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Abstract

Let p be a prime number and let K be a local field of residue characteristic p. In

this paper we give a formula that counts the number of degree n tamely ramified

extensions of K in the case p is of order 2 modulo n.
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1. Introduction

A central problem in number theory is to classify finite field extensions E/F for F

a global field. As there are infinitely many such extensions for any fixed degree n,

this is a difficult problem. It is often more tractable to instead classify local field

extensions and use this information to study global field extensions. In particular,

given a local field K of residue characteristic p, it is well known that up to isomor-

phism there are only finitely many extensions E/K of fixed degree n and so such

classifications are tractable. In this paper we provide a formula for the number of

degree n tamely ramified extensions of K in the case that p has order 2 modulo n.

One can see Theorem 1 for a precise statement of the result.

The classification of finite extensions of local fields amounts to classifying un-

ramified, tamely ramified, and wildly ramified extensions. Unramified extensions

are easy to classify as there is only one such field extension for each fixed degree n.

Classifying wildly ramified extensions is much more difficult and complete classifi-

cations are only known for small degrees (see for example [1, 2, 4]). In this paper we

study the case of tamely ramified extensions, which falls between unramified and

wildly ramified extensions in terms of difficulty.

Let e | n be a ramification index and set f = n/e to be the residue class degree.

The number of degree n ramification index e extensions of K has been calculated

by Roquette by studying defining polynomials for tamely ramified extensions over

the inertia field of K. The reader is referred to [3, Chap. 16] for a description of

these results. We take a different approach that relies only on elementary counting

and group action arguments. Set ge = gcd(e, pn/e − 1). It is known that up to

isomorphism the number of degree n ramification index e extensions of K is exactly

the number of orbits of Z/geZ under the action of p ([3, Chap. 16]). We use

elementary methods to calculate the size of the orbits of Z/geZ under the action

of p, and thus the number of degree n ramification index e extensions of K. We

then use these orbit counts to provide a formula for the number of degree n tamely

ramified extensions of K in the case that p has order 2 modulo n by summing over

the number of orbits.

In section 2 we present two straightforward cases where the orbit structure is

easy to write down. We then deal with determining the orbit structure of Z/gZ
under the action of p when p has order ℓ modulo g where ℓ is a prime. Finally,

in section 4 we use the orbit counts to give our formulas for the number of tamely

ramified extensions of K of degree n when p has order 2 modulo n.

In this paper we adopt the following notation. We denote the order of p in

(Z/gZ)× by ordg(p). We write vp(n) = m if pm || n. We will denote an orbit in

Z/gZ containing a under multiplication by p by Og(a, p). We let K(n, p) denote the

number of degree n tamely ramified extensions of K up to isomorphism and O(e, p)

the number of orbits of Z/geZ under the action of p, where we recall from above
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that ge = gcd(e, pn/e − 1), which will be used throughout. In particular, we have

K(n, p) =
∑

e|n O(e, p).

2. A couple of straightforward cases

We now give the two simplest cases, namely when p ≡ ±1 (mod n). Given a non-

negative integer k and a positive integer n, let σk(n) denote the sum of the kth

powers of the positive divisors of n, i.e.,

σk(n) =
∑
d|n

dk.

In particular, the function σ0(n) is simply the number of divisors of n (often denoted

τ(n)), and the function σ1(n) is simply the sum of divisors of n (often denoted σ(n)).

Proposition 1. Let p ≡ 1 (mod n). Then we have K(n, p) = σ1(n).

Proof. Let e | n. Note that since p ≡ 1 (mod n), we have p ≡ 1 (mod e) so

pn/e− 1 ≡ 0 (mod e). Thus, ge = e. Since p ≡ 1 (mod e), multiplication by p sorts

Z/eZ into e distinct orbits. Thus, O(e, p) = e. This gives the result.

Proposition 2. Let p ≡ −1 (mod n). We have

K(n, p) = σ0(n)

if n is odd and

K(n, p) = (m+ 3/2)σ0(m) + 2m−1σ1(m)

if n is even and we write n = 2mb.

