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Abstract. In this article we study the action of the Up Hecke operator
on the normalized spherical vector φ in the representation of GSp4(Qp)
induced from a character on the Borel subgroup. We compute the Pe-
tersson norm of Upφ in terms of certain local L-values associated with
φ.

1. Introduction

In the theory of automorphic forms on algebraic groups the Up Hecke
operator arises in many applications. For instance, it plays a prominent role
in the study of theta cycles of modular forms on GL2 [2] and in applications
to producing congruences between values of the partition function p(n) [3,
12]. The Up operator is used in the theory of harmonic weak Maass forms
to “shed” the non-holomorphic part [15] and in studying class polynomials
[4]. The study of the properties of this operator plays a crucial role both
in Hida theory [13] (modular forms of slope zero), where it is used to define
the ordinary projector, and in the theory developed in the GL2 context by
Coleman and Mazur [11] (modular forms of finite slope) and later generalized
to other algebraic groups by several authors (see e.g., [8, 9, 10, 21]).

In this article we study the Up operator acting on automorphic forms
on the symplectic group GSp4. Some of its properties in this setting were
initially studied by Taylor in his thesis [20, Chapter 3] with the aim of
formulating the theory of Λ-adic Siegel modular forms.

An important theme in the study of p-adic properties of automorphic
forms on a reductive group G is the construction of congruences among
them. A new method of exhibiting such congruences via computing Peters-
son norms of automorphic forms arising as lifts from proper subgroups of G
was developed by several people including the authors (see e.g., [1, 5, 6, 14]).
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This method can be extended to the context of p-adic families resulting in
the need for computing certain ratios of Petersson norms. One such ra-

tio of interest is the focus of this paper, namely we compute
〈Upφ,Upφ〉
〈φ,φ〉 for

a spherical vector φ lying in the local at p component of an automorphic
representation associated to a general Siegel Hecke eigenform on the group
GSp4(AQ) of congruence level prime to p. In doing so we show that this
ratio is very closely related to a ratio of certain local L-functions attached
to φ (cf. Theorem 1.1). This is in line with a similar result for automorphic
forms on the group GL2, where one shows that the ratio of the norm of
Upφ and the norm of φ is related to a special value of the symmetric square
L-function of φ (cf. [7]).

Let us now state the main result of the paper. Let p be a prime and N
a positive integer with p - N . Let F be a Siegel modular form of genus
2, congruence level K0(N) (see below), and trivial character. We assume
that F is an eigenform for all Hecke operators. Write πF for any (of the
finitely many) irreducible cuspidal automorphic representations generated
by the automorphic form associated to F . The isomorphism class of the
local component πF,p (at p) of πF depends only on F and not on the choice of
πF . Pitale and Schmidt (see e.g., [16, Proposition 1.1] or [17, Theorem 3.2])
give a complete description of the representations of GSp4(Qp) which can
occur as πF,p for some F as above. In particular they divide the possible local
representations into three groups (the tempered case (T), the complimentary
case (C) and the Saito-Kurokawa case (SK)). However, thanks to the result
of Weissauer proving the Ramanujan conjecture for (non-CAP cuspidal)
Siegel modular forms [22], we can dispose of the complimentary case as it
would violate the conjecture, leaving us to consider only the tempered and
the Saito-Kurokawa case.

Since p - N the form F gives rise to a spherical vector φ inside the space
of πF,p, which we fix by demanding that φ(k) = 1 for all k ∈ K0(1) :=
GSp4(Zp). Let Tp = K0(1) diag(p, p, 1, 1)K0(1) be the standard Hecke oper-
ator at p. Since it is possible to treat F (and hence φ) simultaneously as a
form of level N and as a form of level Np, we can study the action of a dif-
ferent Hecke operator, namely the operator U ′p = K0(p) diag(p, p, 1, 1)K0(p)
which we normalize to Up := [K0(1) : K0(p)]U ′p, where K0(N) denotes the
subgroup of GSp4(Zp) consisting of matrices all of whose entries in the lower-
left 2 × 2 block are divisible by N . The goal of this article is to compute
〈Upφ,Upφ〉
〈φ,φ〉 for the (unique up to scalar) inner product 〈·, ·〉 on πF,p.

For the convenience of the reader let us state here the main result of the
paper - cf. also Theorem 9.1 and Corollary 9.3. For the definitions and
notation we refer the reader to the main content of the article.

Theorem 1.1. Suppose that Π := πF,p = χ1 × χ2 o σ. Then

〈Upφ,Upφ〉
〈φ, φ〉

= p2|σ(p)|2
(

1 +
p3(p− 1)

p3 + p2 + p+ 1
X

)
,
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where

X =
L(0,Π, St)

ζ(0)L(0,BC(π(χ1, χ2)))L(0,BC(π(χ−1
1 , χ−1

2 )))
.

