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Abstract. Let f be a newform of weight 2k−2 and level M with
M an odd square-free integer. Via the Saito-Kurokawa correspon-
dence there is associated to f a Siegel newform Ff of weight k and
level M . In this paper we provide a formula relating the Peters-
son products 〈Ff , Ff 〉 and 〈f, f〉. We use this result to give a new
proof of a special case of a well-known result of Shimura on the
algebraicity of a special value of a Rankin convolution L-function.

1. Introduction

Let k be a positive integer. Based on numerical evidence, H. Saito
and N. Kurokawa conjectured that there exists a map from the space of
classical cuspidal eigenforms of weight 2k−2 and level 1 to the space of
cuspidal Siegel eigenforms of even weight k and level 1. This conjecture
was proven in a series of papers by Maass ([17]-[19]), Andrianov ([1]),
and Zagier ([26]). This result was generalized to odd square free levels
by M. Manickham, B. Ramakrishnan, and T. C. Vasudevan ([21]) and
then to arbitrary level by M. Manickham and B. Ramakrishnan ([23]).
This correspondence is known in the language of automorphic forms
via the work of Piatetski-Shapiro ([24]).

We view the Saito-Kurokawa correspondence as a series of isomor-
phisms. The first of these isomorphisms relates classical newforms of
weight 2k − 2 on Γ0(M) to newforms of weight k − 1/2 in Kohnen’s
+-space on Γ0(4M). The second isomorphism relates the half-integer
weight newforms to Jacobi newforms of weight k and index 1 on the
space ΓJ

0(M). Finally, one has an isomorphism between the space
of Jacobi newforms to Siegel newforms of weight k in the “Maass
spezialschar” on the space Γ4

0(M). One should note here that when
the term “newforms” is used in relation to Siegel eigenforms we mean
newforms as defined in [21]. Using these isomorphisms we calculate a
relation between the inner products of the related forms at each stage.
Combining the formulas we obtain we have the following theorem.
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Theorem 1.1. Let M = p1 . . . pn with the pi odd distinct primes, f ∈
Snew2k−2(Γ0(M)) a newform, and Ff ∈ S∗,newk (Γ4

0(M)) the Siegel modular
form associated to f via the Saito-Kurokawa correspondence. Let D
be a fundamental discriminant with (−1)k−1D > 0, gcd(M,D) = 1,
and cg(|D|) 6= 0 where the cg are the Fourier coefficients of the half-
integral weight modular form associated to f via the Saito-Kurokawa
correspondence. Then one has

(1) 〈Ff , Ff〉 = Bk,M
|cg(|D|)|2 L(k, f)

π |D|k−3/2 L(k − 1, f, χD)
〈f, f〉

where

Bk,M =
Mk (k − 1)

∏n
i=1

(
p2mi−2
i (p4

i + 1)
)

2ν(M)+3 3 [Sp4(Z) : Γ4
0(M)] [Γ0(M) : Γ0(4M)]

.

The case M = 1 of Theorem 1.1 has essentially been shown in ([7],
Theorem 1) and ([14], Corl. 2). In these papers the result is given
in terms of algebraicity of the ratio of the inner products. All of the
main ingredients of the formula for M = 1 are provided in [15] without
gathering them together into a single formula.

Note that in light of [23] this theorem can be extended to arbitrary
odd levels, but we do not require such a result for future applications
so restrict ourselves here to the case of odd square-free level for ease of
exposition.

We conclude the paper with a simple proof of the algebraicity of
a Rankin convolution L-function. Let k be even, f ∈ S2k−2(SL2(Z))
a normalized eigenform, and h ∈ Sk(SL2(Z)) a normalized eigenform.
Associated to f and h is a Rankin L-function D(s, f, h) (see Section
7 for the definition.) Associated to f and h are complex periods that
allow one to normalize the L-functions associated to f and h so that
the special values of these L-functions are algebraic. Shimura proved
in [25] that one has

D(m, f, h)

π2m+2−k〈f, f〉
∈ Q

for k ≤ m ≤ 2k − 3. Using the formula in Theorem 1.1 and a result
of Heim we are able to give a simple proof of a particular case of this
result, namely, the fact that

D(2k − 3, f, h)

π3k−4〈f, f〉
∈ Q.

