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Abstract. In this paper we show how one can use an inner product
formula of Heim giving the inner product of a pullback Eisenstein se-
ries from Sp10 to Sp2×Sp4×Sp4 with a newform on GL2 and a Saito-
Kurokawa lift to produce congruences between Saito-Kurokawa lifts and
non-CAP forms. This congruence is in part controlled by the L-function
on GSp4×GL2. The congruence is then used to produce nontrivial tor-
sion elements in an appropriate Selmer group, providing evidence for
the Bloch-Kato conjecture.

1. Introduction

The Bloch-Kato conjecture for modular forms roughly states that given
a newform f , the special values of the L-function attached to f should
measure the size of the Selmer group associated to twists of the Galois
representation ρf . In this paper we provide evidence for this conjecture in
the form of showing that under certain hypotheses if p | Lalg(k, f), then
p | # Sel(Q,Wf,p(1−k)). For a precise statement of this result see Theorem
10.4.

The argument used to prove Theorem 10.4 is in the spirit of the work
of Ribet ([R76]) and Wiles ([Wi90]). For more recent examples of such
arguments the reader is advised to consult ([JB2], [KK07], [SU06]). We now
give a brief outline of the argument.

Let f ∈ S2k−2(SL2(Z)) be a newform and Ff the Saito-Kurokawa lift of
f . Our first step is to establish a congruence between Ff and a non-CAP
cuspidal eigenform. Let E10(Z) be the Siegel Eisenstein series on Sp10.
We pull E10 back to Sp2×Sp4×Sp4. One of the main inputs into the
congruence is an inner product relation of Heim ([H99]) which states

〈〈〈E10(diag[Z1, Z2, Z3]), h〉Ff 〉Ff 〉 = A
Lalg(2k − 4, f)Lalg(2k − 3, Ff × h)

Lalg(k, f)
where A is an explicit value we suppress here to ease the notation, see
Corollary 5.2 for the precise value of A. This inner product relation is
analogous to the inner product relation of Shimura used in [JB2] to produce
a congruence. The difficulty here is that where the Eisenstein series used in
[JB2] pulls back to a form that is cuspidal in each variable ([JB1]), in this
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case the Eisenstein series is of level one so does not pull back to something
cuspidal. What this means for our purposes is that the formula is not as
clean and easy to work with. In an attempt to deal with this we act on
E10 by several Hecke operators to remove as many of the extraneous pieces
as possible. Ultimately, under certain hypotheses we are able to produce a
non-CAP cuspidal eigenform G so that the eigenvalues of G are congruent
to those of Ff .

Once the congruence has been established, arguments using the 4-dimensional
p-adic Galois representation attached to G are used to produce a nontrivial
p-torsion element in the Selmer group.

Future work in this direction will aim to generalize Heim’s result for levels
greater then 1. Such a generalization would allow one greater freedom in
choosing h, allowing one to remove some of the hypotheses forced here. In
particular, one should be able to choose h so that the L-values related to h
showing up in the hypotheses are p-units.

2. Notation

In this section we set the notation and definitions to be used throughout
this paper.

Let A be the adeles over Q. For a prime p, we fix once and for all
compatible embeddings Q ↪→ Qp, Q ↪→ C, and Qp ↪→ C. We denote by εp
the p-adic cyclotomic character εp : Gal(Q/Q) → GL1(Zp). We drop the
p when it is clear from context. We denote the composition of εp with the
natural map GL1(Zp) → GL1(Fp) by ωp, again dropping the p when it is
clear from context.

For a ring R, we let Mn(R) denote the ring of n by n matrices with entries
in R. For a matrix x ∈ M2n(R), we write

x =
(
ax bx
cx dx

)
where ax, bx, cx, and dx are all in Mn(R). We drop the subscript x when it
is clear from the context. The transpose of a matrix x is denoted by tx.

Let SLn and GLn have their standard definitions. We denote the complex
upper half-plane by h1. We have the usual action of GL+

2 (R) on h1 ∪ P1(Q)

given by linear fractional transformations, namely, given γ =
(
a b
c d

)
∈

GL+
2 (R) and z ∈ h1, one has

γz =
az + b

cz + d
.

Define

Sp2n = {γ ∈ GL2n : tγι2nγ = ι2n}, ι2n =
(

0n −1n
1n 0n

)
.
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Siegel upper half-space is defined by

hn = {Z ∈ Mn(C) : tZ = Z, Im(Z) > 0}.

The group Sp2n(R) acts on hn via(
A B
C D

)
Z = (AZ +B)(CZ +D)−1.

We let ΓJ1 = SL2(Z) n Z2 be the Jacobi modular group. As the Jacobi
modular group will not play a major role in this paper we refer the reader
to ([EZ85]) for more details.

Given an L-function L(s) =
∏
p Lp(s) and a finite set of places Σ, we

write
LΣ(s) =

∏
p/∈Σ

Lp(s)

when we restrict to places away from Σ and

LΣ(s) =
∏
p∈Σ

Lp(s)

when we restrict to the places in Σ.
Let Γ ⊂ SL2(Z) be a congruence subgroup. We write Mk(Γ) to denote

the space of modular forms of weight k and level Γ. We let Sk(Γ) denote the
subspace of cusp forms. The nth Fourier coefficient of f ∈Mk(Γ) is denoted
by af (n). Given a modular form f , we write f c to denote the modular
forms with Fourier coefficients the complex conjugates of the the Fourier
coefficients of f . Given a ring R ⊂ C, we write Mk(Γ, R) for the space
of modular forms with Fourier coefficients in R and similarly for Sk(Γ, R).
Let f1, f2 ∈ Mk(Γ) with at least one of the fi a cusp form. The Petersson
product is given by

〈f1, f2〉 =
1

[SL2(Z) : Γ]

∫
Γ\h1

f1(z)f2(z)yk−2dxdy

where SL2(Z) = SL2(Z)/{±12} and Γ is the image of Γ in SL2(Z). The nth
Hecke operator T (n) has its usual meaning. Let TZ be the Z-subalgebra of
EndC(Sk(SL2(Z)) generated by T (n) for n = 1, 2, 3, . . . . Note that we do
not include the weight in the notation as it will always be clear from context.
Let A be a Z-algebra. We set TA = TZ ⊗Z A. We say f ∈ Sk(SL2(Z)) is a
newform if it is an eigenform for all T (n) and af (1) = 1. The L-function
associated to a newform f of weight k is given by

L(s, f) =
∑
n≥1

af (n)n−s.

The L-function L(s, f) has an Euler product given by

L(s, f) =
∏
p

(1− af (p)p−s + pk−1−2s)−1.
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The Euler product can be factored as

L(s, f) =
∏
p

[(1− αf (p)p−s)(1− βf (p)p−s)]−1

where αf (p) + βf (p) = af (p) and αf (p)βf (p) = pk−1. The terms αf (p) and
βf (p) are referred to as the pth Satake parameters of f . Let h ∈ Sl(SL2(Z))
be a newform of weight l. Using the Satake parameters of L(s, f) and L(s, h)
we define the Rankin L-function associated to f and h by

L(s, f×h) =
∏
p

[(1−αf (p)αh(p))(1−αf (p)βh(p))(1−βf (p)αh(p))(1−βf (p)βh(p))]−1.

Kohnen’s +-space of half-integral weight modular forms is given by

S+
k−1/2(Γ0(4)) = {g ∈ Sk−1/2(Γ0(4)) : ag(n) = 0 if (−1)k−1n ≡ 2, 3(mod 4)}.

The Petersson product on S+
k−1/2(Γ0(4)) is given by

〈g1, g2〉 =
∫

Γ0(4)\h1

g1(z)g2(z)yk−5/2dxdy.

