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Abstract. Let f ∈ S2κ−2(Γ0(M)) be a Hecke eigenform with κ ≥ 2
even and M ≥ 1 and odd and square-free. In this paper we survey
the construction of the Saito-Kurokawa lifting from the classical and
representation theoretic point of view. We also provide some arithmetic
results on the Fourier coefficients of Saito-Kurokawa liftings. We then
calculate the norm of the Saito-Kurokawa lift.

1. Introduction

It is well-established that one can prove deep theorems in arithmetic by
studying liftings of automorphic forms from a reductive algebraic group
to a larger reductive algebraic group. For instance, one can see Ribet’s
proof of the converse of Herbrand’s theorem ([21]), Wiles’ proof of the main
conjecture of Iwasawa theory for totally real fields ([30]), or Skinner-Urban’s
proof of the main conjecture of Iwasawa theory for GL(2) ([28]) for three
prominent examples of this philosophy. One such lifting that has figured
prominently in several such results is the Saito-Kurokawa lifting that lifts
a form from GL(2) to GSp(4). One can see [1, 4, 16, 27] for examples of
arithmetic applications of Saito-Kurokawa liftings. It is these liftings that
this paper focuses on.

The Saito-Kurokawa lifting in the full level case was established via a se-
ries of papers culminating in the work of Zagier ([31]). The lifting was estab-
lished from an automorphic point of view via the work of Piatetski-Shapiro
([20]) and Schmidt ([24, 25]). For the arithmetic applications referenced
above, one needs a classical construction of the Saito-Kurokawa lifting of
square-free level. This lifting was claimed in a series of papers ([19, 17, 18]).
Unfortunately, there are many omitted proofs in these papers and the gen-
eralized Maass lifting used in these papers is known to be given incorrectly
there. It was not until recently that a correct treatment of the general-
ized Maass lifting was given by Ibukiyama ([10]) which allows one to give
a correct classical construction of the Saito-Kurokawa lifting of square-free
level.
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In this paper we survey the representation theory construction as well
as the classical construction of the Saito-Kurokawa lift of square-free level.
The representation theory construction appears in §3. This construction
shows that given a newform f ∈ S2κ−2(Γ0(M)) for M square-free and κ ≥ 2

even there is a cuspform Ff ∈ Sκ

(
Γ
(2)
0 (M)

)
that is uniquely determined up

to scalar multiples whose spinor L-function factors in terms of the Riemann
zeta function and the L-function of f . One can see Theorem 3.3 for a precise
statement. The classical results are put together in §4. In this section we
also show that with a suitable choice of scalar one can fix a lifting Ff that
has Fourier coefficients in the same ring as f ’s Fourier coefficients. This is
essential for arithmetic applications. Finally, in §5 we compute the norm
of Ff . Such a calculation originally appeared in [3], but this was based on
the incorrect Maass lifting mentioned above so is not correct. This norm is
needed for the main result of [1].

2. Definitions and notation

In this section we fix basic definitions and notations we will use throughout
the rest of the paper. Given a ring R, we let Matn(R) denote the set of n by
n matrices with entries in R. As usual we let GL(n,R) ⊂ Matn(R) denote
the group of invertible matrices and SL(n,R) ⊂ GL(n,R) the matrices with
determinant 1. We write 1n for the identity matrix in GLn(R) and 0n for
the zero matrix in Matn(R). Given A ∈ Matn(R), we denote the transpose

of A by tA. Let J =

(
02 −12
12 02

)
. The symplectic group GSp(4, R) is defined

by
GSp(4, R) = {g ∈ GL(4, R) : tgJg = µ(g)J, µ(g) ∈ GL(1, R)}.

We set Sp(4, R) = ker(µ). We let PGSp(4, R) denote the projective sym-
plectic group. For M ≥ 1 an integer we let Γ0(M) ⊂ SL(2,Z) have its usual
meaning and set

Γ
(2)
0 (M) =

{(
A B
C D

)
∈ Sp(4,Z) : C ≡ 0 (mod M)

}
.

We write e(z) = e2πiz. We let hn = {Z = X + iY ∈ Matn(C) : X,Y ∈
Matn(R), Y > 0}. Let κ ≥ 2 be an integer and M ≥ 1 a square-free integer.
We let Sκ(Γ0(M)) denote the cusp forms of weight κ and level Γ0(M). Let
f ∈ Sκ(Γ0(M)) be a normalized eigenform with Fourier expansion

f(z) =
∑
n≥1

af (n)e(nz).

Given a ring R, we write Sκ(Γ0(M);R) to denote the space of cusp forms
that have Fourier coefficients in R. We define the Peterson product on
Sκ(Γ0(M)) by setting

⟨f1, f2⟩ =
1

[SL(2,Z) : Γ0(M)]

∫
Γ0(M)\h

f1(z)f2(z)y
κ−2dxdy
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for f1, f2 ∈ Sκ(Γ0(M)).
We denote the cuspidal automorphic representation associated to f by

πf = ⊗′πf,p. Recall that πf,∞ is the discrete series representation with low-
est weight vector of weight κ and for p - M we have πf,p is the unramified
principal series representation. The local representations for p | M are de-
termined by the Atkin-Lehner eigenvalues of f . For p |M , recall the Atkin-

Lehner operator at p is the matrix Wp =

(
0 1
p 0

)
. If f ∈ Snew

κ (Γ0(M)), we

let ϵp ∈ {±1} denote the Atkin-Lehner eigenvalue of f at p, i.e., Wpf = ϵpf .
If ϵp = −1, then πf,p = StGL(2) and if ϵp = 1 then πf,p = ξ StGL(2) where
StGL(2) is the Steinberg representation and ξ is the unique non-trivial un-

ramified quadratic character of Q×
p .

We will also need L-functions attached to f and πf . For each prime p -M
there exists a character σp so that πf,p = π(σp, σ

−1
p ) (see [5, Section 4.5].)

The p-Satake parameter of f is given by α0(p; f) = σp(p). We have

L(s, πf,p) = (1− α0(p; f)p
−s)−1(1− α0(p; f)

−1p−s)−1.

For p |M we have

L(s, πf,p) = (1 + ϵpp
−s− 1

2 )−1.

We set

L∞(s, πf,∞) = (2π)−(s+(κ−1)/2)Γ (s+ (κ− 1)/2) .

Set

L(s, πf ) =
∏
p

L(s, πf,p).

The functional equation for L(s, πf ) is given by

L(s, πf ) = ε(s, πf )L(1− s, πf )

where ϵ(s, πf ) =
∏
p ϵp(s, πf,p) and

εp(s, πf,p) =


(−1)κ/2 if p = ∞,

−p
1
2
−s if ϵp = −1, p <∞,

p
1
2
−s if ϵp = 1, p <∞.