Proof. First, suppose that n is odd and let e | n. Since n is odd, so is e and hence

so is n/e. This gives

pn/e − 1 ≡ (−1)n/e − 1 (mod e)

≡ −2 (mod e),

i.e., pn/e + 1 ≡ 0 (mod d) for every divisor d | e. However, this means if ge > 1,

we must have some d > 1 with d | e so that d | pn/e − 1. This implies d | pn/e − 1

and d | pn/e +1, i.e., d | 2. However, this is impossible since n is odd. Thus, ge = 1

for every e | n. Thus, O(e, p) = 1 for every e and so the number of extensions is

exactly the number of divisors of n, i.e., K(n, p) = σ0(n).

Consider the case now when n = 2mpm1
1 · · · pmr

r with m > 0. Let e | n with

v2(e) < m. This implies n/e is even and so pn/e ≡ 1 (mod n). In particular, we

have pn/e ≡ 1 (mod e). Thus, e | pn/e − 1 and so ge = e. Let a ∈ Z/eZ. If
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0 < a < e/2, then 2a < e and so 2a ̸≡ 0 (mod e). Thus, pa ̸≡ a (mod e) and hence

#Oe(a, p) = 2. If e/2 < a < e then e < 2a < 2e, so 2a ̸≡ 0 (mod e). This implies

pa ̸≡ a (mod e) and thus #Oe(a, p) = 2. If e/2 is an integer, then #Oe(e/2, p) = 1.

Thus, in this case the numbers of orbits of Z/eZ under the action of p is given by

O(e, p) =

{
e
2 + 1 e even
e+1
2 e odd.

The contribution from these cases to the total number of extensions is given by∑
e|n

v2(e)=0

(
e+ 1

2

)
+

∑
e|n

0<v2(e)<m

(e
2
+ 1

)
.

The remaining case to deal with is when v2(e) = m. Here we have n/e is odd, so

pn/e ≡ −1 (mod e). Thus, pn/e − 1 ≡ −2 (mod e) and so pn/e − 1 cannot have any

odd prime divisors in common with e. However, if 2k | pn/e − 1, then we have

0 ≡ pn/e − 1 (mod 2k)

≡ −2 (mod 2k).

This can happen only if k = 1, so ge = 2 in this case. Since p ≡ 1 (mod 2), this

gives that p splits Z/2Z into 2 distinct orbits. Thus, we obtain∑
e|n

ord2(e)=m

2

extensions from this case. Combining all of these gives that

K(n, p) =
∑
e|n

v2(e)=0

(
e+ 1

2

)
+

∑
e|n

0<v2(e)<v2(n)

(e
2
+ 1

)
+

∑
e|n

v2(e)=v2(n)

2.

If we write n = 2mb, then we have the following simplifications. We have∑
e|n

v2(e)=0

(
e+ 1

2

)
=

∑
e|b

e

2
+
∑
e|b

1

2

=
σ1(b)

2
+

σ0(b)

2
,
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∑
e|n

0<v2(e)<v2(n)

(e
2
+ 1

)
=

m−1∑
j=1

∑
e|b

(
2je

2
+ 1

)

=
1

2

m−1∑
j=1

∑
e|b

2je+
m−1∑
j=1

∑
e|b

1

=
1

2

m−1∑
j=1

2jσ1(b) + (m− 1)σ0(b)

=

(
2m − 1

2

)
σ1(b) + (m− 1)σ0(b),

and ∑
e|n

v2(e)=v2(n)

2 = 2
∑
e|b

1

= 2σ0(b).

Combining all of these gives the result.

The next simplest case to study is where n is square-free and p is of order 2

modulo n. However, even this is quite a bit more complicated and one does not get

nearly as clean of a formula as one gets in the previous case where p ≡ ±1 (mod n).

3. Counting orbits

In this section we present results on counting orbit sizes that will be necessary to

generalize the cases presented in the previous section. This section provides the

heart of the paper.

Throughout this section we write g = 2mpm1
1 · · · pmr

r with m ≥ 0, mi ≥ 1, and

the pi are distinct odd primes.

Lemma 1. Let a ∈ (Z/gZ)× and let ordg(p) = k. Then #Og(a, p) = k.

Proof. We know that #Og(a, p) ≤ k as Og(a, p) ⊂ {a, pa, p2a, . . . , pk−1a}. Suppose
that #Og(a, p) < k. Then there exists 1 ≤ j < k so that pja = a. However, since a

is a unit this is equivalent to pj = 1, which contradicts ordg(p) = k.