Though the formula given in the theorem is interesting in its own
right and does yield a new proof of the algebraicity of D(2k − 3, f, h),
our main motivation for studying such a relation is the desire to produce
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congruences between the eigenvalues of Saito-Kurokawa lifts and the
eigenvalues of Siegel eigenforms that do not arise as Saito-Kurokawa
lifts. One can see how such a formula is used to accomplish this in the
level 1 case as well as applications to the non-vanishing of Selmer groups
in [3]. The formula established above will be used in a subsequent
paper to produce a similar congruence in the case of square-free odd
level. It is the author’s hope to investigate similar relationships for the
correspondence established by Ikeda ([10]) between elliptic cusp forms
and Siegel cusp forms of genus n in future work. An algebraicity result
in this direction has been shown in [4], though a specific formula has
yet to be worked out.

The author would like to thank the referee for pointing out the ref-
erences [4], [7], and [14] of which the author was previously unaware.
The author would also like to thank Ameya Pitale for pointing out an
error in the statement of Theorem 7.3 that appeared in the printed
version of this article.

2. Notation and Definitions

In this section we fix notation and definitions that will be used
throughout the paper.

For a ring R, we let Mn(R) denote the set of n by n matrices with
entries in R. Given a matrix x ∈ M2n(R), we write

x =

(
ax bx
cx dx

)
where ax, bx, cx and dx are all in Mn(R); dropping the subscript x when
it is clear from the context. The groups GLn(R) and SLn(R) have their
standard definition here. For a positive integer M we recall that the
Hecke congruence subgroup of level M is defined by

Γ0(M) = {x ∈ SL2(Z) : cx ≡ 0(modM)} .
We let ΓJ

0(M) = Γ0(M) n Z2 be the Hecke-Jacobi modular group of
level M as defined in [6]. Define GSp4(R) by

GSp4(R) = {γ ∈ GL4(R) : tγι2γ = µ(γ)ι2 with µ(γ) ∈ R∗}

where ι2 =

(
02 12

−12 02

)
. Recall that the symplectic group Sp4(R) is

defined to be the subgroup of GSp4(R) obtained when one requires
µ = 1. The Siegel-Hecke congruence subgroup of level M is defined by

Γ4
0(M) = {γ ∈ Sp4(Z) : cγ ≡ 0(modM)}

where the congruence is a congruence on the entries of the matrix cγ.
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We write h1 to denote the complex upper half-plane. The group
GL+

2 (R) acts on h1 via linear fractional transformations. The Siegel
upper half-space is defined by

h2 = {Z ∈ M2(C) : tZ = Z, Im(Z) > 0}.

Siegel upper half-space comes equipped with an action of Sp4(R) given
by (

A B
C D

)
Z = (AZ +B)(CZ +D)−1.

For positive integers k and M we write Mk(Γ0(M)) to denote the
space of modular forms of weight k on the congruence subgroup Γ0(M).
For f ∈Mk(Γ0(M)), we denote the nth Fourier coefficient of f by af (n).
We let Sk(Γ0(M)) denote the space of cusp forms and Snew

k (Γ0(M)) the
space of newforms. For f1, f2 ∈Mk(Γ0(M)) with f1 or f2 a cusp form,
the Petersson product of f1 and f2 is given by

〈f1, f2〉 =
1

[SL2(Z) : Γ0(M)]

∫
Γ0(M)\h1

f1(z)f2(z)yk−2dx dy.

For f ∈ Sk(Γ0(M)), one has the associated L-function defined by

L(s, f) =
∞∑
n=1

af (n)

ns
.

The only half-integral weight modular forms we are interested in are
the ones in Kohnen’s +-space defined by

S+
k−1/2(Γ0(4M)) = {g ∈ Sk−1/2(Γ0(4M)) : ag(n) = 0 if (−1)k−1n ≡ 2, 3(mod 4)}.

The Petersson product on S+
k−1/2(Γ0(4M)) is given by

〈g1, g2〉 =
1

[Γ0(4) : Γ0(4M)]

∫
Γ0(4M)\h1

g1(z)g2(z)yk−5/2dx dy.