Here L(s,Π, St), (resp. L(s,BC(π(χ, χ′)))) denotes the pth Euler factor
of the standard L-function of Π (resp. of the base change L-function to
the unique unramified quadratic extension of Qp of the GL2-representation
π(χ, χ′) induced from the characters χ and χ′). Also ζ(s) := (1− p−s)−1 is
the pth Euler factor of the Riemann zeta function and while it is undefined
at 0, the ratio L(0,Π,St)/ζ(0) still makes sense.

The proof of Theorem 1.1 is elementary in nature. It consists of a careful
study of the permutation action of an arbitrary element g ∈ K0(1) on the
left cosets bK0(1) of the operator Tp (see section 2 for details).

2. The Up operator

Let p be a prime. Set

H := GSp4 =
{
g ∈ GL4 : gJ tg = µ(g)J, µ(g) ∈ Gm

}
where J =

[
02 12

−12 02

]
and Gm is the multiplicative group. For a positive

integer N set

K0(N) :=

{[
A B
C D

]
∈ H(Zp) | A,B,C,D ∈ Mat2(Zp), C ≡ 02 (mod N)

}
.

In particular, K0(N) = H(Zp) if p - N . The group H(Qp) is endowed
with a unique Haar measure normalized so that vol(K0(1)) = 1. For a right
K0(1)-invariant continuous function φ and g ∈ H(Qp) define the Tp Hecke
operator as

(Tpφ)(g) =

∫
K0(1) diag(p,p,1,1)K0(1)

φ(gh)dh.

Lemma 2.1. [20, p. 38] One has

K0(1) diag(p, p, 1, 1)K0(1) =
⊔
b∈B

bK0(1),
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where B = B1 t B2 t B3 t B4 and

B1 =

{[
12 E
02 12

]
diag(p, p, 1, 1) : E ∈ Mat2(Fp),

tE = E

}
,

B2 =




1 0 0 0
x 1 0 −z
0 0 1 −x
0 0 0 1

diag(1, p, p, 1) : x, z ∈ Fp

 ,

B3 =




1 0 x 0
0 1 0 0
0 0 1 0
0 0 0 1

diag(p, 1, 1, p) : x ∈ Fp

 ,

B4 = {diag(1, 1, p, p)} .

Note we have #B1 = p3, #B2 = p2, #B3 = p, and #B4 = 1. We define the
action of the Up operator on continuous functions which are right-invariant
under K0(1) as

(Upφ)(g) =

∫
B1K0(1)

φ(gh)dh.

Remark 2.2. One can check that Lemma 2.1 holds also if one replaces
K0(1) with K0(p) and the union over B with the union over B1. This implies
that our definition of Up agrees up to a scalar multiple (with the scalar equal
to p3 +p2 +p+ 1 - cf. Lemma 4.2) with the definition (mentioned in section
1) in which one integrates over the double coset K0(p) diag(p, p, 1, 1)K0(p).

Lemma 2.3. If g ∈ K0(1) there is an injection σg : B1 ↪→ B such that for
every β ∈ B1 there exists an element k(g, β) ∈ K0(1) with the property that
gβ = σg(β)k(g, β).

Proof. As gβ ∈ K0(1) diag(p, p, 1, 1)K0(1), the existence of σg and k(g, β)
follows directly from Lemma 2.1. If σg(β) = σg(β

′) then one gets βk(g, β)−1 =
β′k(g, β′)−1 and hence β = β′ by the disjointness of the union in Lemma
2.1. �

3. The norm of Upφ

From now on we denote by | · | the complex modulus and by | · |p the
p-adic norm normalized so that |p|p = p−1. We fix an inner product on the
space of continuous functions on K0(1) as follows. Given two such functions
φ and ψ, we set

〈φ, ψ〉K0(1) =

∫
K0(1)

φ(g)ψ(g)dg.



THE Up OPERATOR ON SIEGEL MODULAR FORMS 5

Following the conventions of [20] we fix a Borel subgroup B ⊂ H defined
by

B =



a ∗ ∗
∗ b ∗ ∗

ua−1 ∗
ub−1

 | a, b, u ∈ Gm

 .

We caution the reader that the Borel B chosen here differs from the one
used in [16], a source we will sometimes refer to. The relation between B
and BS (the Borel used in [16]) is the following

B = diag(A,A)BS
t diag(A,A), where A =

[
0 1
1 0

]
.

In particular the representation of H(Qp) which in [16] is denoted by χ1 ×
χ2oσ in our setup is the representation induced from the character Ψ given
by:

Ψ :


a ∗ ∗
∗ b ∗ ∗

ua−1 ∗
ub−1

 7→ χ1(ub−1)χ2(ua−1)σ(u).

More precisely, χ1 × χ2 o σ is the representation whose space consists of
smooth functions

f : H(Qp)→ C such that f(bg) = δ(b)1/2Ψ(b)f(g), b ∈ B(Qp), g ∈ H(Qp).

Here δ is the modulus character given by (cf. [20, p. 37])

δ :


a ∗ ∗
∗ b ∗ ∗

ua−1 ∗
ub−1

 7→ |a2b4u−3|p.

