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CONGRUENCE PRIMES
FOR IKEDA LIFTS AND THE IKEDA IDEAL

JIM BROWN AND RODNEY KEATON

Let f be a newform of level 1 and weight (2κ − n) for positive even integers
κ and n. We study congruence primes for the Ikeda lift of f . In particular,
we consider a conjecture of Katsurada stating that primes dividing certain
L-values of f are congruence primes for the Ikeda lift. Instead of focusing
on a congruence to a single eigenform, we deduce a lower bound on the
number of all congruences between the Ikeda lift of f and forms not lying
in the space spanned by Ikeda lifts.

1. Introduction

Let κ be an integer and let χ be a Dirichlet character of conductor N satisfying
χ(−1)= (−1)κ . One has an associated Eisenstein series Eκ,χ . It is a well-known
fact that for a prime ` - N and a prime l dividing ` in a suitably large extension of Z

so that l | L(1−κ, χ) there exists a cuspidal eigenform f of level M with N |M such
that f ≡ Eκ,χ (mod l). Such congruences between cusp forms and Eisenstein series
have been studied by many authors. For instance, one can use such congruences
to make deductions on the structure of the residual Galois representation of the
cusp form, which can then be used to study Selmer groups associated to the cusp
form (see [Ribet 1976; Wiles 1990; Skinner and Urban 2014] for some prominent
examples of this type of argument).

If we view the Eisenstein series as a “lift” of the Dirichlet character χ from
GL(1) to GL(2), then we can fit the congruences mentioned above into a more
general framework. Namely, one can consider more general automorphic forms
and lift them to automorphic forms on other algebraic groups. This approach has
also received considerable attention as it can also be used to study Selmer groups of
higher-degree Galois representations; see [Skinner and Urban 2006; Klosin 2009;
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Agarwal and Brown 2014] for specific examples and [Mazur 2011] for a survey of
this method. This makes classifying primes for which one will have a congruence
between a lifted form and a nonlifted form a natural question to study. In this paper
we investigate this problem for Ikeda lifts.

Let κ and n be positive even integers, f ∈ S2κ−n(SL2(Z)) a newform, and
In( f ) ∈ Sκ(Sp2n(Z)) the Ikeda lift of f . Katsurada [2011] states a conjecture on
when a prime l will satisfy that there is an eigenform F ∈ Sκ(Sp2n(Z)) that is not
an Ikeda lift and is congruent to In( f ) modulo l. The conjecture is in terms of
divisibilities of special values of L-functions of f by l. One can see Conjecture 9
for the precise statement. To provide evidence for his conjecture he proves that
if a prime divides the required L-values and does not divide other L-values then
one indeed does have such a congruence (see Theorem 10). In this paper we
also consider Ikeda lifts, but instead of focusing on producing one congruence we
introduce the Ikeda ideal. This ideal is an analogue of the Eisenstein ideal in the
GL(2) case and measures congruences between In( f ) and all other eigenforms.
We then show that under similar hypotheses as given in [Katsurada 2011], we
can do better and bound from below the congruences between In( f ) and all other
eigenforms that are not lifts. One can see Theorem 14 for the precise result.

One thing to note here is that while the Saito–Kurokawa lift is useful for study-
ing the p-adic Bloch–Kato conjecture for the L-value Lalg(κ, f ) due to the fact
that the value Lalg(κ, f ) “controls” the congruence between the Saito–Kurokawa
lift and a nonlifted form (see [Brown 2011; Agarwal and Brown 2014] for ex-
ample), the L-values that control the congruence for an Ikeda lift are given by
Lalg(κ, f )

∏n/2−1
j=1 Lalg(2 j+1, ad0 f ). This indicates that if one knew the existence

of Galois representations for automorphic forms on GSp2n , as well as expected
properties of these representations, one could use the congruence results produced
in this paper to study the `-adic Bloch–Kato conjecture not only for Lalg(κ, f ), but
also for the values Lalg(2 j + 1, ad0 f ) when j = 1, . . . , n

2 − 1. This makes such
congruences particularly interesting.

The structure of the paper is as follows. Section 2 recalls the basic definitions
we will need throughout the paper. We recall the Ikeda lift and some necessary
properties in Section 3. In Section 4 we state Katsurada’s conjecture and result,
introduce the Ikeda ideal, and show how Katsurada’s congruence can be recovered
by studying the Ikeda ideal. We then state our main result and discuss the major
hypotheses in Section 5. Section 6 gives a somewhat detailed description of an
Eisenstein series originally introduced by Shimura and some results needed to prove
the main theorem. Finally, we conclude by proving the main theorem in Section 7.

Throughout the paper ` denotes an odd prime. We fix once and for all an algebraic
closure Q of the rationals and Q` of Q`. We also fix compatible embeddings
Q ↪→Q` ↪→ C.
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2. Modular forms

In this section we recall the basics on modular forms and Siegel modular forms that
will be needed throughout the rest of the paper.

2.1. Basic definitions. Given a ring R with identity, we write Matn(R) for the ring
of n× n matrices with entries in R.

Set

Jn =

(
0n −1n

1n 0n

)
and recall that the degree-n symplectic group is defined by

Gn = GSp2n = {g ∈ GL2n :
tg Jng = µn(g)Jn, µn(g) ∈ GL1}.

We set Sp2n = kerµn . We denote Sp2n(Z) by 0n to ease notation. We say that
0 ⊂ 0n is a congruence subgroup if it contains 0(n)(N ) as a subgroup of finite
index for some integer N ≥ 1, where

0(n)(N )= {γ ∈ 0n : γ ≡ 12n (mod N )}.

Given a matrix z ∈Matn(C), we can write z = x +
√
−1y for x, y ∈Matn(R).

When we write z = x +
√
−1y, we will always mean x, y ∈Matn(R). The Siegel

upper half-space is given by

hn = {z = x +
√
−1y ∈Matn(C) : tz = z, y > 0}.

We have an action of G+n (R)= {g ∈ Gn(R) : µn(g) > 0} on hn given by

gz = (agz+ bg)(cgz+ dg)
−1 for g =

(
ag bg

cg dg

)
,

where ag, bg, cg, dg ∈Matn(R).
For g ∈ G+n (R) and z ∈ hn , we set

j (g, z)= det(cgz+ dg).

Let κ be a positive integer. Given f : hn→C, we define the slash operator on f by

( f |κg)(z)= µn(g)nκ/2 j (g, z)−κ f (gz).

