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Let k > 9 be an even integer and p a prime with p > 2k − 2. Let f be a newform of weight

2k − 2 and level SL2(Z) so that f is ordinary at p and ρ f,p is irreducible. Under some ad-

ditional hypotheses, we prove that ordp(Lalg(k, f)) ≤ ordp(#S), where S is the Pontryagin

dual of the Selmer group associated to ρ f,p ⊗ ε1−k with ε the p-adic cyclotomic character.

We accomplish this by first constructing a congruence between the Saito–Kurokawa lift

of f and a non-CAP Siegel cusp form. Once this congruence is established, we use Galois

representations to obtain the lower bound on the Selmer group.

1 Introduction

The conjecture of Bloch and Kato, also known as the Tamagawa number conjecture, is

one of the central outstanding conjectures in number theory. Let f be a newform of

weight 2k − 2 and level SL2(Z). The Bloch–Kato conjecture for modular forms roughly

states that the special values of the L-function associated to f should measure the

size of the Selmer group associated to twists of the Galois representation associated

to f . In previous work we showed that under suitable hypotheses that one has that if

ordp(Lalg(k, f)) ≥ 1, then ordp(# Sel(W)) ≥ 1 [4]. Unfortunately, due to limitations of the

method used, one was unable to gain any more information than this. In this paper,
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Siegel Eisenstein Series 1707

we improve upon these results yielding the much stronger result that under the same

hypotheses needed before roughly speaking, one has

ordp(Lalg(k, f)) ≤ ordp(# Sel(W)).

The method of proof is in the same spirit as was used in [4] with significant improve-

ments at a couple of steps. Nevertheless, we briefly recount the method here.

The general outline of the method goes back to the work of Ribet on the proof of

the converse of Herbrand’s theorem [26]. This method has been generalized and applied

in other contexts by several authors ([19], [35], [42], etc.) The method employed by Ribet

(in a slightly more general form) is as follows. Given a positive integer k and a primi-

tive Dirichlet character χ of conductor N so that χ(−1) = (−1)k, one has an associated

Eisenstein series Ek,χ with constant term (L(1 − k, χ))/2. For an odd prime p with p |
L(1 − k, χ) and p � N, one can show that there is a cuspidal eigenform g of weight k and

level M with N | M so that g ≡ Ek,χ (mod p) for some prime p | p. This congruence is used

to study the residual Galois representation of g. It is shown that ρg,p �
(

1 ∗
0 χωk−1

)
is

non-split where ω is the reduction of the p-adic cyclotomic character. This allows one to

show that ∗ gives a nonzero cohomology class in H1
ur(Q, χ−1ω1−k).

For our purposes, the character in Ribet’s method will be replaced with a new-

form f of weight 2k − 2 and level SL2(Z). Associated to f , we have its Saito–Kurokawa

lift F f , our replacement for the Eisenstein series Ek,χ . Our goal is to find a Siegel mod-

ular form G that is not a Saito–Kurokawa lift so that the Fourier coefficients of G are

congruent modulo �m to those of F f for some integer m≥ 1. We are able to produce

such a G by exploiting the explicit nature of the Saito–Kurokawa correspondence, using

the pullback of a Siegel Eisenstein series and an inner product relation of Shimura [31]

as key ingredients. It is at this step that a significant improvement over the results of [4]

is made. We use results of Garrett to show that, in fact, the Siegel Eisenstein series used

pulls back to something cuspidal in each variable. This allows us to avoid some of the

ad hoc methods needed in [4] that “lost the powers of p.” Once we have the congruence

desired, we generalize results of Urban [38] to our situation to allow us to give the lower

bound on the Selmer group. This generalization is another significant improvement over

our work in [4] and allows us to get the lower bound desired.

2 Notation

In this section we set the notation and definitions to be used throughout this paper.
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1708 J. Brown

Let A be the ring of adeles over Q. For a prime p, we fix once and for all com-

patible embeddings Q ↪→ Qp, Q ↪→ C, and Qp ↪→ C. We write ordp(n) to denote m for

pm ‖ n. We denote by εp the p-adic cyclotomic character εp : GQ → GL1(Zp). We drop the

p when it is clear from context. We denote the residual representation of εp by ωp, again

dropping the p when it is clear from context.

For a ring R, we let Mm,n(R) denote the set of m by n matrices with entries in R.

If m= n, we write Mm(R) for Mm,m(R). For a matrix x ∈ M2n(R), we write

x =
(

ax bx

cx dx

)

where ax, bx, cx, and dx are all in Mn(R). We drop the subscript x when it is clear from

the context. The transpose of a matrix x is denoted by tx.

Let SL2 and GLn have their standard definitions. We denote the complex upper

half-plane by h1. We have the usual action of GL+
2 (R) on h1 ∪ P1(Q) given by linear frac-

tional transformations. Define

Sp2n = {g ∈ GL2n : tγ ι2nγ = ι2n}, ι2n =
(

0n −1n

1n 0n

)
.

Siegel upper half-space is defined by

hn = {Z ∈ Mn(C) : tZ = Z , Im(Z) > 0}.

The group Sp2n(R) acts on hn via

(
A B

C D

)
Z = (AZ + B)(C Z + D)−1.

We let 
J
1 = SL2(Z)� Z2 be the Jacobi modular group [12].

Given an L-function L(s) = ∏
p L p(s) and a finite set of places �, we write

L�(s) =
∏
p/∈�

L p(s)

when we restrict to places away from � and

L�(s) =
∏
p∈�

L p(s)

when we restrict to the places in �.
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Siegel Eisenstein Series 1709

Let 
 ⊂ SL2(Z) be a congruence subgroup. We write Mk(
) to denote the space of

modular forms of weight k and level 
. We let Sk(
) denote the subspace of cusp forms.