The normalized spherical vector φ is then defined as

φ



a ∗ ∗
∗ b ∗ ∗

ua−1 ∗
ub−1


 = |a2b4u−3|1/2p χ1(ub−1)χ2(ua−1)σ(u).

In particular for β ∈ Bj we have φ(β) = γjσ(p) where

γj =


p−3/2 j = 1

p−1/2χ2(p) j = 2

p1/2χ1(p) j = 3

p3/2χ1(p)χ2(p) j = 4.

We will now express the value (Upφ)(g) for an arbitrary g ∈ K0(1) in
terms of the volumes of certain subsets Ks of K0(1). Given g ∈ K0(1), let
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nj(g) be the number of elements of Bj that are in the image of σg : B1 → B
for j = 1, 2, 3, 4. We have

(Upφ)(g) =
∑
β∈B1

∫
βK0(1)

φ(gh)dh =

4∑
j=1

∑
β∈Bj∩Imσg

φ(β) = σ(p)

4∑
j=1

nj(g)γj .

This gives

〈Upφ,Upφ〉K0(1) =

∫
K0(1)

(Upφ)(g)(Upφ)(g)dg

= |σ(p)|2
4∑

i,j=1

∫
K0(1)

ni(g)nj(g)γiγjdg.

(3.1)

Remark 3.1. Any H(Qp)-invariant inner product 〈·, ·〉′ is a scalar multiple
of 〈·, ·〉. Hence (3.1) may be rephrased independently of the choice of 〈·, ·〉′
as

〈Upφ,Upφ〉′K0(1)

〈φ, φ〉′K0(1)

= |σ(p)|2
4∑

i,j=1

∫
K0(1)

ni(g)nj(g)γiγjdg.

This is so since 〈φ, φ〉K0(1) = 1 as φ(k) = 1 for all k ∈ K0(1) by our choice

of φ and vol(K0(1)) = 1.

For s = (s1, s2, s3, s4) ∈ Z4, define

Ks := {g ∈ K0(1) | nj(g) = sj for all j = 1, 2, 3, 4}.

Then we obtain

〈Upφ,Upφ〉K0(1) = |σ(p)|2
4∑

i,j=1

∑
s∈Z4

∫
Ks

sisjγiγjdg

= |σ(p)|2
∑
s∈Z4

vol(Ks)
4∑

i,j=1

sisjγiγj .

(3.2)

Note that, of course, the sum over Z4 is in fact a finite sum. Our goal in the
next few sections will be to calculate vol(Ks) for each 4-tuple s. To achieve
this we proceed as follows. After some preliminaries (section 4) we will show
in section 5 that for an arbitrary g ∈ K0(1), n4(g) = 1 if the determinant of
the lower-left 2 × 2-block of g is not zero mod p and n4(g) = 0 otherwise.
Then in section 6 we will compute the values n3(g) for an arbitrary element
g ∈ K0(1) and in section 7 we will compute the values n2(g). From these
three the value n1(g) is determined - see also section 5. Finally, in section 8
given all the possible combinations of s1, s2, s3 and s4 we will compute the
corresponding volumes vol(Ks).
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4. Some decompositions

We begin by recalling a couple of elementary lemmas. The first is the
well-known formula giving the order of the symplectic group over a finite
field. From now on we set G = H(Fp).

Lemma 4.1. The order of G is given by

#G = p4(p− 1)3(p+ 1)2(p2 + 1).

Proof. For the order of Sp4(Fp) see e.g. [19]. The lemma follows from this
and the fact the similitude map µ : G→ F×p is a surjection. �

Lemma 4.2. ([18, Lemma 5.1.1]) We have

[K0(1) : K0(p)] = p3 + p2 + p+ 1

In fact, we have the following coset representatives:

s1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



s2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 z 0 1

w2, z ∈ Fp

s3 =


1 0 0 0
0 1 0 0
0 y 1 0
y z 0 1

w2w1, y, z ∈ Fp

s4 =


1 0 0 0
0 1 0 0
x y 1 0
y z 0 1

w2w1w2, x, y, z ∈ Fp

where

w1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 and w2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

 .
Let P denote the standard Siegel parabolic subgroup of G. Note here

that P is just K0(p) modulo p and so #P = p4(p − 1)3(p + 1) by Lemmas
4.1 and 4.2.
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Let [
A′ B′

C ′ D′

]
=


a′11 a′12 b′11 b′12

a′21 a′22 b′21 b′22

0 0 d′11 d′12

0 0 d′21 d′22

 ∈ P.
Note that

(4.1) D′ = α · t(A′)−1 =
α

detA′

[
a′22 −a′21

−a′12 a′11

]
for some α ∈ F×p .