Let 0 ⊂ 0n be a congruence subgroup. We say that such an f is a genus-n Siegel
modular form of weight κ and level 0 if f is holomorphic and satisfies

( f |κγ )(z)= f (z)

for all γ ∈ 0. If n = 1 we also require that f is holomorphic at the cusps so that
we recover the theory of elliptic modular forms. We denote the space of genus-n,
level-0, and weight-κ modular forms by Mκ(0).
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Let f ∈ Mκ(0) and let γ ∈ G+n (Q). Then f |κγ has a Fourier expansion of the
form

( f |κγ )(z)=
∑

T∈3n

a f |κγ (T )e(Tr(T z)),

where 3n is defined to be the set of n × n half-integral positive semidefinite
symmetric matrices and e(w) := e2π iw. We say that f is a cusp form if for all
T ∈ 3n with det(T ) = 0 we have a f |κγ (T ) = 0 for all γ ∈ G+n (Q). We write
Sκ(0) for the cusp forms in Mκ(0). Given a ring R ⊂ C, we write Mκ(0; R) for
those modular forms whose Fourier coefficients all lie in R and likewise for the
cusp forms.

Let f1, f2 ∈ Mκ(0) with at least one of them a cusp form. The Petersson inner
product of f1 and f2 is defined by

〈 f1, f2〉0 =

∫
0\hn

f1(z) f2(z)(det y)κ dµz,

where z = x + iy with x = (xα,β), y = (yα,β) ∈Matn(R), and

dµz = (det y)−(n+1)
∏
α≤β

dxα,β
∏
α≤β

dyα,β,

with dxα,β and dyα,β the usual Lebesgue measure on R. We will use the following
scaled definition that is independent of the congruence subgroup considered:

〈 f1, f2〉 =
1

[0n : 0]
〈 f1, f2〉0,

where 0n = 0n/{±12n} and 0 is the image of 0 in 0n .

2.2. Hecke algebras. Let 0 ⊂ 0n be a congruence subgroup. Given g ∈ G+n (Q),
we write T (g) to denote the double coset 0g0. We define the usual action of T (g)
on Siegel modular forms by setting

T (g) f =
∑

i

f |κgi ,

where 0g0 =
∐

i 0gi and f ∈ Mκ(0). Let p be prime and define

T (n)(p)= T (diag(1n, p1n)),

and for i = 1, . . . , n, set

T (n)
i (p2)= T (diag(1n−i , p1i , p21n−i , p1i )).

These Hecke operators generate the local Siegel Hecke algebra at p [van der Geer
2008, Theorem 9].
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Let H(n)
Z denote the Z-subalgebra of EndC(Sκ(0)) generated by T (n)(p) and

T (n)
i (p2) for i = 1, . . . , n. Given any Z-algebra A, we write H(n)

A for H(n)
Z ⊗Z A.

Let E be a finite extension of Q` and OE the ring of integers of E . Then H(n)
OE

is
a semilocal complete finite OE -algebra. One has

(1) H(n)
OE
=

∏
m

H(n)
m ,

where the product runs over all maximal ideals of H(n)
OE

and H(n)
m denotes the

localization of H(n)
OE

at m.

2.3. Congruences. Let f, g ∈ Mκ(0n; K ), with K ⊆Q`. Let O denote the ring of
integers of K with l the prime of O. We write

f ≡ g (mod lb)

to denote
vall(a f (T )− ag(T ))≥ b

for all T ∈3n . We refer to this as a congruence of Fourier coefficients.
We will also use the notion of a congruence of eigenvalues. Let f, g ∈ Mκ(0n)

be eigenforms and now suppose that K/Q` is the minimal extension containing all
Hecke eigenvalues of f and g. Note that this is a finite extension by [Kurokawa
1981, Theorem 1]. Furthermore, by the remark in [Mizumoto 1991, Section 2]
we may assume that f , g are normalized so that the Fourier coefficients are also
contained in K . We shall assume throughout the remainder of the paper that all
eigenforms are normalized in this way.

In this case, if f and g are eigenforms for all t ∈H(n)
O with eigenvalues λ f (t)

and λg(t), respectively, we write

f ≡ev g (mod lb)

to denote
vall(λ f (t)− λg(t))≥ b

for all t ∈H(n)
O .

2.4. L-functions. In this section we introduce the L-functions that will be needed
in this paper. In the case of the relevant L-functions attached to elliptic modular
forms, we also introduce the appropriate canonical periods.

Given local Euler factors L p(s) and a finite set of primes 6, we define

L6(s)=
∏
p/∈6

L p(s).

If 6 = {p | N } we write L N (s) for L6(s). We set L(s)= L∅(s).
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We begin with the case of an elliptic modular form f ∈ Sκ(01). We assume that
f is a normalized eigenform with Fourier expansion

f (z)=
∑
n≥1

a f (n)e(nz).

Let π f =
⊗
′

p π f,p be the automorphic representation associated to f . For each
prime p there exists a character σp such that π f,p = π(σp, σ

−1
p ), where π(σp, σ

−1
p )

is the principal series representation of GL2(Qp). The p-Satake parameter of f is
given by α0(p; f )= σp(p). We will drop the f from the notation when it is clear
from context. The L-function of f is given by

L(s, f )=
∏

p

(1−α0(p)p−s+(κ−1)/2)−1(1−α0(p)−1 p−s+(κ−1)/2)−1

=

∏
p

(1− a f (p)p−s
+ pκ−1−2s)−1

=

∑
n≥1

a f (n)n−s .

Given a Dirichlet character χ , we will also make use of the twisted L-function

L(s, f, χ)=
∑
n≥1

χ(n)a f (n)n−s .

Let ` ≥ κ be a prime and let K be a suitably large finite extension of Q`

with ring of integers O. Let f ∈ Sκ(01;O) be a normalized eigenform. Let ρ f,`

be the `-adic Galois representation associated to f and assume that the residual
representation ρ f,` is irreducible. Then we have canonical complex periods �±f
(determined up to `-units) by [Vatsal 1999]. Vatsal showed that such periods exist
for level greater than 3, but using arguments in [Hida 1987] we can define �±f for
arbitrary level. One can see [Brown 2007] for more details. Using these periods
we have:

Theorem 1 [Shimura 1977; Vatsal 1999]. Let f ∈ Sκ(01;O) be as in the above
discussion. There exist complex periods �±f such that for each integer m with
0< m < κ and every Dirichlet character χ one has

L(m, f, χ)

τ (χ)(2π
√
−1)m

∈

{
�+f Oχ if χ(−1)= (−1)m,
�−f Oχ if χ(−1)= (−1)m−1,

where τ(χ) is the Gauss sum of χ and Oχ is the extension of O generated by the
values of χ .