We denote the space of Jacobi cusp forms on ΓJ
1 by Jcusp

k,1 (ΓJ
1). The inner

product is given by

〈φ1, φ2〉 =
∫

ΓJ
1\h1×C

φ1(τ, z)φ2(τ, z)vk−3e−4πy2/vdx dy du dv

for φ1, φ2 ∈ Jcusp
k,1 (ΓJ

1) and τ = u+ iv, z = x+ iy.
We denote the space of Siegel modular forms of weight k and level Γ ⊂

Sp2n(Z) byMk(Γ). The subspace of cusp forms are denoted by Sk(Γ). In the
case that n = 1 we recover the elliptic modular forms already discussed. For
F,G ∈ Mk(Sp2n(Γ)) with at least one a cusp form, the Petersson product
is given by

〈F,G〉 =
1

[Sp2n(Z) : Γ]

∫
Γ\hn

F (Z)G(Z) det(Im(Z))kdµ(Z).

We will be particularly interested in the decomposition

Sk(Sp4(Z)) = SM
k (Sp4(Z))⊕ SNM

k (Sp4(Z))

where SM
k (Sp4(Z)) is the space of Maass spezialchars and SNM

k (Sp4(Z)) is
the orthogonal complement. A form F ∈ Sk(Sp4(Z)) is in SM

k (Sp4(Z)) if the
Fourier coefficients of F satisfy the relation

AF (n, r,m) =
∑

d|gcd(n,r,m)

dk−1AF

(nm
d2

,
r

d
, 1
)
.

We let TS(n) denote the nth Siegel Hecke operator. As above, we set TSZ
to be the Z-subalgebra of EndC(Sk(Sp2n(Z)) generated by the T (n). For a
Z-algebra A we write TSA = TSZ ⊗Z A. The Hecke algebra TSC respects the
decomposition of Sk(Sp4(Z)) into the space of Maass and non-Maass forms
([A80]).
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Let F,G ∈ Sk(Sp4(Z),O) for O the ring of integers of a finite extension
E/Qp. Let $ be the uniformizer of E and F the residue field. We write
F ≡ G(mod$m) for some m ≥ 1 if ord$(AF (T ) − AG(T )) ≥ m for all T ,
i.e., if we have a congruence between the Fourier coefficients of F and G
modulo $m. If F and G are Hecke eigenforms and we have a congruence
between the eigenvalues of F and G we write F ≡ev G(mod$m).

Let F ∈ Sk(Sp4(Z)) be a Hecke eigenform with eigenvalues λF (m). As-
sociated to F is an L-function called the spinor L-function. It is defined
by

Lspin(s, F ) = ζ(2s− 2k + 4)
∑
m≥1

λF (m)m−s.

One can also define the spinor L-function in terms of the Satake parameters
α0, α1, and α2 of F . One has

Lspin(s, F ) =
∏
p

Qp(p−s)−1

where

Qp(X) = (1− α0X)(1− α0α1X)(1− α0α2X)(1− α0α2α2X).

Given a Hecke eigenform F ∈ Sk(Sp4(Z)) and a newform h ∈ Sk(SL2(Z)),
we define the L-function L(s, F × h) by

L(s, F × h) =
∏
p

[Qp(αh(p)p−s)Qp(βh(p)p−s)]−1.

3. Saito-Kurokawa lifts

In this section we briefly recall the Saito-Kurokawa correspondence and
relevant facts we will need. For a more thorough discussion the reader is
urged to consult [EZ85], [Ge], or [Z80]. For a more detailed discussion of
the facts we will need here the reader is advised to consult the section on
the Saito-Kurokawa correspondence in [JB2]

Let f ∈ S2k−2(SL2(Z)) be a newform. The Saito-Kurokawa correspon-
dence associates a cuspidal Siegel eigenform Ff ∈ Sk(Sp4(Z)) to f . In the
language of automorphic forms Ff is a CAP form, i.e., Ff is a cuspform that
has the same eigenvalues almost everywhere as the Eisenstein series induced
from the automorphic representation πf of GL2 associated to f when viewed
on the Siegel parabolic to an automorphic representation on GSp4. For more
details on the Saito-Kurokawa correspondence from this point of view one
should consult Piatetski-Shapiro’s original paper on the subject ([PS83]).
The Saito-Kurokawa correspondence is stated in the following theorem.

Theorem 3.1. ([Z80]) There is a Hecke-equivariant isomorphism between
S2k−2(SL2(Z)) and SM

k (Sp4(Z)) such that if f ∈ S2k−2(SL2(Z)) is a new-
form, then one has

(1) Lspin(s, Ff ) = ζ(s− k + 1)ζ(s− k + 2)L(s, f).
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We will be interested in the Saito-Kurokawa correspondence from a classi-
cal point of view as constructed by a series of lifts. Let f ∈ S2k−2(SL2(Z),O)
be a newform. The first step in the Saito-Kurokawa correspondence is
achieved via the Shimura-Shintani correspondence giving an isomorphism
between S2k−2(SL2(Z)) and Kohnen’s +-space of half-integral weight mod-
ular forms S+

k−1/2(Γ0(4)). The isomorphism is most easily expressed in terms
of the image of a half-integral weight modular form g ∈ S+

k−1/2(Γ0(4)). The
map is given by sending

g(z) =
∑
n≥1

(−1)k−1n≡0,1(mod 4)

cg(n)qn ∈ S+
k−1/2(Γ0(4))

to

ζDg(z) =
∞∑
n=1

∑
d|n

(
D

d

)
dk−2cg(|D|n2/d2)

 qn

where D is a fundamental discriminant with (−1)k−1D > 0.
The second lift in the Saito-Kurokawa correspondence is an isomorphism

between Kohnen’s +-space and the space of cuspidal Jacobi forms Jcusp
k,1 (ΓJ1 ).

The map is given by∑
D<0,r∈Z

D≡r2(mod 4)

c(D, r)e
(
r2 −D

4
τ + rz

)
7→

∑
D<0

D≡0,1(mod 4)

c(D)e(|D|τ).

The final lift needed provides an isomorphism between the space of cus-
pidal Jacobi forms and the space of Maass spezialchars SM

k (Sp4(Z)) given
by

φ(τ, z) 7→ F (τ, z, τ ′) =
∑
m≥0

Vmφ(τ, z)e(mτ ′)

where Vm is the index shifting operator as defined in ([EZ85], § 4).
Our interest in the Saito-Kurokawa correspondence is in terms of arith-

metic applications. As such, we will need the following three results.

Corollary 3.2. ([JB2], Corollary 3.8) Given f ∈ Sk(SL2(Z),O) a newform,
then Ff also has Fourier coefficients in O. In particular, if O is a discrete
valuation ring, Ff has a Fourier coefficient in O×.

Corollary 3.3. ([JB1], Corollary 4.3) Let f ∈ Sk(SL2(Z)) and Ff the
Saito-Kurokawa lift of f . One has that F cf = Ffc. In other words, the
Saito-Kurokawa correspondence respects complex conjugation of Fourier co-
efficients.

Theorem 3.4. ([KS89], [KZ81]) Let f ∈ S2k−2(SL2(Z)) be a newform, Ff ∈
SM
k (Sp4(Z)) the corresponding Saito-Kurokawa lift, and g(z) =

∑
cg(n)qn
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the weight k − 1/2 cusp form corresponding to f under the Shintani map.
We have the following inner product relation

〈Ff , Ff 〉 =
(k − 1)
2532π

· cg(|D|)
2

|D|k−3/2
· L(k, f)
L(k − 1, f, χD)

〈f, f〉

where D is a fundamental discriminant so that (−1)k−1D > 0 and χD is the
character associated to the quadratic field Q(

√
D).

Proposition 3.5. ([JB2]) Let f ∈ S2k−2(SL2(Z)) be a newform, ρf the
associated `-adic Galois representation, Ff the Saito-Kurokawa lift, and ρFf

the associated 4-dimensional `-adic Galois representation. Then one has

ρFf
=

εk−2
`

ρf
εk−1
`


where the blank spaces in the matrix are assumed to be 0’s of the appropriate
size.

4. Siegel Eisenstein series

As the Siegel Eisenstein series will be an important tool in producing the
congruence between the Saito-Kurokawa lift and a form in SNM

k (Sp4(Z)), we
briefly recall here the definition as well as the appropriate normalization for
working with arithmetic applications.

Let K2n be the maximal compact subgroup of Sp2n(A) defined by K2n =
K∞Kf where

K∞ = {g ∈ Sp2n(R) : gi2n = i2n}
where i2n = i12n and

Kf =
∏
p

Sp2n(Zp).