The group K0(1) can be partitioned into the following collections, the first
one equal to K0(p), the second one containing p cosets of K0(p) in K0(1),
the third one containing p2 such cosets and the last one containing p3. They
are:

collection G1, detC = 0, g =

[
A′ B′

02 D′

]
s1 =


a′11 a′12 b′11 b′12

a′21 a′22 b′21 b′22

0 0 d′11 d′12

0 0 d′21 d′22



collection G2, detC = 0, g =

[
A′ B′

02 D′

]
s2 =


a′11 −b′12 b′11 b′12z + a′12

a′21 −b′22 b′21 b′22z + a′22

0 −d′12 d′11 d′12z
0 −d′22 d′21 d′22z



collection G3, detC = 0, g =

[
A′ B′

02 D′

]
s3 =


−b′12 b′12y + a′11 b′11y + b′12z + a′12 b′11

−b′22 b′22y + a′21 b′21y + b′22z + a′22 b′21

−d′12 d′12y d′11y + d′12z d′11

−d′22 d′22y d′21y + d′22z d′21


collection G4, detC 6= 0, g =

[
A′ B′

02 D′

]
s4

=


−b′12 −b′11 b′11y + b′12z + a′12 b′11x+ b′12y + a′11

−b′22 −b′21 b′21y + b′22z + a′22 b′21x+ b′22y + a′21

−d′12 −d′11 d′11y + d′12z d′11x+ d′12y
−d′22 −d′21 d′21y + d′22z d′21x+ d′22y

 .

(4.2)

Whenever we use primed variables in the following sections, they will
always denote the variables above.

5. The B1 and B4 cases

In this and the following two sections we will compute the numbers nj(g)
(cf. section 3 for definition) for g ∈ K0(1) and j = 2, 3, 4. However, let us
record here an easy lemma pertaining to n1(g). This lemma will allow us to
restrict to the case C 6≡ 0 (mod p) in all future considerations.

Lemma 5.1. If g ∈ K0(p), then Imσg = B1, i.e., n1(g) = p3 (and thus
n2(g) = n3(g) = n4(g) = 0).
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Proof. This is straightforward. �

We now deal with the case when β = diag(1, 1, p, p), i.e., β ∈ B4, as this
case is simplest.

Proposition 5.2. Let g =

[
A B
C D

]
∈ K0(1) with A,B,C,D ∈ Mat2(Zp)

and let σg : B1 → B be the induced injection. Then diag(1, 1, p, p) is in the
image of σg (i.e., n4(g) = 1) if and only if detC 6≡ 0 (mod p).

Proof. Let

[
p12 E

12

]
∈ B1. Here E is a symmetric matrix with entries in

Zp and to get all the elements of B1 we need to run over all E mod p. We
would like to show that there exists such a symmetric matrix E and a matrix

g̃ =

[
Ã B̃

C̃ D̃

]
∈ K0(1) such that

(5.1)

[
A B
C D

] [
p12 E

12

]
=

[
12

p12

] [
Ã B̃

C̃ D̃

]
if and only if detC 6≡ 0 (mod p). Reducing the matrices mod p we obtain
the following set of equations

02 = Ã

AE +B = B̃

CE +D = 02,

(5.2)

where all of the equalities (as well as the equalities below) are mod p. Note
that if such an E exists, it is necessarily unique.

Suppose first that detC 6= 0. Then E = −C−1D is a solution to (5.2).
Here the only thing to check is that −AC−1D + B is invertible, but this
follows from the fact that[

A B
C D

]
=

[
AC−1 12

12 02

] [
C D
02 B −AC−1D

]
.

Suppose now that detC = 0 and that a unique E exists. Write g as απ,
where π ∈ P and α is one of the coset representatives of G/P as in (4.2).
Similarly write g̃ = α̃π̃. Then (5.1) becomes

(5.3) απ

[
02 E

12

]
(π̃)−1 =

[
12

02

]
α̃.

Computing the left hand side we get α
[

02 Ẽ
02 X

]
, where Ẽ is symmetric (and

uniquely determined by E) andX ∈ GL2(Fp). Now redefineA,B,C,D, Ã, B̃, C̃, D̃
according to:

α =

[
A B
C D

]
and α̃ =

[
Ã B̃

C̃ D̃

]
.
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Then (5.3) translates to the following system of equations

02 =Ã

AẼ +BX =B̃

CẼ +DX =02.

(5.4)

The last equality implies that if detC = 0, then detD = 0.

Multiplying the matrices in Lemma 4.2 we see that both

[
A B
C D

]
and[

Ã B̃

C̃ D̃

]
belong to the set

14,


1

1
1

−1 z

 ,


1
1
y 1

−1 y z

 ,


1
1

−1 y x
−1 z y


 .

Since detC = 0 and detD = 0, we see that the only possibilities for α are
the second matrix (with z = 0) or the third one (with z = 0 and arbitrary
y). However, in both cases it follows from the third equality in (5.4) that X
cannot be invertible, which leads to a contradiction. �

6. The B3 case

Proposition 6.1. Let

g =

[
A B
C D

]
=


a11 a12 b11 b12

a21 a22 b21 b22

c11 c12 d12 d22

c21 c22 d21 d22

 ∈ K0(1)−K0(p).