We denote the space of Jacobi cusp forms on ΓJ
0(M) by Jcusp

k,1 (ΓJ
0(M)).

The Petersson product is given by

〈φ1, φ2〉 =
1

[SL2(Z) : Γ0(M)]

∫
ΓJ

0(M)\h1×C
φ1(τ, z)φ2(τ, z)vk−3e−4πy2/vdx dy du dv

for φ1, φ2 ∈ Jcusp
k,1 (ΓJ

0(M)) and τ = u+ iv, z = x+ iy.

We denote the space of Siegel modular forms of weight k on Γ4
0(M)

by Mk(Γ
4
0(M)). The space of cusp forms is denoted by Sk(Γ4

0(M)).
For γ ∈ Sp+

4 (R), the slash operator of γ on a Siegel modular form F of
weight k is given by (F |kγ)(Z) = det(CγZ +Dγ)

−kF (γZ). For F and
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G two Siegel modular forms on Γ4
0(M) of weight k with at least one of

them a cusp form, we define the Petersson product of F and G by

〈F,G〉 =
1

[Sp4(Z) : Γ4
0(M)]

∫
Γ4

0(M)\h2

F (Z)G(Z) det(Y )kdµ(Z).

Associated to a Siegel Hecke eigenform F are two L-functions: the
standard and the Spinor L-functions. Here we are only interested in
the Spinor L-function. It is defined by

Lspin(s, F ) = ζ(2s− 2k + 4)
∞∑
m=1

λF (m)m−s

where the λF (m) are the Hecke eigenvalues of F . The Euler product
of Lspin(s, F ) is given by

Lspin(s, F ) =
∏
p

Lspin,(p)(s, F )

where

Lspin,(p)(s, F ) = 1−λF (p)p−s+(λF (p)2−λF (p2)−p2k−4)p−2s−λF (p)p2k−3−3s+p4k−6−4s

for p - M and
Lspin,(p)(s, F ) = 1− λF (p)p−s

for p | M ([2]). Alternatively, one has a description of the Spinor L-
function in terms of the Satake parameters α0, α1, α2 attached to F .
One has

Lspin(s, F ) =
∏
p

Qp(p
−s)−1

where the Qp(X) are the Hecke polynomials given by

Qp(p
−s) = (1− α0p

−s)(1− α0α1p
−s)(1− α0α2p

−s)(1− α0α1α2p
−s).

If F has level M we define the modified Spinor L-function L∗spin(s, F )
by

L∗spin(s, F ) =

∏
p|M

[(1− pk−1−s)(1− pk−2−s)]−1

Lspin(s, F ).

The Maass spezialschar M∗
k(Γ

4
0(M)) ⊂ Mk(Γ

4
0(M)) play an impor-

tant role in the Saito-Kurokawa correspondence. A Siegel modular form
F is in the Maass spezialchar if the Fourier coefficients of F satisfy the
relation

AF (n, r,m) =
∑

d|gcd(n,r,m)

dk−1AF

(nm
d2
,
r

d
, 1
)

for every m,n, r ∈ Z with m,n, 4mn− r2 ≥ 0 ([26]).
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3. The Saito-Kurokawa Correspondence

In this section we briefly outline the Saito-Kurokawa correspondence
for level M odd and square-free as established in [21]. For arbitrary M
the reader should consult [22] and [23].

As in the case of level 1, the first step in establishing the correspon-
dence is to relate integer weight forms to half-integer weight forms. Let
D be a fundamental discriminant with (−1)k−1D > 0. There exists a
Shimura lifting ζD that maps S+

k−1/2(Γ0(4M)) to M2k−2(Γ0(M)) and a

Shintani lifting ζ∗D mapping S2k−2(Γ0(M)) to S+
k−1/2(Γ0(4M)). These

maps are adjoint on cusp forms with respect to the Petersson products.
Explicitly, for

g(z) =
∑

cg(n)qn ∈ S+
k−1/2(Γ0(M))

one has

ζDg(z) =
∑
n≥1


∑
d | n

gcd(d, M) = 1

(
D

d

)
dk−2cg(|D|n2/d2)

 qn

and for f ∈ Snew
2k−2(Γ0(M)) a newform one has

ζ∗Df(z) = (−1)[(k−1)/2]2k−1
∑

rk−1,M,D(f ; |D|n)qn

where the sums defining g and ζ∗Df are over all n ≥ 1 so that (−1)k−1n ≡
0, 1(mod 4) and rk−1,M,D(f ; |D|m) is a certain integral. For the defini-
tion of these integrals see ([13], Section 1).