In particular, the sign of the functional equation is given by ε(12 , πf ) ∈ {±1}.
The classical L-function of f is given by

L(s, f) =
∏
p<∞

L

(
s+

1

2
− κ/2, πf,p

)
.

The completed L-function is denoted by

Λ(s, f) = L

(
s+

1

2
− κ/2, πf

)
.
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Let Sκ(Γ
(2)
0 (M)) denote the space of Siegel modular forms of weight κ

and level Γ
(2)
0 (M). Given F ∈ Sκ(Γ

(2)
0 (M)), we have a Fourier expansion

F (z) =
∑
T∈Λ2

aF (T )e(Tr(Tz))

where Λ2 is the set of 2 by 2 half integral positive definite symmetric ma-

trices. As above, for a ring R we write Sκ(Γ
(2)
0 (N);R) to denote the forms

with Fourier coefficients in R.
Given F ∈ Sκ(Γ

(2)
0 (M)), there is a cuspidal automorphic representation

ΠF of PGSp(4,A) associated to F . We can decompose it into local com-
ponents ΠF = ⊗ΠF,p with ΠF,p a representation of PGSp(4,Qp). We refer
the reader to [2, Section 3] for the details concerning the construction of
cuspidal automorphic representations associated to Siegel cusp forms. For
all but finitely many places p the representation ΠF,p will be an Iwahori
spherical representation Π(σ, χ1, χ2), which is isomorphic to the Langlands
quotient of an induced representation of the form χ1 × χ2 o σ with χi and
σ unramified characters of Q×

p . One can see [2, 22] for the definitions and
details. For such p the p-Satake parameters are defined by b0 = σ(p) and
bi = χi(p) for i = 1, 2. We define

L(s,ΠF,p, spin) =
(
(1− b0p

−s)(1− b0b1p
−s)(1− b0b2p

−s)(1− b0b1b2p
−s)
)−1

for ΠF,p = Π(σ, χ1, χ2). We leave the local L-functions for p = ∞ and p |M
undefined for now as these will be given in Section 3. Set

L(s,ΠF , spin) =
∏
p

L(s,ΠF,p, spin).

The classical spinor L-function is given by

L(s, F, spin) =
∏
p<∞

L(s− κ+ 3/2,ΠF,p, spin).

The completed L-function is denoted by

Λ(s, F, spin) = L(s− κ+ 3/2,ΠF , spin).

3. Representation theoretic construction

In this section we recall the representation theoretic construction by
Schmidt [25] of the Saito-Kurokawa lift in the square free congruence level
case. Let f ∈ Snew

2κ−2(Γ0(M)) be a newform of weight 2κ − 2 where κ ≥ 2
is even and M is square free. Assume that f is an eigenform for all Hecke
operators T (p) with p - M . Let πf be the cuspidal automorphic represen-
tation of PGL(2,A) attached to f . Let Σ be the set of primes p dividing
M including ∞ and let S ⊂ Σ such that ∞ ∈ S. Since M is square free,
the local components πf,p of πf are square-integrable if and only if p|M or
p = ∞.
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Define πS = ⊗′πS,p in PGL(2,A) by

πS,p =

{
1GL(2) if p /∈ S
StGL(2) if p ∈ S

where 1GL(2) is the trivial representation and StGL(2) is the Steinberg rep-
resentation in PGL(2). Then πS is an automorphic representation being an
irreducible constituent of a globally induced representation.

Theorem 3.1. [25, Theorem 1.1] Let πf = ⊗′πf,p be the cuspidal au-
tomorphic representation of PGL(2,A) corresponding to a newform f ∈
Snew
2κ−2(Γ0(M)) where κ ≥ 2 is even and M is square-free. Let S be a subset

of places of Q containing ∞ and dividing M and define πS as above. Let
ε(s, πf ) be the Euler factor associated to πf . If

(−1)#S = ε

(
1

2
, πf

)
then the global lifting Π(πf ⊗ πS) is a cuspidal automorphic representation
of PGSp(4,A) which appears discretely in the space of automorphic forms.

One can think of Π(πf ⊗ πS) as a functorial lifting of the representation
πf ⊗ πS on PGL(2,A)×PGL(2,A) to PGSp(4,A). By Theorem 3.1, after a
suitable choice of S (to be made precise later) that satisfies the hypothesis we
obtain a cuspidal automorphic representation Π = Π(πf⊗πS) in PGSp(4,A).
Let Π = ⊗′

p≤∞Πp be the factorization of Π into local representations. Next
we study the local representations Πp with the aim of controlling the weight
and the level of the lift Π.

Since f has weight 2κ − 2, the archimedean component πf,∞ of πf is
D(2κ− 3), the holomorphic discrete series representation of PGL(2,R) with
a lowest weight vector of weight 2κ − 2. The archimedean component of
StGL(2) is St∞ := D(1) the lowest discrete series representation of PGL(2),
with lowest weight vector of weight 2. Hence

Π∞ = Π(πf,∞ ⊗ StGL(2)) = Π(D(2κ− 3)⊗D(1))

and it is the holomorphic discrete series representation of PGSp(4,R) with
scalar minimal K-type (κ, κ) for κ > 2 (see §4,[24]). Let Φ∞ be the distin-
guished lowest weight vector in it.

At the finite places, let Φp ∈ Πp, be vectors chosen such that they are fixed
by compact open subgroups Kp ⊂ GSp(4,Qp). Let Φ = ⊗′

p≤∞Φp ∈ Π. Then
Φ corresponds to a classical homomorphic cusp form Ff of weight κ with
respect to the congruence subgroup Γ = GSp(4,Q)∩GSp+(4,R)

∏
p<∞Kp ⊂

Sp(4,Q).
Having found the weight, we will now determine the level of Ff . If p -

M then the local representation Πp is Π(πf,p ⊗ 1GL(2)), where πf,p is the
unramified principal series representation containing non-zero vectors fixed
by GL(2,Zp). Hence Πp is an unramified representation and we can choose
Kp as Kp = GSp(4,Zp) and Φp as a spherical vector. For primes p dividing
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M whereM is square free, the local components πf,p of πf for p|M can only
be the Steinberg representation StGL(2),p or a non-trivial unramified twist
ξ StGL(2),p where ξ is the unique non-trivial unramified quadratic character

of Q×
p . Hence one is led to study the following local representations:

(1) Π(StGL(2),p⊗1GL(2),p)
(2) Π(StGL(2),p⊗ StGL(2),p)
(3) Π(ξ StGL(2),p⊗1GL(2),p)
(4) Π(ξ StGL(2),p⊗StGL(2),p)

We can rule out Π(ξ StGL(2),p⊗StGL(2),p) as a possible local representation
at a place dividingM since it is supercuspidal by paper [11]. A supercuspidal
local representation cannot occur as a local component of an automorphic
representation associated to a Siegel modular since it has no Iwahori fixed
vectors.