As above let nj = nj(g) denote the number of elements of Bj in the image of
σg. Let C2 denote the second row of C. Below the conditions on the entries
of C are to be taken modulo p.

(1) If detC 6= 0, then n3 = p− 1.
(2) If detC = 0 and C2 6= [0, 0], then n3 = p.
(3) Otherwise n3 = 0.

Proof. We must calculate for how many values of x ∈ Fp there exists a
symmetric E ∈ Mat2(Fp) and g̃ ∈ K0(1) such that

g

[
p12 E

12

]
=


p x

1
1

p

 g̃.
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Reducing modulo p and eliminating the primed variables we see that such
a pair g̃, E exists if and only if one has

first row of AE +B =x · (first row of CE +D);

second row of CE +D = [0, 0],
(6.1)

(where this equality and all subsequent ones are modulo p) which in matrix
form can be re-written as

YE :=


a11 − xc11 a12 − xc12 0

0 a11 − xc11 a12 − xc12

c21 c22 0
0 c21 c22


e11

e12

e22

 = D :=


xd11 − b11

xd12 − b12

−d21

−d22

 .
We now use Gaussian elimination to study the existence of solutions to
the above equation. The matrix Y can be reduced to diag(1, 1,Y1, 0) with

Y1 = (detC)x− detF where F =

[
a11 a12

c21 c22

]
. One can quickly see that no

solution exists unless Y1 6= 0, in which case Y and [Y|D] both have rank
3 so there is a unique solution E . If detC 6= 0, this inequality is satisfied
for exactly p − 1 values of x. Let detC = 0. Then we see Y1 6= 0 for each
possible value of x if and only if detF 6= 0. Clearly we have if C2 = [0, 0]
then detF = 0. Assume c21 6= 0. This forces g to be in collection G3 and so
detF = α(d′22)2/ detD′ = αc2

21/ detD′ for some α 6= 0, and so detF 6= 0.
(Note that when primed variables are used these are as in the collections
given in (4.2).) Thus, if detC = 0 and c21 6= 0 we have n3 = p. Now suppose
c21 = 0 and so detF = a11c22. If c22 6= 0 then g must be in collection G2.
Using this we see that a11 = −(detA′)c22/α for some nonzero α and so again
we have detF 6= 0. Thus, if detC = 0 and c22 6= 0 we have n3 = p.

Finally, if detC = detF = 0 then n3 = 0. �

7. The B2 case

Proposition 7.1. Let

g =

[
A B
C D

]
=


a11 a12 b11 b12

a21 a22 b21 b22

c11 c12 d12 d22

c21 c22 d21 d22

 ∈ K0(1)−K0(p).

As above let nj = nj(g) denote the number of elements of Bj in the image
of σg. Let C2 denote the second row of C.

(i) If C2 6= [0, 0], then n2 = p(p− 1).
(ii) If C2 = 0 but C 6= 0, then n2 = p2.
(iii) Otherwise n2 = 0.

Proof. Let g =

[
A B
C D

]
∈ K0(1). We need to calculate for how many values

of x, z ∈ Fp there exists a symmetric E ∈ Mat2(Fp) and g̃ ∈ K0(1) such
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that

g

[
p12 E

12

]
=


1
x p −z

p −x
1

 g̃.
As in the previous section this leads to a matrix equation, which in this case
is of the form:

YE :=


c11 + xc21 c12 + xc22 0

0 c11 + xc21 c12 + xc22

a21 − xa11 + zc21 a22 − xa12 + zc22 0
0 a21 − xa11 + zc21 a22 − xa12 + zc22


e11

e12

e22



= D :=


−d11 − xd21

−d12 − xd22

−b21 + xb11 − zd21

−b22 + xb12 − zd22

 .
Row-reducing the matrix [Y|D] and assuming c11 + xc21 6= 0 we get

(7.1)


1 0 0 0
0 1 0 0
0 0 Y1 Y2

0 0 0 0

 ,
where

Y1 =− a12x+ c22z +
(c22x+ c12)(a11x− c21z − a21)

c21x+ c11
+ a22(7.2)

and we note the bottom right entry is 0 due to g being symplectic. As
before, there is a solution E if and only if either Y1 6= 0 or Y1 = Y2 = 0,
but as before we do not need to consider the latter. On the other hand if
c21x+ c11 = 0, when we apply Gaussian elimination to [Y|D] we obtain the
same form as in (7.1) but with Y1 replaced by

(7.3) Y3 := (c21x+ c11)Y1|c21x+c11=0 = (c22x+ c12)(a11x− c21z − a21).

In this case again we only need to consider the case Y3 6= 0. Hence, in
both cases (which we will now treat simultaneously) we can consider the
inequality

(c21x+ c11)Y1 6= 0.