Using these liftings, one has the following theorem.

Theorem 3.1. ([12], [13], [20]) For D a fundamental discriminant with
(−1)k−1D > 0 and gcd(D,M) = 1, the Shimura and Shintani lift-
ings give Hecke-equivariant isomorphisms between S+,new

k−1/2(Γ0(4M)) and

Snew
2k−2(Γ0(M)).

The correspondence between half-integral weight modular forms and
Jacobi forms is given by the following theorem.

Theorem 3.2. ([21], Theorem 4) The map defined by∑
D < 0, r ∈ Z
D ≡ r2(mod 4)

c(D, r)e

(
r2 −D

4
τ + rz

)
7→

∑
0 > D ∈ Z

D ≡ 0, 1(mod 4)

c(D)e(|D|τ),
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is a canonical isomorphism between Jcusp,new
k,1 (ΓJ

0(M)) and S+,new
k−1/2(Γ0(4M))

which commutes with the action of Hecke operators.

And finally one relates Jacobi forms to Siegel forms. Let F ∈
M∗

k(Γ
4
0(M)) have Fourier-Jacobi expansion

(2) F (τ, z, τ ′) =
∑
m≥0

φm(τ, z)e(mτ ′)

where the φm are Jacobi forms of weight k, index m, and level M .

Theorem 3.3. ([21], Theorem 6) The association F 7→ φ1 gives an
isomorphism between S∗,new

k (Γ4
0(M)) and Jcusp,new

k,1 (ΓJ0 (M)). This iso-
morphism commutes with the action of Hecke operators.

The inverse map to the map F 7→ φ1 is given as follows. Let φ(τ, z) ∈
Jk,1(ΓJ0 (M)). Define

F (τ, z, τ ′) =
∑
m≥0

Vmφ(τ, z)e(mτ ′)

where Vm is the linear operator defined in [6]. Then F is in the Maass
spezialschar. For the details consult ([6], §6) and [21].

We have the following theorem giving the Saito-Kurokawa correspon-
dence.

Theorem 3.4. ([21], Theorem 8) The space S∗,new
k (Γ4

0(M)) is isomor-
phic to Snew

2k−2(Γ0(M)) for M odd and square-free. Given a newform
f ∈ Snew

2k−2(Γ0(M)), the corresponding Ff ∈ S∗,new
k (Γ4

0(M)) has Spinor
L-function satisfying

(3) L∗spin(s, F ) = ζ(s− k + 1)ζ(s− k + 2)L(s, f).

4. Relating 〈Ff , Ff〉 to 〈φf , φf〉

In this section we seek to generalize the following result of Kohnen
and Skoruppa from level M = 1 to M odd and square-free.

Theorem 4.1. ([15], Corollary to Theorem 2) Let f ∈ S2k−2(SL2(Z))
be a normalized Hecke eigenform, Ff ∈ S∗k(Sp4(Z)) the Saito-Kurokawa
lift of f , and φf the Jacobi form associated via the Saito-Kurokawa
correspondence. Then the formula

〈Ff , Ff〉 =
〈φf , φf〉
πkck

L(k, f)

holds, where ck =
3 · 22k+1

(k − 1)!
.
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We follow Kohnen and Skoruppa’s arguments, generalizing results
where needed. Let F,G ∈ S∗k(Γ4

0(M)) be eigenforms with Fourier-
Jacobi expansions given by

F (Z) =
∑
N≥1

φN(τ, z)e(Nτ ′)

and

G(Z) =
∑
N≥1

ψN(τ, z)e(Nτ ′).

Define a Dirichlet series attached to F and G by

DF,G(s) = ζ(2s− 2k + 4)
∑
N≥1

〈φN , ψN〉N−s

and set

(4) D∗F,G(s) = (2π)−2sΓ(s)Γ(s− k + 2)
∏
p|M

(1− p−2(s−k+2))DF,G(s).