Lemma 2. Let m ≥ 1 and set g = 2m. Let p be an odd prime with ord2m(p) = 2.

We have the following orbit structure of Z/gZ under the action of p:

1. if m = 1, there are two orbits each of size 1;
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2. if m = 2, there are two orbits of size 1 ({0}, {2}) and one orbit of size 2

({1,3});

3. if m ≥ 3, then we split into cases:

(a) if p ≡ −1 (mod 2m), then all orbits have size 2 except {0} and {2m−1}
are their own orbits;

(b) if p ≡ 2m−1 − 1 (mod 2m), then all orbits have size 2 except {0} and

{2m−1} are their own orbits;

(c) if p ≡ 2m−1 + 1 (mod 2m), then if a is even {a} is its own orbit, and

otherwise the orbit has size 2.

Proof. Clearly if g = 2 there are exactly 2 orbits. If g = 4, then the only element

of order 2 is 3, and this falls under what we have done above as 3 ≡ −1 (mod 4),

so the orbits are size 2 if a = 1, 3 and size 1 if a = 0, 2. We can now assume

m ≥ 3. We claim there are exactly 3 elements of order 2 in (Z/2mZ)× and they

are given by −1, 2m−1 ± 1. To see there are three elements of order 2, recall that

(Z/2mZ)× ∼= C2×C2m−2 where Cn is a cyclic group of order n. Let x be the unique

element of order 2 in C2 and let y be the unique element of order 2 in C2m−2 . Then

the only elements of order 2 are given by (x, y), (1, y), and (x, 1). It is now simple

to see the elements claimed have order 2 by using the fact that m ≥ 3 so

(2m−1 ± 1)2 = 22m−2 ± 2m + 1

≡ 2m2m−2 + 1 (mod 2m)

≡ 1 (mod 2m).

Thus, we only need consider these three elements when determining the orbit struc-

ture. We already know if p ≡ −1 (mod 2m), then the orbits have size 2 except for

a = 0, 2m−1. Let p ≡ 2m−1 − 1 (mod 2m). If a = 2m−1, we have

pa = 2m2m−2 − 2m−1

≡ −2m−1 (mod 2m)

≡ a (mod 2m).

Thus, a = 0, 2m−1 have orbits of size 1. We know all odd a have orbits of size 2,

so it remains to deal with the case that a = 2jb for 1 ≤ j < m − 1 and b odd. If

pa ≡ a (mod 2m), then using that b is a unit modulo 2m we have

(2m−1 − 1)2j ≡ 2j (mod 2m),

which is equivalent to m | (m− 2). However, this is impossible since m ≥ 3. Thus,

unless a = 0, 2m−1 we have #O2m(a, p) = 2. It now only remains to deal with

p ≡ 2m−1 + 1 (mod 2m). Here we claim #O2m(a, p) = 1 unless a is odd. We have

that if a is odd then the orbit size is size 2, so it only remains to show that if a is

even it is its own orbit. This is easy as (2m−1 + 1)2j ≡ 2j (mod 2m).
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We now return to the general case g = 2mpm1
1 · · · pmr

r . The next case to deal

with is when ordg(p) = ℓ, ℓ a prime, and if ℓmℓ || g then ordℓmℓ (p) = 1. Observe

the last requirement gives that in order to have an element p of order ℓ modulo g,

it must be the case that ℓ | (pi − 1) for some i = 1, . . . , r. We will make use of the

following fact in the proof of Lemma 4.

Lemma 3. Suppose ordg(p) = ℓ where ℓ is a prime and assume if ℓmℓ || g then

ordℓmℓ (p) = 1. If ordpmi
i

(p) = ℓ, then ordpi(p) = ℓ.

Proof. Our assumption implies that ℓ | (pi − 1). Suppose that it is the case that

ordpi(p) = 1. Set D = (pi − 1)pmi−1
i and observe we have a commutative diagram

where θ is the natural projection map taking a (mod pmi
i ) to a (mod pi), CD and

(Z/pmi
i Z)×

∼= //

θ

��

CD

ϕ

��
(Z/piZ)×

∼= // Cpi−1

Cpi−1 are cyclic groups, and if we write CD = ⟨x⟩, then ϕ is the map that sends x

to xp
mi−1

i , which is a generator of Cpi−1.