Let
Sn = {x ∈ Mn : tx = x}.

We denote the Siegel parabolic of Sp2n by P2n = U2nQ2n where U2n is the
unipotent radical given by

U2n =
{
u(x) =

(
1 x
0 1

)
: x ∈ Sn

}
and Q2n is the Levi subgroup given by

Q2n =
{
Q(A) =

(
A 0
0 tA−1

)
: A ∈ GLn

}
.

We drop the subscript 2n on K2n, P2n, U2n, and Q2n when it is clear from
context.

We are now able to define the Siegel Eisenstein series of weight k ≥ 2.
Define ε(g, s; k) on Sp2n(A)× C by setting

ε(g, s; k) = 0



8 JIM BROWN

if g /∈ P (A)K and for g = u(x)Q(A)θ with u(x)Q(A) ∈ P (A) and θ ∈ K we
set

ε(g, s; k) = ε∞(g, s; k)
∏
`

ε`(g, s; k)

where the components are defined by

ε∞(g, s; k) = |detA∞|2sj−k(θ∞, i),
ε`(g, s; k) = |detA`|2s.

The (adelic) Siegel Eisenstein series is defined by

E2n(g, s; k) =
∑

γ∈P (Q)\Sp2n(Q)

ε(γg, s; k).

It is well-known that the series E2n(g, s; k) converges locally uniformly for
Re(s) > (n + 1)/2 and can be continued to a meromorphic function on all
of C.

There is also a complex version of the Siegel Eisenstein series E(Z, s; k) :=
E2n(Z, s; k) defined by

E2n(Z, s; k) = jk(g∞, i)E2n(g, s; k)

where Z = g∞i and g = gQg∞θf ∈ Sp2n(Q) Sp2n(R)Kf . We will be inter-
ested in this complex version when s = 0. In this case we have

E2n(Z) := E2n(Z, 0; k) =
∑

γ∈P (Z)\ Sp2n(Z)

j−k(γ, Z).

It is known that E2n(Z) ∈Mk(Sp2n(Z)), see for example [Kl90] or [Sh87].
As our applications are to arithmetic problems, it is important to under-

stand the Fourier coefficients of E2n(Z). The Fourier coefficients of E2n(Z)
are all rational numbers. Moreover, the possible denominators of the Fourier
coefficients are bounded as follows. Let dk be the product of the numera-
tors of 2Bk/k and B2j/j for j = 1, . . . , k − 1 where Bj is the jth Bernoulli
number. Define zk ∈ Z by 2zk < k ≤ 2zk+1. If k ≡ 0(mod 4), then the com-
mon denominator of all the Fourier coefficients of E2n(Z) divides dk and
otherwise it divides 2zk−1dk ([Si64]). Consider the normalized Eisenstein
series E2n(Z) = 2zk−1dkE2n(Z) and let p be a prime. We have that E2n(Z)
is a Siegel modular form of weight k with Fourier coefficients in Zp, i.e.,
E2n(Z) ∈Mk(Sp2n(Z),Zp). This normalized Eisenstein series is the one we
will work with for our arithmetic applications.

5. Pullbacks and an inner product relation

Let (n1, n2, . . . , nr) be a partition of n, i.e., n =
∑r

i=1 ni. Let Γi ⊂
Sp2ni

(Z) be congruence subgroups and k = (k1, . . . , kr) with ki positive
integers for i = 1, . . . , r. Set Γ =

∏r
i=1 Γi and H =

∏r
i=1 hni . Let M (k,Γ)

denote the space of holomorphic functions F on H such that as a function
on hni one has F ∈Mki

(Γi) for i = 1, . . . , r. Similarly one defines the space
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S (k,Γ) as the space of holomorphic functions F on H so that when viewed
as a function on hni one has F ∈ Ski

(Γi).
Let Fi ∈ Mki

(Γi) and set F (Z) = F1(Z1)F2(Z2) · · ·Fr(Zr) where Z =
(Z1, . . . , Zr). Clearly we have that F ∈M (k,Γ) and similarly if the Fi are
cusp forms then F ∈ S (k,Γ). In fact, Lemma 1.1 of [Sh83] gives that all
elements of M (k,Γ) are finite sums of such functions and similarly for cusp
forms. Every element of M (k,Γ) has a Fourier expansion

F (Z) =
∑
T

aF (T )e2πiTr(TZ)

where T runs over some lattice. The important point for us is that if
F (Z) = F1(Z1)F2(Z2) · · ·Fr(Zr), then this is simply the product of the
Fourier expansions of Fi(Zi). For F,G ∈M (k,Γ) with at least one a cusp
form, one defines

〈F,G〉 = vol(Γ\H)−1

∫
Γ\H

F (Z)G(Z) det(Im(Z))kdµ(Z).

One has that if F (Z) = F1(Z1)F2(Z2) · · ·Fr(Zr) andG(Z) = G1(Z1)G2(Z2) · · ·Gr(Zr)
with at least one of Fi or Gi cuspidal for each i = 1, . . . , r, then

〈F,G〉 =
r∏
i=1

〈Fi, Gi〉.

We have an embedding ι of Sp2n1
× · · ·Sp2nr

into Sp2n given by

ι

((
a1 b1
c1 d1

)
× · · · ×

(
ar br
cr dr

))
=



a1 0 b1 0
. . . . . .

0 ar 0 br
c1 0 d1 0

. . . . . .
0 cr 0 dr


.

As we will be working classically rather then adelically, we make use of the
embedding

hn1 × · · · × hnr ↪→ h2n

given by

Z1 × · · · × Zr 7→

Z1 0
. . .

0 Zr

 = diag[Z1, . . . , Zr]

arising from the isomorphism Sp2n(R)/K∞ ∼= hn. We denote this map
by ι as well. Given a modular form F of weight k on hn, the function
F ◦ ι ∈M (k,Γ) for k = (k, . . . , k) and Γi = Sp2ni

(Z). We refer to F ◦ ι as
the pullback of F from Sp2n to Sp2n1

× · · ·×Sp2nr
or just the pullback of F

when the partition of n is clear from context.
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In this paper we are interested in the case of Sp2×Sp4×Sp4 embedded
in Sp10 and from now on we restrict ourselves to this case.. Recall that
Sp2
∼= SL2, so we view this as an embedding SL2×Sp4×Sp4 into Sp10. For

F1 ∈ Sk(SL2(Z)) and F2, F3 ∈ Sk(Sp4(Z)), we define

Ψ(E10, F1, F2, F3, s) = 〈〈〈E10 ◦ ι(Z1, Z2, Z3), s; k), F1(Z1)〉, F2(Z2)〉, F3(Z3)〉.

Set

L(f,G, hc, s) =
L(2s+ 2k − 4, f)L(2s+ 2k − 3, f)L(s+ 2k − 3, G× hc)

L(2s+ 2k − 3, f c)
.

Our interest in this iterated inner product is the following result.

Theorem 5.1. ([H99], Theorem 5.1) Let Ff ∈ SM
k (Sp4(Z)), G ∈ Sk(Sp4(Z)),

and h ∈ Sk(SL2(Z)) be Hecke eigenforms. Suppose k is even and h is a new-
form. Then for s ∈ C with 2 Re(s) + k > 6, we have

Ψ(E10, h,G, Ff , s) =
a(2, s, k)〈φF c

f
(1), φG(1)〉

ζ(2s+ k)ζ(4s+ 2k − 2)ζ(4s+ 2k − 4)
L(f,G, hc, s)

where φF c
f
(1) is the first Fourier coefficient in the Fourier-Jacobi expansion

of F cf (similarly for φG(1)) and

a(2, s, k) = 213−6s−6kπ6−s−2k Γ2(k + s− 3
2)Γ(s+ 2k − 3)Γ(s+ k − 2)Γ(s+ k − 1)

Γ2(k + s)Γ(2k − 3 + 2s)

where

Γm(s) =
m∏
j=1

Γ(s− (j − 1)/2).

