :
Gal(Q/Q) — GL4(O) has reduction of the form

wk_2 *1 *o
() Pap=1| * Prp *4
wk—l

and such that there is no matriz of the form

1 ny
1 N9

1 ns

1

(6) U= € GL4(0)

such that p' = UpU =" has reduction of type (5) with xg = %4 = 0.

We split into two cases, *3 = 0 and %x; = 0. Suppose x3 = 0. We wish to show
that the quotient extension

) (i )

is not split. Suppose it is split. Then by Proposition 5.3 we know that the extension

0 ("0 )

cannot be split as well. One can then use class field theory and some arguments
in tame inertia to show that this gives a non-trivial quotient of the w™'-isotypical
piece of the p-part of the class group of Q({,). However, this is impossible by
Herbrand’s theorem. Thus we have that the quotient extension (7) is non-split.
A similar argument deals with the case of x; = 0. The properties of the Galois
representation pg,p and the fact that p > 2k — 2 so that pg,p is crystalline and
short at p give that %4 gives a non-trivial p-torsion element in H;’E(Q, Wip(1—E)).
Thus, we have the following theorem. '

Theorem 5.4. Let f € Sop_2(L'g(N)) be a newform with Fy the Saito-Kurokawa
lift of f. If there is a non-CAP cuspidal Siegel eigenform G so that Fy = G(mod w),

then H}»’E(Q, Wi o(1 —k)) is non-trivial and p | #H}’Z(Q, Wio(l—E)).

The main point to notice here is that the input to these Galois representation
arguments is an eigenvalue congruence Fy = G(mod w). Once one knows such a
congruence, the arguments given produce the non-trivial p-torsion element in the
Selmer group regardless of how one achieved such a congruence. The hope is that
by looking at more general inner product formulas as in the outline given in section
4 one can produce congruences with conditions that are easier to satisfy.
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