As we are only interested in congruence level Saito-Kurokawa lifts, we
now make precise our choice of S. Let

S =

{
∞} ∪ {p|M : ε

(
1

2
, πf,p

)
= −1

}
.

We note that this choice of S satisfies the hypotheses of Theorem 3.1:

ε

(
1

2
, πf

)
:= (−1)κ−1

∏
p|M

ε

(
1

2
, πf,p

)
= (−1)κ−1

∏
p∈S

−1 = (−1)#S−κ−2 = (−1)#S

since κ is even.

Remark 3.2. For f ∈ Snew
2κ−2(Γ0(M)), πf,p is a representation of PGL(2,Qp).

Since representations of PGL(2,Qp) are self-dual, the ε-factor at the central
point 1

2 is ±1 (see [23, Lemma 3.2.1]). At the same time, the Atkin-Lehner
involution acts on the one-dimensional space spanned by the newform. This
involution also defines a sign. In [23], Schmidt shows that the two signs
attached to πf,p are the same, i.e., ϵp = ε(12 , πf,p). Hence we have character-
ized S in terms of Euler factors instead of Atkin-Lehner eigenvalues as done
in [25].

Since ε(12 , π1 ⊗ π2) = ε(12 , π1)ε(
1
2 , π2), ε(

1
2 ,1GL(2),p) = 1, ε(12 ,StGL(2),p) =

−1, and ε(12 , ξ StGL(2),p) = 1 by our choice of S the only possible local rep-
resentations are Π(StGL(2),p⊗StGL(2),p) and Π(ξ StGL(2),p⊗1GL(2),p). Hence
we can limit our analysis to these cases.

A detailed study of the invariant vectors in Π(StGL(2),p⊗StGL(2),p) and
Π(ξ StGL(2),p⊗1GL(2),p) is carried out in §2 of [25] with the results summa-
rized in Table (30) of [25]. The table shows that there is a unique local fixed
vector for the Siegel parabolic of level p in each of the above cases. Since
this is the case for all p|M andM is square free, the Siegel form Ff has level

Γ
(2)
0 (M) and being cuspidal of scalar weight κ it is in Sκ(Γ

(2)
0 (M)). Finally,

it can be shown that such a Ff is unique up to scalar multiples.
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We have the local L-factors associated to πS are given by

L(s, πS,p) =


(2π)−s−

1
2Γ
(
s+ 1

2

)
p = ∞

(1− p−s−
1
2 )−1 p ∈ S, p <∞

(1− p−s−
1
2 )−1(1− p−s+

1
2 )−1 p /∈ S.

We also make use of the fact that

L(s,1GL(2),∞) = 2(2π)−s+
1
2Γ

(
s− 1

2

)
.

This allows us to conclude the global L-function of πS is given by

L(s, πS) = Z

(
s+

1

2

)
Z

(
s− 1

2

)∏
p∈S

L(s,StGL(2),p)

L(s,1GL(2),p)

where
L(s,StGL(2),p)

L(s,1GL(2),p)
=

{ 1
4π (s−

1
2) p = ∞

1− p−s+
1
2 p <∞

and Z(s) is the completed Riemann zeta function. From this, along with
the description of L(s, πf ) given in the previous section and Theorem 3.1,
we have the following theorem.

Theorem 3.3. ([25, Theorem 5.2]) Let κ ≥ 2 be even and M a square-free
positive integer. Let f ∈ Snew

2κ−2(Γ0(M)) an elliptic newform. Then there

exists a cusp form Ff ∈ Sκ(Γ
(2)
0 (M)), unique up to scalar multiples, whose

spinor L-function is given by

L(s, πFf
, spin) =

1

4π

(
s− 1

2

) ∏
ε( 1

2
,πf,p)=−1

(1− p−s+
1
2 )

Z

(
s+

1

2

)
Z

(
s− 1

2

)
L(s, πf ).

4. Classical construction

In the previous section we summarized the results of [25] showing the
existence of a Saito-Kurokawa lift of square-free level from the automor-
phic forms viewpoint. In this section we gather known results and give
a classical construction of the Saito-Kurokawa lifting from S2κ−2(Γ0(M))

to Sκ(Γ
(2)
0 (M)) for κ ≥ 2 an even integer and M ≥ 1 an odd square-free

integer. Theorem 3.3 gives a Saito-Kurokawa lifting that is unique up to
scalars. Using this classical construction we fix the scalar so that the re-
sulting Saito-Kurokawa lift is more useful for arithmetic applications (see
for example [1, 16]). In particular, given a normalized Hecke eigenform
f ∈ S2κ−2(Γ0(M)), if we let O be a ring containing the Hecke eigenvalues
of f , we show the Saito-Kurokawa lift of can be normalized so that it has
Fourier coefficients lying in O as well.

The classical lifting is constructed via a composition of liftings, the first
from integral to half-integral weight, then from half-integral weight to Jacobi
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forms, and finally from Jacobi forms to Siegel modular forms. We begin by
recalling results on the lifting from integral to half-integral weight forms.

Let D < 0 be a fundamental discriminant and let θκ,D : S2κ−2(Γ0(M)) →
S+
κ− 1

2

(Γ0(4M)) be Shintani’s lifting ([26]). One has that θκ,D gives a Hecke-

equivariant isomorphism between S2κ−2(Γ0(M)) and S+
κ− 1

2

(Γ0(4M)) ([12, §
5, Theorem 2]).

Let O be a ring so that an embedding of O into C exists. We choose such
an embedding and identify O with its image in C. Let f ∈ S2κ−2(Γ0(M)) be
a normalized Hecke eigenform and assume O contains the Fourier coefficients
of f . The Shintani lifting of f is determined up to a scalar multiple. In [29]
Stevens’ constructs a cohomological version of the Shintani lifting as a step
in producing a Λ-adic Shintani lifting. This cohomological Shintani lifting
allows one to conclude the following result.

Theorem 4.1. ([29, Prop. 2.3.1]) Let f ∈ S2κ−2(Γ0(M)) be a Hecke eigen-
form. Let D < 0 be a fundamental discriminant. If the Fourier coefficients

of f are in O, there exists a Shintani lifting θalgκ,D(f) with Fourier coefficients
in O. Moreover, if O happens to be a discrete valuation ring, we can nor-
malize the Shintani lifting to have Fourier coefficients in O with at least one
Fourier coefficient in O×.

This gives what we need for the first part of the construction. We now
consider the lifting from half-integral weight forms to Jacobi forms. We
recall the bijection between Jcκ,1(Γ0(M)J) and S+

κ− 1
2

(Γ0(4M)) for M an odd

integer.
Let g ∈ S+

κ− 1
2

(Γ0(4M)). Define gj(τ) by

gj(τ) =
∑
n>0

n≡j (mod 4)

ag(n)e(nτ/4)

for j = 0, 1 where the ag(n) are the Fourier coefficients of g. Note we have
g(τ) = g0(4τ) + g1(4τ). Define

ϑj(τ, z) =
∑
n∈Z

e

(
2n− j2

4
τ + (2n− j)z

)
.