The nth Fourier coefficient of f ∈ Mk(
) is denoted by af (n). Given a ring R ⊂ C, we write

Mk(
, R) for the space of modular forms with Fourier coefficients in R and similarly for

Sk(
, R). Let f1, f2 ∈ Mk(
) with at least one of the fi a cusp form. The Petersson product

is given by

〈 f1, f2〉 = 1

[SL2(Z) : 
]
∫


\h1
f1(z) f2(z)y

k−2dxdy

where SL2(Z) = SL2(Z)/{±12} and 
 is the image of 
 in SL2(Z). The nth Hecke opera-

tor T(n) has its usual meaning. Let A be a Z-algebra. Let TZ be the Z-subalgebra of

EndC(Sk(SL2(Z)) generated by T(n) for n = 1,2,3, . . . . Note that we do not include the

weight in the notation as it will always be clear from context. We set TA = TZ ⊗Z A.

We say f ∈ Sk(SL2(Z)) is a newform if it is an eigenform for all T(n) and af (1) = 1. The

L-function associated to a newform f of weight k is given by

L(s, f) =
∑
n≥1

af (n)n
−s.

The L-function L(s, f) can be factored as

L(s, f) =
∏

p

[(1 − α f (p)p−s)(1 − β f (p)p−s)]−1

where α f (p) + β f (p) = af (p) and α f (p)β f (p) = pk−1. The terms α f (p) and β f (p) are re-

ferred to as the pth Satake parameters of f .

Kohnen’s +-space of half-integral weight modular forms is given by

S+
k−1/2(
0(4)) = {g ∈ Sk−1/2(
0(4)) : ag(n) = 0 if (−1)k−1n ≡ 2,3(mod 4)}.

The Petersson product on S+
k−1/2(
0(4)) is given by

〈g1, g2〉 =
∫


0(4)\h1
g1(z)g2(z)y

k−5/2dxdy.
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1710 J. Brown

We denote the space of Jacobi cusp forms on 
J
1 by Jcusp

k,1 (
J
1). The inner product

is given by

〈φ1, φ2〉 =
∫


J
1\h1×C

φ1(τ, z)φ2(τ, z)vk−3e−4πy2/vdx dydudv

for φ1, φ2 ∈ Jcusp
k,1 (
J

1) and τ = u+ iv, z = x + iy.

We denote the space of Siegel modular forms of weight k and level 
 ⊂ Sp2n(Z)

by Mk(
). The subspace of cusp forms is denoted by Sk(
). For F,G ∈ Mk(Sp2n(
)) with

at least one cusp form, the Petersson product is given by

〈F,G〉 = 1

[Sp2n(Z) : 
]
∫


\hn
F (Z)G(Z)det(Im(Z))kdμ(Z).

We will be particularly interested in the decomposition

Sk(Sp4(Z)) = SM
k (Sp4(Z)) ⊕ SNM

k (Sp4(Z)),

where SM
k (Sp4(Z)) is the space of Maass spezialschar and SNM

k (Sp4(Z)) is the orthogo-

nal complement. A form F ∈ Sk(Sp4(Z)) is in SM
k (Sp4(Z)) if the Fourier coefficients of F

satisfy the relation

AF (n, r,m) =
∑

d|gcd(n,r,m)

dk−1 AF

(nm

d2 ,
r

d
,1

)
.

We let T S(n) denote the nth Siegel Hecke operator. As above, we set TS
Z

to be the

Z-subalgebra of EndC(Sk(Sp2n(Z)) generated by the T(n). For a Z-algebra A, we write

TS
A = TS

Z
⊗Z A. The Hecke algebra TS

C
respects the decomposition of Sk(Sp4(Z)) into the

space of Maass and non-Maass forms [1].

Let F ∈ Sk(Sp4(Z)) be a Hecke eigenform with eigenvalues λF (m). Associated to F

is an L-function called the spinor L-function. It is defined by

Lspin(s, F ) = ζ(2s − 2k + 4)
∑
m≥1

λF (m)m−s.

One can also define the spinor L-function in terms of the Satake parameters α0, α1, and

α2 of F . One has

Lspin(s, F ) =
∏

p

Qp(p−s)−1
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Siegel Eisenstein Series 1711

where

Qp(X) = (1 − α0 X)(1 − α0α1 X)(1 − α0α2 X)(1 − α0α2α2 X).

The standard L-function associated to F is given by

Lst(s, F ) =
∏
�

W�(�
−s)−1 (1)

where

W�(t) = (1 − �2t)
2∏

i=1

(1 − �2αit)(1 − �2α−1
i t).

Given a Hecke character φ, the twisted standard zeta function is given by

Lst(s, F, φ) =
∏
�

W�(φ(�)�
−s)−1.

3 Siegel Eisenstein Series

In this section we study pullbacks of Siegel Eisenstein series and show that the pullback

of the Siegel Eisenstein series from Sp4n to Sp2n× Sp2n is cuspidal in each variable. We

use the methods developed by Garrett [16] along with standard facts about Siegel Eisen-

stein series to establish this result. We also recall facts that can be found in [4] about

the Fourier coefficients of the Siegel Eisenstein series as well as a formula for the inner

product of the pullback of the Siegel Eisenstein series with a cuspidal Siegel eigenform

due to Shimura [31]. One can also see [3], [15], or [25] for analogous results.

3.1 Basic definitions and results

We begin by recalling the definition of some subgroups of Sp2m(A) and Sp2m(Q). Let

N > 1 be an integer, and let � be the set of primes dividing N. For a prime �, define

K0,�(N) = {
g ∈ Sp2m(Q�) : ag,bg,dg ∈ Mm(Z�), cg ∈ Mm(NZ�)

}
,

and set

K0, f (N) =
∏

��∞
K0,�(N).
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1712 J. Brown

Set

K∞ = {g ∈ Sp2m(R) : gi2m = i2m}

where i2m = i12m and

K0(N) = K∞K0, f (N).

Set

Sm = {x ∈ Mm : tx = x}.

