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Abstract Let κ ≥ 6 be an even integer, M an odd square-free integer, and f ∈
S2κ−2(�0(M)) a newform. We prove that under some reasonable assumptions that half of
the λ-part of the Bloch–Kato conjecture for the near central critical value L(κ, f ) is true.
We do this by bounding the �-valuation of the order of the appropriate Bloch–Kato Selmer
group below by the �-valuation of algebraic part of L(κ, f ). We prove this by constructing
a congruence between the Saito–Kurokawa lift of f and a cuspidal Siegel modular form.
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1 Introduction

It is well known that L-functions encode deep and often subtle arithmetic information. One
such conjectural relationship is the Bloch–Kato conjecture. This conjecture roughly states
that given a motive M, the order of the Bloch–Kato Selmer group should be controlled by a
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890 M. Agarwal, J. Brown

certain special value of the L-function attached to the motive M normalized by a canonical
period. This paper deals with the case that the motive M arises from the twist of the motive
associated to a newform.

Let κ ≥ 6 be an even integer and M an odd square-free integer. Let f ∈ S2κ−2(�0(M))

be a classical newform. Let � > κ, � � M be an odd prime and E0 be a sufficiently large
number field. In particular, let E0 contain all the eigenvalues of f . Let λ be a prime over � in
E0. Set E = E0,λ, O the ring of integers of E . We are interested in the Galois representation
(ρ f,λ, Vλ) associated to f, Tλ(κ − 2) a Galois stable O-lattice in Vλ(κ − 2), and set Wλ(κ −
2) = Vλ(κ − 2)/Tλ(κ − 2). The Bloch–Kato Selmer group of Vλ(κ − 2) is denoted by
Sel�(�′, Wλ(κ − 2)) where �′ = {p | M} and � = �′ ∪ {�}. One can see Sect. 8.1 for the
precise definition of this Selmer group. Let X�(�′, Wλ(κ−2)) denote the Pontryagin dual of
the Selmer group. Let Lalg(κ, f ) denote the algebraic part of the L-function of f evaluated at
s = κ . Under some reasonable assumptions we prove one half of the Bloch–Kato conjecture
in this setting, namely, that we have

ord�(#X�(�′, Wλ(κ − 2))) ≥ ord�(#O/Lalg(κ, f )).

The proof of this result follows along the same lines as the main result of [10]. The
main difference is that allowing for non-trivial level here adds several obstacles that must be
overcome. The argument used here originates in the work of Ribet in his proof of the converse
of Herbrand’s theorem [29], but has now appeared in many forms. One can see [4,6–8,22,48]
for some other examples. We now give a brief outline of the argument focusing on points of
divergence from the arguments in the level one case.

The argument is given in essentially two main parts. The first part consists of constructing
a congruence between the Saito–Kurokawa lift F f of f and a cuspidal Siegel modular
form and translating this congruence into a result about the CAP ideal associated to F f .

The construction of the Saito–Kurokawa lifting for congruence level �(2)
0 (M) with M odd

square-free is provided in [3]. This result is claimed in [25,26]. However, the generalized
Maass lifting there is not defined correctly so Agarwal and Brown [3] combines known results
from other sources to give this lifting. To construct the congruence, we study the pullback of
a certain normalized Siegel Eisenstein series from Sp(8) to Sp(4)× Sp(4). It is here that the
restriction κ ≥ 6 (see Theorem 6.2) is needed. We use the pullback along with some norm
computations to obtain a congruence of the form F f with another modular form G modulo
λ under certain conditions (see condition 3.8) on L-values. We write G =∑i Fi as a sum of
eigenforms orthogonal to F f . We construct a Hecke operator that kills the Saito–Kurokawa
lifts in the sum that arise as theta lifts from irreducible cuspidal automorphic representations
of S̃L2. A similar Hecke operator was constructed in [7], but the construction here is more
involved and requires more care to deal with the possibility of Saito–Kurokawa lifts coming
from oldforms. In addition to the Saito–Kurokawa lifts, we must also deal with the possibility
that F f could be congruent to a weak endoscopic lift or a form of Saito–Kurokawa type that
arises as a non-trivial quadratic twist of a theta lift. The case of a weak endoscopic lift was
ruled out easily in the case of full level and it was already known there are no forms of
Saito–Kurokawa type that arise as twists of theta lifts in the case of full level. However, the
results for non-full level require more work. We use a multiplicity one result from [33] for
Saito–Kurokawa lifts in the case that M is odd and square-free. We show that such twists of
theta lifts do not give rise to classical Siegel eigenforms due to the fact that we are assuming
our level to be square-free. We also show that it is not possible to have a Saito–Kurokawa
lift congruent to a weak endoscopic lift if ρf,λ is irreducible along with some other minor
technical hypotheses. Once we know the congruence constructed is not to a Siegel eigenform
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On the Bloch–Kato conjecture 891

which is CAP, we can use the congruence to give a lower bound on the size of the CAP ideal
associated to F f in terms of Lalg(κ, f ).

The second main part of this argument involves turning our result on the size of the CAP
ideal into a result bounding the size of the Selmer group from below. The work for this is
primarily contained in [10]. The main difference here is in the relaxation of the conditions at
the primes dividing the level of f . We cite the relevant results from [10] and give their adapted
statements in our setting. Finally, we give an exposition of the Bloch–Kato conjecture in our
setting and relate our results to the conjecture. Such a discussion was absent in [10], so this
can serve as the relation of the results given there to the Bloch–Kato conjecture as well.

Let us now give a brief overview of the organization of the paper. Section 2 sets the
notations for the paper. The first couple of subsections of Sect. 3 recall standard definitions
of classical modular forms, Galois representations, etc. Later we define an integral period
and construct a certain Hecke operator. Finally, we state the Bloch–Kato conjecture in our
setting and relate it to the main result of the paper and work out a particular example. In
Sect. 4 we recall the necessary facts about Siegel modular forms. We recall some results
about Saito–Kurokawa lifting for congruence level �(2)

0 (M) with M odd, square free in Sect.
5. The relevant congruence is constructed in Sect. 6. In the section following, we prove the
results mentioned above in regards to CAP forms and weakly endoscopic lifts which ensure
the constructed congruence has the desired property. In Sect. 8 we define the relevant Selmer
group as well as give the main result of the paper along with its proof.

The authors would like to thank Ralf Schmidt for the helpful discussions and the referee
for a careful reading of the paper along with helpful suggestions concerning the presentation
of this paper.

2 Notation and basic setup

2.1 Number fields and Hecke characters

We write i to denote
√−1. Throughout the paper � denotes an odd prime.

We fix once and for all an algebraic closure Q of the rationals and Qp of Qp for each finite
prime p. Also fix compatible embeddings Q ↪→ Qp ↪→ C for all finite primes p. We write
valp for the p-adic valuation on Qp . The p-adic norm on Qp is defined by |x |p = p− valp(x)

for x ∈ Qp . The archimedean valuation on Q∞ = R is the usual absolute value. We extend
valp to a function from Qp to Q and for convenience set valp(∞) = ∞.

For a number field L , write OL for its ring of integers. Given a place υ of L , denote the
completion of L at υ by Lυ and OL ,υ for the valuation ring of Lυ . We write GL for Gal(L/L).
Given a prime p of L we write Dp ⊂ GL for the decomposition group of p and Ip ⊂ Dp for
the inertia group of p. One can identify Dp with Gal(Lp/Lp) via the embeddings fixed above.

We write AL for the adeles of L and A for the adeles of Q. The infinite part of the adeles
is denoted AL ,∞ and the finite part AL , f . Given x = (x p) ∈ A, we set |x |A = |x |∞∏p |x |p .

We say χ is a Hecke character of L if χ is a continuous homomorphism χ : L×\A×
L → C×

with image contained in {z ∈ C : |z| = 1}. The character χ factors into a product of local
characters χ = ∏

υ χυ where υ runs over all places of L . We say n ⊂ OL is the conductor
of χ if

(1) χυ(xυ) = 1 if υ is a finite place of L , xυ ∈ O×
L ,υ and x − 1 ∈ nOL ,υ .

(2) no ideal m strictly containing n has the above property.

Finally, for z ∈ C we will sometimes write q or e(z) for e2π i z .
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892 M. Agarwal, J. Brown

2.2 Matrices over a ring

Given a ring R with identity, we write Matn(R) for the ring of n by n matrices with entries
in R. We write 0n for the zero matrix in Matn(R) and 1n for the identity matrix in GLn(R).
The matrix i1n is denoted in .

3 Modular forms and the Bloch–Kato conjecture

3.1 Modular forms

We denote the upper half space by

h1 = {z ∈ C : tz = z, Im(z) > 0}.
We have an action of GL+

2 (R) = {γ ∈ GL2(R) : det(γ ) > 0} on h1 given by

γ z = (aγ z + bγ )(cγ z + dγ )
−1

for γ =
(

aγ bγ
cγ dγ

)
∈ GL+

2 (R) and z ∈ h1.

Given an integer M ≥ 1, we will be interested in the congruence subgroups of SL2(Z)

given by

�
(1)
0 (M) =

{(
a b
c d

)

∈ SL2(Z) : c ≡ 0 (mod M)

}

.

For γ ∈ GL+
2 (R) and z ∈ h1, we set

j (γ, z) = cγ z + dγ .

Let κ be a positive integer. Given a function f : h1 → C, we set

( f |κγ )(z) = det(γ )κ j (γ, z)−κ f (γ z).

We say such an f is a modular form of weight κ and level �(1)
0 (M) if f is holomorphic and

satisfies

( f |κγ )(z) = f (z)

for all γ ∈ �
(1)
0 (M) and is holomorphic at the cusps. We denote the space of modular forms

of weight κ and level �(1)
0 (M) by Mκ (�

(1)
0 (M)). We denote the space of cusp forms of weight

κ and level �(1)
0 (M) by Sκ (�

(1)
0 (M)). To ease notation we will omit the superscript 1 when

it is clear from the context.

3.2 Hecke algebras

Given g ∈ GL+
2 (Q), we denote �0(M)g�0(M) by T (g). We define the usual action of T (g)

on classical modular forms by setting

T (g) f =
∑

i

f |κgi

where �0(M)g�0(M) =∐i �0(M)gi and f ∈ Mκ (�0(M)). Let p be prime and define

T (p) = T (diag(1, p)).
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On the Bloch–Kato conjecture 893

In the case that p | M we will write U (p) to denote the operator T (p). Let � be a finite
set of places. Set T�

Z
to be the Z-subalgebra of EndC(Sκ (�0(M))) generated by {T (p) : p �

M, p /∈ �} ∪ {U (p) : p | M, p /∈ �}. Given a Z-algebra A, we set T�
A = T�

Z
⊗Z A. In the

case that � = ∅, we write TZ for T∅
Z

.
Let E be a finite extension of Q� and OE the ring of integers of E . Then we have T�

OE
is

a semi-local complete finite OE -algebra. One has

T�
OE

=
∏

m

T�
m

where the product runs over all maximal ideals of T�
OE

and T�
m denotes the localization of

T�
OE

at m.

3.3 Congruences

Let f, g ∈ Sκ (�0(M)), K a field containing all the Fourier coefficients and eigenvalues of
f and g, O be the ring of integers of K , and λ a prime of O. We write

f ≡ g (mod λb)

to indicate that

ordλ(a f (n) − ag(n)) ≥ b

for all n ≥ 1.
Let � be a finite set of places. If f and g are eigenforms for all t ∈ T�

O , we write

f ≡ev,� g (mod λb)

to indicate that

ordλ(λ f (t) − λg(t)) ≥ b

for all t ∈ T�
O .