Define a map J by

J (g)(τ, z) = g0(τ)ϑ0(τ, z) + g1(τ)ϑ1(τ, z)

for g ∈ S+
κ− 1

2

(Γ0(4M)). We have the following theorem.

Theorem 4.2. ([15, Corollary 3]) The map J gives an isomorphism between
S+
κ− 1

2

(Γ0(4M)) and Jcκ,1(Γ0(M)J).

One immediately obtains that if the Fourier coefficients of g lie in a ring
O, so do the Fourier coefficients of J (g). Moreover, if g is an eigenform, so
is J (g) with the same eigenvalues.
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Finally, we recall the Maass lifting from the Jacobi forms to Siegel forms.
Given a positive integer m, we define

∆M,0(m) =

{(
a b
Mc d

)
: a, b, c, d ∈ Z, ad− bcM = m, gcd(a,M) = 1

}
.

Let

Vm : Jcκ,t(Γ0(M)J) → Jcκ,mt(Γ0(M)J)

be the index shifting operator defined by

(Vmϕ)(τ, z) = mκ−1
∑

g∈Γ0(M)\∆M,0(m)

(ϕ|κ,tg)(τ, z).

If the Fourier expansion of ϕ ∈ Jcκ,1(Γ0(M)J) is given by

ϕ(τ, z) =
∑

D<0,r∈Z
D≡r2 (mod 4)

c(D, r)e

(
r2 −D

4
τ + rz

)
,

then

(Vmϕ)(τ, z) =
∑

D<0,r∈Z
D≡r2 (mod 4m)


∑

d|gcd(r,m)
gcd(d,M)=1

D≡r2 (mod 4md)

dκ−1c

(
D

d2
,
r

d

)
 e

(
r2 −D

4m
τ + rz

)
.

Define a function on h2 by

(VMϕ)(Z) =
∞∑
m=1

(Vmϕ)(τ, z)e(mτ
′)

where Z =

(
τ z
z τ ′

)
. One has the following result of Ibukiyama.

Theorem 4.3. ([10, Theorems 3.2, 4.1]) The map VM is an injective linear

map from Jcκ,1(Γ0(M)J) to Sκ(Γ
(2)
0 (M)). Moreover one has for p -M

TS(p)(VMϕ) = VM
(
TJ(p)ϕ+ (pκ−1 + pκ−2)ϕ

)
,

T
′
S(p)(VMϕ) = VM

(
(pκ−2 + pκ−1)TJ(p)ϕ+ (2p2κ−3 + p2κ−4)ϕ

)
where T

′
S(p) = pTS(p

2) + p(1 + p+ p2)T (diag(p, p, p, p)). If p -M , we have

US(p)(VMϕ) = VM (UJ(p)ϕ).

An immediate consequence of the calculation of the Fourier coefficients
of VM carried out in [10] is the following corollary.

Corollary 4.4. Let ϕ ∈ Jcκ,1(Γ0(M)J ,O) for some ring O. Then VMϕ ∈
Sκ(Γ

(2)
0 (M),O).
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Combining the result on the Shintani lifting with Theorems 4.2 and 4.3 we
have the following theorem giving the existence of a Saito-Kurokawa lifting.

Theorem 4.5. Let κ ≥ 2 be an even integer and M ≥ 1 an odd square-
free integer. Let f ∈ S2κ−2(Γ0(M)) be a normalized Hecke eigenform. Then

there exists a nonzero cuspidal Siegel eigenform Ff ∈ Sκ(Γ
(2)
0 (M)) satisfying

LM (s, Ff , spin) = ζM (s− κ+ 1)ζM (s− κ+ 2)LM (s, f).

Moreover, if O is a ring that can be embedded into C and f has Fourier
coefficients in O, the lift Ff can be normalized to have Fourier coefficients
in O. If O is a DVR, Ff can be normalized to have Fourier coefficients in
O with at least one Fourier coefficient in O×.

One should note here that the factorization of the spinor L-function given
in Theorem 4.5 matches that of Theorem 3.3 once one switches from the
automorphic to the classical L-functions and removes the infinite place and
those places dividing M .

5. Norm of Ff

We now calculate the norm of Ff in terms of the norm of f . This forms a
key step in the main result of [1], but is also of independent interest. We do
this by relating the norm of the image of each lift to the norm of the form
being lifted for each of the three lifts composed to give the Saito-Kurokawa
lift. Again, we fix κ ≥ 2 to be an even integer and M ≥ 1 to be odd and
square-free.

Let f ∈ Snew
2κ−2(Γ0(M)) be a newform. For each prime ℓ | M , recall Wℓ is

the Atkin-Lehner involution on Snew
2κ−2(Γ0(M)). Define ϵℓ ∈ {±1} by

f |Wℓ = ϵℓf.

We have the following theorem relating the norm of f to that of θalgκ,D(f).

Theorem 5.1. [13, Corollary 1] Let f ∈ Snew
2κ−2(Γ0(M)) be a newform and

let D < 0 be a fundamental discriminant. Suppose that for all primes ℓ |M
we have

(
D
ℓ

)
= ϵℓ. Then

(1)

∣∣∣∣aθalgκ,D(f)
(|D|)

∣∣∣∣2
⟨θalgκ,D(f), θ

alg
κ,D(f)⟩

= 2ν(M) (κ− 2)!

πκ−1
|D|κ−3/2L(κ− 1, f, χD)

⟨f, f⟩

where χD =
(
D
·
)
and ν(M) is the number of prime divisors of M .

One should note that if there is a prime ℓ |M so that
(
D
ℓ

)
̸= ϵℓ, then one

has a
θalgκ,D(f)

(|D|) = 0.
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Now let g ∈ S+
κ− 1

2

(Γ0(4M)) and J (g) the associated form in Jcκ,1(Γ0(M)J).

Let g(z) =
∞∑
n=1

ag(n)e(nz) be the Fourier expansion of g. Consider the sum-

mation
∞∑
n=1

ag(n)
2

ns+κ−3/2
. Applying the Rankin-Selberg method to this summa-

tion we have for sufficiently large s:

Γ(s+ κ− 3/2)

(4π)s+κ−
1
2

∞∑
n=1

ag(n)
2

ns+κ−3/2
=

∫
h1/Γ∞

|g(z)|2ys+κ−5/2dxdy

=

∫
h1/Γ0(4M)

yκ−
1
2 |g(z)|2E4M

s (z)
dxdy

y2

where E4M
s (z) =

∑
γ∈Γ∞\Γ0(4M)

(Im (γz))s and Γ∞ the stabilizer of ∞. In

other words,

(2)

∞∑
n=1

ag(n)
2

ns+κ−3/2
=

(4π)s+κ−
1
2

Γ(s+ κ− 3/2)

∫
Γ0(4M)\h1

E4M
s (z)g(z)g(z)yκ−

1
2
dxdy

y2
.