Let P2m = U2mQ2m be the Siegel parabolic of Sp2m defined by

P2m = {
g ∈ Sp2m : cg = 0

}

with unipotent radical

U2m =
{

u(x) =
(

1 x

0 1

)
: x ∈ Sm

}

and Levi subgroup

Q2m =
{

Q(A) =
(

A 0

0 tA−1

)
: A ∈ GLm

}
.

We drop the subscript 2mfrom the notation when it is clear from context.

Let k be a positive integer such that k > max{3,m+ 1}. Let χ be a Hecke character

of A× satisfying

χ∞(x) = sgn(x)k, (2)

χ�(a) = 1 if � � ∞, a ∈ Z×
� , and N | (a − 1).

Define ε(g, s; k, N, χ) on Sp2m(A) × C by

ε(g, s; k, N, χ) = 0
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Siegel Eisenstein Series 1713

if g /∈ P (A)K0(N) and for g = u(x)Q(A)θ with u(x)Q(A) ∈ P (A) and θ ∈ K0(N)

ε(g, s; k, N, χ) = ε∞(g, s; k, χ)
∏

��N

ε�(g, s; k, χ)
∏
�|N

ε�(g, s; k, N, χ)

where we define the components by

ε∞(g, s; k, χ) = χ∞(det A∞)| det A∞|2s jk(θ∞, i)−1,

ε�(g, s; k, χ) = χ�(det A�)| det A�|2s (� � N)

ε�(g, s; k, N, χ) = χ�(det A�)χ�(det dθ )
−1| det A�|2s (� | N).

The Siegel Eisenstein series is defined by

E(g, s) = E(g, s; k, N, χ) =
∑

γ∈P (Q)\ Sp2m(Q)

ε(γg, s; k, N, χ).

The series E(g, s) converges locally uniformly for Re(s) > (m+ 1)/2 and can be continued

to a meromorphic function on all of C. It has a functional equation relating E(g, s) to

E(g, (m+ 1)/2 − s). One can work out the precise functional equation via the general

theory contained in [22], but the exact functional equation will not be needed.

Associated to the Siegel Eisenstein series E(g, s) is a complex version E(Z , s)

defined on hm × C by

E(Z , s) = jk(g∞, i2m)E(g, s)

where Z = g∞i2m and g = gQg∞θ f ∈ Sp2m(Q)Sp2m(R)K0, f (N). It will be important for us

that E(Z , (m+ 1)/2 − k/2) and E(Z ,k/2) are both holomorphic modular forms of weight

k and level N [22, 30]. We will use whichever of these Siegel Eisenstein series is most

convenient for the current application, keeping in mind the functional equation relating

them.

Finally, we recall a result on the Fourier coefficients of E(Z , (m+ 1)/2 − k/2)

demonstrated in [4]. Let E∗(g, s) = E(gς−1
f , s) where we recall ς =

(
0m −1m

1m 0m

)
. It is con-

venient to look at this translation when calculating the Fourier coefficients of E(g, s). We

let E∗(Z , s) be the corresponding complex version. Write elements Z ∈ hm as Z = X + iY
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1714 J. Brown

with X,Y ∈ Sm(R) and Y > 0. L = Sm(Q) ∩ Mm(Z), L ′ = {s ∈ Sm(Q) : Tr(sL) ⊆ Z}, and M =
N−1L ′. The Eisenstein series E∗(Z , s) has a Fourier expansion

E∗(Z , s) =
∑
h∈M

a(h,Y, s)e(Tr(hX))

for Z = X + iY ∈ hm. Set

��(s, χ) = L�(2s, χ)
[m/2]∏
j=1

L�(4s − 2 j, ψ2).

We normalize E∗(Z , s) by multiplying it by π− m(m+2)
4 ��(s, χ). We have the following result.

Theorem 3.1. [4, Theorem 2.4] Let p be an odd prime such that p > mG and gcd(p, N) =
1. Set

DE∗(Z , (m+ 1)/2 − k/2) = π− m(m+2)
4 ��((m+ 1)/2 − k/2, χ)E∗(Z , (m+ 1)/2 − k/2). (3)

Then

DE∗(Z , (m+ 1)/2 − k/2) ∈ Mk(

(2m)
0 (N),Zp[χ, imk]). �

3.2 Pullbacks of Siegel Eisenstein series

We begin by reviewing the notion of the pullback of an automorphic form on Sp4n(A) to

Sp2n(A) × Sp2n(A). This theory has been well established, and the interested reader is

advised to consult any of the following references for more details: [3, 15, 16, 31, 32].

Let Sp2n× Sp2n be imbedded in Sp4n via

ι

((
a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
=

⎛
⎜⎜⎜⎜⎝

a1 0 b1 0

0 a2 0 b2

c1 0 d1 0

0 c2 0 d2

⎞
⎟⎟⎟⎟⎠
.

One can show that given a holomorphic automorphic form F of weight k and level



(4n)
0 (N) on Sp4n(A), the function (g1, g2) �→ F (ι(g1, g2)) is a holomorphic automorphic

form of weight k and level 

(2n)
0 (N) in each variable, see [16] for example. The form
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Siegel Eisenstein Series 1715

F (ι(g1, g2)) is referred to as the pullback of F from Sp4n to Sp2n× Sp2n, or just the pull-

back of F . We will often drop the ι from the notation when it is clear from context. If we

wish to work classically rather than adelically, we make use of the embedding

hn × hn ↪→ h2n

given by

Z × W �→
(

Z 0

0 W

)
= diag[Z , W]

arising from the isomorphism Sp2n(R)/K∞ ∼= hn.

We now show that the pullback Eisenstein series E(ι(g1, g2),k/2) is cuspidal in

g1 and g2. We restrict now to the case that k > 4n+ 1 to ensure that the series defining

the Eisenstein series converges. We wish to apply the methods used by Garrett in [16]. To

do this, we restrict our Eisenstein series from P4n(A)K0(N) to P4n(A)K(N) where K(N) =
K∞

∏
��∞ K�(N) with

K�(N) = {g ∈ Sp4n(Q�) : g ≡ 14n(mod N)}.