Since p has order ℓ in (Z/pmi
i Z)×, it necessarily corresponds to an element of

the form xaD/ℓ for some 0 < a < ℓ. Note that we cannot have pi − 1 | aD
ℓ since

vℓ

(
p
mi−1

i aD

ℓ

)
< vℓ(pi − 1) as ℓ - pia. Thus, we must have that ϕ(xaD/ℓ) ̸= 1 in

Cpi−1. However, this contradicts the fact that we are assuming θ(p) = 1.

Lemma 4. Suppose ordg(p) = ℓ where ℓ is a prime and assume if ℓmℓ || g then

ordℓmℓ (p) = 1. Set M =
∏

j p
mj

j so that ord
p
mj
j

(p) = ℓ. Let a ∈ Z/gZ.

1. If gcd(a, g) = 1, then #Og(a, p) = ℓ.

2. If gcd(a, g) > 1, then:

(a) if M | a, then #Og(a, p) = 1;

(b) if M - a, then #Og(a, p) = ℓ.

Proof. We have already covered the case gcd(a, g) = 1.

Assume now that M | a. The claim is that #Og(a, p) = 1. Let N = g/M .

We use the isomorphism Z/gZ ∼= Z/MZ × Z/NZ to write p = (pM , pN ) and a =

(aM , aN ). Note that ordM (pM ) = ℓ and ordN (pN ) = 1 by construction of M and

N . Moreover, we have aM = 0 by assumption. Since ordN (pN ) = 1, we have

pa = (pM , pN ) · (0, aN ) = (pM · 0, pN · aN ) = (0, aN ) = a. Thus, Og(a, p) = {a}, as
claimed.
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Now suppose that M - a. We need to show that pja ̸= a (mod g) for 1 ≤ j < ℓ.

Suppose that there is such a j, namely, we have pja = a (mod g). We can rewrite

this as (pjMaM , pjNaN ) = (aM , aN ), i.e., pjMaM = aM and pjNaN = aN . Using the

first of these equations, we have pjMaM − aM = 0, i.e., aM (pjM − 1) = 0. However,

this gives that pi | (pjM − 1) for some pi | M for otherwise M | a, i.e., p has order

less than ℓ modulo pi. However, this contradicts Lemma 3 and the assumption that

pi | M . Thus, we have #Og(a, p) = ℓ in this case.

We can now prove the general result when ordp(g) = 2.

Proposition 3. Let p be a prime with ordg(p) = 2. Let M ′ =
∏

j p
mj

j so that

ord
p
mj
j

(p) = 2. If ord2m(p) = 1, set M = M ′. If ord2m(p) = 2, then define M as

follows:

1. if p ≡ −1 (mod 2m) or p ≡ 2m−1 − 1 (mod 2m), set M = 2m−1M ′;

2. if p ≡ 2m−1 + 1 (mod 2m), set M = 2M ′.

If M | a, then #Og(a, p) = 1. Otherwise, #Og(a, p) = 2.

Proof. The proof of this proposition amounts to combining Lemma 4 and Lemma

2. We have #Og(a, p) = 2 unless #O2m(a, p) = 1 and #Op
mi
i

(a, p) = 1 for all

i. However, these orbits all have size one exactly when M | a by the previous

lemmas.

Example 1. Let g = 24 so m = 3, p1 = 3, and m1 = 1. Consider the prime

p = 5. Observe that p has order 2 modulo 24, modulo 3, and modulo 8. Moreover,

p = 2m−1 + 1. One easily checks that when acting upon Z/24Z by 5, the orbits are

given by {0}, {1, 5}, {2, 10}, {3, 15}, {4, 20}, {6}, {7, 11}, {8, 16}, {9, 21}, {12},
{13, 17}, {14, 22}, {18}, and {19, 23}, which agrees with the proposition since in

this case M = 6.

Though it will not be used in our counting arguments, it is now easy to provide

the analogous result to Proposition 3 for the case ordg(p) = ℓ for ℓ an odd prime.

We provide this result for completeness. The next step is to deal with the case when

ordg(p) = ℓ for ℓ an odd prime with ℓ | g but ℓ - (pj − 1) for all j = 1, . . . , r. Note

for this to be possible we must have ℓ = pi for some i with mi > 1.