Taking residues at s = 1 we obtain

res
s=1

( ∞∑
n=1

ag(n)
2

ns+κ−3/2

)
=

(4π)1+κ−
1
2 [SL2(Z) : Γ0(4M)]

Γ(κ− 1
2)

⟨g, g⟩ res
s=1

E4M
s (z)

=
3 · 2κ−1(4π)κ−

1
2

π3/2(2κ− 3)!!
⟨g, g⟩

where

n!! =

{
n(n− 2) . . . 5 · 3 · 1 n > 0, odd
n(n− 2) . . . 6 · 4 · 2 n > 0, even

and we have used that

res
s=1

E4M
s (z) =

1

[SL2(Z) : Γ0(4M)]
res
s=1

Es(z)

=
1

[SL2(Z) : Γ0(4M)]

(
3

π

)
where Es(z) is the Eisenstein series for SL2(Z). Solving the above residue
calculation for ⟨g, g⟩ we obtain

(3) ⟨g, g⟩ = (2κ− 3)!!

3 · 23κ−2πκ−2
res
s=1

( ∞∑
n=1

ag(n)
2

ns+κ−3/2

)
.
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Recall the two half-integral weight modular forms g0 and g1 defined in §
4. Applying the same process to g0 and g1 we obtain

⟨gj , gj⟩ =
(2κ− 3)!!

3 · 23κ−2πκ−2
· 22κ−1res

s=1

∑
n≡j

ag(n)
2

ns+κ−3/2

 .

Thus we have

(4) ⟨g0, g0⟩+ ⟨g1, g1⟩ = 22κ−1⟨g, g⟩.

We need a slight generalization of Theorem 5.3 in [8]. In [8], the formula
given only deals with the case M = 1. However, the proof carries through
verbatim to the general case.

Theorem 5.2. ([8], Theorem 5.3) For J (g) and gj as defined above, one
has
(5)

⟨J (g),J (g)⟩ = 1

2 [SL2(Z) : Γ0(M)]

∫
Γ0(M)\h1

1∑
j=0

gj(z)gj(z)v
κ−3/2dudv

v2
.

Combining Equations 4 and 5 we have:

Lemma 5.3. For J (g) and g defined as above we have

(6) ⟨J (g),J (g)⟩ = 22κ−2

[Γ0(M) : Γ0(4M)]
⟨g, g⟩.

In light of Theorem 5.1 and Proposition 5.3, it only remains to calculate
the ratio of ⟨ϕ, ϕ⟩ and ⟨VMϕ,VMϕ⟩ for ϕ ∈ Jcκ,1(Γ0(M)J). We follow the

arguments used in [14] where this ratio is computed when M = 1. One
should note this inner product was originally given in [3]. However, that
result cited a theorem in [6] which in turn was based on the incorrect def-
inition of the VM map used in [19]. Thus, we give the computation here
using the corrected definition given in [10]. The argument given in [3, § 4]
is correct up until the point the result of [6] is invoked, however we include
the complete argument here to have it given in one place.

Let F,G ∈ Sκ(Γ
(2)
0 (M)) be eigenforms with Fourier-Jacobi expansions

given by

F (Z) =
∑
N≥1

ϕN (τ, z)e(Nτ
′)

and

G(Z) =
∑
N≥1

ψN (τ, z)e(Nτ
′).

Define a Dirichlet series attached to F and G by

DF,G(s) = ζM (2s− 2κ+ 4)
∑
N≥1

⟨ϕN , ψN ⟩N−s
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and set

(7) D∗
F,G(s) = (2π)−2sΓ(s)Γ(s− κ+ 2)DF,G(s).

It is shown in [9] that D∗
F,G(s) has meromorphic continuation to C, is

entire if ⟨F,G⟩ = 0 and otherwise has a simple pole at s = κ. The first step
in calculating the ratio of inner products we desire is calculating the residue
of DF,G at s = κ. We do this by writing DF,G as the Petersson product of

F (Z) ¯G(Z)|Y |κ against a certain non-holomorphic Klingen Eisenstein series
Es,M (Z). Define a Klingen Eisenstein series

Es,M (Z) =
∑

γ∈C2,1(M)\Γ(2)
0 (M)

(
det(ImγZ)

Im(γZ)1

)s
where (γZ)1 denotes the upper left entry of γZ and

C2,1(M) =



a 0 b µ
λ′ 1 µ′ κ
c 0 d −λ
0 0 0 1

 ∈ Γ4
0(M)

 , (λ′, µ′) = (λ, µ)

(
a b
c d

)
.

Set

(8) E∗
s,M (Z) = π−sΓ(s)ζ(2s)

∏
p|M

(1− p−2s)Es,M (Z).

One has that E∗
s,M (Z) has mermomorphic continuation to C with possible

simple poles at s = 0, 2 ([9]). It is known that res
s=2

E∗
s,1(Z) = 1 ([14]). Note

that this is independent of Z, so we have res
s=2

E∗
s,1(NZ) = 1 for all positive

integers N . Equation (8) gives res
s=2

Es,1(Z) =
90

π2
. As above, this residue is

independent of Z so we have res
s=2

Es,1(NZ) =
90

π2
for all positive integers N .

The following formula is given in [9]:

Es,1(MZ) =
1

M s

∑
d|M

d2s
∏
p|d

(1− p−2s)Es,d(Z).

This formula allows one to calculate the residue of Es,M (Z) inductively in
terms of Es,d(Z) for d |M . In fact, for M = pm1

1 . . . pmn
n , we have

(9) res
s=2

Es,M (Z) =

(
90

π2

)
h(p1, . . . , pn)

n∏
i=1

(
1

p2mi−2
i (p4i − 1)

)
where h is a polynomial with coefficients in Z uniquely determined by M .
For example, if M = pn for a prime p, we have

h(p) = p2 − 1
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and if M = p1 . . . pn is a product of distinct primes, we have

h(p1, . . . , pn) =

n∏
i=1

(p2i − 1).

We will be mainly interested in the case that M = p1 . . . pn is odd and
square-free. Appealing to (8) we obtain

(10) res
s=2

E∗
s,M (Z) =

n∏
i=1

(
1− p−4

i

p2i + 1

)
.

We now turn our attention back to calculating the residue of DF,G(s) at
s = κ. We have the following equation (see [9]):

π−κ+2[Sp4(Z) : Γ
(2)
0 (M)]⟨FE∗

s−κ+2,M , G⟩ =M sD∗
F,G(s).