With this theorem in mind we set the following notation for the algebraic part of
L(m, f, χ) with 0< m < κ:

Lalg(m, f, χ) :=
L(m, f, χ)

τ (χ)(2π
√
−1)m�±f

,

where the choice of period is from the theorem.
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For Siegel modular forms of genus greater than 1 there are two relevant L-
functions: the standard and spinor L-functions. Let f ∈ Sκ(0n) be an eigenform.
Associated to f is a cuspidal automorphic representation π f of PGSp2n(A). We
can decompose π f into local components as π f =

⊗
′
π f,p, with π f,p an Iwahori

spherical representation of PGSp2n(Qp). We refer the reader to [Asgari and Schmidt
2001, Section 3] for the details concerning the construction of cuspidal automorphic
representations associated to Siegel cusp forms. The representation π f,p is given
as π(χ0, χ1, . . . , χn) for χi unramified characters of Q×p . One can see [Asgari and
Schmidt 2001, Section 3.2] for the definition of this spherical representation. Let
α0(p; f ) = χ0(p), . . . , αn(p; f ) = χn(p) denote the p-Satake parameters of f .
Note these are normalized so that

α0(p; f )2α1(p; f ) · · ·αn(p; f )= 1.

We drop f and/or p in the notation for the Satake parameters when they are clear
from context. Set α̃0 = p(2nκ−n(n+1))/4α0 and

L p(X, f ; spin)= (1− α̃0 X)
n∏

j=1

∏
1≤i1≤···≤i j≤n

(1− α̃0αi1 · · ·αi j X).

The spinor L-function associated to f is given by

L(s, f ; spin)=
∏

p

L p(p−s, f ; spin)−1.

One should note that in the case that f is an elliptic modular form the spinor
L-function is exactly L(s, f ) defined above.

Set

L p(X, f ; st)= (1− X)
n∏

i=1

(1−αi (p)X)(1−αi (p)−1 X).

Then, we define the standard L-function associated to f by

L(s, f ; st)=
∏

p

L p(p−s, f ; st)−1.

Given a Hecke character χ , the twisted standard L-function is given by

L(s, f, χ; st)=
∏

p

L p(χ(p)p−s, f ; st)−1.

In the case that f ∈ Sκ(01;O) is an elliptic modular form the standard L-function is
usually denoted by L(s, ad0 f ), i.e., it is the adjoint L-function. Then the corollary
to [Zagier 1977, Theorem 2] gives that

L(m, ad0 f )
π2m+κ−1�+f �

−

f
∈Q
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for m = 1, 3, . . . , κ − 1 and

L(m, ad0 f )
πm+κ−1�+f �

−

f
∈Q

for m = 2− κ, 4− κ, . . . , 0. We will only be interested in the first case; we denote
this algebraic value by Lalg(m, ad0 f ).

3. The Ikeda lift

In this section we will present an introduction to the Ikeda lift. For the details the
reader is referred to [Kohnen 2002] or Ikeda’s original paper [2001]. The Ikeda
lift can be viewed as a composition of the Shintani map from the space of elliptic
modular forms to the space of half-integral weight modular forms and a map from
the space of half-integral weight forms to the correct space of Siegel modular forms.

Throughout we assume κ, n to be positive even integers with 2κ − n > 1. We
note here that we begin with weight 2κ − n instead of 2κ as used in [Ikeda 2001;
Kohnen 2002]. This normalization is more convenient for our purposes.

Recall the algebraic version of Shintani’s lift that we require. One has:

Theorem 2 [Shintani 1975]. There is a linear function

θκ,n : S2κ−n(01)→ S+
κ− n

2+
1
2
(00(4))

that is Hecke equivariant, i.e., one has θκ,n( f | T (p)) = θκ,n( f ) | T (p2) for any
prime p.

The next result will be pivotal for the algebraic construction.

Proposition 3 [Stevens 1994, Proposition 2.3.1]. Let f ∈ S2κ−n(01;O) be a Hecke
eigenform, where O is the ring of integers of a field that can be embedded in C.
Then there is a nonzero complex number �( f ) ∈ C× so that

1
�( f )

θκ,n( f ) ∈ S+
κ− n

2+
1
2
(00(4);O).

Moreover, if O is a discrete valuation ring then �( f ) can be chosen so that at least
one of the Fourier coefficients of (1/�( f ))θκ,n( f ) is a unit in O.

From now on we write θ alg
κ,n( f ) for (1/�( f ))θκ,n( f ) and will always choose the

period so that θ alg
κ,n( f ) has a unit Fourier coefficient in the case that O is a discrete

valuation ring. We write

θ alg
κ,n( f )(z)=

∑
m>0

m≡0,1 (mod 4)

c(m)e(mz).



CONGRUENCE PRIMES FOR IKEDA LIFTS AND THE IKEDA IDEAL 35

Let T > 0 be in 3n , i.e., T is an n× n half-integral positive definite symmetric
matrix. Set DT to be the determinant of 2T , 1T the absolute value of the discrimi-
nant of Q(

√
DT ), χT the primitive Dirichlet character associated to Q(

√
DT )/Q,

and fT the rational number satisfying DT =1T f
2
T .

Let Sn(R) denote the set of symmetric n × n matrices over a ring R. For a
rational prime p, let ψp :Qp→ C× be the unique additive character given by

ψp(x)= exp(−{x}p),

where {x}p ∈ Z
[ 1

p

]
is the p-adic fractional part of x . The Siegel series for T is

bp(T, s) :=
∑

S∈Sn(Qp)/Sn(Zp)

ψp(Tr(T S))p−s ordp(ν(S)) for Re(s)� 0,

where ν(S) := det(S1) ·Zp, and S1 is from the factorization S = S−1
1 S2 for a sym-

metric coprime pair of matrices S1, S2. We have a factorization of the Siegel series

bp(T, s)= γp(T, p−s)Fp(T, p−s),

where

γp(T, X)=
1− X

1− p
n
2χT (p)X

n
2∏

i=1

(1− p2i X2),

and Fp(T, X) ∈ Z[X ] has constant term 1 and deg(Fp(T, X))= 2 ordp(fT ). Using
this polynomial Fp(T, X) we define

F̃p(T, X) := X− ordp(fT )Fp(T, p−
n
2−

1
2 X).

For each T > 0 in 3n , define

(2) a(T )= c(|1T |)f
κ− n+1

2
T

∏
p

F̃p(T, α0(p; f )),

and form the series
In( f )(z)=

∑
T>0

a(T )e(Tr(T z)),

where α0(p; f ) is the p-th Satake parameter of f . Then we have:

Theorem 4 [Ikeda 2001, Theorems 3.2 and 3.3]. The series In( f )(z), referred to as
the Ikeda lift of f , is an eigenform in Sκ(0n) whose standard L-function factors as

L(s, F; st)= ζ(s)
n∏

i=1

L(s+ κ − i, f ).