Classically, we are taking E(Z,k/2), which is in Mk(

(4n)
0 (N)), and thinking of it as

a modular form in Mk(

(4n)(N)). From this, it is clear that if the pullback of the re-

stricted Eisenstein series is cuspidal, so is the original. We denote the Eisenstein series

restricted to P4n(A)K(N) as E ′. Observe that if we write

E ′(g,k/2) =
∑

γ∈P4n(Q)\ Sp4n(Q)

ε(γg,k/2)

with ε(g,k/2) factored into local components as in the previous section, then we have

ε∞(g,k/2) = ε∞(g,k/2), ε�(g,k/2) = ε�(g,k/2) for � � N, and ε�(g,k/2) = χ�(det A�)| det A�|k
for � | N. Note the χ�(det dθ )−1 drops out because of the restriction to K(N). We are now

in a position to apply Garrett’s argument to E ′(ι(g1, g2),k/2) to show that it is cuspidal

in g1 and g2 [16].

Let θ ∈ Sp4n(A f ) be an element so that

(02n12n)θ =
(

1n 1n 0n 0n

0n 0n −1n 1n

)
.
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1716 J. Brown

We will consider the Eisenstein series translated by this θ , namely, we will show that

E ′(ι(g1, g2)θ
−1,k/2) is cuspidal in g1 and g2. Classically, this just amounts to translating

to a different cusp, so it is sufficient to show this translated Eisenstein series is cuspidal

in g1 and g2.

The space

X = P4n(Q)\ Sp4n(Q)/ι(Sp2n(Q) × Sp2n(Q))

has representatives τ0, τ1, . . . , τn so that

(02n12n)τi =

⎛
⎜⎜⎜⎜⎝

1n−i 0i 0n−i 0i 0n−i 0i 0n−i 0i

0n−i 1i 0n−i 1i 0n−i 0i 0n−i 0i

0n−i 0i 0n−i 0i 0n−i 0i 1n−i 0i

0n−i 0i 0n−i 0i 0n−i −1i 0n−i 1i

⎞
⎟⎟⎟⎟⎠
.

This is essentially a result in geometric algebra, see [16] for a proof. Let Ii be the isotropy

group of P4n(Q)τi in P4n(Q)\ Sp4n(Q) under Sp2n(Q) × Sp2n(Q) acting on the right, that is,

Ii = {(g1, g2) ∈ Sp2n(Q) × Sp2n(Q) : P4n(Q)τiι(g1, g2) = P4n(Q)τi}.

This allows us to write our Eisenstein series as

E ′(ι(g1, g2)θ
−1,k/2) =

∑
0≤i≤n

ϑi(g1, g2)

where

ϑi(g1, g2) =
∑

γ∈Ii\ι(Sp2n(Q)×Sp2n(Q))

ε(τiγ ι(g1, g2)θ
−1,k/2).

Our goal now is to show that ϑi(g1, g2) = 0 for all g1, g2 ∈ Sp2n(Q) unless i = n. Observe

that it is enough to show that for any prime p | N, we have εp(τiγ ι(g1, g2)θ
−1,k/2) = 0

for all g1, g2 ∈ Sp2n(Qp) In order to show this, we give an integral representation of the

Eisenstein series components εp.

Let GLn(Qp) have Haar measure normalized so that GLn(Zp) has Haar measure 1.

For p | N, let φp be the characteristic function of the set

{(m1m2) ∈ Mn×2n(Qp) : (m1m2) ≡ (0n1n)(mod N)}.
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Siegel Eisenstein Series 1717

A change of variables shows that for g ∈ Spn(Qp), we have

εp(g; k/2) = Ip(g)/Ip(12n)

where

Ip(g) =
∫

GLn(Qp)

| det h|kχ(det h)φp(h(0n1n)g)dh.

In order to show that ϑi(g1, g2) = 0 for all g1, g2 ∈ Sp2n(Q) unless i = n, we will

show that

Ip(τiι(g1, g2)θ
−1) = 0

for p | N and every g1, g2 ∈ Sp2n(Qp) if i �= n. In particular, the definition of Ip allows us

to reduce this to showing that

φp(g(02n12n)τiι(g1, g2)θ
−1) = 0

for every p | N, g1, g2 ∈ Sp2n(Qp), and g ∈ GL2n(Qp) unless i = n. We have that

φp(g(02n12n)τiι(g1, g2)θ
−1) �= 0 if and only if g(02n12n)τiι(g1, g2)θ

−1 ≡ (02n12n)(mod N),

that is,

g(02n12n)τiι(g1, g2) ≡ (02n12n)θ(mod N).

Define ψ : M2n,4n → M2n by

(
a11 a12 b11 b12

c11 c12 d11 d12

)
�→

(
a11 b11

c11 d11

)
.

The definition of θ yields

ψ((02n12n)θ) =
(

1n 0n

0n −1n

)
.
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1718 J. Brown

Thus, we have that ψ((02n12n)θ) is a matrix of rank 2n in M2n(Qp). However, a short

calculation yields that

ψ(g(02n12n)τiι(g1, g2)) = gψ((02n12n)τi)g1

and

ψ((02n12n)τi) =

⎛
⎜⎜⎜⎜⎝

1n−i 0i 0i 0i

0n−i 1i 0i 0i

0n−i 0i 0i 0i

0n−i 0i 0i −1i

⎞
⎟⎟⎟⎟⎠
.

Thus, the rank of ψ(g(02n12n)τiι(g1, g2)) is at most n+ i. Hence, for ψ(g(02n12n)τiι(g1, g2))

to be congruent modulo N to (02n12n)θ , we must have a matrix of rank at most n+ i

congruent modulo, a proper ideal to a matrix of rank 2n. This can only happen if i = n.