One should note that Theorem 5.1 is stronger then the result given in
[H99] where it is required that the forms have totally real Fourier coefficients.
It is mentioned there that such a restriction is purely technical. If one
follows through the proof of the formula without the restriction and applies
Corollary 3.3 one arrives at the above result. One should also note that this
makes sense, i.e., if L(2s+2k−3, f c) = 0 for some s, then L(2s+2k−3, f) = 0
as well and so cancels the 0 out of the denominator. This follows from part
(iii) of Theorem 1 of [Sh77].

Note that if the Fourier coefficients are all totally real the formula reduces
to that given in [H99]. We now specialize this result to the main situation
of interest, though we will use the above formula for orthogonality results.

Corollary 5.2. Let k > 6 be even. Let Ff ∈ SM
k (Sp4(Z)) and h ∈ Sk(SL2(Z))

be Hecke eigenforms with f having totally real Fourier coefficients and h a
newform. Then we have

Ψ(E10, h, Ff , Ff , 0) =
214−4k+zk3π6−k[(k − 2)!]2dk〈Ff , Ff 〉L(f, Ff , hc, 0)

(2k − 3)k!L(k, f)ζ(k)ζ(2k − 2)ζ(2k − 4)
.
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Proof. This follows immediately from Theorem 5.1 and the relation between
the inner products 〈ΦFf

(1),ΦFf
(1)〉 and 〈Ff , Ff 〉 found in [KS89], namely

that

〈ΦFf
(1),ΦFf

(1)〉 =
22k+1 3πk

(k − 1)!L(k, f)
〈Ff , Ff 〉.

�

It will be desirable in the next section to have such an inner product where
E10 is replaced by something cuspidal in each of the variables Z1, Z2, Z3. We
now show how this can be done by using Poincare series. Let T be a half-
integral symmetric n-rowed matrix (exactly the matrices occurring as indices
in the Fourier expansion of a Siegel modular form on Sp2n(Z).) If n = 1
these are just the positive integers. For T > 0, i.e., T is positive definite, set

c(n, k, T ) = πn(n−1)/4(4π)n(n+1)/2−nk(detT )(n+1)/2−k
n∏
i=1

Γ
(
k − n+ 1

2

)
.

Note that in the case of n = 1 and m > 0 one has

c(1, k,m) =
Γ(k − 1)
(4πm)k−1

.

Set

A2n =
{(
±1 s
0 ±1

)
: s ∈ S(Z)

}
⊂ Sp2n(Z).

The T th Poincare series is defined by

P k2n(Z, T ) =
∑

γ∈A2n\ Sp2n(Z)

j(γ, Z)−ke2πiTr(TγZ).

The case of n = 1 recovers the classical Poincare series. It is well known
that P k2n(Z, T ) is a cusp form of weight k and level Sp2n(Z). In fact, the
Poincare series span the space of cusp forms ([Kl90], Chapter 6).

Theorem 5.3. ([Kl90], page 90) Given F ∈Mk(Sp2n(Z)), one has for each
T > 0 as above

〈F (Z), P k2n(Z, T )〉 = c(n, k, T )AF (T ).

We now return to the case of interest with n1 = 1, n2 = n3 = 2. The map

(F1, F2, F3) 7→ 〈〈〈E10 ◦ ι(Z1, Z2, Z3), F1(Z1)〉, F2(Z2)〉, F3(Z3)〉
is an anti-linear map from Sk(SL2(Z))×Sk(Sp4(Z))×Sk(Sp4(Z)) to C. Thus
it is represented by 〈〈〈G1(Z1)G2(Z2)G3(Z3), ?〉, ?〉, ?〉 =

∏3
i=1〈Gi(Zi), ?〉 for

some (G1, G2, G3) ∈ Sk(SL2(Z)) × Sk(Sp4(Z)) × Sk(Sp4(Z)). This gives us
our cuspidal replacement for E10. One can see [GZ] Proposition 5.1 for a
similar result.

However, as we are interested in arithmetic applications we need to make
sure the Fourier coefficients of G1G2G3 are still p-integral. Recall that we
saw using Lemma 1.1 of [Sh83] that E10◦ι is a sum of forms Fi(Z1)Fj(Z2)Fl(Z3)
with Fi ∈ Mk(SL2(Z)) and Fj , Fl ∈ Mk(Sp4(Z)). Thus, we see the Fourier
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coefficients are indexed by m,T1, T2 where m ≥ 0 and T1, T2 are half-integral
symmetric 2-rowed matrices. We have that for all such m > 0, T1 > 0, and
T2 > 0 that

〈〈〈E10 ◦ ι(Z1, Z2, Z3), P k2 (Z1,m)〉, P k4 (Z2, T1)〉, P k4 (Z3, T2)〉

= 〈G1(Z1), P k2 (Z1,m)〉〈G2(Z2), P k4 (Z2, T1)〉〈G3(Z3), P k4 (Z3, T2)〉.
We can now apply Theorem 5.3 to conclude that for all m > 0, T1 > 0, and
T2 > 0 the Fourier coefficients of E10 ◦ ι are the same as those of G1G2G3

and hence G1G2G3 has p-integral Fourier coefficients as desired.

6. An easy lemma on Saito-Kurokawa lift congruences

Let Ff ∈ SM
k (Sp4(Z)) be the Saito-Kurokawa lift of a newform f ∈

S2k−2(SL2(Z)). In this section we show that if there exists G ∈ SNM
k (Sp4(Z))

so that Ff ≡ G(mod$), then there exists a Hecke eigenformH ∈ SNM
k (Sp4(Z))

so that Ff ≡ev H(mod$). Recall that we write a congruence between
two Siegel modular forms as F ≡ G(mod$m) to indicate ord$(AF (T ) −
AG(T )) ≥ m for all T , i.e., that we have a congruence between the Fourier
coefficients of F and G. When we wish to indicate a congruence between
eigenvalues we will write F ≡ev G(mod$).

Let F ∈ Sk(Sp4(Z),O) be an eigenform with O the ring of integers of a
finite extension E/Qp with uniformizer $ and residue field F. We have that
F gives rise to an O-algebra homomorphism TSO → O given by t 7→ λF (t)
where tF = λF (t)F . We denote this map by λF and the composition of λF
with the natural surjection O → F by λF . Let mF be the kernel of λF . One
has that F̃ ≡ev F (mod$) if and only if mF = m

F̃
. Moreover, one has that

these maximal ideals exhaust all the maximal ideals of TSO and

TSO =
∏
m

TSO,m

where TSO,m denotes the localization of TSO at m. One has the analogous
results for TO as well. From this the following lemma is immediate.

Lemma 6.1. Let F ∈ Sk(Sp4(Z)) be an eigenform. There exists a Hecke
operator tF ∈ TSO so that tFF = F and tF F̃ = 0 for all eigenforms F̃ with
F 6≡ev F̃ (mod$).

Let G1, . . . , Gm be an orthogonal Hecke eigenbasis of SNM
k (Sp4(Z)). En-

large E if necessary so that Ff , G,G1, . . . , Gm are all defined over O. Given
Ff and G as above, write G =

∑m
i=1 ciGi for some ci ∈ C. We have the

following theorem.

Lemma 6.2. With the set-up as above, there exists an i ∈ {1, . . . ,m} so
that Ff ≡ev Fi(mod$).

Proof. We apply the Hecke operator tFf
to G. Thus, we have

Ff ≡ tFf
G(mod$).
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Thus, we have that tFf
Fi must be nonzero modulo $ for at least one i with

1 ≤ i ≤ m as we know there exists a T0 so that AFf
(T0) is a $-unit and so

Ff 6≡ 0(mod$). Thus, we have an eigenvalue congruence between Ff and
Fi for such an i, as claimed. �

7. A congruence

In this section we will produce a congruence of Fourier coefficients be-
tween a Saito-Kurokawa lift and a cuspidal eigenform F ∈ SNM

k (Sp4(Z)).
Combining this with the results in the previous section gives the eigenvalue
congruence we desire.