We will also need further information about the integrality of the Fourier coeffi-
cients of In( f ). In particular, the following result is essential to our applications.
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Theorem 5 [Kohnen 2002, Theorem 1]. Let θ alg
κ,n( f ) be as above and let a(T ) be

as in (2). Then
a(T )=

∑
d |fT

dκ−1φ(d; T )c(|1T |(fT /d)2),

where φ(d; T ) is an integer-valued function.

As an immediate consequence of this theorem and Proposition 3 we have:

Corollary 6. Let f ∈ S2κ−n(01;O) be a Hecke eigenform, where O is the ring of in-
tegers of a field that can be embedded in C. Then In( f ) has Fourier coefficients in O.

We will also make use of the following result.

Proposition 7 [Katsurada 2011, Proposition 4.6]. Let f ∈ S2κ−n(01) be a normal-
ized eigenform with Ikeda lift In( f ). Let O be the ring of integers of a field that can
be embedded in C and let l be a prime in O. If there is a fundamental discriminant D
such that the D-th Fourier coefficient of θ alg

κ,n( f ) is not divisible by l, then there is a
Fourier coefficient of In( f ) that is not divisible by l. In particular, if O is the ring
of integers of some K ⊂Q` with prime l, then In( f ) has a Fourier coefficient that
is a unit modulo l.

Proof. The only thing to prove is the last statement, but this follows immediately
from our normalization of θ alg

κ,n . �

Let f1, . . . , fr be an orthogonal basis of S2κ−n(01) consisting of normalized
eigenforms. We denote the span of In( f1), . . . , In( fr ) in Sκ(0n) by SIk

κ (0n). We
denote the orthogonal complement of SIk

κ (0n) in Sκ(0n)with respect to the Petersson
product by SN-Ik

κ (0n).

4. A conjecture of Katsurada and the Ikeda ideal

In this section we present a conjecture of Katsurada on the congruence primes
of Ikeda lifts. We then introduce the Ikeda ideal and show how one can use the
Ikeda ideal to study all the congruences between In( f ) and forms in SN-Ik

κ (0n) at
once. This allows us to prove a stronger congruence result under roughly the same
conditions as given in [Katsurada 2011].

We fix some notation used throughout this section. Let K denote a number field,
OK the ring of integers of K , and l a prime of OK of residue characteristic `. We
let O be the completion of OK at l and let λ denote a uniformizer of l in O.

4.1. A conjecture of Katsurada.

Definition 8. Let F ∈ Sκ(0n;O) be an eigenform. We say l is a congruence prime
of F with respect to V ⊂ (CF)⊥ if there exists an eigenform G ∈ V such that
F ≡ev G (mod l). (Note that in order for this congruence to make sense we may
need to extend K so that G ∈ Sκ(0n;O) as well.)
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One should note this definition can be extended to levels other than 0n , but we
will have no need of such a definition in this paper.

Let f ∈ S2κ−n(01) be a normalized eigenform. Katsurada’s conjecture states that
all of the primes dividing certain special values of L-functions of f are congruence
primes for the Ikeda lift In( f ) with respect to the space SIk

κ (0n)
⊥.

Conjecture 9 [Katsurada 2011, Conjecture A]. Let κ > n be integers and let
f = f1, f2, . . . , fr ∈ S2κ−n(01;O) be a basis of normalized eigenforms. Assume
` - (2κ − 1)!. Then l is a congruence prime of In( f ) with respect to SIk

κ (0n)
⊥ if

l
∣∣ Lalg(κ, f )

n
2−1∏
i=1

Lalg(2i + 1, ad0 f ).

As evidence for this conjecture, Katsurada proves the following theorem.

Theorem 10 [ibid., Theorem 4.7]. Let O, f , and l be as in the conjecture with
κ > 2n+ 4. Then l is a congruence prime for In( f ) with respect to SIk

κ (0n)
⊥ if the

following are satisfied:

(1) l
∣∣ Lalg(κ, f )

n
2−1∏
i=1

Lalg(2i + 1, ad0 f ).

(2) For some integer m satisfying n
2 < m < κ

2 −
n
2 and some fundamental discrimi-

nant D satisfying (−1)
n
2 D > 0,

l 6
∣∣ D(m− 1)!ζalg(2m)Lalg

(
κ −

n
2
, χD

) n∏
i=1

Lalg(2m+ κ − i, f ),

where ζalg(2m)= ζ(2m)/π2m .

(3) For a constant Cκ,n :=
∏

j≤(2κ−n)/12(1+ j+· · ·+ jn−1) if n > 2 and Cκ,2 = 1,

l 6
∣∣∣ Cκ,n〈 f, f 〉

�+f �
−

f
.

As noted by Katsurada, the second condition allows freedom to choose m, so it is
reasonable to expect that one can find an m with l - ζalg(2m)

∏n
i=1 Lalg(2m+κ−i, f )

in many cases.

4.2. The Ikeda ideal: definition and bounds. The conjecture in the previous sub-
section gives conditions when one will have a congruence between an Ikeda lift
In( f ) and a form in SN-Ik

κ (0n). In this section we will introduce the Ikeda ideal
associated to In( f ) that will capture this information as well. In fact, the ideal
captures more information as it measures all congruences between In( f ) and forms
in SN-Ik

κ (0n).
Let f be a normalized eigenform in S2κ−n(01;O) and In( f ) the Ikeda lift of f .

Recall that the Hecke algebra over O acting on Sκ(0n) is denoted by H(n)
O .
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Let X ⊆ SIk
κ (0n) be a Hecke-stable subspace and let Y be the orthogonal com-

plement in Sκ(0n) to X under the Petersson product. In particular, the examples we
will be interested in are when X = CIn( f ) or X = SIk

κ (0n). Let H(n),Y
O denote the

image of H(n)
O in EndC(Y ) and let φ :H(n)

O →H(n),Y
O denote the natural surjection.

We let Ann(In( f )) denote the annihilator of In( f ) in H(n)
O . We have that In( f )

induces an O-algebra homomorphism H(n)
O →O by sending a Hecke operator to its

eigenvalue. Since this is an O-algebra homomorphism it is surjective and it clearly
has kernel Ann(In( f )). Thus, there is an isomorphism

H(n)
O /Ann(In( f ))∼=O.

Using that φ is surjective we have that φ(Ann(In( f ))) is an ideal in H(n),Y
O . We

refer to this ideal as the Ikeda ideal associated to In( f ) with respect to Y and denote
it by IY

n ( f ). We will be interested in the index of this ideal. In particular, one has
that there exists an integer m such that

H(n),Y
O /IY

n ( f )∼=O/lmO.

We give here two elementary propositions to relate this index to Katsurada’s
conjecture.

Proposition 11. With the notation as above, if there exists G ∈ Y , not necessarily
an eigenform, such that

In( f )≡ G (mod lb),

then m ≥ b.