3.4 L-functions

Let f ∈ Sκ (�0(M)) be an eigenform. The L-function associated to f is given by

L(s, f ) =
∏

p�M

(1 − λ f (p)p−s + pκ−1−2s)−1
∏

p|M
(1 − λ f (p)p−s)−1

where λ f (p) is the eigenvalue of T (p) corresponding to f . Given an L-function L(s) with
Euler product L(s) =∏p L p(s), we write

L M (s) =
∏

p�M

L p(s)

and

L M (s) =
∏

p|M
L p(s).
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894 M. Agarwal, J. Brown

3.5 Galois representations

The following well-known result of Deligne, et al. associates a λ-adic Galois representation
to f ∈ Sκ (�0(M)).

Theorem 3.1 Let κ ≥ 2, M ≥ 1, and f ∈ Sκ (�0(M)) a normalized eigenform. Let Q( f )
be the number field generated by the eigenvalues of f, λ a prime of Q( f ) over �, and E
the completion of Q( f ) at λ. Then there exists a continuous, irreducible representation
(ρ f,λ, V f,λ) of GQ where V f,λ is a 2-dimensional E-vector space such that (ρ f,λ, V f,λ) is
unramified at all primes p � �M and

det(12 − ρ f,λ(Frobp)p−s) = L p(s, f )

for all p � �M.

Note that we take geometric conventions throughout the paper, i.e., in the above theorem
Frobp is the geometric and not arithmetic Frobenius element.

3.6 Integral periods

We now define certain canonical integral periods that will be needed later. We assume for
convenience that M ≥ 4. This assumption is made so that we may follow Vatsal’s construction
[45] which uses that �1(M) is torsion-free. With more work one can also construct these
canonical periods for M < 4 as is noted in [20, §3].

Let κ ≥ 2 be an integer, � > κ a prime with � � M , and K be a suitably large finite
extension of Q� with ring of integers O. Let f ∈ Sκ (�1(M),O) be a newform. Furthermore,
assume that ρ f,λ is irreducible. The newform f defines a maximal ideal m f of TO given as
the kernel of the composition of TO → O → O/λwhere the first map is given by t 
→ λ f (t).

Let Ln(R) denote the set of homogeneous polynomials of degree n in two variables with
coefficients in R. One has an action of GL2(Q) ∩ Mat2(Z) on Ln(R) given by

γ · P(x, y) = P((x, y) det(γ )γ−1).

Let L = H1(�1(M), Lκ−2(O))m f and L± = H1(�1(M), Lκ−2(O))±m f
where we have used

that H1(�1(M), Lκ−2(O)) decomposes as

H1(�1(M), Lκ−2(O)) = H1(�1(M), Lκ−2(O))+ ⊕ H1(�1(M), Lκ−2(O))−

with respect to the Atkin–Lehner involution. Since we are under the assumption that � > κ

and � � M , we can use [45, Theorem 1.13] to conclude that the Tm f -modules L± are free of
rank 1.

We define a differential form with values in Lκ−2(C) by

ω f = f (z)(zx + y)κ−2dz.

Then

γ 
→
γ z0∫

z0

ω f

defines a 1-cocycle on �1(M), where z0 is any basepoint in the upper half-plane. So f gives
rise to a vector-valued differential form on the upper half plane and cohomology class ω f in
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On the Bloch–Kato conjecture 895

H1(�1(M), Lκ−2(C)). The cohomology class ω f is an eigenvector for the Hecke operators,
with the same eigenvalues as f .

Since we are assuming that � > κ, ρ f,λ is irreducible and M ≥ 4 is prime to �, [45,
Theorem 1.13] gives isomorphisms

�± : L± ∼= Sκ (�1(M),O)m f .

Let δ±
f be the cohomology classes in L± given by

�±(δ±
f ) = f.

Let ω±
f denote the projection of ω f to the ±-part in H1(�1(M), Lκ−2(C)), f being a

newform then implies that there exist complex numbers �±
f such that

ω±
f = �±

f δ
±
f .

The numbers �±
f are canonical (determined up to �-adic units), where the dependence comes

from the choice of isomorphism

�± : L± ∼= Sκ (�1(M),O)m f .

Theorem 3.2 [20,45] Let f ∈ Sκ (�1(M),O) be a newform. Let � > κ be a prime number
with � � M. For each integer j with 0 < j < κ and every Dirichlet character χ one has

L( j, f, χ)

τ(χ)(2π i) j
∈
{
�−

f Oχ if χ(−1) = (−1) j ,

�+
f Oχ if χ(−1) = (−1) j−1,

where τ(χ) is the Gauss sum of χ and Oχ is the extension of O generated by the values of
χ . We write

Lalg( j, f, χ) = L( j, f, χ)

τ(χ)(2π i) j�±
f

where the appropriate �±
f is chosen as described above.

3.7 Construction of a certain Hecke operator

With the notation as in Sect. 3.6 we now outline the construction of a special Hecke operator
that we will need later in this work.

Let M be a square-free positive integer, κ ≥ 2 an integer, � > κ be a prime with
� � M , and let K be a suitably large finite extension of Q� with ring of integers O. Let
f ∈ Sκ (�1(M),O) be a newform such that ρ f,λ is irreducible. Since f is a newform we can
write S2κ−2(�1(M)) = C f ⊕ S with S stable under the Hecke algebra. We denote the map
from Tm f → O given by t 
→ λ f (t) by π f . The fact that f is a newform allows us to write

Tm f ⊗O K = K ⊕ D

with a K -algebra D so that π f induces the projection of Tm f onto K . In this direct sum, K
corresponds to the Hecke algebra acting on the eigenspace generated by f and D corresponds
to the Hecke algebra acting on the space S. Let � be the projection map of Tm f to D. Set I f

to be the kernel of �. We can use that Tm f is reduced to conclude that

I f = Ann(℘ f )
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896 M. Agarwal, J. Brown

where Ann(℘ f ) denotes the annihilator of the ideal ℘ f and ℘ f ∩ I f = 0. Therefore we have
that

Tm f/(℘ f ⊕ I f ) = Tm f /(℘ f , I f )
�−→ O/π f (I f )

where we have used that

π f : Tm f/℘ f
�−→ O.

The fact that O is a principal ideal domain implies that there exists α f ∈ O so that π f (I f ) =
α f O. Thus, we have

O/α f O ∼= Tm f/(℘ f , I f ).

Since Tm f /℘ f ∼= O, there exists a t f ∈ I f that maps to α f under the above isomorphism.
Thus we have that t f f = α f f and t f g = 0 for all g ∈ S. Recalling that TO =∏m Tm, we
can view t f as an element of TO and this is the Hecke operator we seek. We now calculate
the eigenvalue α f .

For L = H1(�1(M), Lκ−2(O))m f there is a skew-symmetric perfect pairing

L± × L∓ → O

adjoint with respect to the Hecke operators [20, Equation 3.3]. We write this pairing as
(x, y) 
→ A(x, y). Note that to give such a perfect pairing is equivalent to giving an isomor-
phism

L± → HomO(L∓,O)

(the equivalence is given by x 
→ A(x, ·).)
Lemma 3.3 The ideal α f O is generated by A(δ+

f , δ
−
f ) where δ+

f , δ
−
f are as defined in

Sect. 3.6.

Proof (See [13, Lemma 4.17]) ��
We now calculate A(δ+

f , δ
−
f ) in terms of �±

f and 〈 f, f 〉. Applying [13, Theorem 4.20] we
obtain (up to �-adic unit in O)

A(δ+
f , δ

−
f ) = (κ − 1)!Mϕ(M)

(−2π i)κ+1�+
f �

−
f

L(κ,Sym2 f ).

We note that det(A) in Theorem 4.20, [13] is the same as �+
f �

−
f up to �-units.

We combine this with the following equation of Shimura [35, Equation 2.5]

L(κ,Sym2 f ) = 22κπκ+1

3(κ − 1)! 〈 f, f 〉

to obtain

A(δ+
f , δ

−
f ) = (−1)(κ+1)/2 Mϕ(M)2κ−1

3

〈 f, f 〉
�+

f �
−
f

.

One should note that in the case that M = 1, 3 one calculates α f O via results of Hida if
one assumes that f is ordinary at λ. For this calculation one can see [7, §5.2]. Summarizing,
we have the following result.
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On the Bloch–Kato conjecture 897

Theorem 3.4 Let M be a square-free positive integer, κ ≥ 2 an integer, � > κ be a prime
with � � M, and let K be a suitably large finite extension of Q� with ring of integers O. Let
f ∈ Sκ (�1(M),O) be a newform such that ρ f,λ is irreducible. If M = 1, 3 we further assume

that f is ordinary at �. Then there exists t f ∈ TO so that t f f = α f f with α f = u 〈 f, f 〉
�+

f �
−
f

for

u ∈ O× and t f g = 0 if g ∈ (C f )⊥.

3.8 The Bloch–Kato conjecture and the main theorem

In this section we recall the Bloch–Kato conjecture for our case of interest and relate it with
the results in this work. We will follow the expositions found in [14] and [22, §9.3], which
is also where one can consult for further details.

Let E0 be a number field and V be a premotivic structure over Q with coefficients in E0

as in [14], i.e.,

V = {VB,VdR, {Vυ}υ, I ∞, {I υB }υ, {I υ}υ, {W i }i }
where

• υ runs over the finite places of E0;
• VB is a finite dimensional E0 vector space with an action of GR;
• VdR is a finite dimensional E0 vector space with a finite decreasing filtration Fili ;
• for each υ, Vυ is a finite dimensional E0,υ vector space with a continuous pseudo-

geometric action of GQ;
• I ∞ is a C ⊗ E0-linear isomorphism

I ∞ : C ⊗ VdR → C ⊗ VB

that respects the action of GR where GR acts on C ⊗ VdR via the first factor and acts on
VB diagonally;

• for each υ, I υB is a E0,υ -linear isomorphism

I υB : E0,υ ⊗E0 VB → Vυ

that respects the action of GR where GR acts on Vυ via the restriction GR → GQ deter-
mined by the choice of embedding Q ↪→ C;

• for each υ, I υ is a BdR,p ⊗Qp E0,υ -linear isomorphism

BdR,p ⊗Qp E0,υ ⊗E0 VdR → BdR,p ⊗Qp Vυ

that respects filtrations and the action of GQp where p is the prime υ divides, E0,υ and Vυ

are given the degree-0 filtration, E0,υ and VdR are given the trivial GQp -action, the action
on Mυ is determined by the choice of embedding Q ↪→ Qp , and BdR,p is defined as in
[18];

• W i are increasing weight filtrations on VB, VdR, and each Vυ that respects all the above
data and such that R⊗VB with its Galois action and weight filtration along with the Hodge
filtration on C ⊗ VB defines a mixed Hodge structure over R.

The fundamental lines for V are the E0-lines defined by

�±
f (V) = HomE0(det

E0
V±

B , det
E0

tV )
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898 M. Agarwal, J. Brown

where the ± sign indicates ±-isotypic subspace under the action of Gal(C/R), tV =
VdR/Fil0 VdR, and det denotes the highest exterior power. From the map I ∞ we obtain
R ⊗ E0-linear isomorphisms

I ± : R ⊗ V±
B → (C ⊗ VB)

(I ∞)−1

−→ C ⊗ VdR → (C ⊗ VdR)
±.

The determinant of I ± over R ⊗ E0 defines a basis c±(V) for R ⊗�±
f (V). The bases c±(V)

are referred to as the Deligne periods. The periods c±(V) are canonically defined.
We now specialize to the case of interest for this paper. Let κ and M be positive integers

with κ even and M odd and square-free. Let f ∈ Snew
2κ−2(�0(M)) be a newform. Let E0 be a

number field that is sufficiently large. In particular, we will always assume E0 contains the
eigenvalues of f . Let � be an odd prime with � > κ, � � M , and λ the prime over � fixed
by our choice of embedding Q ↪→ Q�. We assume that ρ f,λ irreducible. Set E = E0,λ and
let O be the ring of integers of E . Let Ṽ be the premotivic structure defined over Q with
coefficients in E0 attached to our newform f ∈ S2κ−2(�0(M)) as in [34] and let V = Ṽ(κ).
Let �′ = {p|M} and � a finite set of places containing �′ ∪ {�}. Note that for an integer j
we have L(s, Ṽ( j)) = L(s + j, f ), so, in particular, L(s,V) = L(s + κ, f ). From this point
on write ± to denote the parity of κ . In this case, one knows Deligne’s conjecture that there
is a basis b±(V) of �±

f (V) so that

L(0,V)(1 ⊗ b±(V)) = c±(V).