Lemma 5. Let p be a prime with ordg(p) = pi for some i = 1, . . . , r and assume

pi - (pj − 1) for all j = 1, . . . , r. Let a ∈ Z/gZ. If pi | a then #Og(a, p) = 1.

Otherwise #Og(a, p) = pi.

Proof. Without loss of generality we can assume ordg(p) = p1. Write h = g/pm1
1 .

We can write Z/gZ ∼= Z/pm1
1 Z × Z/hZ. Since p1 - φ(h) by assumption, we have

ordh(p) = 1 and so p acts as the identity on Z/hZ.
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Suppose that p1 - a and assume there is a j with 1 ≤ j < p1 so that pja ≡ a

(mod g). Since p acts trivially on Z/hZ, this statement is equivalent to pjapm1
1

=

apm1
1

for some j with 1 ≤ j < p1. However, this gives pm1
1 | (pj − 1), which

contradicts the fact that p necessarily has order p1 modulo pm1
1 . Thus, it must be

that if p1 - a, then #Og(a, p) = ℓ.

Now assume p1 | a and write a = p1c. Again we use the fact that p acts as the

identity on Z/hZ to conclude we only need to determine what happens to the pm1
1

component of a. Here we make use of the fact that if p has order p1 in Z/pm1
1 Z,

then p = bpm1−1
1 + 1 for some 1 ≤ b ≤ p1 − 1. The result is then clear because we

have pa = (bpm1−1
1 + 1)(p1c) = p1c = a in the pm1

1 component.

We now combine Proposition 3 and Lemma 5 to obtain the following result.

Proposition 4. Let p be a prime with ordg(p) = ℓ for ℓ an odd prime. Let M ′ =∏
j p

mj

j so that ord
p
mj
j

(p) = ℓ and ℓ ̸= pj. If ℓ - g, set M = M ′. If ℓ = pj for

some 1 ≤ j ≤ m and ord
p
mj
j

(p) = c, set M = cM ′ where c = 1, ℓ. If M | a, then
#Og(a, p) = 1. Otherwise, #Og(a, p) = ℓ.

Proof. Note that if ℓ - g or c = 1 we are done, so assume without loss of generality

that ℓ = p1 and ordℓm1 (p) = ℓ. First suppose that M | a. Set N = g/ℓm1M ′ and

consider the isomorphism Z/gZ ∼= Z/ℓm1Z × Z/M ′Z × Z/NZ. By assumption we

can write a = (aℓm1 , aM ′ , aN ) = (aℓm1 , 0, aN ). Observe that we have

pa = (paℓm1 , 0, paN )

= (paℓm1 , 0, aN ) (since ordN (p) = 1 by assumption)

= (aℓm1 , 0, aN ) (by Lemma 5)

= a.

Thus, if M divides a we have the orbit has size 1 as claimed. Now suppose M - a
but pja = a for some 1 ≤ j ≤ ℓ. However, this leads to the equations pjaℓm1 = aℓm1

and pjaM ′ = aM ′ . Since M - a these cannot both hold unless j = ℓ.

4. Main counting results

We are now able to state our main result. Throughout this section we write n =

2mpm1
1 · · · pmr

r with m ≥ 0, mi ≥ 1, and the pi distinct odd primes.

Consider the case that v2(e) = m. By assumption we have n/e is odd and so

pn/e − 1 ≡ p − 1 (mod e). Thus, we have p splits Z/geZ into ge orbits and so we

obtain the number of degree n extensions of K arising from this situation is given
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by ∑
e|n

v2(e)=v2(n)

ge.

Now suppose that v2(e) < m. Then we have 2 | n/e and so ge = gcd(e, 0) = e.

It is not necessarily the case that orde(p) = 2, so we break this into two cases. If

orde(p) = 1, then p acts on Z/eZ as the identity, hence splits it into e distinct orbits.

Thus, for this case we have O(e, p) = e. If orde(p) = 2, we can use Proposition 3 to

count the orbits in terms of Me. (Note that since g varies in this section we write

Mg to keep track of the group Z/gZ upon which p is acting.) In this case we have

the number of orbits given by

O(e, p) =
φ(e)

2
+

# {a ∈ Z/eZ : gcd(a, e) > 1, a ̸= 0,Me - a}
2

+ # {a ∈ Z/eZ : gcd(a, e) > 1, a ̸= 0,Pe | a}+ 1

where the 1 comes from 0 always being its own orbit.