Proof. Assume that b > m, and consider the diagram

H(n)
O

φ
//

��

H(n),Y
O

��

H(n)
O /Ann(In( f ))

φ
//

'

��

H(n),Y
O /IY

n ( f )

'

��
O // O/lmO

Each map here is an O-algebra surjection. Let t ∈ φ−1(λm) ⊂ H(n)
O . Then by

definition we have tG = λmG. Moreover, by the commutativity of the diagram we
see that t ∈ Ann(In( f )), so the assumed congruence gives

λmG ≡ 0 (mod lb),
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i.e.,
G ≡ 0 (mod lb−m).

However, since we are assuming b > m, this gives

In( f )≡ G ≡ 0 (mod l).

This contradicts Proposition 7, and so it must be that b ≤ m. �

Proposition 12. With the notation as above, suppose m ≥ 1. Then there exists an
eigenform G ∈ Y such that

In( f )≡ev G (mod l).

Proof. Extend K if necessary so that In( f ) ∈ Sκ(0n;O) and we have an orthog-
onal basis F1, . . . , Fr of Y with each Fi ∈ Sκ(0n;O). Suppose that there are no
eigenforms G ∈ Y eigenvalue-congruent to In( f ).

Let S denote the C-vector space spanned by In( f ), F1, . . . , Fr . Let H(n),S
O denote

the image of the Hecke algebra H(n)
O in EndC(S). For each eigenform F ∈ S with

eigenvalues in O we obtain a maximal ideal mF of H(n),S
O given as the kernel of

the map H(n),S
O → O/lO : t 7→ λF (t) (mod l). We have that eigenforms F and G

are eigenvalue-congruent modulo l if and only if mF =mG .
We now use the fact that In( f ) is not congruent to any of F1, . . . , Fr to conclude

that
H(n),S

O =H(n),S
mIn ( f )
×

∏
m

H(n),S
m ,

where the product is over the maximal ideals corresponding to F1, . . . , Fr . However,
this gives that IY

n ( f )=
∏

m H(n),S
m , and this is exactly H(n),Y

O . This contradicts the
assumption that m ≥ 1. Thus, it must be that there is a congruence as desired. �

To match the previous results with Katsurada’s, simply take X = SIk
κ (0n) and

Y = SN-Ik
κ (0n). In fact, one has that the index of the Ikeda ideal measures all

congruences between forms in Y and In( f ). This follows from Proposition 13. One
should note that we use the fact that the space of Ikeda lifts satisfies multiplicity
one [Ikeda 2013, Theorem 7.1] in order to apply this result.

Proposition 13 [Berger et al. ≥ 2015, Proposition 4.3]. Let X and Y be as above
and let F1, . . . , Fr be a basis of Y . For each 1≤ i ≤ r , let mi be the largest integer
so that

In( f )≡ev Fi (mod lmi ).

Then one has
1
e

r∑
i=1

mi ≥ valλ
(
#H(n),Y

O /IY
n ( f )

)
,

where e is the ramification index of O over Z`.
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Thus, one can view results giving a lower bound on the Ikeda ideal as a strength-
ening of the results of [Katsurada 2011], where one is only concerned with a
congruence modulo l to a single eigenform.

5. Main results

We now state the main result of this paper. The proof will be given in Section 7.
After stating the theorem, we discuss the main hypotheses.

Theorem 14. Let κ and n be positive even integers with κ > n + 1 and let ` be
a prime so that ` > 2κ − n. Assume ` -

∏
p≤(2κ−n)/12(1+ p + · · · + pn−1). Let

f ∈ S2κ−n(01) be a newform and let O be a suitably large finite extension of Z` that
contains all the eigenvalues of f . Let l denote the prime of O. Furthermore, assume
that ρ f,` is irreducible and vall(〈 f, f 〉/(�+f �

−

f ))= 0. We make these assumptions:

(1) There exists an integer N > 1 prime to ` and a Dirichlet character χ of
conductor N with χ(−1)= (−1)κ such that

vall

(
L N (n− κ + 1, χ)

n∏
j=1

L N
alg(n+ 1− j, f, χ)

)
= 0.

(2) There exists a fundamental discriminant D prime to ` such that (−1)n/2 D > 0,
χD(−1)=−1, and

vall
(

Lalg

(
κ −

n
2
, f, χD

))
= 0.

(3) We have

vall

(
Lalg(κ, f )

n
2−1∏
j=1

Lalg(2 j + 1, ad0 f )
)
= b > 0.

Then we have
vall

(
#H(n),Y

O /IY
n ( f )

)
≥ b,

where Y is the orthogonal complement of X = CIn( f ) in Sκ(0n).

Corollary 15. With the same setup and assumptions as in Theorem 14, if F1, . . . , Fr

is a basis of eigenforms of SN-Ik
κ (0n;O) (where we enlarge O if necessary) and if

we let mi be the largest integer so that

In( f )≡ev Fi (mod lmi ),

then we have
1
e

r∑
i=1

mi ≥ b,

where e is the ramification index of O over Z`.
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Proof. Let F1, . . . , Fr be a basis of eigenforms of SN-Ik
κ (0n;O) and Fr+1, . . . , Fs ,

In( f ) a basis of SIk
κ (0n). For i = 1, . . . , s let mi be the largest integer so that

In( f )≡ev Fi (mod lmi ).

Theorem 14 and Proposition 13 give

1
e

s∑
i=1

mi ≥ b.

However, we have mr+1=· · ·=ms=0 as the assumption vall(〈 f, f 〉/(�+f �
−

f ))=0
guarantees that there are no eigenvalue congruences between In( f ) and other Ikeda
lifts by the proof of [Katsurada 2011, Theorem 4.7]. Thus, we obtain the result. �

We first discuss the hypotheses that vall(〈 f, f 〉/(�+f �
−

f )) = 0. This condi-
tion is equivalent to assuming that there are no other normalized eigenforms
g ∈ S2κ−n(01;O) that are eigenvalue-equivalent to f modulo l. One can see
[Hida 1981; Ribet 1983] for further discussion. For a particular f this condition
can be easily checked [Bosma et al. 1997; Stein et al. 2013].

The two hypotheses we focus on are the ones concerning the l-indivisibility of
L-values. We begin with the assumption that vall

(
Lalg

(
κ− n

2 , f, χD
))
= 0. Note this

is a central critical value since the weight of f is 2κ − n. There have been several
results on the l-divisibility of this particular special value due to its relation with the
Fourier coefficients of the half-integral weight modular form θ

alg
κ,n( f ). For example,

Corollary 3 of [Bruinier and Ono 2003] shows that for nonexceptional primes `
there is a period � of f with the property that for infinitely many fundamental
discriminants D prime to ` with (−1)n/2 D > 0 one has

ordl

(
Dκ− n

2−
1
2 Lalg

(
κ − n

2 , f, χD
)

�

)
= 0.