It is shown in [9] that D∗F,G(s) has meromorphic continuation to C, is
entire if 〈F,G〉 = 0 and otherwise has a simple pole at s = k. Calcu-
lating the residue of DF,G at s = k provides the desired generalization
of Theorem 4.1.

Define an Eisenstein series

Es,M(Z) =
∑

γ∈C2,1(M)\Γ4
0(M)

(
det(ImγZ)

Im(γZ)1

)s
where (γZ)1 denotes the upper left entry of γZ and

C2,1(M) =



a 0 b µ
λ′ 1 µ′ κ
c 0 d −λ
0 0 0 1

 ∈ Γ4
0(M)

 , (λ′, µ′) = (λ, µ)

(
a b
c d

)
.

Set

(5) E∗s,M(Z) = π−sΓ(s)ζ(2s)
∏
p|M

(1− p−2s)Es,M(Z).

One has that E∗s,M(Z) has mermomorphic continuation to C with pos-
sible simple poles at s = 0, 2 ([9]). It is known that res

s=2
E∗s,1(Z) = 1

([15]). Note that this is independent of Z, so we have res
s=2

E∗s,1(NZ) = 1

for all positive integers N . Equation 5 gives res
s=2

Es,1(Z) =
90

π2
. As
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above, this residue is independent of Z so we have res
s=2

Es,1(NZ) =
90

π2

for all positive integers N . The following formula is given in [9]:

Es,1(MZ) =
1

M s

∑
d|M

d2s
∏
p|d

(1− p−2s)Es,d(Z).

This formula allows one to calculate the residue of Es,M(Z) inductively
in terms of Es,d(Z) for d |M . In fact, for M = pm1

1 . . . pmn
n , we have

(6) res
s=2

Es,M(Z) =

(
90

π2

)
h(p1, . . . , pn)

n∏
i=1

(
1

p2mi−2
i (p4

i − 1)

)
where h is a polynomial with coefficients in Z uniquely determined by
M . For example, if M = pn for a prime p, we have

h(p) = p2 − 1

and if M = p1 . . . pn is a product of distinct primes, we have

h(p1, . . . , pn) =
n∏
i=1

(p2
i − 1).

Returning to the case we are interested in, namely M = p1 . . . pn odd
and square-free, appealing to Equation 5 one obtains

(7) res
s=2

E∗s,M(Z) =
n∏
i=1

(
1− p−4

i

p2mi−2
i (p2

i + 1)

)
.

We now turn our attention back to calculating the residue of DF,G(s)
at s = k. We have the following equation ([9]):

π−k+2[Sp4(Z) : Γ4
0(M)]〈FE∗s−k+2,M , G〉 = M sD∗F,G(s).

Taking the residue of this equation at s = k and solving for res
s=k

D∗F,G(s)

we obtain

res
s=k

D∗F,G(s) =
π2−k [Sp4(Z) : Γ4

0(M)]

Mk
res
s=2

E∗s,M(Z)〈F,G〉

=
π2−k [Sp4(Z) : Γ4

0(M)]

Mk

n∏
i=1

(
1− p−4

i

p2mi−2(p2
i + 1)

)
〈F,G〉.

On the other hand, taking the residue at s = k of Equation 4 we have

res
s=k

D∗F,G(s) = (2π)−2k(k − 1)!
n∏
i=1

(1− p−4
i )res

s=k
DF,G(s).
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Combining these two results and solving for res
s=k

DF,G(s) we obtain

(8) res
s=k

DF,G(s) =
22kπk+2 [Sp4(Z) : Γ4

0(M)]

Mk(k − 1)!
∏n

i=1[p2mi−2
i (p2

i + 1)]
〈F,G〉.

Lemma 4.2. Let f ∈ Snew
2k−2(Γ0(M)) be a newform, Ff the Saito-

Kurokawa lift of f , and φf the corresponding Jacobi form obtained in
the Saito-Kurokawa correspondence. Then we have

〈Ff , Ff〉 =
〈φf , φf〉
πkck

L(k, f)

where

ck =
3 · 22k+1[Sp4(Z) : Γ4

0(M)]

Mk(k − 1)!
∏n

i=1[p2mi−2
i (p2

i + 1)]
.