Thus, we have shown that

φp(g(02n12n)τiι(g1, g2)θ
−1) = 0

unless i = n. This shows that ϑi(g1, g2) = 0 for all g1, g2 ∈ Sp2n(Q) unless i = n. Thus, we

have

E ′(ι(g1, g2)θ
−1,k/2) =

∑
γ∈In\ι(Sp2n(Q)×Sp2n(Q))

ε(τnγ ι(g1, g2)θ
−1,k/2).

We are now in a position to show that E ′(ι(g1, g2)θ
−1,k/2) is a cuspform in g1 (g2,

respectively). We show here that E ′(ι(g1, g2)θ
−1,k/2) is a cusp form in g1. The argument

to establish the result for g2 is the same argument and is omitted. Observe that we have

In = {ι(g1, g2) : g2 = ĝ1} (4)

where ĝ = βgβ with β =
(

−1n 0n

0n 1n

)
. From this, we see that for ι(g1, g2) ∈ ι(Sp2n(Q) ×

Sp2n(Q)), we have

ι(g1, g2) ≡ ι(g1ĝ−1
2 ,1) (mod In).
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It is straightforward to check that every element of Sp2n(Q) can be written in the

form g1ĝ−1
2 , and so we can take ι(Sp2n(Q) × {1}) as a collection of representatives for

In\ι(Sp2n(Q) × Sp2n(Q)). This allows us to write

E ′(ι(g1, g2)θ
−1,k/2) =

∑
γ∈Sp2n(Q)

ε(τnι(γg1, g2)θ
−1,k/2).

Since we are interested in unfolding this along the unipotent radical in the first vari-

able, we observe that we can choose the representatives of In\ι(Sp2n(Q) × Sp2n(Q)) to be

{ι(u, γ̂−1) : u ∈ U2n(Q), γ ∈ Sp2n(Q)/U2n(Q)}. Thus, we can write

E ′(ι(g1, g2)θ
−1,k/2) =

∑
γ∈Sp2n(Q)/U2n(Q)

∑
u∈U2n(Q)

ε(τnι(ug1, γ̂
−1g2)θ

−1,k/2).

We can expand the sum

∑
u∈U2n(Q)

ε(τ ι(ug1, γ̂
−1g2)θ

−1,k/2)

in its Fourier expansion in g1 along the unipotent radical. Since we are only interested

here in showing cuspidality, it is enough to show that the σ -th Fourier coefficient is zero

for all g1, g2 ∈ Sp2n(A) unless σ is totally positive definite. Recall the Fourier coefficient

given by

∫

U2n(Q)\U2n(A)

ψ(Tr(σg))
∑

u∈U2n(Q)

ε(τnι(uu(g)g1, g2)θ
−1,k/2)dg

where we recall that ψ is the standard additive character on A/Q given by x �→ e2πix on

R and is trivial on Zp for all p. We can fold this integral to obtain the collapsed integral

given by

∫

U2n(A)

ψ̄(Tr(σg))ε(τnι(u(g)g1, g2)θ
−1,k/2)dg.

We restrict ourselves now to looking at the infinite place as this is the place that forces

the vanishing of the integral for σ not totally positive definite. Recall that θ ∈ Sp4n(A f ),

so when we look at the infinite place, our integral becomes

∫

U2n(R)

ψ̄(Tr(σg))ε∞(τnι(u(g)g1, g2),k/2)dg. (5)
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1720 J. Brown

It is enough to consider g1 and g2 of the form g1 = Q(A1), g2 = u(x)Q(A2). This follows

from the Iwasawa decomposition and the right (K(N), j−k)-equivariance of ε∞. One can

use the fact that τn is of the form

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
1n 1n 0n 0n

0n 0n −1n 1n

⎞
⎟⎟⎟⎟⎠

to calculate

τnι(u(g)g1, g2) =

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
A1 A2 g tA−1

1 x tA−1
2

0 0 −tA−1
1

tA−1
2

⎞
⎟⎟⎟⎟⎠

,

where we use a ∗ to indicate that we are not interested in this entry of the matrix. We now

make the observation that for any g ∈ Sp4n(R), one has ε∞(g,k/2) = χ(det Ag) j(g, i)−k

where g = u(xg)Q(Ag)kg. This follows immediately from the definition of ε∞ and the fact

that j(g, i)−k = | det Ag|k j(kg, i)−k. Applying this to our current situation, we have

ε∞(τnι(u(g)g1, g2),k/2) = χ(det Ã)det

(
i

(
A1 A2

0 0

)
+

(
g tA−1

1 x tA−1
2

−tA−1
1

tA−1
2

))−k

where we write Ã = Aτnι(u(g)g1,g2) to ease the notation. Observe that we have

i

(
A1 A2

0 0

)
+

(
g tA−1

1 x tA−1
2

−tA−1
1

tA−1
2

)
=

(
i A1

tA1 + g i A2
tA2 + x

−1 1

)(
tA−1

1 0

0 tA−1
2

)
.

We now recall the formula that if D−1 exists, then we have

det

(
A B

C D

)
= det D det(A− BD−1C ).

This follows immediately from the identity

(
A B

C D

)
=

(
1 BD−1

0 1

) (
A− BD−1C 0

C D

)
.
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Siegel Eisenstein Series 1721

Thus, we have

ε∞(τnι(u(g)g1, g2),k/2) = χ(det Ã)(det A1 det A2)
−1 det(g + x + i A1

tA1 + i A2
tA2)

−k

= χ(det Ã)(det A1 det A2)
−1 det(g + z)−k

where z ∈ hn. Thus, the integral in equation (5) is equal to

χ(det Ã)(det A1 det A2)
−1

∫

U2n(R)

ψ(Tr(σg))det(g + z)−kdg = 0

unless σ is totally positive definite. This last equality is a classic result due to Siegel [33].