Since we assume ρ f,` is irreducible, ` is automatically a nonexceptional prime
for f [Swinnerton-Dyer 1973, Corollary 2]. However, we are unable to apply this
result in our situation as the period � used is not the canonical period �+f that we
are using to normalize the L-value. We are unaware of any period relation between
� and �+f . However, this does reduce the consideration to another period ratio; and
since we have already assumed that l does not divide a period ratio, this assumption
is a reasonable one as well.

We next consider L(n− κ + 1, χ). Let p be a prime with p 6= `, m ≥ 1 and ϕ
be a Dirichlet character. In this setting Washington [1978] proves that for all but
finitely many Dirichlet characters ψ of p-power conductor with ϕψ(−1)= (−1)m ,

vall(L(1−m, ϕψ)/2)= 0.
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In our setup we can take m = κ − n, χ = ϕψ , and observe that χ(−1)= (−1)κ =
(−1)κ−n to see there are infinitely many χ so that

vall(L(n− κ + 1, χ))= 0.

If this were the only L-value controlled by χ we would be able to remove the
hypothesis regarding this L-value. However, we also require that

vall

( n∏
j=1

L N
alg(n+ 1− j, f, χ)

)
= 0.

This means that we must choose a χ so that all of these L-values are simultaneously
l-adic units. This is a much more delicate issue. We note here that we have a great
deal of freedom in choosing such a χ , namely, the only restrictions concern the
parity of χ and that its conductor be prime to `. Thus, we have infinitely many
characters to choose from so it is reasonable to expect that one can often find such
a χ . In the case n = 2, i.e., when one considers Saito–Kurokawa lifts, one can
find computational evidence supporting the existence of such a χ in [Agarwal and
Brown 2013]. One can use the same methods to produce computational evidence
for n > 2.

6. Siegel Eisenstein series

In this section we recall the definition of a Siegel Eisenstein series associated to
a character. Following Shimura we then make a suitable choice of a section so
that the Fourier coefficients of the Eisenstein series can be computed. Finally, we
consider the pullback of our Siegel Eisenstein series and recall an inner product
formula of Shimura. Throughout this section we assume that κ and n are even
integers with κ > n+ 1.

6.1. Siegel Eisenstein series — general setup. Let Pn be the Siegel parabolic sub-
group of Gn given by Pn = {g ∈ Gn : cg = 0}. We have that Pn factors as
Pn = NPn MPn , where NPn is the unipotent radical

NPn =

{
n(x)=

(
1n x
0n 1n

)
:

tx = x, x ∈Matn

}
and MPn is the Levi subgroup

MPn =

{(
A 0n

0n α(tA)−1

)
: A ∈ GLn, α ∈ GL1

}
.

Let A denote the rational adeles. Fix an idele class character χ and consider the
induced representation

I (χ)= IndGn(A)
Pn(A)

(χ)=
⊗
υ

Iυ(χυ)
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consisting of smooth functions f on Gn(A) that satisfy

f(pg)= χ(det(Ap))f(g) for p =
(

Ap Bp

0 Dp

)
∈ Pn(A), g ∈ Gn(A).

For s ∈ C and f ∈ I (χ) define

f(pg, s)= χ(det(Ap))|det(Ap D−1
p )|sf(g).

For υ a place of Q we define Iυ(χυ) and fυ(pg, s) analogously. We associate to
such a section the Siegel Eisenstein series

(3) EA(g, s; f)=
∑

γ∈Pn(Q)\Gn(Q)

f(γ g, s).

Observe that EA(g, s; f) converges absolutely and uniformly for (g, s) on compact
subsets of Gn(A)× {s ∈ C : Re(s) > (n + 1)/2}. One can see [Shimura 1997,
Appendix A.3] for this fact. Moreover, (3) defines an automorphic form on Gn(A)

and a holomorphic function on {s ∈ C : Re(s) > 0} with meromorphic continuation
to C with at most finitely many poles. Furthermore, Langlands [1976] gives a
functional equation for EA(g, s; f) relating the value at (n+1)/2−s to the value at s.

6.2. A choice of section. For our applications we need to restrict the possible χ
and pick a particular section f. Let N > 1 be an integer.

Let χ =
⊗

υ χυ be an idele class character of Q that satisfies

χ∞(x)=
(

x
|x |

)κ
,

χp(x)= 1 if p -∞, x ∈ Z×p , and x ≡ 1 (mod N ).

For each finite prime p, we set

K (n)
0,p(N )= {g ∈ Gn(Qp) : ag, bg, dg ∈Matn(Zp), cg ∈Matn(NZp)}.

From this definition it is immediate that if p - N we have

K (n)
0,p(N )= Gn(Qp)∩Mat2n(Zp).

At the infinite place we put

K (n)
∞
= {g ∈ Sp2n(R) : g(in)= in}.

Set
K (n)

0 (N )=
∏

p

K (n)
0,p(N ).

We choose our section f=
⊗

υ fυ as follows.
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(1) We set f∞ to be the unique vector in I∞(χ∞, s) so that

f∞(k, κ)= j (k, i)−κ

for all k ∈ K (n)
∞ .

(2) If p - N we set fp to be the unique K (n)
0,p(N )-fixed vector so that

fp(1)= 1.

(3) If p | N we set fp to be the vector given by

fp(k)= χp(det(ak)) for all k ∈ K (n)
0,p(N ), k =

(
ak bk

ck dk

)
and

fp(g)= 0 for all g /∈ Pn(Qp)K
(n)
0,p(N ).

The Eisenstein series EA is the same as in [Shimura 1995; 1997].
Define

3N
n (s, χ)= L N (2s, χ)

[
n
2 ]∏

i=1

L N (4s− 2i, χ2)

and normalize EA by setting

EA(g, s; f)= π−n(n+2)/43N
n (s, χ)EA(g J−1

n , s; f).

Set

(4) Gn
κ(z; f)= EA

((
y1/2 xy−1/2

0 y−1/2

)
,

n+1
2
−
κ

2
; f

)
.

We have that Gn
κ(z; f) is a Siegel modular form of weight κ and level 0(n)0 (N )

[Shimura 1983], where

0
(n)
0 (N )=

{(
A B
C D

)
∈ 0n : C ≡ 0 (mod N )

}
.

Write
Gn
κ(z; f)=

∑
T∈3n

a(T ; f)e(Tr(T z)).