Taking the residue of this equation at s = κ and solving for res
s=κ

D∗
F,G(s) we

obtain

res
s=κ

D∗
F,G(s) =

π2−κ
[
Sp4(Z) : Γ

(2)
0 (M)

]
Mκ

res
s=2

E∗
s,M (Z)⟨F,G⟩

=
π2−κ

[
Sp4(Z) : Γ

(2)
0 (M)

]
Mκ

∏
p|M

(
1− p−4

i

p2i + 1

)
⟨F,G⟩

=
π2−κ

[
Sp4(Z) : Γ

(2)
0 (M)

]
MκζM (4)

∏
p|M

(
1

p2i + 1

)
⟨F,G⟩.

On the other hand, taking the residue at s = κ of (7) we have

res
s=κ

D∗
F,G(s) = (2π)−2κ(κ− 1)!res

s=κ
DF,G(s).

Combining these two results and solving for res
s=κ

DF,G(s) we obtain

(11) res
s=κ

DF,G(s) =
22κπκ+2

[
Sp4(Z) : Γ

(2)
0 (M)

]
MκζM (4)(κ− 1)!

∏
p|M (p2i + 1)

⟨F,G⟩.

Following [14], our next step is to calculate the adjoint of the operator
Vm. We will need the following lemma.

Lemma 5.4. Let ∆∗
M,0(m) ⊂ ∆M,0(m) be the matrices

(
a b
Mc d

)
with

gcd(a, b, c, d) = 1. The map

φM : Γ0(M,m)\Γ0(M) → Γ0(M)\∆∗
M,0(m)(

a b
Mc d

)
7→
(
1 0
0 m

)(
a b
Mc d

)
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gives a bijection where

Γ0(M,m) =

{(
a mb
Mc d

)
∈ Γ0(M)

}
.

Proof. The proof amounts to showing the cardinality of Γ0(M,m)\Γ0(M)
is the same as the cardinality of Γ0(M)\∆∗

M,0(m) and then showing the
map φM is injective by using the explicit coset representatives given for
Γ0(M,m)\Γ0(M). Write M =

∏r
i=1 p

ei and m =
∏r
i=1 p

fi where the ei and
fi are nonnegative integers. One has that

# (Γ0(M)\∆M,0(m)) =

r∏
i=1

#
(
Γ0(M)\∆M,0(p

fi
i )
)

and so

#
(
Γ0(M)\∆∗

M,0(m)
)
=

r∏
i=1

#
(
Γ0(M)\∆∗

M,0(p
fi
i )
)
.

Thus, we only need to calculate

#
(
Γ0(M)\∆∗

M,0(p
f )
)

for a prime p. This breaks into two cases depending upon whether p divides
M or not. The main input is the fact that

Γ0(M)\∆M,0(m) =

{(
a b
0 d

)
: ad = m, gcd(a,M) = 1, 0 ≤ b ≤ d− 1

}
.

Using this, one sees that if p |M then

Γ0(M)\∆∗
M,0(p

f ) =

{(
1 b
0 pf

)
: 0 ≤ b < pf

}
,

and so there are pf elements. If p - M , one shows by induction on f and
counting as above that

#
(
Γ0(M)\∆∗

M,0(p
f )
)
= pf + pf−1.

Recall the map

λT : SL2(Z) → SL2(Z/TZ)
is surjective with kernel Γ(T ). From this, one sees that there is a bijec-
tion between Γ0(M,m)\Γ0(M) and λT (Γ0(M,m))\λT (Γ0(M)) where T =
lcm(M,m). Moreover, one has

SL2(Z/TZ) ∼=
∏
pf∥T

SL2(Z/pfZ).

Thus, one only needs to work with prime powers to compute the cosets.
Write M = pe and m = pf for e, f nonnegative integers. We break into
cases for this:
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(1) Suppose e = 0. In this case we have λT (Γ0(M,m))\λT (Γ0(M)) =
λT (Γ

0(m))\λT (SL2(Z)). In this case the coset representatives are

given by

(
1 b
0 1

)
for 0 ≤ b < pf and

(
1 1

(1 + b)p− 1 (1 + b)p

)
for

0 ≤ b < pf−1 (see [7, Section 3.7]).
(2) Suppose e is positive. In this case the representatives are given by{(

1 b
0 1

)
: 0 ≤ b < pf

}
.

Thus, we have the cardinalities matching up and the map φM is clearly
injective. �

Proposition 5.5. Let V ∗
m : Jcκ,m(Γ0(M)J) → Jcκ,1(Γ0(M)J) be the adjoint

of Vm with respect to the Petersson inner product. Let ψ ∈ Jcκ,m(Γ0(M)J)
with

ψ(τ, z) =
∑

D<0,r∈Z
D≡r2(4m)

c(D, r)e

(
r2 −D

4m
τ + rz

)
.

The action of V ∗
m on Fourier coefficients is given by

V ∗
mψ(τ, z) =

∑
D<0,r∈Z
D≡r2(4)

 ∑
d|m

gcd(d,M)=1

dκ−2
∑

s∈S(r,d,D)

c

(
m2

d2
D,

m

d
s

) e

(
r2 −D

4
τ + rz

)

where S(r, d,D) = {s (mod 2d) : s ≡ r (mod 2), s2 ≡ D (mod 4d)}.

Proof. The proof here is analogous to the one given in [14] for the level 1
case. We include a proof for M ≥ 1 and square-free here with more details
for the reader’s convenience. Let ϕ ∈ Jcκ,1(Γ0(M)J). Given a ∈ C, write
ϕa(τ, z) for the function ϕ(τ, az). If m′|m we write m/m′ = � to denote
that m/m′ is a perfect square. One has immediately from the definition and
the lemma above that

Vmϕ = mκ/2−1
∑

g∈Γ0(M)\∆M,0(m)

ϕ√m|κ,m
(

g√
m

)

= mκ/2−1
∑
m′|m

m/m′=�

∑
g∈Γ0(M)\∆∗

M,0(m)

ϕ√m|κ,m
(

g√
m′

)

= mκ/2−1
∑
m′|m

m/m′=�

∑
g∈Γ0(M,m)\Γ0(M)

ϕ√m|κ,m

(
1√
m′ 0

0
√
m′

)
g.

Note that ϕ√m|κ,m

(
1√
m′ 0

0
√
m′

)
∈ Jcκ,m(Γ0(M,m)J).
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Given ϕ ∈ Jcκ,1(Γ0(M)J) and ψ ∈ Jcκ,m(Γ0(M)J) we have

⟨Vmϕ, ψ⟩ = mκ/2−1
∑
m′|m

m/m′=�

∑
g∈Γ0(M,m)\Γ0(M)

⟨
ϕ√m|κ,m

(
1√
m′ 0

0
√
m′

)
g, ψ

⟩

= mκ/2−1
∑
m′|m

m/m′=�

[Γ0(M) : Γ0(M,m)]

⟨
ϕ√m|κ,m

(
1√
m′ 0

0
√
m′

)
, ψ

⟩

where we have used ⟨ϕ|γ, ψ⟩ = ⟨ϕ, ψ|γ−1⟩ and ψ|κ,mg = ψ as ψ has level

Γ0(M)J . Note that ψ 1√
m
|κ,1

(√
m′ 0
0 1√

m′

)
∈ Jcκ,1(Γ0(M,m)J). Moreover,

we have⟨
ϕ√m|κ,m

(
1√
m′ 0

0
√
m′

)
, ψ

⟩
=

⟨
ϕ, ψ 1√

m
|κ,1

(√
m′ 0
0 1√

m′

)⟩
.