Choose a Galois stable O-lattice Tλ ⊂ Vλ and a free rank one O-moduleω ⊂ E⊗detE0 tV .
Let θ±(Vλ) = detO T ±

λ regarded as a lattice in E ⊗E0 detE0 V±
B via the comparison isomor-

phism I λB. Set T D
λ = HomO(Tλ, O(1)) ⊂ V D

λ = HomE (Vλ, E(1)). Then the Shafarevich–
Tate group of Tλ is given by

X(Tλ) = Sel�(Vλ/Tλ)

Sel�(Vλ) ⊗ E/O
.

The precise definition of the various Selmer groups mentioned here can be found in Sect. 8.1.
In particular, one knows this is always finite.

The Tamagawa ideal of Tλ relative to ω is given by

Tam0
ω(Tλ) = Tam0

�,ω(Tλ)Tam0∞(Tλ)
∏

p �=�

Tam0
p(Tλ)

where one can see [14] for the definition of the individual factors. In particular, for p � �M
we have Tam0

p(Tλ) = O and since � is odd Tam0∞(Tλ) = O.

View HomO(θ±(Tλ), ω) as a lattice in E ⊗E0 �±
f (V). Define

δ±
f,λ(V) = FittO H0(Q,Vλ/Tλ) · FittO H0(Q,V D

λ /T D
λ )

FittO X(Tλ) · Tam0
ω(Tλ)

HomO(θ±(Tλ), ω).

The λ-part of the Bloch–Kato conjecture can now be stated as follows.

Conjecture 3.5 (λ-part of Bloch–Kato) We have

δ±
f,λ(V) = (1 ⊗ b±(V))O.

We will reframe this conjecture in terms of Sel�(�′,Vλ/Tλ) to make it compatible with
the terminology and results in this article (Sect. 8.2). Note that the main result in [21] gives
that Sel�(Vλ) is trivial and so
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X(Tλ) = Sel�(Vλ/Tλ).

Furthermore, the main result of [17] gives that

X(Tλ)
∨ ∼= X(T D

λ )

where for a locally compact abelian group G we write G∨ for the Pontryagin dual

G∨ = HomZ�
(G,Q�/Z�).

Set b±,�′
(V) = ∏

p∈�′ L p(0,V)b±(V). One can use the proof of I.4.2.2 in [19] to see
that for p ∈ �′,

FittO H1
f (Qp, Tλ) = L p(0,V)−1 Tam0

p(Tλ).

One has an exact sequence

0 → Sel�(V D
λ /T D

λ ) → Sel�(�′,V D
λ /T D

λ ) →
⊕

p∈�′∪{�}
H1

f (Qp, T D
λ )∨

→ H0(Q,V D
λ /T D

λ )∨ → 0

via [14, Lemma 2.1]. Using this, the λ-part of the Bloch–Kato conjecture can be rewritten as
follows.

Conjecture 3.6 (λ-part of Bloch–Kato)

FittO H0(Q,V D
λ /T D

λ )

FittO Sel�(�′,V D
λ /T D

λ )Tam0
�,ω(Tλ)

HomO(θ±(Tλ), ω) = (1 ⊗ b±,�′
(V))O.

Since ρ f,λ is irreducible, necessarily H0(Q,V D
λ /T D

λ ) is trivial.
The integral structures Tλ and ω give an identification of E ⊗�±

f (M) with E . The quotient
HomO(θ±(Tλ),ω)

Tam0
�,ω(Tλ)

is identified with a fractional ideal of E . We denote the inverse of this by

Tamω(Tλ). Applying [15, Lemma 4.6] one concludes that the λ-part of Tamω(Tλ) is trivial,
i.e., Tamω(Tλ) = O.

We also identify (1 ⊗ b±,�′
(V))O with a fractional ideal

(
�±

ω (Tλ)

L�′
(0,V)

)
O of E for some

�±
ω (Tλ) ∈ E×/O×. If we choose Tλ as in [15, §5] for an appropriate choice of ω we have

that �±
ω (Tλ) = u(2π i)κ�±

f via [15, Lemma 4.1] for u a λ-unit. Since the order of the Selmer
group is independent of the choice of lattice we use this lattice from now on.

Note that

V D
λ /T D

λ
∼= Vλ(−2)/Tλ(−2)
∼= Ṽλ(κ − 2)/T̃λ(κ − 2).

Using this, we can rewrite the λ-part of the Bloch–Kato conjecture as follows.

Conjecture 3.7 (λ-part of Bloch–Kato) Let f ∈ S2κ−2(�0(M)) be a newform with M odd
and square-free. Let E0 be a number field containing Q( f ). Let � be an odd prime, λ a prime
dividing �, and E = E0,λ and O the ring of integers of E . Let (ρ f,λ, V f,λ) be the Galois
representation of f . Choose a lattice as above and assume ρ f,λ is irreducible. Then

#X�(�′, W f,λ(κ − 2))O = L�
alg(κ, f )O

as fractional ideals of E .

We now state the main result of this article whose proof we defer until Sect. 8.2.
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Theorem 3.8 Let κ and M be positive integers with κ ≥ 6 even and M odd and square-
free. Let f ∈ Snew

2κ−2(�0(M)) be a newform. Let � be an odd prime with � > 2κ − 2, � �

M, � � (p2 − 1) for all p | M, O a sufficiently large extension of Z�, λ the prime of O, ρ f,λ
irreducible, and λ | Lalg(κ, f ). Let �′ = {p | M} and � = �′ ∪ {�}. If there exists a
fundamental discriminant D < 0 so that gcd(�M, D) = 1, and χD(−1) = −1, and an
integer N > 1 with M | N , � � N, and an even Dirichlet character χ of conductor N so that

ordλ

(
L N (3 − κ, χ)Lalg(κ − 1, f, χD)Lalg(1, f, χ)Lalg(2, f, χ)

Lalg(κ, f )

)

= −b < 0,

then

ord�(#X�(�′, W f,λ(κ − 2))) ≥ b.

In particular, if N , χ , and D can be chosen so that

ordλ(L N (3 − κ, χ)Lalg(κ − 1, f, χD)Lalg(1, f, χ)Lalg(2, f, χ)) = 0, (1)

then we have

ord�(#X�(�′, W f,λ(κ − 2))) ≥ ord�(#O/Lalg(κ, f )).

The fact that � � (p2 − 1) for all p | M gives that L�(κ, f ) is a λ-unit, so L�
alg(κ, f )O =

Lalg(κ, f )O. As such, we can rewrite the previous theorem to be in terms of L�
alg(κ, f ).

Again noting that the order of the Selmer group does not depend upon the lattice chosen, we
have under the conditions given in the theorem that L�

alg(κ, f )O ⊂ #X�(�′, W f,λ(κ−2))O,
i.e., under these conditions we obtain half of the conjecture.

Remark 3.9 One should note that we could rephrase our results in terms of X�(W f,λ(κ−2))
and Lalg(κ, f ) by adding in the condition that for no prime p | M is f congruent modulo λ

to a newform of weight 2κ − 2, trivial character, and level dividing M/p. For the arguments
needed to change our results to align with this, one can see [6,15]. We chose to phrase our
results as above to avoid this extra congruence condition.

3.9 Example

We work out a complete example of our main theorem. Let κ = 22, M = 1, and � = 1423.
We consider the space of newforms Snew

42 (SL2(Z)). There are three Galois conjugate newforms
in this space which we label as f1, f2, f3. We have

f1 = q + α1q2 +
(

− 1

576
α2

1 − 783

4
α1 + 3817732324

)

q3

+ (α2
1 − 2199023255552

)
q4

+
(

−615

16
α2

1 − 83724625α1 + 84494100859110

)

q5 + · · ·

where α1 is a root of

g1(x) = x3 + 344688x2 − 6374982426624x − 520435526440845312.

Let α2 and α3 be the other roots of g(x) so that fi is defined over Ki = Q(αi ). Let OKi be
the ring of integers of Ki and note that Lalg(22, fi ) ∈ OKi .
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We use MAGMA to determine that

1423 |
3∏

i=1

Lalg(22, fi ).

We have that for each i there exists a prime λi of OKi over 1423 so that λi | Lalg(22, fi ).
Note these primes are all Galois conjugate.

Using SAGE we check that

1423 � L(−19, χ5)

and again using MAGMA we check that

1423 �

3∏

i=1

Lalg( j, fi , χ5)

for j = 1, 2 and also check that

1423 �

3∏

i=1

Lalg(21, fi , χ−3).

One uses SAGE to check that fi is ordinary at λi . Thus, it only remains to show that the
residual Galois representation associated to fi is irreducible. Let Fi = Ki,λi with ring of
integers Oi and uniformizer �i . Set Fi = Oi/�i = F�[αi ] where αi = αi (mod λi ). Let
ρi : GQ → GL2(Oi ) be the Galois representation associated to fi . We know ρi is unramified
away from � and crystalline at �. Write ρi : GQ → GL2(Fi ) for the residual representation.
Suppose that ρi is reducible. One knows that ρi is nonsplit and we can write

ρi =
(
φ ∗
0 ψ

)

with ∗ �= 0. Write ω : GQ → F×
� for the mod � cyclotomic character normalized geomet-

rically. We have φψ = ω41 and since φ and ψ are unramified away from � and of order
prime to � we can write φ = ωa and ψ = ωb with 0 ≤ a < b < � − 1, and a + b = 41 or
a + b = � − 1 + 41. One argues as in [29] to conclude that ∗ gives a non-zero cocycle class
in H1(Q,Fi (a − b)) since a − b < 0. This gives that � | Bb−a+1 where Bn denotes the nth
Bernoulli number. However, one checks that for such a and b there are no Bernoulli numbers
Bb−a+1 divisible by 1423. Thus, it must be that the residual representation is irreducible and
so we have our example. In particular, we have

1423 | #X�(W fi ,λi (20)).

More computations can be found in [2].

4 Siegel modular forms

4.1 Siegel modular forms: definitions

Let ιn =
(

0n −1n
1n 0n

)
and set

Gn = GSp2n = {g ∈ GL2n : tgιng = μn(g)ιn, μn(g) ∈ GL1}.
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Set Sp2n = ker(μn). Given an element g ∈ Gn , we will often write g =
(

ag bg
cg dg

)
with

ag, bg, cg, dg ∈ Matn .
We denote the Siegel upper half space by

hn = {z ∈ Matn(C) : tz = z, Im(z) > 0}.
We have an action of G+

n (R) = {γ ∈ Gn(R) : μn(γ ) > 0} on hn given by

γ z = (aγ z + bγ )(cγ z + dγ )
−1

for γ =
(

aγ bγ
cγ dγ

)
∈ G+

n (R) and z ∈ hn .

Given an integer M ≥ 1, we will be interested in the congruence subgroups of Sp2n(Z)

given by

�
(n)
0 (M) =

{(
a b
c d

)

∈ Sp2n(Z) : c ≡ 0 (mod M)

}

.

For γ ∈ G+
n (R) and z ∈ hn , we set

j (γ, z) = det(cγ z + dγ ).

Let κ be a positive integer. Given a function F : hn → C, we set

(F |κγ )(z) = μn(γ )
nκ/2 j (γ, z)−κ F(γ z).