Proof. Dabrowski ([5], Theorem 4.2) gives the formula

(9) DFf ,Ff
(s) = 〈φf , φf〉L∗spin(s, Ff )

for M odd and square-free. In fact, this result was originally proven
by Kohnen and Skoruppa for level 1: see ([15], Theorem 2). Equation
3 gives us

L∗spin(s, Ff ) = ζ(s− k + 1)ζ(s− k + 2)L(s, f).

Combining this with Equation 9 and taking residues at s = k gives

res
s=k

DFf ,Ff
(s) =

π2

6
L(k, f)〈φf , φf〉.

This along with Equation 8 gives the result. �

5. Relating 〈φf , φf〉 to 〈gf , gf〉

Let gf denote the half-integral weight modular form associated to f
via the Saito-Kurokawa correspondence. In this section we will calcu-
late a relationship between 〈φf , φf〉 and 〈gf , gf〉. Combining this with
Lemma 4.2 we will obtain a relationship between 〈Ff , Ff〉 and 〈gf , gf〉.

Let gf (z) =
∞∑
n=1

cg(n)qn be the Fourier expansion of gf . Consider the

summation
∞∑
n=1

cg(n)2

ns+k−3/2
. Applying the Rankin-Selberg method to this
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summation we have for sufficiently large s:

Γ(s+ k − 3/2)

(4π)s+k−1/2

∞∑
n=1

cg(n)2

ns+k−3/2
=

∫
h1/Γ∞

|gf (z)|2ys+k−5/2dxdy

=

∫
h1/Γ0(4M)

yk−1/2|gf (z)|2E4M
s (z)

dxdy

y2

where E4M
s (z) =

∑
γ∈Γ∞\Γ0(4M)

(Im (γz))s and Γ∞ the stabilizer of ∞. In

other words,
(10)
∞∑
n=1

cg(n)2

ns+k−3/2
=

(4π)s+k−1/2

Γ(s+ k − 3/2)

∫
Γ0(4M)\h1

E4M
s (z)gf (z)gf (z)yk−1/2dxdy

y2
.

Taking residues at s = 1 we obtain

res
s=1

(
∞∑
n=1

c(n)2

ns+k−3/2

)
=

(4π)k−1/2 [SL2(Z) : Γ0(4M)]

Γ(k − 1/2)
〈gf , gf〉 res

s=1
E4M
s (z)

=
3 · 2k−1(4π)k−1/2

π3/2(2k − 3)!!
〈gf , gf〉

where

n!! =

{
n(n− 2) . . . 5 · 3 · 1 n > 0, odd
n(n− 2) . . . 6 · 4 · 2 n > 0, even

and we have used that

res
s=1

E4M
s (z) =

1

[SL2(Z) : Γ0(4M)]
res
s=1

Es(z)

=
1

[SL2(Z) : Γ0(4M)]

(
3

π

)
where Es(z) is the Eisenstein series for SL2(Z). Solving the above
residue calculation for 〈gf , gf〉 we obtain

(11) 〈gf , gf〉 =
(2k − 3)!!

3 · 23k−2πk−2
res
s=1

(
∞∑
n=1

cg(n)2

ns+k−3/2

)
.

We define two half-integral weight modular forms g0 and g1 by

gj(z) =
∑

n≡j(mod 4)

cg(n)qn/4
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for j = 0, 1 as in ([6], Page 64-65). Using that gf is in Kohnen’s
+−space, we see that gf (z) = g0(4z) + g1(4z). Applying the same
process to g0 and g1 we obtain

〈gj, gj〉 =
(2k − 3)!!

3 · 23k−2πk−2
· 22k−1res

s=1

(∑
n≡j

cg(n)2

ns+k−3/2

)
.

Thus we have

(12) 〈g0, g0〉+ 〈g1, g1〉 = 22k−1〈gf , gf〉.
We need a slight generalization of Theorem 5.3 in [6]. In [6], the formula
given only deals with the case M = 1. However, the proof carries
through verbatim to the general case.