7.1. Suppose first that c21 6= 0. We have

(7.4) (c21x+ c11)Y1 = α(x) + (detC)z,

where

(7.5) α(x) = (detF )x2 + (detF ′ − detF ′′)x− detF ′′′
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and F =

[
a11 a12

c21 c22

]
, F ′ :=

[
a11 a12

c11 c12

]
, F ′′ :=

[
a21 a22

c21 c22

]
, F ′′′ :=

[
a21 a22

c11 c12

]
.

If x = − c11
c21

, i.e., c21x+ c11 = 0, then

α

(
−c11

c21

)
=

detC

c21

(
a11

c11

c21
+ a21

)
;

Y3 = (c21x+ c11)Y1|x=− c11
c21

=α

(
−c11

c21

)
+ (detC)z

(7.6)

7.1.1. Suppose that detC 6= 0. The inequality c21x + c11 6= 0 has exactly
p−1 solutions in x. Fix such a solution. Then for such a fixed x, Y1 6= 0 has
exactly p− 1 solutions in z by (7.4). Also, since detC 6= 0, there are p− 1
values of z that make Y3 6= 0 for x = − c11

c21
by (7.6). Hence we conclude that

if c21 6= 0 and detC 6= 0, then there are exactly p − 1 values of x and for
each such x there are exactly p− 1 values of z such that both c21x+ c11 6= 0
and Y1 6= 0 hold. Also, there is exactly one value of x and p − 1 values
of z such that both c21x + c11 = 0 and Y3 6= 0 hold. Altogether this gives
(p− 1)2 + p− 1 = p(p− 1) matrices, hence n2 = p(p− 1) in this case.

7.1.2. Suppose that detC = 0. If α(x) 6= 0, then for such x the inequality
Yj 6= 0 (for j = 1, 3) has p solutions in z (from (7.4) or (7.6)). If α(x) = 0,
then for such x we get that Yj = 0 (j = 1, 3) for all values of z and for every
fixed value of z we would get p solutions E, so this is impossible. Let us
now see for what values of x we have α(x) 6= 0. Note that the conditions
c21 6= 0 and detC = 0 force g to be in collection G3, and hence c21 = −d′22.
Thus detF = a′11d

′
22 = α(d′22)2/ detD′ for some α 6= 0 and hence detF 6= 0.

We compute the discriminant ∆ of α(x) and get ∆ = (detF ′ + detF ′′)2.
Again using the fact that g is in collection G3, a quick calculation shows that
∆ = 0 and thus x = − c11

c21
is the unique solution to α(x) = 0, i.e., there are

p − 1 values of x for which α(x) 6= 0. Hence we have shown that whenever
c21 6= 0, then n2 = p(p− 1).

7.2. Suppose that c21 = 0 and c11 6= 0. Then the inequality c21x+c11 6= 0
always holds, i.e., has p solutions in x. The analysis is exactly the same as
before. We need to look for solutions in z to the inequality

c11Y1 = α(x)|c21=0 + c11c22z 6= 0.

If c22 6= 0, this has p − 1 solutions in z. This proves (i) except in the case
when c21 = c11 = 0 and c22 6= 0. We will analyze this case below.

If c22 = 0 and α(x) 6= 0, we get p solutions in z and if c22 = α(x) = 0, we
get no solutions in z. Let us see when α(x) 6= 0 under the assumption that
c22 = 0. From (7.5) we get

α(x) = (detF ′)x− detF ′′′.

The conditions detC = 0 and c11 6= 0 alone force g to be in collection
G3, so detF ′ = d′22a

′
11 = −c21a

′
11 = 0. On the other hand for a matrix in

collection G3, we have detF ′′′ = d′12a
′
21 = αd′12 = −αc11 for a non-zero α,
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hence detF ′′′ 6= 0. Thus we get that α(x) 6= 0 has p solutions in x and for
each such x we get p solutions in z.

7.3. Suppose c21 = c11 = 0. First suppose C 6= 0. For all x we have
c21x+ c11 = 0. Hence we must consider Y3 6= 0 and in fact we get

(7.7) Y3 = c22a11x
2 + (−c22a21 + c12a11)x− a21c12.

Note that Y3 does not depend on z this time. We examine the solutions in
x to Y3 6= 0.

Suppose first that c22 6= 0. Since c21 = c11 = 0 and C 6= 0 force g to be
in collection G2, this implies that a11 6= 0 (since a11 = a′11 = αd′22 = −αc22

for nonzero α). Then (7.7) is quadratic with discriminant (c22a21 +c12a11)2,
which must be zero again by virtue of g being in collection G2. Since we
want Y3 6= 0, this gives us p− 1 solutions in x. This finishes the proof of (i).

Suppose now that c22 = 0 but still C 6= 0. This implies c12 6= 0. Then

Y3 = c12(a11x− a21).