Observe we can write⟨
ϕ√m|κ,m

(
1√
m′ 0

0
√
m′

)
, ψ

⟩
=

⟨
ϕ, ψ 1√

m
|κ,1

(√
m′ 0
0 1√

m′

)⟩

=
1

m′2[Γ0(M) : Γ0(M,m′)]

∑
X∈(Z/m′Z)2

∑
g∈Γ0(M,m′)\Γ0(M)

⟨
ϕ, ψ 1√

m
|κ,1

(√
m′ 0
0 1√

m′

)
gX

⟩

Thus, by essentially reversing the above argument we obtain

⟨Vmϕ, ψ⟩ =

⟨
ϕ,mκ/2−3

∑
X∈(Z/mZ)2

∑
g∈Γ0(M,m)\Γ0(M)

ψ 1√
m
|κ,1
(
gX√
m

)⟩
.

One then checks that in fact

mκ/2−3
∑

X∈(Z/mZ)2

∑
g∈Γ0(M)\∆∗

M,0(m)

ψ 1√
m
|κ,1
(
gX√
m

)
∈ Jcκ,1(Γ0(M)J),

and so we have the formula for V ∗
m : Jcκ,m(Γ0(M)J) → Jcκ,1(Γ0(M)J).

Thus, it just remains to compute the Fourier expansion of V ∗
mψ.

Let ψ ∈ Jcκ,m(Γ0(M)J) with Fourier expansion given by

ψ(τ, z) =
∑

D<0,r∈Z
D≡r2(4)

c(D, r)e

(
r2 −D

4m
τ + rz

)
.
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We use the same representatives for Γ0(M)\∆M,0(m) as above. Thus, we
have

V ∗
mψ(τ, z) = mκ/2−3

∑
λ,µ(m)

∑
ad=m

gcd(a,M)=1
b(d)

(√
m

d

)κ
e(λ2τ + 2λz)ψ

(
aτ + b

d
,
z + λτ + µ

d

)

= mκ−3
∑
λ,µ(m)

∑
ad=m

gcd(a,M)=1
b(d)

d−κ
∑

D<0,r∈Z
D≡r2(4m)

c(D, r)e

((
r2 −D

4m

a

d
+
λr

d
+ λ2

)
τ

)

· e
((r

d
+ 2λ

)
z +

r2 −D

4m

b

d
+
rµ

d

)
.

Note that we have∑
µ(m)
b(d)

e

(
r2 −D

4m

b

d
+
rµ

d

)
=

{
md if d | r and d | r2−D4m
0 otherwise.

Setting r1 = dr and D1 = d2D, we have

V ∗
mψ(τ, z) = mκ−2

∑
λ(m)

∑
d|m

gcd(m
d
,M)=1

d1−κ
∑

D1<0,r1∈Z
D1≡r21(4m/d)

c(d2D1, dr1)

· e
(
(r1 + 2λ)2 −D1

4
τ + (r1 + 2λ)z

)
.

Letting r2 = r1 + 2λ, we have

V ∗
mψ(τ, z) = mκ−2

∑
λ(m)

∑
d|m

gcd(m
d
,M)=1

d1−κ
∑

D1<0,r2∈Z
D1≡(r2−2λ)2(4m/d)

c(d2D1, d(r2 − 2λ))

· e
(
r22 −D1

4
τ + r2z

)
.

We can write
λ ≡ s+

m

d
s′ (mod m)

where s runs over Z/(m/d)Z and s′ runs over Z/dZ. We immediately have

d(r2 − 2λ) ≡ d(r2 − 2s) (mod 2m), D1 ≡ (r2 − 2s)2 (mod 4m/d).

We now use the fact that the coefficients c(D, r) depend only on the pair
(D, r) with r (mod 2m) and D ≡ r2 (mod 4m) to write

V ∗
mψ(τ, z) = mκ−2

∑
d|m

gcd(m
d
,M)=1

d2−κ
∑
s(m/d)

∑
D1<0,r1∈Z

D1≡(r2−2s)2(4m/d)

c(d2D1, d(r2 − 2s)

· e
(
r22 −D1

4
τ + r2z

)
.
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Finally, we change variables and replace D1 by D, d by m/d, and r2− 2s by
s to obtain

V ∗
mψ(τ, z) =

∑
D<0,r∈Z
D≡r2(4)

 ∑
d|m

gcd(d,M)=1

dκ−2
∑

s∈S(r,d,D)

c

(
m2

d2
D,

m

d
s

) e

(
r2 −D

4
τ + rz

)

where S(r, d,D) = {s (mod 2d) : s ≡ r (mod 2), s2 ≡ D (mod 4d)}. �

Proposition 5.6. The map V ∗
mVm : Jcκ,1(Γ0(M)J) → Jcκ,1(Γ0(M)J) is given

by

V ∗
mVm =

∑
d|m

gcd(d,M)=1

ς(d)dκ−2TJ

(m
d

)

where TJ(n) is the nth Hecke operator on Jcκ,1(Γ0(M)J) (we write UJ(p) for

TJ(p) if p |M) and

ς(d) = d
∏
p|d

(
1 +

1

p

)
.

Proof. The proof of this proposition follows along the same lines as the proof
of the analogous result in the M = 1 case given in [14]. Note it is enough to
check this fact on Fourier coefficients indexed by fundamental discriminants,
as is pointed out in [14]. We show this for a representative case that is not
too computationally cumbersome, but leave the proof of the general case to
the reader.

Let ϕ ∈ Jcκ,1(Γ0(M)J) and put ψ = Vmϕ, φ = V ∗
mψ. Write cϕ for the

Fourier coefficients of ϕ, cψ for the Fourier coefficients of ψ, and cφ for the
Fourier coefficients of φ.

We begin by recalling the definition of the action of TJ(p) and UJ(p)
on the Fourier coefficients indexed by fundamental discriminants. Let ϕ ∈
Jcκ,1(Γ0(M)J) with

ϕ(τ, z) =
∑

D<0,r∈Z
D≡r2(4)

cϕ(D, r)e

(
r2 −D

4
τ + rz

)
.

Then we have

cUJ (p)ϕ(D, r) = cϕ(p
2D, pr)

and

cTJ (p)ϕ(D, r) = cϕ(p
2D, pr) + χD(p)p

κ−2cϕ(D, r)

where χD is the quadratic character associated to the fundamental discrim-
inant D.