We say such an F is a (genus n) Siegel modular form of weight κ and level �(n)
0 (M) if F is

holomorphic and satisfies

(F |κγ )(z) = F(z)

for all γ ∈ �
(n)
0 (M). If n = 1 we also require that F be holomorphic at the cusps and in this

way recover the theory of elliptic modular forms. We denote the space of Siegel modular
forms of weight κ and level �(n)

0 (M) by Mκ (�
(n)
0 (M)).

The Siegel operator is a linear operator from Mκ (�
n
0 (M)) to Mκ (�

n−1
0 (M)) defined by

(�F)(z) = lim
λ→∞ F

((
z 0
0 iλ

))

.

We say F ∈ Mκ (�
(n)
0 (M)) is a cusp form if �(F |γ ) = 0 for every γ ∈ Sp2n(Z). The space

of weight κ level �(n)
0 (M) cusp forms is denoted Sκ (�

(n)
0 (M)).

If F is a Siegel modular form, it has a Fourier expansion of the form

F(z) =
∑

T ∈S
≥0
n (Z)

aF (T )e(Tr(T z))

where S≥0
n (Z) is the semi-group of n by n positive semi-definite semi-integral matrices. We

have F ∈ Sκ (�
(n)
0 (M)) if and only if aF |γ (T ) = 0 for all γ ∈ Sp2n(Z) when det T = 0.

Given a subalgebra A of C, we write Mκ (�
(n)
0 (M), A) for the space of Siegel modular forms

with Fourier coefficients in A and Sκ (�
(n)
0 (M), A) for the space of cusp forms with Fourier

coefficients in A. Let Fc denote the Siegel modular form

Fc(z) =
∑

T ∈S
≥0
n (Z)

aF (T )e(Tr(T z)).
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Let F, G ∈ Mκ (�
(n)
0 (M)) with at least one of them a cusp form. The Petersson product

of F and G is given by

〈F, G〉
�
(n)
0 (M)

=
∫

�
(n)
0 (M)\hn

F(z)G(z)(det y)κdμz

where z = x + iy with x = (xα,β), y = (yα,β) ∈ Matn(R),

dμz = (det y)−(n+1)
∏

α≤β

dxα,β
∏

α≤β

dyα,β

with dxα,β and dyα,β the usual Lebesgue measure on R. For � ⊂ Sp2n(Z), we set

〈F, G〉 = 1

[Sp2n(Z) : �] 〈F, G〉�.

where Sp2n(Z) = Sp2n(Z)/{±12n} and � is the image of � in Sp2n(Z). Note that 〈F, G〉 is
independent of �.

4.2 Hecke algebras

Given g ∈ G+
n (Q), we write T (g) to denote

�
(n)
0 (M)g�(n)

0 (M).

We define the usual action of T (g) on Siegel modular forms by setting

T (g)F =
∑

i

F |κgi

where �
(n)
0 (M)g�(n)

0 (M) = ∐
i �

(n)
0 (M)gi and F ∈ Mκ (�

(n)
0 (M)). Let p be prime and

define

T (n)(p) = T (diag(1n, p1n))

and for i = 1, . . . , n set

T (n)
i (p2) = T (diag(1n−i , p1i , p21n−i , p1i )).

In this paper we will be primarily interested in the cases n = 1 and n = 2. The n = 1
case has already been discussed in Sect. 3.2.

For the case n = 2 we have T (2)(p) is the usual pth Siegel Hecke operator, T (2)
1 (p2) =

T (diag(1, p, p2, p)), which is typically denoted by T (p2) in the literature, and T (2)
2 (p2) =

p214. To distinguish with the elliptic modular case and to ease notation, we write TS(p) =
T (2)(p), TS(p2) = T (2)

1 (p2), and US(p) for TS(p) when p | M . We follow the same

conventions for the Hecke algebra as in Sect. 3.2, in this case writing T
S,�
Z

.

Let E be a finite extension of Q� and OE the ring of integers of E . Then we have T
S,�
OE

is
a semi-local complete finite OE -algebra. One has

T
S,�
OE

=
∏

m

TS,�
m
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where the product runs over all maximal ideals of T
S,�
OE

and T
S,�
m denotes the localization of

T
S,�
OE

at m.
One can define congruences of Siegel modular forms, analogous to those defined for

classical modular forms in Sect. 3.3.

4.3 L-functions

Let F ∈ Sκ (�
(2)
0 (N )) be an eigenform. The spinor L-function associated to F is given by

L(s, F, spin) =
∏

p

L p(s, F, spin)

where

L p(s, F, spin) = (1 − λF (p)p−s + (λF (p)2 − λF (p2) − p2κ−4)p−2s

− λF (p)p2κ−3−3s + p4κ−6−4s)−1

for p � N and

L p(s, F, spin) = (1 − λF (p)p−s)−1

for p | N and we write λF (p) (resp. λF (p2)) for the TS(p) (resp. TS(p2)) eigenvalue of F .
Note that we follow Andrianov’s convention here for the Euler factors at primes dividing the
level. The standard L-function associated to F is given by

L(s, F, st) =
∏

p

L p(s, F, st) =
∏

p

Wp(p−s)

where

Wp(p−s) =
⎧
⎨

⎩

(
(1 − p2−s)

∏2
i=1(1 − αp,i p2−s)(1 − α−1

p,i p2−s)
)−1

p � N
(
(1 − αp,1 p2−s)(1 − αp,2 p2−s)

)−1
p | N

where the αi are the Satake parameters of F . If χ is a Dirichlet character, we have

L(s, F, χ, st) =
∏

p

Wp(χ(p)p−s).

4.4 Galois representations

We have the following theorem giving the existence of Galois representations associated to
cuspidal Siegel eigenforms.

Theorem 4.1 [47] Let F ∈ Sκ (�
(2)
0 (M)) be an eigenform, Q(F) the number field generated

by the Hecke eigenvalues of F, and λ a prime of Q(F) over �. There exists a finite extension E
of the completion of Q(F)λ of Q(F) at λ and a continuous semi-simple Galois representation

ρF,λ : GQ → GL4(E)

unramified away from �M so that for all p � �M we have

det(14 − ρF,λ(Frobp)p−s) = L(p)(s, F, spin).
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4.5 Automorphic forms

For each finite prime p, we set

K (n)
0,p(M) = {g ∈ Gn(Qp) : ag, bg, dg ∈ Matn(Zp), cg ∈ Matn(MZp)

}
.

From this definition it is immediate that if p � M we have

K (n)
0,p(M) = Gn(Qp) ∩ Mat2n(Zp).

At the infinite place we put

K (n)∞ = {g ∈ Sp2n(R) : g(in) = in
}
.

Set

K (n)
0, f (M) =

∏

p

K (n)
0,p(M)

and

K (n)
0 (M) = K (n)∞

∏

p

K (n)
0,p(M).

Let F ∈ Sκ (�
(2)
0 (M)) be a Siegel eigenform. Define a cuspidal automorphic form FA on

G2(A) associated to F by

FA(γ g∞k) = μ(g∞)κ j (g∞, i2)
−κ F(g∞i2)

for γ ∈ G2(Q), g∞ ∈ G+
2 (R), and k ∈ K (2)

0, f (M). Let VF be the automorphic represen-
tation generated by FA. This representation breaks into a finite sum of irreducible cuspidal
automorphic representations of G2(A), all of which are isomorphic. We let �F be one of
these irreducible components. We will always mean such a representation when we take an
automorphic representation associated to FA. We have �F = ⊗υ�F,υ where

�F,υ =
{

holomorphic discrete series if υ = ∞
unramified spherical principal series if υ is finite, υ � M.

At the places υ | M the possibilities for �F,υ are given in Table 3 of [31]. In particular, if F
is a newform of level �0(M) as defined in [31], then one knows �F,υ must be of the form
III(a) of Table 3. We will only need the precise local representations for F of Saito–Kurokawa
type, and we give these precisely when they arise.

5 Saito–Kurokawa lifts

While the Saito–Kurokawa lifting for square-free levels is well-understood via representation
theory due to the works of Piatetski-Shapiro [27] and Schmidt [33], for our work an explicit
classical construction of the lifting is required. In this section we summarize the results
from [3], where we construct this classical Saito–Kurokawa lifting from S2κ−2(�0(M)) to
Sκ (�

(2)
0 (M)) for M odd, square-free and under some other minor hypotheses. Note that the

square-free result is also stated in [26] and the more general result in [25], which relies on
[24]. In [3], we provide a complete construction of the Saito–Kurokawa lifting in the square
free case as many proofs are left to the reader in [24] and there are errors in [26]; for instance,
the definition of the index-shifting operator on Jacobi forms stated there is incorrect.
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Theorem 5.1 [3, Theorem 3.5] Let κ ≥ 2 be an even integer and M ≥ 1 an odd square-free
integer. Let f ∈ Snew

2κ−2(�0(M)) be a newform. Then there exists a nonzero cuspidal Siegel

eigenform F f ∈ Sκ (�
(2)
0 (M)) satisfying

L M (s, F f , spin) = ζ M (s − κ + 1)ζ M (s − κ + 2)L M (s, f ).

If O is a ring that can be embedded into C and f has Fourier coefficients in O, the lift F f

can be normalized to have Fourier coefficients in O. If O is a DVR, F f can be normalized to
have Fourier coefficients in O with at least one Fourier coefficient in O×.

Definition 5.2 Let κ ≥ 2 be an even integer, M an odd square-free integer, and f ∈
Snew

2κ−2(�0(M); O) a newform. Then we call F f ∈ Sκ (�
(2)
0 (M)) the Saito–Kurokawa lift

of f . We will always assume F f has been normalized to have Fourier coefficients in O with
at least one Fourier coefficient in O×.

Definition 5.3 Let � be a set of finite primes containing the primes dividing M . Let
SSK
κ (�

(2)
0 (M)) denote the subspace of Sκ (�

(2)
0 (M)) spanned by common eigenforms F of

T
S,�
Z

such that

L�(s, F, spin) = ζ�(s − κ + 1)ζ�(s − κ + 2)L�(s, g)

for some g ∈ S2κ−2(�0(M)). Write SK( f ) for the subspace of SSK
κ (�

(2)
0 (M)) spanned by

common eigenforms F of T
S,�
Z

such that

L�(s, F, spin) = ζ�(s − κ + 1)ζ�(s − κ + 2)L�(s, f ).

We set SN-SK
κ (�

(2)
0 (M)) be the orthogonal complement of SSK

κ (�
(2)
0 (M)) in Sκ (�

(2)
0 (M)).

Observe that Theorem 5.1 immediately gives for f ∈ S2κ−2(�0(M)) a newform with κ

even and M odd square-free we have dimC SK( f ) ≥ 1. Moreover, we have the following
multiplicity one result.

Theorem 5.4 [33, Theorem 5.2] Let κ ≥ 6, M be odd and square-free. Let f ∈
Snew

2κ−2(�0(M)) be a newform. Then the space SK( f ) is one dimensional.

One should note that it is straightforward to check that SSK
κ (�

(2)
0 (M)) ⊂ S∗

κ (�
(2)
0 (M))

where S∗
κ (�0(M)) is the space of Maass spezialschar. In the case M = 1 these spaces

coincide, but in general this is not known. We will not have need of the space of Maass
spezialschar in this paper.

Corollary 5.5 Let ε be the �-adic cyclotomic character and let F f ∈ SK( f ). Then

ρF f ,λ � ε2−κ ⊕ ρ f,λ ⊕ ε1−κ .

Proof Follows from Theorems 4.1 and 5.1 along with the fact that our Galois representations
are taken with geometric conventions. ��
Corollary 5.6 Let TS

Z
and TZ be the standard Hecke algebras acting on the space of cusp

forms Sκ (�2
0(M)) and on the space of cusp forms S2κ−2(�0(M)) respectively. There is a

surjection φ : TS
Z

→ TZ which commutes with the Saito Kurokawa lift i.e.