The conditions c21 = c11 = 0, but C 6= 0 imply that g is in collection G2.
Since we also assume that c22 = 0, we must have d′22 = 0 and thus by (4.1)
we must have a′11 = 0. But since in collection G2 one has a′11 = a11, we
must have a′21 6= 0 since A′ is invertible and a21 = a′21. Hence the inequality
Y3 6= 0 has p solutions in x (and for each of them p solutions in z).

Finally if C = 0, then n2 = 0 by Lemma 5.1. �

8. The volumes of Ks

Recall that for any s = (s1, s2, s3, s4) ∈ Z4 we defined Ks = {g ∈ K0(1) |
nj(g) = sj for all j = 1, 2, 3, 4}. The following result gives volumes of Ks for
all possible s.

Proposition 8.1. Recall that #B = p3 + p2 + p + 1. The only values of
s ∈ Z4 for which one has volKs 6= 0 are listed in Table 1.

Table 1. Values of s and volumes of Ks

Value of s Volume of Ks

(p3 − p2, p2 − p, p− 1, 1) p3/#B
(p3 − p2, p2 − p, p, 0) p2/#B

(p3 − p2, p2, 0, 0) p/#B
(p3, 0, 0, 0) 1/#B

Proof. Propositions 5.2, 6.1 and 7.1 give conditions (modulo p) that g ∈
K0(1) needs to satisfy so that one obtains particular values of n4(g), n3(g)
and n2(g) respectively (note that one has n1(g) = p3−n2(g)−n3(g)−n4(g)).
So, the proof is just an elementary count how many mod p residue classes
of matrices in K0(1) satisfy these conditions. The results of that count are
summarized in Table 2 (recall that C2 denotes the second row of the matrix
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C and #P = p4(p− 1)3(p+ 1)). The volumes in Table 1 follow immediately

Table 2. Cases, values of s and numbers of matrices

Cases Value of s Matrix count
detC 6= 0 (p3 − p2, p2 − p, p− 1, 1) p3#P

detC = 0, C2 6= 0 (p3 − p2, p2 − p, p, 0) p2#P
C2 = 0, C 6= 0 (p3 − p2, p2, 0, 0) p#P

C = 0 (p3, 0, 0, 0) #P

from the matrix count in Table 2 and the fact that volK0(1) = 1, so it is
enough to show how we obtain the matrix count in Table 2. If we are in
case (i) of Proposition 6.1, i.e., detC 6= 0, then we clearly must be in case
(i) of Proposition 7.1, i.e., C2 6= 0. These two conditions are equivalent
to g being in collection G3, which has p3#P elements when counted mod
p. Hence (using also Proposition 5.2) we obtain the first line in Table 2.
Next, if we are in case (ii) of Proposition 6.1, i.e., detC = 0, but C2 6= 0,
then we must be in case (ii) of Proposition 7.1. Then g ∈ G2 ∪ G3 and
g must satisfy that d′22 6= 0, so using (4.1) we are counting the number
of pairs (α,D′), where α ∈ F×p and D′ ∈ GL2(Fp) is a matrix that lies
outside the Borel of GL2(Fp) given by the condition d′22 = 0. There are
(p − 1)(p(p − 1)2(p + 1) − p(p − 1)2) = p2(p − 1)3 such matrices. For each
such pair (α,D′) the matrix A′ is completely determined, but we get p3

choices of B′. We then multiply the number p5(p − 1)3 by the number of
coset representatives of K0(p) which lie in collection G2 (this number equals
p) or in G3 (this number equals p2). Thus we get p6(p − 1)3(p + 1) =
p2#P matrices. This gives line 2 in Table 2. Now, if we are in case (iii)
of Proposition 6.1, i.e., C2 = 0, then we may be in case (ii) or case (iii)
of Proposition 7.1. In the latter case, g must be in collection G1 and we
obtain the last line in the table. So, suppose that C2 = 0, but C 6= 0. Then
g ∈ G2 ∪ G3 and d′22 = 0. Thus, the analysis is exactly the same as for line
2 of the Table, but we need to replace the number of matrices in GL2(Fp)
that lie outside a given Borel with the cardinality of a Borel in GL2(Fp).
This amounts to dividing the count in the case of line 2 by p and thus we
get line 3 in the Table. �

9. Calculation of the Petersson norm of Upφ

We now use the calculations from Table 1 to compute the Petersson norm
of Upφ using the formula (3.2) which we repeat here

(9.1) 〈Upφ,Upφ〉K0(1) = |σ(p)|2
∑
s∈Z4

vol(Ks)
4∑

i,j=1

sisjγiγj ,
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where

γj =


p−3/2 j = 1

p−1/2χ2(p) j = 2

p1/2χ1(p) j = 3

p3/2χ1(p)χ2(p) j = 4.