20 MAHESH AGARWAL AND JIM BROWN

Consider the case where m = pq with p |M , q -M . In this case we have∑
d|m

gcd(d,M)=1

ς(d)dκ−2TJ

(m
d

)
= TJ(m) + qκ−2(q + 1)UJ(p)

= TJ(q)UJ(p) + qκ−2(q + 1)UJ(p).

We have that the (D, r)th Fourier coefficient of (TJ(m)+qκ−2(q+1)UJ(p))ϕ
is given by

cϕ(m
2D,mr) + qκ−2(1 + q + χD(q))cϕ(p

2D, pr).

We now calculate the (D, r)th Fourier coefficient of φ. We have

cψ(D, r) = cϕ(D, r) + qκ−1cϕ

(
D

q2
,
r

q

)
.

Using the above formula for V ∗
m on the Fourier coefficients we have

cφ(D, r) =
∑
d|m

gcd(d,M)=1

dκ−2
∑

s∈S(r,d,D)

cψ

(
m2

d2
D,

m

d
s

)

=
∑

s∈S(r,1,D)

cψ(m
2D,ms) + qκ−2

∑
s∈S(r,q,D)

cψ(p
2D, ps).

We have ∑
s∈S(r,1,D)

cψ(m
2D,ms) = cψ(m

2D,mr)

= cϕ(m
2D,mr) + qκ−1cϕ(p

2D, pr).

For the second summation we have∑
s∈S(r,q,D)

cψ(p
2D, ps) =

∑
s∈S(r,q,D)

(
cϕ(p

2D, ps) + qκ−1cϕ

(
p2D

q2
,
ps

q

))
=

∑
s∈S(r,q,D)

cϕ(p
2D, ps)

where we have used that cϕ(x, y) = 0 unless x and y are both integers and

for p2D
q2

to be an integer we must have q2 | D, which cannot happen because

D is assumed to be a fundamental discriminant so cannot be divisible by
the square of a prime. We have∑

s∈S(r,q,D)

cϕ(p
2D, ps) = cϕ(p

2D, pr)
∑

s∈S(r,q,D)

1

= (1 + χD(q))cϕ(p
2D, pr)

as the sum is counting whether D is a square modulo q or not. Thus,
combining these we have

cφ(D, r) = cϕ(m
2D,mr) + qκ−2 (1 + q + χD(q)) cϕ(p

2D, pr),
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which is exactly what we were trying to prove. �
Let F = VMϕ for ϕ ∈ Jcκ,1(Γ0(M)J). Then we have

DF,F (s) = ζM (2s− 2κ+ 4)
∑
m≥1

⟨Vmϕ, Vmϕ⟩m−s.

We have from the previous proposition that

⟨Vmϕ, Vmϕ⟩ = ⟨V ∗
mVmϕ, ϕ⟩

=

⟨ ∑
d|m

gcd(d,M)=1

ς(d)dκ−2TJ

(m
d

)
ϕ, ϕ

⟩

=
∑
d|m

gcd(d,M)=1

ς(d)dκ−2λf

(m
d

)
⟨ϕ, ϕ⟩

where we recall that TJ(n)ϕ = λf (n)ϕ. Thus, we have

DF,F (s) = ζM (2s− 2κ+ 4)⟨ϕ, ϕ⟩
∑
m≥1

 ∑
d|m

gcd(d,M)=1

ς(d)dκ−2λf

(m
d

)m−s.

If we set

A(s) =
∑
d≥1

gcd(d,M)=1

a(d)d−s,

B(s) =
∑
t≥1

b(t)t−s

and

C(s) =
∑
m≥1

 ∑
dt=m

gcd(d,M)=1

a(d)b(t)

m−s,

then we have
C(s) = A(s)B(s).

We can apply this with a(d) = ς(d)dκ−2 and b(t) = λf (t) to obtain

DF,F (s) = ζM (2s− 2κ+ 4)⟨ϕ, ϕ⟩

 ∑
d≥1

gcd(d,M)=1

ς(d)d−s+κ−2


∑
t≥1

λf (t)t
−s



= ζM (2s− 2κ+ 4)⟨ϕ, ϕ⟩L(s, f)

 ∑
d≥1

gcd(d,M)=1

ς(d)d−s+κ−2

 .
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One can check immediately by expanding the right hand side that∑
d≥1

gcd(d,M)=1

ς(d)d−s =
ζM (s− 1)ζM (s)

ζM (2s)
.

Thus, we have

DF,F (s) = ζM (s− κ+ 1)ζM (s− κ+ 2)⟨ϕ, ϕ⟩L(s, f).

In particular, taking the residue of each side at s = κ we obtain

res
s=κ

DF,F (s) = res
s=1

ζM (s)ζM (2)⟨ϕ, ϕ⟩L(κ, f)

=
π2

6

∏
p|M

(1− p−1)2(1 + p−1)

 ⟨ϕ, ϕ⟩L(κ, f).

We now combine this with equations (1), (6), and (11) to obtain the following
corollary.

Corollary 5.7. Let κ ≥ 2 be an even integer, M an odd square-free integer,

and f ∈ Snew
2κ−2(Γ0(M)) a newform. Let Ff ∈ Sκ(Γ

(2)
0 (M)) be the Saito-

Kurokawa lift of f . Then we have

⟨Ff , Ff ⟩ = Aκ,M

∣∣∣∣aθalgκ,D(f)
(|D|)

∣∣∣∣2
|D|κ−3/2

L(κ, f)

πL(κ− 1, f, χD)
⟨f, f⟩

where

Aκ,M =
MκζM (4)ζM (1)2(κ− 1)

(∏
p|M (1 + p2)(1 + p−1)

)
2ν(M)+3[Γ0(M) : Γ0(4M)][Sp4(Z) : Γ

(2)
0 (M)]

.

One should note one can give a similar expression for general oddM that
depends upon the function h(p1, . . . , pn) that shows up in the calculation
of the residue of the Eisenstein series Es,M (Z) above. As we will only be
interested in the case of M odd and square-free, we restrict our attention to
this case.
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[27] C. Skinner and E. Urban. Sur les déformations p-adiques de certaines représentations

automorphes. J. Inst. Math. Jussieu, 5:629–698, 2006.
[28] C. Skinner and E. Urban. The Iwasawa Main Conjectures for GL2. Invent. Math.,

195(1):1–277, 2014.
[29] G. Stevens. Λ-adic modular forms of half-integral weight and a Λ-adic Shintani lifting.

Contemp. Math., 174:129–151, 1994.
[30] A. Wiles. The Iwasawa conjecture for totally real fields. Ann. of Math., 131(3):493–

540, 1990.
[31] D. Zagier. Sur la conjecture de Saito-Kurokawa. In Sé Delange-Pisot-Poitou 1979/80,
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