T (F f ) = F(φ(T ) f )

123



On the Bloch–Kato conjecture 907

We will also make use of the following result on the standard L-function of F f .

Theorem 5.7 [9, Theorem 2.9] Let M and N be positive integers with M odd and square-
free and M | N. Let χ be a Dirichlet character of conductor N. Let f ∈ Snew

2κ−2(�0(M)) be
a newform and F f the Saito–Kurokawa lift of f . The standard L-function of F f factors as

L N (2s, F f , χ, st) = L N (2s − 2, χ)L N (2s + κ − 3, f, χ)L N (2s + κ − 4, f, χ).

Theorem 5.8 [3, Corollary 5.7] Let κ ≥ 2 be an even integer, M an odd square-free integer,
and f ∈ Snew

2κ−2(�0(M)) a newform. Then we have

〈F f , F f 〉 = Aκ,M
aζ ∗

D f (|D|)2

|D|κ−3/2

L(κ, f )

πL(κ − 1, f, χD)
〈 f, f 〉

where

Aκ,M =
MκζM (4)ζM (1)2(κ − 1)

(∏
p|M (1 + p2)(1 + p−1)

)

2ν(M)+3[�0(M) : �0(4M)][Sp4(Z) : �(2)
0 (M)]

,

D < 0 is a fundamental discriminant, ν(M) is the number of primes dividing M, χD is
the quadratic character associated to it and aζ ∗

D f (|D|) is the Dth Fourier coefficient of the
Shintani lifting ζ ∗

D f of f [39].

6 Siegel Eisenstein series and construction of the congruence

In this section we define a Siegel Eisenstein series associated to a character and then make
a suitable choice of a section defining the Siegel Eisenstein series. Using this series we then
construct the desired congruence.

6.1 Siegel Eisenstein series: general set up

Let Pn be the Siegel parabolic subgroup of Gn given by Pn = {g ∈ Gn : cg = 0}. We have
that Pn factors as Pn = NPn MPn where NPn is the unipotent radical

NPn =
{

n(x) =
(

1n x
0n 1n

)

: tx = x, x ∈ Matn

}

and MPn is the Levi subgroup

MPn =
{(

A 0n

0n α(tA)−1

)

: A ∈ GLn, α ∈ GL1

}

.

Fix an idele class character χ and consider the induced representation

I (χ) = IndGn(A)
Pn(A) (χ) =

⊗

υ

Iυ(χυ)

consisting of smooth functions f on Gn(A) that satisfy

f(pg) = χ(det(Ap))f(g)

for p =
(

Ap Bp

0 Dp

)

∈ Pn(A) and g ∈ Gn(A). For s ∈ C and f ∈ I (χ) define

f(pg, s) = χ(det(Ap))| det(Ap D−1
p )|s f(g)
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908 M. Agarwal, J. Brown

For υ a place of Q we define Iυ(χυ) and fυ(pg, s) analogously. We associate to such a section
the Siegel Eisenstein series

Ef(g, s) =
∑

γ∈Pn(Q)\Gn(Q)

f(γ g, s).

6.2 Siegel Eisenstein series: a choice of section

For our applications we need to restrict the possible χ and pick a particular section f. Let
κ > max{3, n + 1} and N > 1 be integers. Let χ = ⊗υχυ be an idele class character that
satisfies

χ∞(x) =
(

x

|x |
)κ

χp(x) = 1 if p � ∞, x ∈ Z×
p , and x ≡ 1 (mod N ).

We choose our section f = ⊗υ fυ as follows:

(1) We set f∞ to be the unique vector in I∞(χ∞, s) so that

f∞(k, κ) = j (k, i)−κ

for all k ∈ K (n)∞ .
(2) If p � N we set fp to be the unique K (n)

0,p(N )-fixed vector so that

fp(1) = 1.

(3) If p | N we set fp to be the vector given by

fp(k) = χp(det(ak))

for all k ∈ K (n)
0,p(N ) with k =

(
ak bk
ck dk

)
and

fp(g) = 0

for all g /∈ Pn(Qp)K (n)
0,p(N ).

This Eisenstein series is the Eisenstein series studied by Shimura [37,38]. In particular,
one knows that Ef converges absolutely and uniformly for (g, s) on compact subsets of
Gn(A) × {s ∈ C : Re(s) > (n + 1)/2}, it defines an automorphic form on Gn(A) and a
holomorphic function on {s ∈ C : Re(s) > (n + 1)/2} that has meromorphic continuation to
C with at most finitely many poles. Furthermore, Langlands [23] gives a functional equation
for Ef relating the value at (n + 1)/2 − s to the value at s.

We can associate an Eisenstein series on hn × C to Ef(g, s) by setting

Ef(Z , s) = μn(g∞)−nκ/2 j (g∞, in)
κ Ef(g∞, s)

where g∞ ∈ G+
n (R) is such that g∞(in) = Z . If we set s = κ/2, then Ef(Z , (n+1)/2−κ/2)

is a Siegel modular form of weight κ and level �(n)
0 (N ) [36].

We follow Shimura [38] and consider

E"
f (g, s) = Ef(gι

−1
n , s)
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where we recall ιn =
(

0n −1n
1n 0n

)
. Let E"

f (Z , s) be the corresponding classical Eisenstein

series. Set S = {s ∈ Matn : ts = s}, L = S(Q) ∩ Matn(Z), L ′ = {s ∈ S(Q) : Tr(sL) ⊂ Z},
and N = N−1L ′. We have a Fourier expansion for E"

f (Z , s) of the form

E"
f (Z , s) =

∑

h∈N
a(h, Y, s)e(Tr(h X))

for Z = X + iY ∈ hn . Normalize E"
f (Z , s) by setting

D
E"

f
(Z , s) = π−n(n+2)/4L N (2s, χ)

⎛

⎝
[n/2]∏

j=1

L N (4s − j, χ2)

⎞

⎠ E"
f (Z , s).

Theorem 6.1 Let � ≥ n + 1 be an odd prime with � � N. Then

D
E"

f
(Z , (n + 1)/2 − κ/2) ∈ Mκ (�

(n)
0 (N ),Z�[χ, inκ ]).

Proof One can see [1] or [7] for this fact. ��
The main tool we use in producing our congruence is a pullback formula. These formulas

are well-known in our case due to work of Böcherer, Garrett, and Shimura. We consider the
embedding

h2 × h2 → h4

(z, w) 
→ diag[z, w] =
(

z 0
0 w

)

.

Define σ ∈ G4(A) by

συ =

⎧
⎪⎪⎨

⎪⎪⎩

18 if υ � N or υ = ∞⎛

⎝
14 04(

02 12

12 02

)

14

⎞

⎠ if υ | N .

Applying strong approximation gives an element ρ ∈ Sp8(Z)∩ K (4)
0 (N )σ with the property

that Nυ | a(σρ−1)υ −14 for every υ | N . Thus, we have that Ef|ρ corresponds to Ef(gσ−1).
Set

E(z, w) = DEf |ρ(1×ι−1
2 )

(diag[z, w], (5 − κ)/2). (2)

We can now apply [7, Theorem 4.5] and the results of [11] to conclude the following
theorem.

Theorem 6.2 Let κ ≥ 6 and N > 1 be integers. The Eisenstein series E(z, w) is a holomor-
phic cuspform of weight κ and level �(2)

0 (N ) in each variable. Moreover, if � ≥ 5 and � � N

then E(z, w) has Fourier coefficients in Z�[χ]. Let F ∈ Sκ (�
(2)
0 (N )) be an eigenform. Then

〈E(z, w), Fc(w)〉 = π−3Bκ,N L N (5 − k, Fc, χ, st)F(z)

where

Bκ,N = (−1)κ22κ−3νN

3[Sp4(Z) : �(2)
0 (N )]

,

and νN = ±1.
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910 M. Agarwal, J. Brown

6.3 Constructing a congruence

We fix the following notation throughout this subsection. Let κ, M , and N be positive integers
with κ ≥ 6 even, M odd and square-free and N > 1 so that M | N . Let f ∈ Snew

2κ−2(�0(M))

be a newform and Q( f ) the number field obtained by adjoining the eigenvalues of f to Q.
Let λ be a prime of OQ( f ) of residue characteristic � so that � > 2κ − 2, � � N , ρ f,λ is
irreducible, and λ | Lalg(κ, f ). Write O for the completion of OQ( f ) at λ.

Let E(z, w) be the normalized Eisenstein series given in Eq. (2). We begin by replacing
E(z, w) by a form of level �(2)

0 (M) in each variable. To accomplish this, we take the trace:

EM (z, w) =
∑

γ×δ∈(�(2)
0 (M)×�

(2)
0 (M))/(�

(2)
0 (N )×�

(2)
0 (N ))

E(z, w)|γ×δ.

It is easy to check that EM (Z , W ) is a Siegel modular of weight κ and level �(2)
0 (M) in each

variable separately. The q-expansion principle for Siegel modular forms [12, Prop. 1.5] gives
that the Fourier coefficients of EM (z, w) lie in Z�[χ] in light of Theorem 6.2. Observe that
for F ∈ Sκ (�

(2)
0 (M)) one has

〈E(z, w), F(w)〉 = 〈EM (z, w), F(w)〉.
Let F0 = F f , F1, . . . , Fm be an orthogonal basis of SSK

κ (�
(2)
0 (M)) and Fm+1, . . . , Fm+r

be an orthogonal basis of SN-SK
κ (�

(2)
0 (M)) both consisting of eigenforms away from M .

Enlarge O if necessary so that these bases are all defined over O and Z�[χ] ⊂ O. Using that
EM (z, w) is cuspidal in each variable, we can write

EM (z, w) =
∑

i, j

ci, j Fi (z)Fc
j (w) (3)

for some ci, j ∈ C.

Lemma 6.3 One has

EM (z, w) =
m+r∑

i=0

ci,i Fi (z)Fc
i (w) (4)

where

ci,i = Bκ,N
L N (5 − κ, Fc

i , χ, st)

π3〈Fc
i , Fc

i 〉 .

Proof Combine Theorem 6.2 with the expansion of E(z, w) given in Eq. (3). ��
We write ci := ci,i from now on. We will use the expansion in Eq. (4) to produce our

congruence. However, before doing this we kill off F1, . . . , Fm ∈ SSK
κ (�

(2)
0 (M)). This is

necessary to be sure that we are not producing a congruence between two Saito–Kurokawa
lifts. We use the following theorem in this regard.

Theorem 6.4 Let f ∈ Snew
2κ−2(�0(M),O) a newform with κ, �, M and O as above. Further-

more, assume that ρ f,λ is irreducible. If M = 1, 3 we further assume that f is ordinary at

�. Then there exists t S
f ∈ TS

O so that t S
f F f = α f F f with α f = u f

〈 f, f 〉
�+

f �
−
f

for u f ∈ O× and

t f Fi = 0 for i = 1, . . . ,m.
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On the Bloch–Kato conjecture 911

Proof Given a newform f ∈ S2κ−2(�0(M)), we can view f ∈ S2κ−2(�1(M)) and obtain
the Hecke operator t f described in Theorem 3.4. We apply Corollary 5.6 to obtain t S

f so that

t S
f F f = α f F f . In addition, using Theorem 5.4 we note that the forms F1, . . . , Fm are not

in SK( f ) and so t S
f necessarily kills each of these forms. Thus, we have t S

f F f = α f F f and

t S
f Fi = 0 for all i = 1, . . . ,m and so t S

f is the desired Hecke operator. ��
We now apply t S

f to EM (z, w) in the z-variable to give

t S
f EM (z, w) = c0α f F f (z)F f (w) +

r∑

i=1

cm+i t
S
f Fm+i (z)Fc

m+i (w), (5)

where we have used that Fc
f = F f . In order to produce our congruence it is necessary to

study the λ-divisibility of c0α f . We can apply Theorems 5.7 and Corollary 5.8 to write

α f c0 = Cκ,M,N
L N (3 − κ, χ)L(κ − 1, f, χD)L N (1, f, χ)L N (2, f, χ)

π2 L(κ, f )�+
f �

−
f

where

Cκ,M,N = νN 22κ+n+1u f |D|κ−3/2
(∏n

i=1(1 + p2
i )(1 + pi )

)−1

3Mκ−1(κ − 1)ζM (1)2ζM (4)|aζ ∗
D f (|D|)|2[�(2)

0 (M) : �(2)
0 (N )]

where M = p1 · · · pn and we assume D can be chosen so that aζ ∗
D f (|D|) �= 0.