Theorem 5.1. ([6], Theorem 5.3) For φf and gj as defined above, one
has

(13) 〈φf , φf〉 =
1

2 [SL2(Z) : Γ0(M)]

∫
Γ0(M)\h1

1∑
j=0

gj(z)gj(z)vk−3/2dudv

v2
.

Combining Equations 12 and 13 we have:

Lemma 5.2. For φf and gf defined as above we have

〈φf , φf〉 =
22k−2

[Γ0(M) : Γ0(4M)]
〈gf , gf〉.

6. Relating 〈gf , gf〉 to 〈f, f〉

The only remaining hurdle in establishing a relationship between
〈Ff , Ff〉 and 〈f, f〉 is to relate 〈gf , gf〉 to 〈f, f〉. Fortunately the work
has already been done for us.

Let ` be a prime dividing M . Define the Atkin-Lehner involution on
Snew2k−2(Γ0(M)) associated to ` by slashing f by the element

W` =
1√
l

(
` α
M `β

)
where α, β ∈ Z and `2β−Mα = `. We can define w` ∈ {±1} for every
` |M by

f |W`
= w`f.

Lemma 6.1. ([11], Corollary 1) Let M be odd and let D be a funda-
mental discriminant with (−1)k−1D > 0 and suppose that for all primes
` |M we have

(
D
`

)
= w`. Then

(14)
|cg(|D|)|2

〈gf , gf〉
= 2ν(M) (k − 2)!

πk−1
|D|k−3/2 L(k − 1, f, χD)

〈f, f〉
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where ν(M) is the number of primes dividing M .

The condition on the discriminant in Lemma 6.1 is not a major
restriction. If for some prime ` |M we have w` = −

(
D
`

)
, then cg(|D|) =

0 ([11], Page 243). So as long as we choose D so that gcd(M,D) = 1
and cg(|D|) 6= 0, then our condition will be satisfied.

We are now in a position to gather our results and state the rela-
tionship between 〈f, f〉 and 〈Ff , Ff〉.

Theorem 6.2. Let M = p1 . . . pn be odd and square-free, f ∈ Snew2k−2(Γ0(M))
a newform, and Ff ∈ S∗,newk (Γ4

0(M)) the Siegel modular form associated
to f via the Saito-Kurokawa correspondence. Let D be a fundamental
discriminant with (−1)k−1D > 0, gcd(M,D) = 1, and cg(|D|) 6= 0.
Then one has

(15) 〈Ff , Ff〉 = Bk,M
|cg(|D|)|2 L(k, f)

π |D|k−3/2 L(k − 1, f, χD)
〈f, f〉

with

Bk,M =
Mk (k − 1)

∏n
i=1

(
p2mi−2
i (p2

i + 1)
)

2ν(M)+3 3 [Sp4(Z) : Γ4
0(M)] [Γ0(M) : Γ0(4M)]

.

In particular, applying this in the case of level 1 we are able to
recover the following inner product relation stated in [3], but really an
amalgamation of previous results. Note that in the level 1 case the fact
that cg(|D|) 6= 0 is automatic.

Corollary 6.3. ([15], [16]) Let f ∈ S2k−2(SL2(Z)) be a normalized
eigenform and Ff ∈ S∗k(Sp4(Z)) the Siegel modular form associated to
f via the Saito-Kurokawa correspondence. Let D be a discriminant
with (−1)k−1D > 0. Then one has

(16) 〈Ff , Ff〉 = Bk
|cg(|D|)|2L(k, f)

π|D|k−3/2L(k − 1, f, χD)
〈f, f〉

where

Bk =
(k − 1)

24 32
.

7. An algebraicity result on a Rankin L-functions

Let f ∈ Sk(SL2(Z)) be a normalized eigenform with Fourier expan-
sion given by

f(z) =
∞∑
n=1

af (n)qn.

Attached to f are complex periods Ω±f so that we have the following
theorem.
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Theorem 7.1. ([25], Theorem 1) For 1 ≤ m < k one has

L(m, f)

πmΩ±f
∈ Q

where we choose Ω+
f if m is even and Ω−f if m is odd.