Alternatively, one can see [6] for an explicit proof of this result provided by Paul Garrett.

Thus, we have that E ′(ι(g1, g2)θ
−1,k/2) is a holomorphic cuspform in g1. Similarly, we

have that it is a holomorphic cuspform in g2 as well. Our previous comments allow us

to conclude from this that E(ι(g1, g2),k/2) is a holomorphic cuspform in g1 and g2. In

particular, the associated classical Eisenstein series E(diag[Z , W],k/2) is a holomorphic

cuspform in Z and W.

As was mentioned before, there is a functional equation for the Eisenstein series

relating s to (2n+ 1)/2 − s in this case (our m from the previous subsection is 2n here).

In particular, there is a function h(s) so that

E(diag[Z , W], (2n+ 1)/2 − s) = h(s)E(diag[Z , W], s).

While h(s) can be made explicit via [22], it is not necessary for our purposes. Observe

that if we specialize to the case s = k/2, we know that E(diag[Z , W], (2n+ 1)/2 − k/2)

and E(diag[Z , W],k/2) are both known to be holomorphic [22, 30]. In particular, since

neither is exactly the zero function, we have that h(s) cannot have a pole or zero at

s = k/2.

We now recall the Siegel operator �n. This is a linear operator taking modular

forms on Sp2n(Z) to Sp2n−2(Z) for any n ≥ 2. For F ∈ Mk(
) with 
 ⊂ Sp2n(Z) a congru-

ence subgroup, the Siegel operator is defined by

�n(F (τ )) = lim
λ→∞ F

(
τ 0

0 iλ

)

where τ ∈ hn−1. Our interest in this operator is the following result.
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1722 J. Brown

Theorem 3.2. [2, Theorem 3.13] Let F ∈ Mk(
) for 
 a congruence subgroup of Sp2n(Z).

If �n(F |γ ) = 0 for every γ ∈ Sp2n(Z), then F is a cuspform and conversely. �

We apply this theorem to our restricted Eisenstein series. In particular,

viewing E(diag[Z , W],k/2) as a holomorphic modular form in Z , we have that

�2n(E(diag[Z , W],k/2)) = 0. Using the fact that the map is linear, we have that

�2n(E(diag[Z , W], (2n+ 1)/2 − k/2)|γ×1) = h(k/2)�2n(E(diag[Z , W],k/2)|γ×1) = 0

for each γ ∈ Sp4(Z). Thus, E(diag[Z , W], (2n+ 1)/2 − k/2) is a holomorphic cuspform in

the variable Z . The variable W is handled in the same manner. Note that one could also

show this by just expanding each side of the functional equation in its Fourier expan-

sion. Thus, we obtain that E(diag[Z , W], (2n+ 1)/2 − k/2) is a holomorphic cuspform of

weight k and level 
(2n)
0 (N) in Z and W independently.

3.3 Pullbacks and an inner product relation

In this section we summarize a result of Shimura giving the inner product between a

cuspidal Siegel eigenform and the pullback of the Siegel Eisenstein series. See [31] for a

detailed treatment of this material. We specialize to the case of Sp4 × Sp4 embedded in

Sp8 as this will be the case for which we apply the result.

Let σ ∈ Sp8(A f ) be defined by

σ� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I8 if � � N⎛
⎜⎜⎝

I4 04(
02 I2

I2 02

)
I4

⎞
⎟⎟⎠ if � | N.

Strong approximation gives an element ρ ∈ Sp8(Q) so that E |ρ(Z , s) corresponds to

E(gσ−1, s).

Let F ∈ Sk(

(4)
0 (N)) be a Siegel eigenform. Applying [31, equation (6.17)] to our

situation, we obtain

〈DE |ρ (diag[Z , W], (5 − k)/2), (F |ς )c(W)〉 = π−3 Ak,N, L�
st(5 − k, F, χ)F (Z) (6)

where DE |ρ is the normalized Eisenstein series as defined in equation (3), Ak,N =
((−1)k 22k−3vN)/(3 [Sp4(Z) : 


(4)
0 (N)]), vN = ±1, L�

st(5 − k, F, χ) is the standard zeta func-
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Siegel Eisenstein Series 1723

tion as defined in equation (1), and (F |ς )c denotes the complex conjugates of the Fourier

coefficients of F |ς .

4 The Saito–Kurokawa Correspondence

The Saito–Kurokawa correspondence is a well-known result with several excellent refer-

ences for the basic facts [12, 17, 43]. For the facts we will be interested in, the reader is

advised to consult the section on Saito–Kurokawa lifts in [4]. Here, we will briefly recall

the Saito–Kurokawa correspondence and state some necessary facts but omit a lengthy

discussion preferring to point unfamiliar readers to the appropriate references.

Let f ∈ S2k−2(SL2(Z),O) be a newform with Fourier coefficients in a ring O and

k ≥ 2 an even integer. The Saito–Kurokawa correspondence associates to f a cuspi-

dal Siegel eigenform F f in the Maass spezialschar SM
k (Sp4(Z)). This correspondence

is achieved via a set of isomorphisms, the first being between S2k−2(SL2(Z)) and

S+
k−1/2(
0(4)). The isomorphism from Kohnen’s +-space of half-integral weight modular

forms to S2k−2(SL2(Z)) is given by sending

g(z) =
∑
n≥1

(−1)k−1n≡0,1(mod 4)

cg(n)q
n ∈ S+

k−1/2(
0(4))

to

ζDg(z) =
∞∑

n=1

⎛
⎝∑

d|n

(
D

d

)
dk−2cg(|D|n2/d2)

⎞
⎠ qn

where D is a fundamental discriminant with D < 0. The second isomorphism is between

Jcusp
k,1 (SL2(Z)� Z2) and S+

k−1/2(
0(4)) via the map

∑
D<0,r∈Z

D≡r2(mod 4)

c(D, r)e
(

r2 − D

4
τ + rz

)
�→

∑
D<0

D≡0,1(mod 4)

c(D)e(|D|τ).