We begin with Cκ,M,N . We have that aζ ∗
D f (|D|) is in O by Stevens [42, Prop. 2.31]. Thus,

everything in the numerator (respectively the denominator) of Cκ,M,N lies in O. As long as
we choose D so that � � D, λ will not divide anything in the numerator as we assumed � is
odd so λ cannot divide 2. Thus, we have that

ordλ(Cκ,M,N ) ≤ 0.

We can write

L N (1, f, χ)L N (2, f, χ)

�+
f �

−
f

= τ(χ)2(2π i)3Lalg(1, f, χ)Lalg(2, f, χ)

L N (1, f, χ)L N (2, f, χ)
.

We also know that if � � N then L N (3 − κ, χ) ∈ Z�[χ]. If we require that χD(−1) = −1,
then we have

L(κ − 1, f, χD)

L(κ, f )
= τ(χD)Lalg(κ − 1, f, χD)

(2π i)Lalg(κ, f )
.

Since � � DN we have that τ(χ) and τ(χD) are in O×. To ease notation we define

L(κ, χ, D, f, N ) := L N (3 − κ, χ)Lalg(κ − 1, f, χD)Lalg(1, f, χ)Lalg(2, f, χ)

Thus, we have that if

ordλ

(
L(κ, χ, D, f, N )

Lalg(κ, f )

)

< 0,

then we will have ordλ(α f c0) < 0. For example, this certainly is the case if we can choose
D and χ so that λ � L(κ, χ, D, f, N ) since by assumption we have λ | Lalg(κ, f ). We now
work under the assumption that

0 > ordλ(c0α f ) ≥ ordλ(c0α f C−1
κ,M,N ) = −b
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We apply Theorem 5.1 to pick a T0 so that aF f (T0) is in O×. Since t S
f is defined over O

and EM (z, w) has Fourier coefficients in O, we have that t S
f EM (z, w) has Fourier coefficients

in O. Write c0α f = λ−bu−1 for u ∈ O×. We can rewrite Eq. (5) as

λbut S
f EM (z, w) = F f (z)F f (w) + λbu

r∑

i=1

cm+i t
S
f Fm+i (z)Fc

m+i (w).

We now expand each side of this equation in the z-variable, reduce modulo λb, and equate
the T0th Fourier coefficients to obtain

F f (w) ≡ aF f (T0)
−1uλb

r∑

i=1

cm+i at S
f Fm+i

(T0)Fc
m+i (w) (mod λb).

Thus, we have proven the following theorem.

Theorem 6.5 Let κ and M be positive integers with κ ≥ 6 even and M odd and square-
free. Let f ∈ Snew

2κ−2(�0(M)) be a newform. Let � be an odd prime with � > 2κ − 2, � �

M, O a sufficiently large extension of Z�, λ the prime of O over �, ρ f,λ irreducible, and
λ | Lalg(κ, f ). If there exists a fundamental discriminant D < 0 so that gcd(�M, D) =
1, χD(−1) = −1, and an integer N > 1 with M | N , � � N, and an even Dirichlet
character χ of conductor N so that

ordλ

(
L(κ, χ, D, f, N )

Lalg(κ, f )

)

= −b < 0,

then there exists a nonzero G ∈ SN-SK
κ (�

(2)
0 (M)) so that

F f ≡ G (mod λb).

7 CAP forms and weak endoscopic lifts

In order to apply our congruence results to the Bloch–Kato conjecture, it is essential to know
that the congruence we produce is not to an eigenform with reducible Galois representation.
It is known that if F ∈ Sκ (�

(2)
0 (M)) has reducible Galois representation then F is necessarily

CAP of Saito–Kurokawa type or a weak endoscopic lift. One can see [40, Theorem 3.2.1]
or [47] for this result. Moreover, if F is CAP then it must be CAP with respect to the Siegel
parabolic. Such CAP forms have been studied by Piatetski-Shapiro [27]. We briefly recall
the notion of an automorphic representation being CAP or a weak endoscopic lift.

Definition 7.1 Let G be a reductive group defined over Q.

(1) Let � = ⊗�υ and �′ = ⊗�′
υ be two irreducible automorphic representations of G(A).

We say � and �′ are nearly equivalent if �υ
∼= �′

υ for almost all places υ.
(2) Let P be a parabolic subgroup of G with Levi decomposition P = MP NP . We say an

irreducible cuspidal automorphic representation � of G(A) is CAP with respect to P
if there is an irreducible cuspidal automorphic representation π of MP (A) so that � is
nearly equivalent to an irreducible component of IndG(A)

P(A) π .
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Definition 7.2 A unitary irreducible cuspidal representation � of GSp4(A) is called a weak
endoscopic lift, if there exist two unitary irreducible cuspidal automorphic representations
π1, π2 of GL2(A) with central characters ωπ1 = ωπ2 such that

Lv(�, s) = Lv(π1, s)Lv(π2, s)

holds for almost all places. Here Lv(�, s) denotes the local L-factor of the spinor L-series.

7.1 CAP forms

We are interested in the case that G = G2 = GSp(4). Let F ∈ Sκ (�
(2)
0 (M)). We say F is a

CAP form if the representation �F generated by FA is a CAP representation. It is known [28,
Corl. 4.5] that if F is CAP with κ > 2 then it must be CAP to the Siegel parabolic subgroup.
Moreover, �F is CAP with respect to the Siegel parabolic if and only if it is either a theta
lift from an irreducible cuspidal automorphic representation σ̃ of S̃L2(A) or is a twist of a
theta lift by a non-trivial quadratic character ω where S̃L2 is the metaplectic cover of SL2

and ω is a one-dimensional representation of G(A) via g 
→ ω(μ2(g)) [27, Theorem 2.1].
The case of a theta lift gives rise to the classical Saito–Kurokawa lifting, and in Theorem 7.3
we show that in the case that M is square-free �F cannot be the nontrivial twist of a theta
lift. The following result was communicated to us by Ralf Schmidt.

Theorem 7.3 Let F ∈ Sκ (�
(2)
0 (M)) be an eigenform so that FA generates a CAP automor-

phic representation. If M is square-free then necessarily F ∈ SSK
κ (�

(2)
0 (M)).

Proof Suppose F is a CAP form and it generates a CAP representation of the form � ⊗ σ

where � is a theta lift of S̃L2 and σ is a non-trivial quadratic character. Since M is square
free, every local representation �v ⊗ σv is Iwahori spherical (i.e. the representation has a
non-trivial Iwahori invariant vector) where we recall the Iwahori subgroup is given by

Iυ =

⎧
⎪⎪⎨

⎪⎪⎩

g ∈ GSp4(Zυ) : g ≡

⎛

⎜
⎜
⎝

∗ 0 ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

⎞

⎟
⎟
⎠ (mod υ)

⎫
⎪⎪⎬

⎪⎪⎭

.

The Iwahori spherical representations are constituents of representations parabolically
induced from an unramified character of the minimal parabolic. Since �v ⊗ σv is Iwa-
hori spherical, �v must be a constituent of something induced from the Borel on GSp(4).
But M is square free so the representation π (on GL2) is Steinberg, so there are two possible
lifts giving �, namely, �(St ⊗ 1) and �(St ⊗ St). The representation �(St ⊗ 1) is the
Langland’s quotient L((ν1/2π, ν−1/2)) while �(St ⊗ St) = τ(T, ν−1/2), from [32]. But in
either case one can see that if σv is ramified then �v ⊗ σv is not spherical by consulting
the tables of Iwahori spherical representations given in [31]. But since N > 1, σv must be
ramified at some place. Hence F cannot generate a CAP representation of the form � ⊗ σ .
Hence F ∈ SSK

κ (�
(2)
0 (M)). ��

7.2 Weak endoscopic lifts

We now prove that under an additional mild assumption the F f constructed in Theorem 6.5
cannot satisfy F f ≡ev,� G (mod λ) for some finite set of places � if G is a weak endoscopic
lift.
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914 M. Agarwal, J. Brown

Theorem 7.4 Let κ be an even integer, M an odd square-free integer, and let � > 2κ − 2
be a prime with � � M, � � p2 − 1 for all p | M. Let f ∈ Snew

2κ−2(�0(M)) be a newform and

F f ∈ Sκ (�
(2)
0 (M)) be the Saito–Kurokawa lift of f . If G ∈ Sκ (�

(2)
0 (M)) is an eigenform so

that F f ≡ev,� G (mod λ) for some finite set of primes�, then G is not a weak endoscopic lift.

Proof Suppose that the eigenvalues of F f are congruent to those of a weak endoscopic lift
G for all Hecke operators in T

S,�
O for some finite set of places �. Write ρF f ,λ

and ρG,λ for
the reductions modulo λ of ρF f ,λ and ρG,λ. If the eigenvalues of F f and G are congruent

modulo λ for all Hecke operators in T
S,�
O , we have that the characteristic polynomials of

ρss
F f ,λ

(Frobp) and ρss
G,λ(Frobp) are equal for all p /∈ � ∪ {�, M}. We apply the Chebotarev

Density Theorem to conclude that the characteristic polynomials must agree on all of GQ and
so the semi-simplifications ofρF f ,λ

andρG,λ are isomorphic. Thus, after possibly rearranging

g1 and g2, we have that ρg1,λ
∼= ρ f,λ and ρss

g2,λ
∼= ωκ−2 ⊕ ωκ−1 where ω is the reduction

of the �-adic cyclotomic character. In particular, we have ρss
g2,λ

(κ − 2) ∼= ω−1 ⊕ 1. We now
apply [29, Prop. 2.1] to conclude that there is a lattice so that ρg2,λ

(κ − 2) is of the form
(
ω−1 ∗

0 1

)

and is not split. We now show this is impossible by using this Galois representation

to construct a piece of the ω−1-isotypic piece of the class group of Q(ζ�) which by Herbrand’s
theorem gives the contradiction that � | B2 = 1

30 .

To ease notation write ρ = ρg2,λ
(κ − 2). We have that ρ|Gal(Q/Q(ζ�))

=
(

1 ∗
0 1

)
, and so

h := ∗ : Gal(Q/Q(ζ�)) → F is a non-trivial homomorphism where F is a finite field of

characteristic �. Set K = Q
ker h

. We have that Gal(K/Q(ζ�)) is abelian of �-power order
because

Gal(K/Q(ζ�)) ∼= Gal(Q/Q(ζ�))/Gal(Q/K )

= Gal(Q/Q(ζ�))/ ker h
∼= Image(h)

and Image(h) is a subgroup of F, which is abelian of �-power order.
It remains to show that K/Q(ζ�) is unramified and Gal(K/Q) acts on Gal(K/Q(ζ�)) by

ω−1. Most of this follows directly as in [7, §8] except for the p | N arguments. However, we
repeat the other arguments here for completeness. Observe that for σ ∈ Gal(K/Q(ζ�)) and
τ ∈ Gal(K/Q), we have

ρ(τστ−1) = ρ(τ)ρ(σ )ρ(τ)−1,

i.e.,

h(τστ−1) = ω−1(τ )h(σ ).