Let k > 6 be even and p > 2k − 2 a prime. Let f ∈ S2k−2(SL2(Z)) be a
newform with totally real Fourier coefficients and Ff the Saito-Kurokawa lift
of f . Let f0 = f, f1, . . . , fm be an orthogonal Hecke eigenbasis of newforms
for S2k−2(SL2(Z)). Clearly we have that F0 = Ff , F1 = Ff1 , . . . , Fm = Ffm

is then an orthogonal Hecke eigenbasis of SM
k (Sp4(Z)). Let Fm+1, . . . , FM be

an orthogonal Hecke eigenbasis of SNM
k (Sp4(Z)) so that F0, . . . , FM is an or-

thogonal Hecke eigenbasis of Sk(Sp4(Z)). Observe that by Corollary 3.3 and
the main result of [Ga92] on the equivariance of Petersson products under
Gal(C/Q) one has that F c0 , . . . , F

c
m is also an orthogonal Hecke eigenbasis

of SM
k (Sp4(Z)) and F c0 , . . . , F

c
M is an orthogonal eigenbasis of Sk(Sp4(Z)).

Finally let h0, . . . , hm1 an orthogonal basis of newforms of Sk(SL2(Z)). Let
E be a finite extension of Qp with ring of integers O so that these bases are
all defined over O. We let $ denote the uniformizer of E and F the residue
field.

Our goal in this section is to show that under certain hypotheses there ex-
ists a j with m < j ≤M so that Ff ≡ Fj(mod$). Suppose there is no such
j. We will produce a contradiction by constructing a form in SNM

k (Sp4(Z))
congruent to Ff and then applying Lemma 6.2 to get a congruence to Fj for
some j with m < j ≤M .

Write

(2) G1(Z1)G2(Z2)G3(Z3) =
∑
i,j,l

ci,j,lhi(Z1)F cj (Z2)Fl(Z3)

for some ci,j,l ∈ C. As was done in [JB2], we wish to use the $-divisibility
of a multiple of c0,0,0 to “control” a congruence. The difficulty here is that
while the inner product relation of Shimura used in [JB2] allowed one to
“diagonalize” the expansion of the pullback of the Eisenstein series used in
that situation, the inner product in Theorem 5.1 allows us no such luxury.
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We rewrite equation (2) in a more useful form for our purposes.

G1(Z1)G2(Z2)G3(Z3) =
∑

0≤i≤m1
0≤j≤M

ci,j,0hi(Z1)F cj (Z2)Ff (Z3)(3)

+
∑

0≤i≤m1
0≤j≤M
0<l≤M

ci,j,lhi(Z1)F cj (Z2)Fl(Z3).

The concern now is in removing as many of the forms hi and F cj with i 6=
0 6= j in the first summation on the right hand side of equation (3).

Lemma 7.1. For all 0 ≤ i ≤ m1 and all 0 ≤ j, l ≤ m with j 6= l one has
ci,j,l = 0.

Proof. Let 0 ≤ j0, l0 ≤ m. On one hand, using the orthogonality of the
eigenbases we have

〈G1, hi0〉〈G2, F
c
j0〉〈G3, Fl0〉 =

∑
0≤i≤m1
0≤j,l≤M

ci,j,l〈hi, hi0〉〈F cj , F cj0〉〈Fl, Fl0〉

= ci0,j0,l0〈hi0 , hi0〉〈F cj0 , F
c
j0〉〈Fl0 , Fl0〉.

Solving this equation for ci0,j0,l0 gives

ci0,j0,l0 =
〈G1, hi0〉〈G2, F

c
j0
〉〈G3, Fl0〉

〈hi0 , hi0〉〈F cj0 , F
c
j0
〉〈Fl0 , Fl0〉

.

We now apply Theorem 5.1 along with the discussion where we defined
G1, G2 and G3 to conclude that

ci0,j0,l0 =
2zk−1dka(2, 0, k)〈ΦF c

l0
(1),ΦF c

j0
(1)〉L(fl0 , F

c
j0
, hci0 , 0)

ζ(k)ζ(2k − 2)ζ(2k − 4)〈hi0 , hi0〉〈F cj0 , F
c
j0
〉〈Fl0 , Fl0〉

The fact that our restriction on j0 and l0 puts F cj0 and F cl0 in SM
k (Sp4(Z))

allows us to use part (ii) of Theorem 2 in [KS89] to conclude that for j0 6= l0

〈ΦF c
l0

(1),ΦF c
j0

(1)〉 = 0.

Thus we have that ci0,j0,l0 = 0 for j0 6= l0. �

If there exists Fi with m + 1 ≤ i ≤ M so that Ff ≡ev F
c
i (mod$) then

we have a contradiction since by assumption F cf = Ff and so we would have
Ff ≡ Fi(mod$), which we assumed does not happen. Thus, we act on
equation (3) by tFf

= tF c
f

as given in Lemma 6.1 on the Z2 variable to kill
all F ci with m+ 1 ≤ i ≤M which, combined with Lemma 7.1 results in the
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equation

G1(Z1)tFf
G2(Z2)G3(Z3) =

∑
0≤i≤m1

ci,0,0hi(Z1)Ff (Z2)Ff (Z3)(4)

+
∑

0≤i≤m1
0<j≤m

ci,j,jhi(Z1)tFf
F cj (Z2)Fj(Z3)

+
∑

0≤i≤m1
0≤j≤m
m<l≤M

ci,j,lhi(Z1)tFf
F cj (Z2)Fl(Z3).

We have the following theorem that will help us remove the extra hi’s.

Theorem 7.2. ([JB2], Theorem 5.4) Let hi0 ∈ Sk(SL2(Z)) be a newform
such that the residual Galois representation ρhi0

: Gal(Q/Q) → GL2(F) is
irreducible and hi0 is ordinary at $. Then there exists a Hecke operator
thi0
∈ TO such that

thi0
hi =

{
αhi0

hi0 if i = i0,
0 if i 6= i0, i 6= im1 ,

where αhi0
= ui0

〈hi0
,hi0
〉

Ω+
hi0

Ω−hi0

and ui0 ∈ O×.

Assume that h0 is ordinary at $ and ρh0
is irreducible. Applying th0 to

equation (4) gives

th0G1(Z1)tFf
G2(Z2)G3(Z3) = c0,0,0αh0h0(Z1)Ff (Z2)Ff (Z3)(5)

+
∑

0<j≤m
c0,j,jαh0h0(Z1)tFf

F cj (Z2)Fj(Z3)

+
∑

0≤j≤m
m<l≤M

c0,j,lαh0h0(Z1)tFf
F cj (Z2)Fl(Z3).

At this point it is possible to produce a congruence between Ff and an-
other Siegel cusp form distinct from Ff . This congruence is “controlled” by
c0,0,0αh0 . However, at this point the cusp form would not necessarily be in
SNM
k (Sp4(Z)), so would not allow us to apply Lemma 6.2 to reach a contra-

diction. We need one more Hecke operator to remove the “Saito-Kurokawa”
part.

Note that since the Saito-Kurokawa correspondence is Hecke-equivariant,
if we assume that f is ordinary at $ and ρf is irreducible then Theorem 7.2
gives a Hecke operator tSf ∈ TSO so that

tSfFi =
{
αfFf if i = 0,
0 if 1 ≤ i ≤ m,

Set d0,0,0 = αfαh0c0,0,0. Assume now that f and h0 are ordinary at $
and ρf and ρh0

are irreducible. We act on equation (5) by tSf to remove
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the extraneous Saito-Kurokawa lifts in the Z3 variable. This allows us to
rewrite equation (5) as

th0G1(Z1)tFf
G2(Z2)tSfG3(Z3) = d0,0,0h0(Z1)Ff (Z2)Ff (Z3)

+
∑

0<j≤m
m<l≤M

αh0c0,j,lh0(Z1)tFf
F cj (Z2)tSfFl(Z3).

Before studying the $-divisibility of d0,0,0, we show how it “controls” a
congruence. Suppose we can write d0,0,0 = U$−m for U ∈ O× and m ≥ 1.
We now multiply equation (4) through by $m, take Fourier expansions in
terms of Z1 and Z2, equate the first Fourier coefficients in the Z1 expansion
and the T0th Fourier coefficients in the Z2 expansion where T0 is as given
in Corollary 3.2, and look modulo $. We use the fact that G1G2G3 has
$-integral Fourier coefficients to obtain

(−U)Ff (Z3) ≡
∑

m<l≤M
$mαh0αfc0,0,lt

S
fFl(Z3)(mod$).