The Fourier coefficients a(T ; f) are well known for this particular choice of section
and normalization [Shimura 1997, Chapters 18 and 19]. In particular:

Theorem 16 [Brown 2007, Theorem 4.4]. Let `≥ n+1 be an odd prime with ` - N.
Then

Gn
κ(z; f) ∈ Mκ

(
0
(n)
0 (N );Z`

[
χ,
√
−1

nκ])
.
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6.3. Pullbacks of Siegel Eisenstein series. Let N > 1 be an integer and ` > n+ 1
a prime with ` - N .

Consider the diagonal embedding of hn
× hn into h2n via the map

(z, w) 7→ diag[z, w] =
(

z 0
0 w

)
.

We also have an embedding of 0n ×0n into 02n given by

((
A1 B1

C1 D1

)
,

(
A2 B2

C2 D2

))
7→


A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

 .
This allows us to view the natural action of 0n ×0n on hn

× hn as a restriction of
the action of 02n on h2n .

We will be interested in the restriction of the Eisenstein series G2n
κ (Z; f) to

hn
× hn . We refer to such a restriction as a pullback. These pullbacks have been

considered in [Garrett 1984; Böcherer 1985; Garrett 1992; Shimura 1995; 1997].
In general, if F is a modular form of degree 2n, level 0(2n)

0 (N ), and weight κ , then
the restriction of F to hn

× hn is a modular form of degree n, level 0(n)0 (N ), and
weight κ when considered as a function of z or w.

Shimura calculates the following set of representatives for P2n\G2n/(Gn ×Gn).

Lemma 17 [Shimura 1995, Lemma 4.2]. For 0≤ r ≤ n let τr denote the element
of G2n given by

τr =

(
12n 0
ρr 12n

)
, ρr =

(
0n er
ter 0n

)
, er =

(
1r 0
0 0

)
.

Then the τr form a complete set of representatives for P2n\G2n/(Gn ×Gn).

We will make use of τn . Let F ∈ Sκ(0n) be an eigenform. We can specialize
[ibid., Equation (6.17)] to obtain

(5) 〈(G2n
κ | τn)(diag[z, w]; f), Fc(w)〉

=Aκ,n,Nπ−n(n+1)/2L(n+ 1− κ, F, χ; st)F(z),

where we have used F | Jn = F since F has level 0n , and

Aκ,n,N =
2n(2κ−3n+2)/2

[0n : 0
(n)
0 (N )]

n−1∏
j=0

0((n− j)/2)
0((2n+ 1− j)/2)

.

Since it will be important in the next section, we note that since G2n
κ (z; f) ∈

Mκ(0
(2n)
0 (N );Z`[χ ]), we have (G2n

κ | τn)(z; f) ∈ Mκ(τ
−1
n 0

(2n)
0 (N )τn;Z`[χ ]) by
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the q-expansion principle for Siegel modular forms [Chai and Faltings 1990, Propo-
sition 1.5]. The Fourier expansion of (G2n

κ | τn)(diag[z, w]; f) can be written as

(G2n
κ | τn)(diag[z, w]; f)

=

∑
T1,T2∈3n

( ∑
T∈32n(T1,T2)

a(T ;G2n
κ | τn)

)
e(Tr(T1z))e(Tr(T2w)),

where a(T ;G2n
κ | τn) is the T-th Fourier coefficient of G2n

κ | τn , and for T1, T2 ∈3n

we define

32n(T1, T2)=

{
T ∈32n : T =

(
T1 b
b T2

)}
.

This immediately gives that the Fourier coefficients of (G2n
κ | τn)(diag[z, w]; f) lie

in Z`[χ ] as well.

7. Constructing a congruence

In this section we prove Theorem 14. We work under the hypotheses listed after
the theorem. We again let O be a suitably large finite extension of Z` with prime l

and uniformizer λ.
Our first step in constructing the congruence is to replace the Eisenstein series

(G2n
κ | τn)(diag[z, w]; f) with a form of level 0n×0n . To do this, we take the trace

G̃2n
κ (diag[z, w]; f)=

∑
γ1,γ2

(G2n
κ | τn)(diag[z, w]; f) | (γ1× γ2)

where the sum is over (0n ×0n)/(τ
−1
n 0

(n)
0 (N )τn × τ

−1
n 0

(n)
0 (N )τn). We note again

that this has Fourier coefficients in Z`[χ ] by the q-expansion principle. Moreover,
we know that G̃2n

κ is a cusp form in each variable via [Brown 2011, Section 3.2].
Let F0 = In( f ), F1, . . . , Fr be an orthogonal basis of eigenforms for Sκ(0n).

Note that Fc
0 , . . . , Fc

r is also an orthogonal basis of eigenforms for Sκ(0n). Applying
[Shimura 1995, Equation (7.7)] we may write

G̃2n
κ (diag[z, w]; f)=

∑
0≤i≤r
0≤ j≤r

ci, j Fi (z)Fc
j (w)

for some ci, j ∈ C. Furthermore, from [Brown 2011, Lemma 5.1] we can rewrite

(6) G̃2n
κ (diag[z, w]; f)= c0 In( f )(z)In( f )(w)+

∑
0< j≤r

c j F j (z)Fc
j (w),

where we write c j = c j, j and we have used that since f c
= f , Corollary 6 gives

In( f )c = In( f ).
We now turn our attention to the constant c0. Our goal is to show that we can

write c0 as a product of an element of O× and λ−m for some m > 0.



CONGRUENCE PRIMES FOR IKEDA LIFTS AND THE IKEDA IDEAL 47

Consider the inner product 〈G̃2n
κ (diag[z, w]; f), In( f )(w)〉. Note that

〈G̃2n
κ (diag[z, w]; f), In( f )(w)〉 = 〈(G2n

κ | τn)(diag[z, w]; f), In( f )(w)〉,

where we view the forms on the left-hand side as being level 0n and on the right-
hand side as being level τ−1

n 0
(n)
0 (N )τn . Taking the inner product of both sides of (6)

with In( f )(w), applying (5), and solving for c0 we obtain

c0 =
Ak,n,N L N (n− κ + 1, In( f ), χ; st)

πn(n+1)/2〈In( f ), In( f )〉
.

Ikeda [2006] made a conjecture relating 〈In( f ), In( f )〉 to 〈 f, f 〉. We have
the following theorem, which proves Ikeda’s conjecture assuming n is even. We
rephrase their result to suit our purposes.