Finally, we obtain an isomorphism between Jcusp
k,1 (SL2(Z)� Z2) and the space of Maass

spezialschar SM
k (Sp4(Z)) given by

φ(τ, z) �→ F (τ, z, τ ′) =
∑
m≥0

Vmφ(τ, z)e(mτ ′)
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1724 J. Brown

where Vm is the index shifting operator as defined in [12, Section 4]. We will need that

the Fourier coefficients of the form F arising from φ(τ, z) are related to the Fourier coef-

ficients of φ by

AF (n, r,m) =
∑

d|gcd(m,m,r)

dk−1cφ

(
4nm− r2

d2 ,
r

d

)
.

We recall that we write SNM
k (Sp4(Z)) for the orthogonal complement to

SM
k (Sp4(Z)) in Sk(Sp4(Z)) and refer to this as the space of non-Maass forms. The Saito–

Kurokawa correspondence is stated in the following theorem.

Theorem 4.1. [43] There is a Hecke-equivariant isomorphism between S2k−2(SL2(Z))

and SM
k (Sp4(Z)) such that if f ∈ S2k−2(SL2(Z)) is a newform, then one has

Lspin(s, F f ) = ζ(s − k + 1)ζ(s − k + 2)L(s, f). (7)
�

As our applications of the Saito–Kurokawa correspondence will be in terms of

arithmetic data, we also need the following two results.

Corollary 4.2. [4, Corollary 3.8] Given f ∈ Sk(SL2(Z),O) a newform, then F f also has

Fourier coefficients in O. In particular, if O is a discrete valuation ring, F f has a Fourier

coefficient in O×. �

Corollary 4.3. Let f ∈ Sk(SL2(Z)) be newform and F f the Saito–Kurokawa lift of f . One

has that F c
f = F f . �

Proof. This is straightforward by viewing the lift through the isomorphisms described

above. For example, if we let gf denote the half-integral weight modular form corre-

sponding to f , then just observe that gc
f maps to fc under the given isomorphism, as

does gfc. Thus, we must have gfc = gc
f . The others are even more obvious. Thus, we have

that F c
f = F fc. However, since f is a newform, we know that fc = f . This follows im-

mediately from the fact that the Hecke operators are self-adjoint with respect to the

Petersson product. This gives the result. �

We will also make use of the following three results.
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Siegel Eisenstein Series 1725

Theorem 4.4. [20, 21] Let f ∈ S2k−2(SL2(Z)) be a newform, F f ∈ SM
k (Sp4(Z)) the corre-

sponding Saito–Kurokawa lift, and g(z) = ∑
cg(n)qn the weight k − 1/2 cusp form corre-

sponding to f . We have the following inner product relation

〈F f , F f 〉 = (k − 1)

2532π
· cg(|D|)2
|D|k−3/2 · L(k, f)

L(k − 1, f, χD)
〈 f, f〉

where D is a fundamental discriminant so that D < 0 and χD is the character associated

to the field Q(
√

D). �

Theorem 4.5. [4, Theorem 3.10] Let N be a positive integer, � the set of primes dividing

N, and χ a Dirichlet character of conductor N. Let f ∈ S2k−2(SL2(Z)) be a newform and

F f the corresponding Saito–Kurokawa lift of f . The standard zeta function of F f factors

as

L�
st(2s, F f , χ) = L�(2s − 2, χ)L�(2s + k − 3, f, χ)L�(2s + k − 4, f, χ). �

Proposition 4.6. Let f ∈ S2k−2(SL2(Z)) be a newform, ρ f,λ the associated �-adic Ga-

lois representation, F f the Saito–Kurokawa lift, and ρF f ,λ the associated 4-dimensional

�-adic Galois representation. Then one has

ρF f ,λ =

⎛
⎜⎜⎝
εk−2

ρ f,λ

εk−1

⎞
⎟⎟⎠

where ε is the �-adic cyclotomic character and blank spaces in the matrix are assumed

to be 0’s of the appropriate size. �

Proof. This fact is used in [4], though not formally stated as a proposition there. It

follows directly from the decomposition of the Spinor L-function of F f , the fact that

ρF f ,λ is necessarily semi-simple, and the Brauer–Nesbitt theorem. �

5 Congruences between Saito–Kurokawa Lifts and Non-Maass Forms

In this section we will use the results obtained in Section 3 as well as arguments origi-

nally used in [4] to produce a congruence between a Saito–Kurokawa lift F f and a form
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1726 J. Brown

G ∈ SNM
k (Sp4(Z)). This congruence will provide the foundation for providing the lower

bound on the size of the appropriate Selmer group in Section 8.

Let k > 9 be an even integer and p a prime so that p > 2k − 2 and gcd(p, N) = 1.

Let E be a finite extension of Qp with ring of integers O and uniformizer � . We fix an

embedding of E into C that is compatible with the embeddings fixed in Section 2. Let p

be the prime of O lying over p.

Given two Siegel modular forms F and G, we write F ≡ G(mod�m) to mean that

ord�(AF (T) − AG(T)) ≥ m for all T . If F and G are Hecke eigenforms, we denote a con-

gruence between the eigenvalues as F ≡ev G(mod�m).

Let f ∈ S2k−2(SL2(Z)) be a newform and F f the Saito–Kurokawa lift of f . As in

[4], we begin by replacing the normalized Eisenstein series DE |ρ (diag[Z , W], (5 − k)/2) by

its trace so as to work with level 1. Write

E(Z , W) =
∑

γ×δ∈(Sp4(Z)×Sp4(Z))/(

4
0(N)×
4

0(N))

(DE |ρ )|γ×δ(diag[Z , W], (5 − k)/2).