This gives that Gal(K/Q) acts on Gal(K/Q(ζ�)) by ω−1.
Let p be a prime so that p � �M . We know that ρ is unramified at p and so h(Ip) = 0

for all p � �M . In particular, we have h(Ip(K/Q(ζ�)) = 0 for all p � �M . Since we have
that h is an isomorphism of Gal(K/Q(ζ�)) to the subgroup Image(h) in F, we must have
Ip(K/Q(ζ�)) = 1. Thus, K/Q(ζ�) is unramified at all p � �M .

Our next step is to show that the extension K/Q(ζ�) that we have constructed is unramified
at �. We have that h|D�

∈ H1(Q�,F(−1)). Therefore, we have that h gives an extension X
of O/λO by F(−1):

123
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0 �� F(−1) �� X �� O/λO �� 0.

Applying Lemma 8.6 and Theorem 8.1 we have that h|D�
∈ H1

f (Q�,F(−1)). A calculation

in [5] shows that H1
f (Q�, E(−1)) = 0 where E is the field of definition for ρG,λ. Actually, it

is shown that H1
f (Q�,Q�(r)) = 0 for every r < 0; this implies H1

f (Q�, E(−1)) = 0 since E

is a finite extension [5, Example 3.9]. Since we define H1
f (Q�, E/O(−1)) to be the image of

the H1
f (Q�, E(−1)), we have H1

f (Q�, E/O(−1)) = 0. Using that h|D�
∈ H1

f (Q�,F(−1)),

Proposition 8.7 gives that h|D�
∈ H1

f (Q�, E/O(−1)) and hence is 0. Thus we have that h
vanishes on the entire decomposition group D�; in particular, it must be unramified at � as
claimed.

Let p | M . Note that we have ρ(Ip) ⊂
{(

1 ∗
0 1

)}
and so ρ|Ip factors through the tame

quotient I t
p of Ip . Recall we have the exact sequence

0 �� Ip �� Dp �� Ẑ �� 0.

Let σp ∈ Dp be any lift of Frobp . Then we know that σp acts on the tame inertia via raising
to the pth power, i.e., if x ∈ I t

p , then σp · x = σpxσ−1
p = x p . Now suppose there exists

x ∈ I t
p(K/Q(ζ�)) so that ρ(x) =

(
1 b
0 1

)
with b �= 0. Then we have

(
1 pb
0 1

)

= ρ(x)p

= ρ(x p)

= ρ(σpxσ−1
p )

= ρ(σp)ρ(x)ρ(σp)
−1

=
(

1 p−1b
0 1

)

.

This gives that pb = p−1b as elements of F. However, since b �= 0, we must have p2 ≡ 1
(mod �). This contradicts our assumption that � � p2 − 1 for all p � M and so it must be that
h(Ip(K/Q(ζ�))) = 0 for all p | M as claimed. This completes the proof. ��

7.3 CAP ideal

We are now in a position to refine Theorem 6.5.

Corollary 7.5 With the setup as in Theorem 6.5 with the additional assumption that � �

(p2 − 1) for all p | M, there exists an eigenform F ∈ SN-SK
κ (�

(2)
0 (M)) so that

F f ≡ev,� F (mod λ)

for� a finite set of places. Moreover, the Galois representation associated to F is irreducible.

Proof Let G be as in Theorem 6.5. Let � be a finite set of places containing all the primes
dividing M . Recall that

T
S,�
O

∼=
∏

TS,�
m
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916 M. Agarwal, J. Brown

where the product runs over the maximal ideals of T
S,�
O . There is a maximal ideal mF f of

T
S,�
O associated to F f . It is the kernel of the map T

S,�
O → O → F given by sending t to

λF f (t). This decomposition gives a Hecke operator t ∈ T
S,�
O so that t F = F if mF = mF f

and t F = 0 if mF �= mF f . In other words, t F = F if F ≡ev,� F f (mod λ) and t F = 0 if
F �≡ev,� F f (mod λ).

Write G = ∑
ai Fi . By construction we know that the Fi all lie in SN-SK

κ (�
(2)
0 (M)). We

apply t to G and note that tG �≡ 0 (mod λ) since tG ≡ F f (mod λ). Thus, there is an

eigenform F ∈ SN-SK
κ (�

(2)
0 (M)) with F ≡ev,� F f (mod λ). Moreover, we know that F

must have irreducible Galois representation by Theorems 5.4, 7.3 and 7.4. ��
One should note that even though we have a congruence F f ≡ G (mod λb), the congru-

ence given in the corollary is only modulo λ. We work around this by introducing the CAP
ideal associated to F f . Let T

N-SK,�
O denote the image of T

S,�
O in EndC(SN-SK

κ (�
(2)
0 (M))).

Let φ : T
S,�
O → T

N-SK,�
O denote the canonical O-algebra surjection. Write Ann(F f ) for the

annihilator of F f in T
S,�
O and observe we have an isomorphism

T
S,�
O /Ann(F f ) ∼= O.

We have that φ(Ann(F f )) is an ideal in T
N-SK,�
O since φ is surjective. We refer to the ideal

φ(Ann(F f )) as the CAP ideal associated to F f . We have seen above that if F is an eigenform

of weight κ and level �(2)
0 (M) with reducible Galois representation so that F ≡ev,� F f

(mod λ) for some finite set of places �, then F ∈ SSK
κ (�

(2)
0 (M)). As such, we can view

the CAP ideal associated to F f as measuring congruences between F f and eigenforms with
irreducible Galois representations. Thus, the CAP ideal plays much the same role as the
Eisenstein ideal in classical theory. We make this more precise as follows.

One has that there exists an r ∈ Z≥0 so that the following diagram commutes:

T
S,�
O

φ ��

��

T
N-SK,�
O

��
T

S,�
O /Ann(F f )

φ ��

��

T
N-SK,�
O /φ(Ann(F f ))

�
��

O �� O/λr O.

Note that all of the maps in the above diagram are O-algebra surjections.

Corollary 7.6 With r as in the above diagram and b as in Theorem 6.5, we have r ≥ b.

Proof Assume that b > r . Let G be as in Theorem 6.5. Choose t ∈ φ−1(λr ) ⊂ T
S,�
O . Thus,

tG = λr G. Using that the diagram commutes we have t ∈ Ann(F f ) and so the congruence
in Theorem 6.5 gives

λr G ≡ 0 (mod λb),

i.e.,

G ≡ 0 (mod λb−r ).
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However, since b − r > 0, we must have

F f ≡ G (mod λ)

≡ 0 (mod λ),

which is a contradiction. ��

8 Selmer groups

In this section we define the relevant Selmer group and give a lower bound for the size of
the Selmer group using the congruence we constructed in Sect. 7.3, hence proving the main
theorem.

8.1 Definition of the appropriate Selmer group

In this section we define the relevant Selmer group following [5]. For a number field K and a
topological G K = Gal(K̄/K )-module M with a continuous action of G K on M , we consider
the group H1

cont(G K ,M ) of cohomology classes of continuous cocycles G K → M . To ease
notation we simply write H1(K ,M ) when we mean H1

cont(G K ,M ).
Let � ⊃ {�, p | M} be a finite set of primes of Q and denote by G� the Galois group of

the maximal Galois extension Q� of Q unramified outside of �. Let E be a finite extension
of Q� and O be its ring of integers. Let V be a finite dimensional E-vector space with a
continuous G�-action. We will find it convenient to write ρ : G� → GLn(E) to denote this
action when dimE (V ) = n. Let T ⊂ V be a G�-stable O-lattice, i.e., T is G�-stable and
T ⊗O E ∼= V . Set W := V/T ∼= T ⊗O E/O.

We write Bcrys for the ring of �-adic periods [18]. Set

D = (V ⊗Q�
Bcrys)

D�

and

Crys(V ) = H0(Q�, V ⊗Q�
Bcrys).

We say the representation V is crystalline if dimQ�
V = dimQ�

Crys(V ). Let Fili D be a
decreasing filtration of D. If V is crystalline, we say V is short if Fil0 D = D, Fil� D = 0,
and if whenever V ′ is a nonzero quotient of V , then V ′ ⊗Q�

Q�(�− 1) is ramified. Note that
Q�(n) is the 1-dimensional space over Q� on which GQ acts via the nth power of the �-adic
cyclotomic character.

The following theorem gives us examples of the crystalline and short representations of
interest to us in the work.

Theorem 8.1 [16,44] Let F ∈ Sκ (�
(2)
0 (M)) be an eigenform. The restriction of ρF,λ to D�

is crystalline at �. If � > 2κ − 2 then ρF,λ is short.

For every p ∈ � and a G�-module M define

H1
un(Qp,M ) := ker{H1(Qp,M )

res−→ H1(Ip,M )}.
We define the local p-Selmer group for V as

H1
f (Qp, V ) :=

{
H1

un(Qp, V ) p ∈ � � �

ker{H1(Q�, V ) → H1(Q�, V ⊗ Bcrys)} p = �.
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918 M. Agarwal, J. Brown

For every p, define H1
f (Qp, W ) to be the image of H1

f (Qp, V ) under the natural map

H1(Qp, V ) → H1(Qp, W ). Using the fact, that Gal(F̄p/Fp) ∼= Ẑ has cohomological dimen-
sion one, one has that if W is unramified at p and p �= �, then H1

f (Qp, W ) = H1
un(Qp, W ).

We are now in a position to define the Selmer group of interest to us. For any set�′ ⊂ ���,
let

Sel�(�′, W ) := ker

⎧
⎨

⎩
H1(G�, W )

res−→
⊕

p∈�′∪{�}

H1(Qp, W )

H1
f (Qp, W )

⎫
⎬

⎭
.

In the case that �′ = ∅, we write Sel�(W ) for Sel�(∅, W ).
For a Zp module M , let M ∨ denote the Pontryagin dual of M defined as

M ∨ = Homcont(M ,Qp/Zp).

We denote the Pontryagin dual of Sel�(�′, W ) by X�(�′, W ) i.e.

X�(�′, W ) = (Sel�(�′, W ))∨.

The following lemma follows from [30] and [41, §3].

Lemma 8.2 X�(�′, W ) is a finitely generated O-module and if the mod λ reduction ρ̄ of
ρ is absolutely irreducible, then the length of X�(�′, W ) as an O-module is independent of
the choice of the lattice T .

Remark 8.3 For an O-module M , ord�(#M ) = [O/λ : F�]lengthO(M ).

Example 8.4 Let f ∈ S2κ−2(�0(M)) be a cuspidal eigenform and (ρ f,λ, V f,λ) be the λ-adic
Galois representation associated to it. Let � = {p | M} ∪ {�} and let V f,λ(κ − 2) denote the
representation space of ρ = ρ f,λ ⊗ εκ−2 of GQ. Let T f,λ(κ − 2) ⊂ V f,λ(κ − 2) be some
choice of a GQ-stable lattice. Set W f,λ(κ − 2) = V f,λ(κ − 2)/T f,λ(κ − 2). Note that the
action of GQ on V f,λ(κ−2) factors through G� . Since the mod λ reduction of ρ is absolutely
irreducible by assumption, val�(X�({p | M}, W f,λ(κ − 2))) is independent of the choice of
T f,λ(κ − 2).

We will also need the notation of degree n Selmer groups. In fact, we have already made
use of these in Sect. 7.2. We begin by reviewing the relationship between extensions of
modules and the first cohomology group. Let G be a group, R a ring, and let M and N be
R[G]-modules. An extension of M by N is a short exact sequence

0 �� N
α �� X

β �� M �� 0

where X is a R[G]-module and α and β are R[G]-homomorphisms. We sometimes refer
to such an extension as the extension X . We say two extensions X and Y are equivalent if
there is a R[G]-isomorphism γ making the following diagram commute

0 �� N
αX ��

idN

��

X
βX ��

γ

��

M ��

idM

��

0

0 �� N
αY �� Y

βY �� M �� 0.