Theorem 18 [Katsurada and Kawamura 2013, Theorem 2.3]. Let κ be a positive
even integer and let ` > n + 1 be a prime. Let f ∈ S2κ−n(01;O) be a newform
with O a suitably large finite extension of Z`. Assume vall(〈 f, f 〉/(�+f �

−

f )) = 0.
Let D be a fundamental discriminant such that (−1)n/2 D > 0, χD(−1)=−1, and
assume ` - D. Then if In( f ) is the Ikeda lift of f as given above, we have

〈In( f ), In( f )〉
〈 f, f 〉n/2

= u1 ·
0(κ)

∏ n
2−1
j=1 0(2 j + 2κ − n)|c(|D|)|2

∏ n
2
j=1 ζalg(2 j)

0
(
κ − n

2

)
×

Lalg(κ, f )
∏ n

2−1
j=1 Lalg(2 j + 1, ad0 f )

Lalg
(
κ − n

2 , f, χD
) ,

where vall(u1)= 0, c(|D|) is the |D|-th Fourier coefficient of θ alg
κ,n( f ) from above

and we have used the assumption on 〈 f, f 〉/(�+f �
−

f ) to normalize the adjoint
L-function to our conventions.

We now apply this result to remove the period 〈In( f ), In( f )〉 in our expression
for c0 to obtain

c0 =
Bκ,n
|c(|D|)|2

·
L N (n− κ + 1, In( f ), χ; st)Lalg

(
κ − n

2 , f, χD
)

π
n(n+1)

2 〈 f, f 〉
n
2 ζalg(n)

∏ n
2−1
i=1 ζalg(2i)Lalg(2i + 1, ad0 f )Lalg(κ, f )

,

where

Bκ,n = u2 ·
0
(
κ − n

2

)∏n−1
j=1 0

( n− j
2

)
[0n : 0

(n)
0 (N )]0(k)

∏n−1
j=1 0

( 2n+1− j
2

)∏ n
2−1
j=1 0(2i + 2k− n)

,

where u2 satisfies vall(u2)= 0.
The following factorization is a direct consequence of Theorem 4:

(7) L N (n− k+ 1, In( f ), χ; st)= L N (n− k+ 1, χ)
n∏

i=1

L N (n+ 1− i, f, χ).



48 JIM BROWN AND RODNEY KEATON

Applying the assumption that vall(〈 f, f 〉/(�+f �
−

f ))= 0, we can replace 〈 f, f 〉n/2

by u3(�
+

f �
−

f )
n/2 for u3 an l-adic unit. Furthermore, note that if �±f is the period

associated to L(n+ 1− i, f, χ) as in Theorem 1, then �∓f is the period associated
to L(n+ 1− (i + 1), f, χ). Using this, we can rewrite our expression for c0 as

c0 = u4 ·Bκ,n · CD,n,χ ·L f,χ,D,

where u4 is a l-adic unit, Bκ,n is defined as above,

CD,n,χ =
1

|ch(|D|)|2
∏ n

2
i=1 ζalg(2i)

,

and

L f,χ,χD =
L N (n− κ + 1, χ)Lalg

(
κ − n

2 , f, χD
)∏n

j=1 L N
alg(n+ 1− j, f, χ)

Lalg(κ, f )
∏ n

2−1
j=1 Lalg(2 j + 2, ad0 f )

.

Note that it is shown in [Brown 2007, Section 4.2] that L N (n−k+1, χ)∈Z`[χ ].
As Bκ,n , CD,n,χ , and L f,χ,D are algebraic, we may consider the l-divisibility of c0.
First, using that n is even and ` > n+ 1 we have vall(Bk,n)≤ 0.

Next we turn our attention to CD,n,χ . Our choice of θ alg
κ,n( f ) given in Section 3

gives that |c(|D|)| ∈ O, and so vall(|c(|D|)|2) ≥ 0. Consider ζalg(2 j) for some
1 ≤ j ≤ n

2 . It is an immediate consequence of the Von Staudt–Clausen Theorem
(see for example [Ireland and Rosen 1990, p. 233]) that ζalg(2 j) is in O, and hence
vall(ζalg(2 j))≥ 0. Thus, we have vall(CD,n,χ )≤ 0.

By assumption we have vall(L f,χ,χD ) < 0, so under our assumptions we have
vall(c0)< 0. We now show how this gives the desired congruence. Write c0=αλ

−b′

for some b′ > 0 and α an l-adic unit. Using this, we may rewrite (6) as

(8) G̃2n
κ (diag[z, w]; f)= αλ−b′ In( f )(z)In( f )(w)+

∑
0< j≤r

c j F j (z)Fc
j (w).

Note that by Proposition 7 there is a T0 so that vall(aIn( f )(T0))= 0. We expand (8)
in terms of z and equate the T0-th Fourier coefficients to obtain∑
T2∈3n

( ∑
T∈32n(T0,T2)

a(T,G2n
κ | τn)

)
e(Tr(T2w))

= αλ−b′aIn( f )(T0)In( f )(w)+
∑

0< j≤r

c j aF j (T0)Fc
j (w).

Multiply the equation by λb′ and recall that a(T,G2n
κ |τn) ∈O for all T to see that

In( f )(w)≡−
λb′

αaIn( f )(T0)

∑
0< j≤r

c j aF j (T0)Fc
j (w) (mod lb

′

).

Note that since aIn( f )(T0) is a l-adic unit, the form on the right-hand side of
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the congruence cannot be zero modulo lb
′

, i.e., we have constructed a nontrivial
congruence. Set

G(w)=−
λb′

αaIn( f )(T0)

∑
0< j≤r

c j aIn( f )(T0)F j (w).

We now return to the setting of Ikeda ideals. Let X =CIn( f ) and Y = (CIn( f ))⊥,
where the notation follows that given in Section 4.2. We have constructed a congru-
ence

In( f )≡ G (mod lb
′

)

for some b′ ≥ 1 and G ∈ Y . Note that it is clear from above that

b′ ≥ vall

(
Lalg(κ, f )

n
2−1∏
j=1

Lalg(2 j + 1, ad0 f )
)
,

which is what we labeled b in the statement of Theorem 14. Thus, applying
Proposition 11 concludes the proof of Theorem 14.

One thing to note here is that we do not obtain a lower bound of b′ for the index in
the Hecke algebra of the Ikeda ideal with respect to X = SIk

κ (0n) and Y = SN-Ik
κ (0n).

The reason for this is that while we know In( f ) cannot be eigenvalue-congruent to
any other Ikeda lifts, that does not imply that G ∈ SN-Ik

κ (0n). One can use the fact
that In( f ) is not congruent to any other Ikeda lifts along with (1) to conclude there
is an idempotent t in the Hecke algebra H(n)

O that satisfies

t F =
{

0 if F 6≡ev In( f ) (mod l),

F if F ≡ev In( f ) (mod l).

If one acts on G by this Hecke operator one obtains a form tG in SN-Ik
κ (0n) with

tG ≡ev In( f ) (mod l). Thus, one only obtains a lower bound of 1 for the Ikeda
ideal with respect to X = SIk

κ (0n) and Y = SN-Ik
κ (0n). While one would like to have

a stronger bound for this Ikeda ideal, Corollary 15 shows that it is not necessary for
our results.
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