The L-function of f can be factored as

(17) L(s, f) =
∏
p

[(1− αf (p)p−s)(1− βf (p)p−s)]−1

where αf (p)+βf (p) = af (p) and αf (p)βf (p) = pk−1. Let h ∈ Sl(SL2(Z))
be a normalized eigenform of weight l with l < k. Using the factoriza-
tion of L(s, f) and L(s, h) we define the Rankin L-function associated
to f and h by

D(s, f, h) =
∏
p

[(1− αf (p)αh(p)p−s)(1− αf (p)βh(p)p−s)

· (1− βf (p)αh(p)p−s)(1− βf (p)βh(p)p−s)]−1.

It is known that these Rankin L-functions can be normalized so they
are algebraic at the special values. In particular, one has:

Theorem 7.2. ([25], Theorem 4) Let f ∈ Sk(SL2(Z)) and h ∈ Sl(SL2(Z))
be normalized eigenforms with l < k. Then one has

D(m, f, h)

π2m+2−l〈f, f〉
∈ Q

for l ≤ m < k.

We given an alternative proof of Shimura’s result, though in a much
more restrictive setting.

Theorem 7.3. Let f ∈ S2k−2(SL2(Z)) and h ∈ Sk(SL2(Z)) be normal-
ized eigenforms. If k is even we have

D(2k − 3, f, h)

π3k−4〈f, f〉
∈ Q.

The proof of this theorem is obtained by considering an L-function
on GSp4×GL2. Let F ∈ Sk(Sp4(Z)) be a Siegel eigenform and h ∈
Sk(SL2(Z)) a normalized eigenform with αh(p) and βh(p) defined as
above. We define the L-function Z(s, F ⊗ h) by

Z(s, F ⊗ h) =
∏
p

[Qp(αh(p)p
−s)Qp(βh(p)p

−s)]−1

where the Qp are the Hecke polynomials defined in Section 2. We make
use of the following result of Heim.
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Theorem 7.4. ([8], Corl 5.4) Let F ∈ Sk(Sp4(Z)) be a Siegel eigen-
form and h ∈ Sk(SL2(Z)) a normalized eigenform with k even. Then
one has

Z(2k − 3, F ⊗ h)

π5k−8〈F, F 〉〈h, h〉
∈ Q.

We begin by restricting to the case of F = Ff a Saito-Kurokawa lift.
In this case we are able to factor Z(s, Ff ⊗h) into a product of familiar
L-functions.

Proposition 7.5. Let f ∈ S2k−2(SL2(Z)) be a normalized eigenform,
h ∈ Sk(SL2(Z)) a normalized eigenform, and Ff the Saito-Kurokawa
lift of f . Then Z(s, Ff ⊗ h) has the following factorization:

(18) Z(s, Ff ⊗ h) = L(s− k + 1, h)L(s− k + 2, h)D(s, f, h).

Proof. Let α0, α1 and α2 be the Satake parameters of Ff as defined
in Section 2. We make use of the fact that we can write the Satake
parameters of Ff in terms of αf and βf . In particular, we have α0 =
pk−1, α1 = βfp

1−k and α2 = αfp
1−k ([3], Theorem 3.10). A short

calculation now yields the desired result. �

It is now easy to combine our previous results to conclude Theorem
7.3. For a normalized eigenform f , one has that there exists an al-
gebraic number ξf so that π〈f, f〉 = ξfΩ

+
f Ω−f ([25], Theorem 1). We

write + to indicate equality up to an algebraic multiple. Then using
Corollary 6.3 we see that

Z(2k − 3, Ff ⊗ h)

π5k−8〈Ff , Ff〉〈h, h〉
+
L(k − 2, h)L(k − 1, h)D(2k − 3, f, h)

π5k−8〈Ff , Ff〉〈h, h〉

+

(
L(k − 2, h), L(k − 1, h)

π2k−3Ω+
h Ω−h

)
·
(
D(2k − 3, f, h)

π3k−4〈Ff , Ff〉

)
+
D(2k − 3, f, h)

π3k−4〈Ff , Ff〉

+
D(2k − 3, f, h)

π3k−4〈f, f〉
.

Combining this with Theorem 7.4 finishes the proof of Theorem 7.3.
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