Using (9.1) and Proposition 8.1 we get

#B 〈Upφ,Upφ〉K0(1)

|σ(p)|2
=p2(p4 − p3 + 1)

+|χ2(p)|2p3(p3 − p2 + 1)

+|χ1(p)|2p4(p2 − p+ 1)

+|χ1(p)|2|χ2(p)|2p6

+(χ2(p) + χ2(p))p5(p− 1)

+(χ1(p) + χ1(p))p5(p− 1)

+(χ1(p)χ2(p) + χ1(p)χ2(p))p5(p− 1)

+(χ1(p)χ2(p) + χ1(p)χ2(p))p5(p− 1)

+|χ2(p)|2(χ1(p) + χ1(p))p5(p− 1)

+|χ1(p)|2(χ2(p) + χ2(p))p5(p− 1).

(9.2)

Using the fact that χj = |χj |2χ−1
j and that |χj(p)|2 = ptj for some real

number tj we obtain the following result.

Theorem 9.1. Let χ1, χ2, σ be unramified characters of Gm(Qp). Let φ be
the normalized spherical vector in the representation χ1×χ2 oσ. Then one
has

#B 〈Upφ,Upφ〉K0(1)

vol(K0(1))2|σ(p)|2
=p2 + pt2+3 + pt1+4 + pt1+t2+5

+p5(p− 1)(1 + χ1(p))(1 + pt1χ1(p)−1)(1 + χ2(p))(1 + pt2χ2(p)−1).

(9.3)

Note that in the case when t1 = t2 = 0 (case (T) below), and the case
when t1 = −1 and t2 = 1 (the SK case below) the constant term just gives
p2#B.

Let us quote the following result from [16].

Proposition 9.2. Let N and k be positive integers with k > 2. Let F ∈
Sk(K0(N)) be a Siegel Hecke eigenform on GSp4(AQ). For p - N let πF,p
be the corresponding local representation of GSp4(Qp). Then πF,p can only
be one of the following:

(T) χ1 × χ2 o σ irreducible with |χ1| = |χ2| = |σ| = 1 (the tempered
case); or
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(C) χ1 × χ2 o σ irreducible with χ1 = | · |βpχ, χ2 = | · |βpχ−1, |χ| = 1,
e(σ) = β with 0 < β < 1/2 (the complementary series case); or

(SK) the spherical constituent of | · |1/2p χ× | · |−1/2
p χo σ, with |χ| = 1 (the

Saito-Kurokawa case).

The characters χ1, χ2, χ and σ above are unramified.

Now recall that for Π = χ1×χ2oσ we have the standard local L-function
of Π is defined by

L(s,Π,St) = (1− p−s)−1
2∏
i=1

(1− χi(p)p−s)−1(1− χ−1
i (p)p−s)−1.

Let E/Qp be the unique quadratic unramified extension. Recall the local
L-function of the base change BC(π(χ1, χ2)) is defined by

L(s,BC(π(χ1, χ2))) = (1− χ1(p)2p−2s)−1(1− χ2(p)2p−2s)−1.

Given a character ψ, we write L(s, ψ) = (1−ψ(p)p−s)−1. Using Proposition
9.2 above we obtain the following corollary to Theorem 9.1.

Corollary 9.3. With the notation from Proposition 9.2 and one has:

#B 〈Upφ,Upφ〉K0(1)

|σ(p)|2
= p2 + pt2+3 + pt1+4 + pt1+t2+5 + p5(p− 1)X,

where

X =


L(0,Π,St)

ζ(0)L(0,BC(π(χ1,χ2)))L(0,BC(π(χ−1
1 ,χ−1

2 )))
(T) and (SK)

L(0,BC(π(χ1,χ2))L(−3β/2,BC(π(χ1,χ2)))
L(0,χ1)L(0,χ2)L(−3β/4,χ1)L(−3β/4,χ2) (C)

and

(t1, t2) =


(0, 0) (T)

(−2β,−2β) (C)

(−1, 1) (SK).

We note here that ζ(0) is the pth Euler factor of the Riemann zeta function
at s = 0. While this term is undefined on its own, since we only consider
the ratio L(0,Π, St)/ζ(0), this makes sense.

Proof. From Theorem 9.1 and Proposition 9.2 we immediately obtain

#B 〈Upφ,Upφ〉K0(1)

|σ(p)|2
= p2 + pt2+3 + pt1+4 + pt1+t2+5 + p5(p− 1)X,

with
(9.4)

X =


(1 + χ1(p))(1 + χ1(p)−1)(1 + χ2(p))(1 + χ2(p)−1) (T)

(1 + p−βχ(p))2(1 + p−βχ(p)−1)2 (C)

(1 + p−1/2χ(p))(1 + p−1/2χ(p)−1)(1 + p1/2χ(p))(1 + p1/2χ(p)−1) (SK)

with the values of ti listed in the statement of the corollary. The value of X
is now obtained by elementary calculations. �
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Remark 9.4. By a result of Weissauer [22] which proves the Ramanujan
Conjecture for (non-CAP cuspidal) Siegel modular forms we know that the
complimentary case does not occur. Hence using that in the (T) and (SK)
case we have p2 + pt2+3 + pt1+4 + pt1+t2+5 = p2#B we obtain Theorem 1.1
in the Introduction.
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