Combining all of this we obtain the following theorem.

Theorem 1. Let p be a prime with p - n and ordp(n) = 2. For e | n, define Me

as in Proposition 3. The number of degree n extensions of K up to isomorphism is

given by

K(n, p) =
∑
e|n

v2(e)=v2(n)

ge +
1

2

σ1(n/2) + σ1

(
gcd

(n
2
, p− 1

))
+

∑
e|n2

e ̸ |(p−1)

e

Me

 .

Proof. We immediately have from the preceding discussion that

K(n, p) =
∑
e|n

v2(e)=v2(n)

ge +
∑
e|n

v2(e)<v2(n)
p≡1 (mod e)

e

+
∑
e|n

v2(e)<v2(n)
p ̸≡1 (mod e)

(
φ(e)

2
+

# {a ∈ Z/eZ : gcd(a, e) > 1, a ̸= 0,Me - a}
2

)

+
∑
e|n

v2(e)<v2(n)
p ̸≡1 (mod e)

(# {a ∈ Z/eZ : gcd(a, e) > 1, a ̸= 0,Me | a}+ 1) .

First, we simplify the conditions underneath the sums. We note that e|n; v2(e) <
v2(n) is equivalent to e|n2 . We also note that p ≡ 1 (mod e) is equivalent to e|(p−1).

Finally, in the last two sums we omit the condition that a ̸= 0. In the first sum, note
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that Pe ̸ |a ⇒ a ̸= 0. In the second sum we simply absorb the one to compensate.

This gives the following expression.

K(n, p) =
∑
e|n

v2(e)=v2(n)

ge +
∑
e|n2

e|(p−1)

e

+
∑
e|n2

e ̸ |(p−1)

(
ϕ(e)

2
+

#{a ∈ Z/eZ : gcd(a, e) > 1;Pe ̸ |a}
2

)

+
∑
e|n2

e ̸ |(p−1)

#{a ∈ Z/eZ : gcd(a, e) > 1;Pe|a}

Now we note that the union of the two sets showing up in the last two sums

along with the set of residue classes counted by ϕ(e) is just all of Z/eZ. We use this

observation to rearrange the last two sums and obtain the following expression.

K(n, p) =
∑
e|n

v2(e)=v2(n)

ge +
∑
e|n2

e|(p−1)

e

+
1

2

∑
e|n2

e ̸ |(p−1)

(e+#{a ∈ Z/eZ : gcd(a, e) > 1;Me|a})

=
∑
e|n

v2(e)=v2(n)

ge +
1

2

∑
e|n2

(e+#{a ∈ Z/eZ : gcd(a, e) > 1;Me|a})

− 1

2

∑
e| gcd(n

2 ,(p−1))

(#{a ∈ Z/eZ : gcd(a, e) > 1;Me|a} − e)

Note that

#{a ∈ Z/eZ : gcd(a, e) > 1;Me|a} =

{
e− ϕ(e) if Me = 1,
e

Me
otherwise.

Since Me ̸= 1, we have #{a ∈ Z/eZ : gcd(a, e) > 1;Me|a} = e
Me

.

Thus, we may write
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K(n, p) =
∑
e|n

v2(e)=v2(n)

ge +
1

2

∑
e|n2

(
e+

e

Me

)
− 1

2

∑
e| gcd(n

2 ,p−1)

(
e

Me
− e

)

=
∑
e|n

v2(e)=v2(n)

ge +
1

2

σ1(n/2) + σ1(gcd
(n
2
, p− 1

)
) +

∑
e|n2

e ̸ |(p−1)

e

Me

 ,

which gives the result.

One can easily check that this result recovers Lemma 2 in the case we take p ≡ −1

(mod n).

In the case ℓ = 2, when we consider pn/e−1 modulo e, this is either 0 if v2(e) < m

or p−1 if v2(e) = m due to the fact that the only remainders possible upon dividing

n/e by 2 are 0 or 1. In either case it is easy to use the orbit structure to give a count.

However, for general ℓ we must consider remainders 0, 1, . . . , ℓ−1. If the remainder

is larger than 1, it is not obvious how p will act on Z/geZ in this case. Thus, while

we have the relevant orbit counting results for p of prime order ℓ modulo n, it is

not as straightforward to count the extensions in this case. This will be the subject

of future research.
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