Let Ext1
R[G](M ,N ) denote the set of equivalence classes of R[G]-extensions of M by N

which split as extensions of R-modules.
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On the Bloch–Kato conjecture 919

We have the following result that will be used to define the degree n Selmer groups. The
case that M = N is given in [46], and the argument given in [8] to prove the result below
is a simple modification of this argument.

Theorem 8.5 [8, Theorem 9.2] Let M and N be R[G]-modules. There is a one-one corre-
spondence between the sets H1(G,HomR(M ,N )) and Ext1

R[G](M ,N ).

The map from Ext1
R[G](M ,N ) to H1(G,HomR(M ,N )) is given as follows. Let

0 �� N
α �� X

β �� M ��

sX
��

0

be an extension with sX a R-section of X . This extension is mapped to the cohomology
class g 
→ cg where cg : M → N is defined by

cg(m) = α−1(ρ(g)sX (ρM (g−1)m) − sX (m))

where ρ denotes the G-action on X and ρM the G-action on M .
Let V, T , and W be as above. Let W [n] be the λn torsion elements in W . The previous

theorem gives a bijection between Ext1
(O/λn)[D�](O/λn, W [n]) and H1(D�, W [n]). For p �=

�, we define the local degree n Selmer groups by H1
f (Qp, W [n]) = H1

un(Qp, W [n]). At the
prime � we define the local degree n Selmer group to be the subset of classes of extensions
of D�-modules

0 �� W [n] �� X �� O/λn �� 0

where X lies in the essential image of the functor V defined in §1.1 of [14]. The precise
definition of V is technical and is not needed here. We content ourselves with stating that
this essential image is stable under direct sums, subobjects, and quotients [14, §2.1]. For our
purposes the following two propositions are what is needed.

Proposition 8.6 [14, p. 670] If V is a short crystalline representation at �, T a D�-stable
lattice, and X a subquotient of T/λnT that gives an extension of D�-modules as above, then
the class of this extension is in H1

f (Q�, W [n]).
Proposition 8.7 [7, Prop. 7.9] Assume that T/λT is irreducible and let h be a non-zero
cocycle in Sel�(�′, W [1]). If h|Dp ∈ H1

f (Qp, W [1]) is non-zero, then h|Dp gives a non-zero

λ-torsion element of H1
f (Qp, W ). If h|Dp ∈ H1

f (Qp, W [1]) for every prime p, then h is a
non-zero λ-torsion element of Sel�(�′, W ).

Using the notation in Sect. 7.3, let I f = φ(Ann(F f )) be the CAP ideal associated to F f

in T
N-SK,�
O . We now state our main theorem.

Theorem 8.8 Let � and W f,λ(κ − 2) be as in example 8.4. Then we have

ord�(#X�({p | M}, W f,λ(κ − 2))) ≥ ord�(#TN-SK
mF f

/I f ).

We will give a proof of Theorem 8.8 in the next section.

Corollary 8.9 Let κ and M be positive integers with κ > 5 even and M odd and square-
free. Let f ∈ Snew

2κ−2(�0(M)) be a newform. Let � be an odd prime with � > 2κ − 2, � �

M, � � (p2 − 1) for all p | M, O a sufficiently large extension of Z�, λ the prime of O, ρ f,λ

123



920 M. Agarwal, J. Brown

irreducible, and λ | Lalg(κ, f ). Let � = {p | M} ∪ {�}. If there exists a fundamental
discriminant D < 0 so that gcd(�M, D) = 1, χD(−1) = −1, and an integer N > 1 with
M | N , � � N, and an even Dirichlet character χ of conductor N so that

ordλ

(
L(κ, χ, D, f, N )

Lalg(κ, f )

)

= −b < 0,

then we have

ord�(#X�({p | M}, W f,λ(κ − 2))) ≥ b.

In particular, if N , χ , and D can be chosen so that

ordλ(L(κ, χ, D, f, N )) = 0,

then we have

ord�(#X�({p | M}, W f,λ(κ − 2))) ≥ ord�(#O/Lalg(κ, f )).

Proof This corollary is an immediate consequence of Theorem 8.8 and Corollary 7.6. ��

8.2 A lower bound on the Selmer group

We now recall the results from [10] which involve the construction of a lattice which we will
need to give a lower bound on the size of the desired Selmer group. In [10] the second author
generalizes a result in [43] wherein Urban presents the case where the Galois representation
ρ̄ss splits into two irreducible representations. We will limit ourselves to recalling the results
here and refer the reader to [10] for more details.

Let E/Q� be a suitably large finite extension, O the ring of integers of E , and λ the prime
of O. Set F = O/λ. Let n = n1 +n2 +n3 with ni ≥ 1 and let � ⊃ {�} be a finite set of primes
of Q. Let Vi be E vector spaces of dimension ni affording continuous absolutely irreducible
representations ρi : G� → AutE (Vi ) for 1 ≤ i ≤ 3. Assume the residual representations ρi

are irreducible and non-isomorphic for 1 ≤ i ≤ 3. Let V1, . . . ,Vm be n-dimensional E vector
spaces affording absolutely irreducible continuous representations �i : G� → AutE (Vi ) for
1 ≤ i ≤ m. Further assume that the modulo λ reductions of �i satisfy �ss = �1 ⊕ �2 ⊕ �3
for some G�-stable lattice in Vi (and hence for all such lattices.)

For each σ ∈ G� , let

n∑

j=0

a j (σ )X j ∈ O[X ]

be the characteristic polynomial of (ρ1 ⊕ ρ2 ⊕ ρ3)(σ ) and

n∑

j=0

c j (i, σ )X j ∈ O[X ]

be the characteristic polynomial of �i (σ ). Set

c j (σ ) =
⎛

⎜
⎝

c j (1, σ )
...

c j (m, σ )

⎞

⎟
⎠ ∈ Om
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for 0 ≤ j ≤ n − 1. Let T ⊂ Om be the O-subalgebra generated by the set {c j (σ ) : σ ∈
G�, 0 ≤ j ≤ n − 1}.

By the continuity of the �i , note that this is the same as the O-subalgebra of Om generated
by

{c j (Frobp)|0 ≤ j ≤ n − 1, p /∈ �}.
Also, note that T is a finite O-algebra. Let I ⊂ T be the ideal generated by the set {c j (Frobp)−
a j (Frobp)|0 ≤ j ≤ n − 1, p /∈ �}.

Then we have the following theorem which we state here without proof, for more details
we refer the reader to [10].

Theorem 8.10 Suppose F× contains at least n distinct elements. Then there exists a G�-
stable T-submodule L ⊂ ⊕m

i=1Vi , T-submodules L1,L2, and L3 contained in L and finitely
generated T-modules T1 and T2 such that

(1) as T-modules we have L = L1 ⊕ L2 ⊕ L3 and Li � Tni for 1 ≤ i ≤ 3;
(2) L has no T[G�]-quotient isomorphic to ρ′ where ρ′ ss = ρ1 ⊕ ρ3;
(3) (L1 ⊕ L2)/I (L1 ⊕ L2) is G�-stable and there exists a T[G�]-

isomorphism

L/(L + I (L1 ⊕ L2)) � M3 ⊗O T/I

for any G�-stable O-lattice M3 ⊂ V3;
(4) one has either

HomT/I (M1 ⊗O T1/IT1,M2 ⊗O T2/IT2) = 0

or

HomT/I (M2 ⊗O T2/IT2,M1 ⊗O T1/IT1) = 0

for any G�-stable O-lattices Mi ⊂ Vi for i = 1, 2 ;
(5) FittT(Ti ) = 0 for i = 1, 2 and there exists a T[G�]-isomorphism

Li/ILi � Mi ⊗O Ti/ITi

for any G�-stable O-lattice Mi ⊂ Vi for i = 1, 2.

To specialize to our situation, we make the following choices:

• n1 = n3 = 1, n2 = 2;
• ρ1 = ε−1, ρ2 = ρ f,λ⊗εκ−2, ρ3 = id. Note that these are the components of ρF f ,λ⊗εκ−2.

• T = T
N-SK,�
mF f

;

• G1, . . . , Gm for the elements in an orthogonal eigenbasis of SN−SK
κ (�

(2)
0 (M)) such that

φ−1(mN−SK
Gi

) = mF f where φ : T
S,�
O → T

N-SK,�
O is the canonical O-algebra surjection

as given in Sect. 7.3.
• I = the ideal of T generated by φmF f

(Ann F f );
• (Vi , ρi ) = the representation ρGi ,λ for 1 ≤ i ≤ m.

Let Mi be a GQ-stable O-lattice inside Vi for 1 ≤ i ≤ 3. Using the matrix nota-
tion introduced in [10], we can break the situation into two cases depending on whether
HomT/I (M1 ⊗O T1/IT1,M2 ⊗O T2/IT2) = 0 or HomT/I (M2 ⊗O T2/IT2,M1 ⊗O
T1/IT1) = 0. We limit ourselves to outlining the steps in the first case as the details of these
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922 M. Agarwal, J. Brown

arguments can be found in [10]. Suppose HomT/I (M1 ⊗O T1/IT1,M2 ⊗O T2/IT2) = 0.
Then we have a short exact sequence of (T/I )[G�]-modules

0 �� N1 ⊕ N2 �� L ⊗ T/I �� ρ3 ⊗ T/I → 0

which splits as a sequence of T/I -modules where Ni = Mi ⊗ Ti/ITi for i = 1, 2. This
gives rise to a cocycle

c2 ∈ H1(G�,HomT/I (M3 ⊗O T/I ,M2 ⊗O T2/IT2)).

Since

HomT/I (M3 ⊗O T/I ,M2 ⊗O T2/IT2) � HomO(M3,M2) ⊗O T2/IT2

we can regard c2 as a cocycle in H1(G�,HomO(M3,M2) ⊗O T2/IT2). Define a map

ι2 : HomO(T2/IT2, E/O) → H1(G�,HomO(M3,M2) ⊗O E/O)

f 
→ (1 ⊗ f )(c2).

Our assumption that HomT/I (M1 ⊗O T1/IT1,M2 ⊗O T2/IT2) = 0 and the fact that the
modulo λ reduction of ρ f,λ ⊗ εκ−2 is absolutely irreducible give that we can choose T =
HomO(M3,M2) and we have

W = HomO(M3,M2) ⊗O E/O.

We state two lemma’s and we refer the reader to [10] for their proof. One should note that
in proving Lemma 8.12 one does need the argument given in Sect. 7.2 showing there is no

non-split extension of the form

(
ω−1 ∗

0 1

)

, but one can substitute that argument into the one

given in [10] and the rest of the proof remains unchanged.

Lemma 8.11 Image(ι2) ⊆ Sel�({p|M}, W ).

Lemma 8.12 (ker(ι2))∨ = 0.

Proof of Theorem 8.8 Set W = W f,λ(κ − 2). Lemma 8.11 implies that

ord�(#X�({p|M}, W )) ≥ ord�(#(Im ι2)
∨)

and from Lemma 8.12 it follows that

ord�(# HomO(T2/IT2, E/O)∨) = ord�(#(Im ι2)
∨).

But we know that HomO(T2/IT2, E/O)∨ ∼= (T2/IT2)
∨∨ ∼= T2/IT2, hence

ord�(#(Im ι2)
∨) = ord�(#T2/IT2).

But now by Theorem 8.10, Fitt(T2) = 0 so FittT(T2 ⊗T T/I ) ⊂ I , hence

ord�(#T2 ⊗T T/I ) ≥ ord�(#T/I ).

Noting that ord�(#T2/IT2) = ord�(#T2 ⊗T T/I ) we get

ord�(#S�({p|M}, W )) ≥ ord�(#T/I ).

��
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