Applying Lemma 6.2 to this congruence produces a congruence Ff ≡ev

tSfFl(mod$) for some m < l ≤ M . We now use that the Hecke opera-
tors respect the decomposition Sk(Sp4(Z)) = SM

k (Sp4(Z))⊕SNM
k (Sp4(Z)) to

write tSfFl =
∑M

i=m+1 aiFi for some ai ∈ C. One more application of Lemma
6.2 then gives the desired contradiction. In the next section we will study
d0,0,0 to give more explicit conditions on when one can write d0,0,0 = U$−m
as above, but we conclude this section with the following theorem.

Theorem 7.3. Let k > 6 be even and p > 2k − 2 a prime. Let f ∈
S2k−2(SL2(Z),R) be a newform and Ff the Saito-Kurokawa lift of f . Assume
that f is ordinary at p and ρf is irreducible. Let h0 ∈ Sk(SL2(Z)) be a
newform such that h0 is ordinary at p and ρh0

is irreducible. If there exists
U ∈ O× and m ≥ 1 so that d0,0,0 = U$−m, then there exists an eigenform
G ∈ SNM

k (Sp4(Z)) so that Ff ≡ev G(mod$).

8. Studying the coefficient d0,0,0

We retain the notation and assumptions from the last section for this
section. We saw in the last section how d0,0,0 can be used to “control” a
congruence when one can write d0,0,0 = U

$m for U ∈ O× and m ≥ 1. In
this section we determine conditions under which we can guarantee such a
m and U .

The fact that our bases were chosen to be orthogonal can be combined
with equation (2) and Corollary 5.2 to conclude that

c0,0,0 =
Ψ(E10, h0, Ff , Ff , 0)
〈h0, h0〉〈Ff , Ff 〉2

.
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Thus, we have

d0,0,0 = αh0αfc0,0,0

=
uh0ufΨ(E10, h0, Ff , Ff , 0)

Ω+
h0

Ω−h0
Ω+
f Ω−f 〈Ff , Ff 〉

〈f, f〉
〈Ff , Ff 〉

=
uh0ufΨ(E10, h0, Ff , Ff , 0)

Ω+
h0

Ω−h0
Ω+
f Ω−f 〈Ff , Ff 〉

2532π|D|kL(k − 1, f, χD)
|D|3/2cgf

(|D|)2(k − 1)L(k, f)

= A
dkπ

7−kL(2k − 4, f)L(k − 1, f, χD)L(2k − 3, Ff × hc0)
ζ(k)ζ(2k − 2)ζ(2k − 4)Ω+

h0
Ω−h0

Ω+
f Ω−f L(k, f)2

where

A =
219−4k−zk33[(k − 2)!]2|D|k

(2k − 3)(k − 1)k!|D|3/2cgf
(|D|)2

and we have used Theorem 3.4 and Corollary 5.2. Our goal now is to de-
termine conditions so that ord$(d0,0,0) < 0. We begin by observing that
if gcd(p,D) = 1 then the fact that cgf

(|D|) ∈ O and p > 2k − 2 by as-
sumption, we must have ord$(A) ≤ 0. We will need the following results in
normalizing our L-values.

Theorem 8.1. ([Sh77], Theorem 1) Let f ∈ Sm(SL2(Z),O) be a newform.
There exist complex periods Ω±f such that for each integer a with 0 < a < m

and every Dirichlet character χ one has

L(a, f, χ)
τ(χ)(2πi)a

∈
{

Ω−f Oχ if χ(−1) = (−1)a,
Ω+
f Oχ if χ(−1) = (−1)a−1,

where τ(χ) is the Gauss sum of χ and Oχ is the extension of O generated
by the values of χ. We will write Lalg(a, f, χ) to denote L(a,f,χ)

τ(χ)(2πi)aΩ±f
where

± is chosen appropriately.

Proposition 8.2. ([JB3], Proposition 7.5) Let f ∈ S2k−2(SL2(Z)) be a
newform, h ∈ Sk(SL2(Z)) a newform, and Ff the Saito-Kurokawa lift of f .
Then one has

L(s, Ff × h) = L(s+ 1− k, h)L(s, f)L(s, f × h)

where L(s, f × h) is the Rankin convolution L-function as defined in the
introduction.

Theorem 8.3. ([JB3], Theorem 7.3) Let f ∈ S2k−2(SL2(Z)) and h ∈
Sk(SL2(Z)) be a newforms. If k is even then

Lalg(2k − 3, f × h) :=
L(2k − 3, f × h)
π2k−3Ω+

f Ω−h
∈ Q.
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In order to apply the previous theorem, we now assume that our h0 has
totally real Fourier coefficients. We also make use of the well known result
that ζalg(a) := ζ(a)

πk ∈ Q. Combining all of these we can write

d0,0,0 = A dk(2πi)3k−10L (k, f, h0)
ζalg(k)ζalg(2k − 2)ζalg(2k − 4)Lalg(k, f)2

where

L (k, f, h0) = Lalg(2k−3, f)Lalg(2k−4, f)Lalg(k−1, f, χD)Lalg(k−2, h0)Lalg(2k−3, f×h0).

Thus, we see that ord$(d0,0,0) < 0 if we have
(6)
−m = ord$(ζalg(k)ζalg(2k−2)ζalg(2k−4)Lalg(k, f)2)−ord$ (dkL (k, f, h0)) > 0.

We summarize with the following theorem.

Theorem 8.4. Let k > 6 be even and p > 2k − 2 a prime. Let f ∈
S2k−2(SL2(Z),R) be a newform and Ff the Saito-Kurokawa lift of f . Assume
that f is ordinary at p and ρf is irreducible. Let h0 ∈ Sk(SL2(Z),R) be a
newform such that h0 is ordinary at p and ρh0

is irreducible. If

−m = ord$(ζalg(k)ζalg(2k−2)ζalg(2k−4)Lalg(k, f)2)−ord$ (dkL (k, f, h0)) > 0

then there exists an eigenform G ∈ SNM
k (Sp4(Z)) so that Ff ≡ev G(mod$).

9. Selmer groups

Let K be a field and M a topological Gal(K/K)-module. We write the
cohomology group H1

cont(Gal(K/K),M) as H1(K,M) where “cont” refers
to continuous cocycles. For a prime `, we write D` for the decomposition
group at ` and identify it with Gal(Q`/Q`).

Let E/Qp be a finite extension. Let O be the ring of integers of E and $
a uniformizer. Let V be a finite dimensional Galois representation over E.
We will also find it convenient to write ρ : Gal(Q/Q) → GLn(E) to denote
the Galois representation V when dimE(V ) = n. We switch interchangably
between these notations depending upon context. Let T ⊆ V be a Galois-
stable O-lattice, i.e., T is stable under the action of Gal(Q/Q) and T⊗OE ∼=
V . Set W = V/T .

We write Bcrys for the ring of p-adic periods ([Fo82]). Set

Crys(V ) = H0(Qp, V ⊗Qp Bcrys).

We say the representation V is crystalline if dimQp V = dimQp Crys(V ). Let
Fili Crys(V ) be a decreasing filtration of Crys(V ). If V is crystalline, we say
V is short if Fil0 Crys(V ) = Crys(V ), Filp Crys(V ) = 0, and if whenever V ′

is a nonzero quotient of V , then V ′ ⊗Qp Qp(p − 1) is ramified. Note that
Qp(n) is the 1-dimensional space over Qp on which Gal(Q/Q) acts via the
nth power of the p-adic cyclotomic character.
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The local Selmer groups are defined as follows. Set

H1
f (Q`, V ) =

{
H1

ur(Q`, V ) ` 6= p
ker(H1(Qp, V )→ H1(Qp, V ⊗Qp Bcrys)) ` = p

where
H1

ur(Q`,M) = ker(H1(Q`,M)→ H1(I`,M))
for any D`-module M where I` is the inertia group at `. With W as above
we define H1

f (Q`,W ) to be the image of H1
f (Q`, V ) under the natural map

H1(Q`, V )→ H1(Q`,W ).

Definition 9.1. The Selmer group of W is given by

Sel(Q,W ) = ker

(
H1(Q,W )→

⊕
`

H1(Q`,W )
H1
f (Q`,W )

)
,

i.e., it is the cocycles c ∈ H1(Q,W ) that lie in H1
f (Q`,W ) when restricted

to D`.

Before we proceed further with our study of Selmer groups, it is neces-
sary to recall the relationship between extensions of modules and the first
cohomology group. Let R be a commutative ring with identity and G a
group. Let M and N be R[G]-modules that are free of finite rank as R-
modules. We denote the action of G on M by ρM and the action of G
on N by ρN . Recall that as M and N are R[G]-modules, we have an
action of G on HomR(M,N) as well. The action of G on HomR(M,N)
is given as follows. Let φ ∈ HomR(M,N), m ∈ M and g ∈ G, then
g · φ(m) = ρN (g)φ(ρM (g−1)m).

An extension of M by N is a short exact sequence

0 // N
α // X

β // M // 0

where X is a R[G]-module and α and β are R[G]-homomorphisms. We
sometimes refer to such an extension as the extension X. We say two ex-
tensions X and Y are equivalent if there is a R[G]-isomorphism γ making
the following diagram commute

0 // N
αX //

idN

��

X
βX //

γ

��

M //

idM

��

0

0 // N
αY // Y

βY // M // 0.

Let Ext1
R[G](M,N) denote the set of equivalence classes of R[G]-extensions

of M by N which split as extensions of R-modules, i.e., if X is the extension
of M by N , then X ∼= M ⊕N as R-modules.
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The following result will allow us to appropriately define the degree n
Selmer group. The case where M = N is given as Proposition 4 in [W95].
The proof given here is an adaptation of the proof given there.

Theorem 9.2. Let M and N be R[G]-modules with G actions given by ρM
and ρN respectively. There is a one-one correspondence between the sets
H1(G,HomR(M,N)) and Ext1

R[G](M,N).

Proof. We will define a bijection from Ext1
R[G](M,N) to H1(G,HomR(M,N)).

Let

0 // N
α // X

β // M // 0

be an extension of M by N . We denote the G-action on X by ρ. Let
sX : M → X be a R-section of X, i.e., sX is a R-module homomorphism so
that β ◦ sX = idM . Observe that for all g ∈ G and all m ∈M we have

β(ρ(g)sX(ρM (g−1)m)− sX(m)) = ρM (g)β(sX(ρM (g−1)m))− β(sX(m))

= ρM (g)ρM (g−1)m−m
= 0

where we have used that β is a R[G]-module and β ◦ sX = idM . Thus we
have that ρ(g)sX(ρM (g−1m)) − sX(m) ∈ ker(β) for all g ∈ G,m ∈ M , i.e.,
ρ(g)sX(ρM (g−1m)) − sX(m) ∈ α(N) for all g ∈ G,m ∈ M . For g ∈ G,
define cg : M → N by

cg(m) = α−1(ρ(g)sX(ρM (g−1)m)− sX(m)).

Our work above shows this is well-defined and it is immediate that for
each g ∈ G we have cg ∈ HomR(M,N). We can show that g 7→ cg is in
H1(G,HomR(M,N)). To see this we observe that

g1 · cg2(m) + cg1(m) = ρN (g1)cg2(ρM (g−1
1 m)) + cg1(m)

= ρN (g1)
(
α−1(ρ(g2)sX(ρM (g−1

2 )ρM (g−1
1 )m)− sX(ρM (g−1

1 m)))
)

+ α−1(ρ(g1)sX(ρM (g−1
1 )m)− sX(m))

= α−1(ρ(g1g2)sX(ρM ((g1g2)−1)m))− α−1(ρ(g1)sX(ρM (g−1
1 )m))

+ α−1(ρ(g1)sX(ρM (g−1
1 )m))− α−1(sX(m))

= cg1g2(m).

This gives a map from Ext1
R[G](M,N) to H1(G,HomR(M,N)). We need to

show that this map is well-defined. Let

0 // N // Y // M // 0

be an equivalent extension and let sY be a R-section of Y . Let γ : X → Y
be the R[G]-isomorphism giving the equivalence of extensions. If we set
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ψ = α−1γ−1(sY −γsX), then an elementary calculation shows that if cX and
cY are the cocyles arising from the extensions as above, then (cX)g−(cY )g =
g ·ψ−ψ. Thus, two equivalent extensions give rise to cocycles that differ by
a coboundary, and hence give the same element of H1(G,HomR(M,N)) and
so the map is well-defined. It remains to show that this map is bijective.

We begin by showing our map is injective. Let

0 // N
αX // X

βX // M // 0

and

0 // N
αY // Y

βY // M // 0

be two extensions that give rise to equivalent cocycles cX and cY , i.e., there
exists ψ ∈ HomR(M,N) so that (cX)g − (cY )g = g · ψ − ψ for all g ∈ G.
Denote the G-action on X by ρX and on Y by ρY . Let sX be a R-section
of X and sY be an R-section of Y . The condition on the cocycles cX and
cY can be used to show that we have

ψ(ρM (g)m) = ρN (g)ψ(m)− α−1
Y (ρ2(g)sY (m)− sY (ρM (g)m))

+ α−1
X (ρX(g)sX(m)− sX(ρM (g)m)).

The fact that X ∼= M ⊕N as R-modules allows us to conclude that for each
x ∈ X there exists unique m ∈ M , n ∈ N so that x = αX(n) + sX(m).
Define γ : X → Y by

γ(x) = αY (n) + sY (m)− αY (ψ(m)).

The formula given about for ψ(ρM (g)m) allows one to show that γ is in fact
an R[G]-module homomorphism. It is easy to see from our definition of γ
that the diagram

0 // N
αX //

idN

��

X
βX //

γ

��

M //

idM

��

0

0 // N
αY // Y

βY // M // 0

commutes. The Snake lemma gives that γ is an isomorphism and hence the
extensions are equivalent and our map Ext1

R[G](M,N)→ H1(G,HomR(M,N))
is an injection.

Let c ∈ H1(G,HomR(M,N)). Define X = M ⊕ N as an R-module. We
now show that we can define a G-action on X so that the resulting extension
gives rise to c′ under the mapping Ext1

R[G](M,N) → H1(G,HomR(M,N)).
Define the G-action on X via

ρ(g)(m,n) = (ρM (g)m, cg(ρM (g)m))
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where we use the notation cg ∈ HomR(M,N) as above. If we write cX for the
cocycle arising from the extension X, a short calculation gives that c = cX .
Thus, the map Ext1

R[G](M,N) → H1(G,HomR(M,N)) is a surjection and
hence from what we have already shown a bijection as claimed. �

Let W [n] be the O-submodule of W consisting of elements killed by $n.
The previous theorem gives a bijection between Ext1

(O/$n)[Dp](O/$n,W [n])
and H1(Dp,W [n]). For ` 6= p, we define the local degree n Selmer groups by
H1
f (Q`,W [n]) = H1

ur(Q,W [n]). At the prime p we define the local degree n
Selmer group to be the subset of classes of extensions of Dp-modules

0 // W [n] // X // O/$n // 0

where X lies in the essential image of the functor V defined in § 1.1 of
[DFG04]. The precise definition of V is technical and is not needed here.
We content ourselves with stating that this essential image is stable under
direct sums, subobjects, and quotients ([DFG04], § 2.1). For our purposes
the following two propositions are what is needed.

Proposition 9.3. ([DFG04], p. 670) If V is a short crystalline represen-
tation at p, T a Dp-stable lattice, and X a subquotient of T/$n that gives
an extension of Dp-modules as above, then the class of this extension is in
H1
f (Qp,W [n]).

Proposition 9.4. ([JB2], Proposition 7.9) Let c be a non-zero cocycle in
H1(Q,W [1]) and assume that T/$ is irreducible. If c|D`

∈ H1
f (Q`,W [1])

is non-zero, then c|D`
gives a non-zero $-torsion element of H1

f (Q`,W ).
Moreover, if c|D`

∈ H1
f (Q`,W [1]) for every prime `, then c is a non-zero

$-torsion element of Sel(Q,W ).

10. Galois representations and Selmer groups

In this section we show how given a congruence as in Theorem 8.4 one has
that Sel(Q,Wf,p(1 − k)) 6= 0 and p | # Sel(Q,Wf,p(1 − k)). We will mainly
summarize results found in ([JB2], section 8) so the interested reader is
advised to consult there for the details.

Let E/Qp be a finite extension as before large enough so that our results
from section 6 are defined over E. We enlarge E when necessary so that the
appropriate Galois representations in this section are defined over E as well.
Let O be the ring of integers of E, $ the uniformizer, p = ($) the prime
ideal over p, and F the residue field.

Let ρf : Gal(Q/Q) → GL(Vf,p) be the p-adic Galois representation as-
sociated to an eigenform f , Tf,p a Gal(Q/Q)-stable O-lattice, and Wf,p =
Vf,p/Tf,p. We denote twists by the mth power of the cyclotomic character
by writing Vf,p(m) and similarly for Wf,p(m). We also have the following
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result giving the existence of 4-dimensional Galois representations attached
to Siegel eigenforms.

Theorem 10.1. ([SU06], Theorem 3.1.3) Let F ∈ Sk(Sp4(Z)) be an eigen-
form, KF the number field generated by the Hecke eigenvalues of F , and ℘
a prime of KF over p. There exists a finite extension E of the completion
of KF,℘ of KF at ℘ and a continuous semi-simple Galois representation

ρF,℘ : Gal(Q/Q)→ GL4(E)

unramified away from p so that for all ` 6= p we have

det(X · 14 − ρF,℘(Frob`)) = Lspin,(`)(X).

The following result is crucial in producing elements in the Selmer group.

Theorem 10.2. ([F89], [U05]) Let F be as in Theorem 10.1. The restriction
of ρF,℘ to the decomposition group Dp is crystalline at p. In addition, if
p > 2k − 2 then ρF,℘ is short.

Suppose that we have an eigenvalue congruence Ff ≡ev G(mod$) as in
Theorem 8.4. This congruence combined with Proposition 3.5, Theorem
10.1, and the Brauer-Nesbitt Theorem give that ρss

G,p = ωk−1 ⊕ ρf,p ⊕ ωk−2.
The goal is to study ρG,p and use this Galois representation to produce
a nontrivial p-torsion element in Sel(Q,Wf,p(1 − k)). One can use linear
algebra along with the fact that ρG,p is irreducible to deduce the following
proposition.

Proposition 10.3. ([JB2], p. 316) There is a Gal(Q/Q)-stable lattice TG,p
so that the reduction ρG,p is of the form

ρG,p =

ωk−2 ∗1 ∗2
∗3 ρf,p ∗4
0 0 ωk−1


where ∗1 or ∗3 is zero and so that ρG,p is not equivalent to a representation
with ∗2 and ∗4 both zero.

We begin by assuming that ∗3 = 0. We would like to show that the
quotient (

ρf,p ∗4
0 ωk−1

)
is not split. If we can show this, then we can twist ρG,p by ω1−k so that ∗4
gives a nontrivial element of H1(Q,Wf,p(1 − k)[1]). Suppose it is split. In
this case Proposition 10.3 gives that the quotient(

ωk−2 ∗2
0 ωk−1

)
cannot be split as well. However, in ([JB2], section 8) it is shown that
this quotient being nonsplit gives a nontrivial quotient of the ω−1-isotypical
piece of the p-part of the class group of Q(µp), which by Herbrand’s theorem
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does not exist. Thus, if ∗3 = 0 we obtain a nontrivial torsion element of
H1(Q,Wf,p(1−k)[1]). In this case it remains to show that the local conditions
are satisfied so that we obtain an element in the Selmer group.

Suppose now that ∗1 = 0. In this case we obtain that(
ωk−2 ∗2

0 ωk−1

)
is a quotient extension. However, as stated above we must have ∗2 = 0.
This gives that (

ρf,p ∗4
0 ωk−1

)
is a nontrivial quotient extension and we again obtain a nontrivial element
of H1(Q,Wf,p(1− k)[1]) after twisting by ω1−k.

It is now easy to see that we have a nontrivial torsion element of Sel(Q,Wf,p(1−
k)) by using the fact that ρG,p is unramified away from p and Proposition
9.3 to see that our cocycle c := ∗4 satisfies all of the local conditions. Thus,
we have the following theorem.

Theorem 10.4. Let k > 6 be even and p > 2k − 2 a prime. Let f ∈
S2k−2(SL2(Z),R) be a newform and Ff the Saito-Kurokawa lift of f . Assume
that f is ordinary at p and ρf is irreducible. Let h0 ∈ Sk(SL2(Z),R) be a
newform such that h0 is ordinary at p and ρh0

is irreducible. If

−m = ord$(ζalg(k)ζalg(2k−2)ζalg(2k−4)Lalg(k, f)2)−ord$ (dkL (k, f, h0)) > 0

then Sel(Q,Wf,p(1− k)) 6= 0 and p | # Sel(Q,Wf,p(1− k)).

11. The Bloch-Kato Conjecture

In this section we recall the statement of the Bloch-Kato conjecture in
our situation, observing how Theorem 10.4 gives evidence for the validity
of this conjecture. We follow the excellent account given in [D08] for our
exposition of the Bloch-Kato conjecture for modular forms.

Let f be a newform of weight 2k−2 and level SL2(Z). As above, for each
prime `, let V` := Vf,λ be the 2-dimensional `-adic Galois representation
associated to f . We let T` := Tf,λ be a Gal(Q/Q)-stable lattice and set
W` := Wf,λ = V`/T`. For any integer j we have a natural map π : V`(j) →
W`(j) which induces a natural map of cohomology π∗ : H1(Q, V`(j)) →
H1(Q,W`(j)). The Shafarevich-Tate group is defined to be

X(j) =
⊕
`

H1
f (Q,W`(j))/π∗H1

f (Q, V`(j)).

We define the set ΓQ(j) as the sum over the global sections:

ΓQ(j) =
⊕
`

H0(Q,W`(j)).

The Bloch-Kato conjecture can now be stated as follows.
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Conjecture 11.1. (Bloch-Kato) With the notation as above, one has

Lalg(k, f) =
∏
` c`(k)

#ΓQ(3− k)#ΓQ(1− k)
# X(1− k)

where c`(j) are the “Tamagawa factors”.

We would like to thank Neil Dummigan for pointing out the incorrect
twists given on the global sections in [JB2]. The correct values here are due
to his correction of our previous mistake.

In order to see how Theorem 10.4 gives evidence for this conjecture, we
make the following observations. The fact that we are assuming that ρf is
irreducible, gives that the terms #ΓQ(3− k) and #ΓQ(1− k) both must be
p-units. See ([D08], Proposition 4.1) for example.

By work of Kato ([K04], Theorem 14.2), we know that away from the
central critical point the Selmer group is finite. Thus, in our case we can
identify the p-part of the Selmer group with the p-part of the Shafarevich-
Tate group.

It only remains to deal with the Tamagawa factors. For ` 6= p, we have
that ord$(c`(j)) is defined to be

length(H0(Q`,Wp(j))/H0(Q`, Vp(j)Ip/Tp(j)Ip))

where Ip is the inertia group. However, as Vp(j) is unramified at all ` 6= p,
we have that ord$(c`(j)) = 0 for all ` 6= p. Thus, it only remains to handle
the case of cp(j). If we further assume that p > 3k − 3, then Theorem 4.1
(iii) of [BK90] gives that ord$(cp(j)) = 0 as well. Combining all of these
facts shows that Theorem 10.4 when one adds the condition that p > 3k− 3
provides evidence for the Bloch-Kato conjecture for modular forms.
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[Si64] C. Siegel, Über die Fourierschen Koeffizienten der Eisensteinschen Reihen, Mat.-
Fys. Medd. Danske Vid. Selsk. 34 no.6, (1964).

[SU06] C. Skinner and E. Urban, Sur les déformations p-adiques de certaines
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