We then have that E(Z , W) is a Siegel cusp form of weight k and level 1 in each variable

separately. In addition, one sees that the coefficients of E(Z , W) remain in Zp[χ ] by an

application of the q-expansion principle for Siegel modular forms [10, Proposition 1.5].

Let f0 = f, f1, . . . , fm be an orthogonal basis of newforms for S2k−2(SL2(Z)), and

let F0 = F f , F1 = F f1, . . . , Fm = F fm, Fm+1, . . . , Fr be an orthogonal basis of eigenforms of

Sk(Sp4(Z)). Note that we are implicitly using Corollary 4.3 and Theorem 4.4 here. We

enlarge E here if necessary so that both of the bases are defined over O and O contains

the values of χ . We write

E(Z , W) =
∑
i, j

ci, j Fi(Z)F
c
j (W)

for some ci, j ∈ C. The reader is urged to see [29, Lemma 1.1] or [15] for the general prin-

ciples of such expansions.

Proposition 5.1. With the notation as above, we have

E(Z , W) =
∑

0≤i≤r

ci,i Fi(Z)F
c
i (W), (8)
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Siegel Eisenstein Series 1727

that is, ci, j = 0 unless i = j. In particular, one has

ci,i = Ak,N L�
st(5 − k, Fi, χ)

π3〈F c
i , F c

i 〉 .
�

Proof. Fix j0 with 0 ≤ j0 ≤ r, and consider the inner product 〈E(Z , W), F c
j0
(W)〉. Using

the orthogonality of the basis, we have

〈E(Z , W), F c
j0(W)〉 =

∑
0≤i≤r

ci, j0〈F c
j0 , F c

j0〉Fi(Z). (9)

On the other hand, combining the facts that

〈E(Z , W), F c
f (W)〉Sp4(Z)

= 〈DE |ρ (diag[Z , W], (5 − k)/2), F c
f (W)〉
4

0(N)

and F f |ς = F f since F f is of full level with equation (6) gives

〈E(Z , W), F c
j0(W)〉 = π−3 Ak,N L�

st(5 − k, F j0 , χ)F j0(Z).

Combining this with equation (9) and using that the Fi form a basis allow us to conclude

that ci, j0 = 0 unless i = j0, and if i = j0, we have

cj0, j0 = Ak,N L�
st(5 − k, F j0 , χ)

π3〈F c
j0
, F c

j0
〉 .

Since j0 was arbitrary, we have

E(Z , W) =
∑

0≤i≤r

ci,i Fi(Z)F
c
i (W)

with the ci,i as desired. �

As our goal is to produce a congruence between F f and a Siegel cusp form that is

not a CAP form, the first step is a theorem which allows us to kill all of Fi with 1 ≤ i ≤ m.

First, we need the following result, giving the existence of complex periods.
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1728 J. Brown

Theorem 5.2. [28, Theorem 1] Let f ∈ S2k−2(SL2(Z),O) be a newform. There exist com-

plex periods �±
f such that for each integer m with 0 < m< 2k − 2 and every Dirichlet

character χ , one has

L(m, f, χ)

τ (χ)(2πi)m
∈

{
�−

f Oχ if χ(−1) = (−1)m,

�+
f Oχ if χ(−1) = (−1)m−1,

where τ(χ) is the Gauss sum of χ and Oχ is the extension of O generated by the values

of χ . We write Lalg(m, f, χ) to denote the value L(m, f, χ)/(τ (χ)(2πi)m). �

The theorem we will use to kill the Fi for 1 ≤ i ≤ m is as follows.

Theorem 5.3. [4, Theorem 5.4] Let f = f0, f1, . . . , fm be a basis of newforms of

S2k−2(SL2(Z),O) with k > 2. Suppose that the residual Galois representation ρ f,p is

irreducible and f is ordinary at p. There exists a Hecke operator t ∈ TO such that

tfi =
{
α f if i = 0,

0 if 1 ≤ i ≤ m,

where α = u〈 f, f〉/�+
f �

−
f , u is a unit in O. �

From this point on we assume that f is ordinary at p and ρ f,p is irreducible, so we

are able to apply this theorem. We write F ≡ G(mod�n) to indicate that ord�(AF (T) −
AG(T)) ≥ n for all T , that is, the congruence is a congruence of Fourier coefficients.

Applying the fact that the Saito–Kurokawa correspondence is Hecke-equivariant,

we are able to conclude that there exists tS ∈ TS
O so that

tSFi =
{
αF0 if i = 0,

0 if 1 ≤ i ≤ m.

Applying tS to equation (8), we obtain

tSE(Z , W) = αc0,0F0(Z)F
c
0 (W) +

∑
m< j≤r

cj, jt
SF j(Z)F

c
j (W). (10)

Before we study ord�(αc0,0), we show how it “controls” a congruence between F0 = F f

and a non-CAP eigenform.
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Suppose we can have ord�(αc0,0) = M < 0, that is, there exists a � -unit β so that

αc0,0 = � Mβ. Corollary 4.2 gives that there exists a T0 so that � � AF c
0
(T0). We claim that

this implies that ci,i �= 0 for at least one i with i > 0. If not, we would have

tSE(Z , W) = � MβF0(Z)F
c
0 (W).

However, since E(Z , W) has � -integral Fourier coefficients, tSE(Z , W) does as well. Thus,

upon multiplying both sides of the equation by �−M, we obtain that F0(Z)F c
0 (W) ≡

0(mod�), clearly a contradiction.

We now expand each side of equation (10) in terms of W, reduce modulo � , and

equate T th
0 Fourier coefficients. The O-integrality of the Fourier coefficients of tSE(Z , W)

combined with the fact that M < 0 gives

F0(Z) ≡ − �−M

AF c
0
(T0)β

∑
m< j≤r

cj, j AF c
j (T0)t

SF j(Z)(mod�−M).

Set

G = − �−M

AF c
0
(T0)β

∑
m< j≤r

cj, j AF c
j (T0)t

SF j(Z).

First, we note that if G ≡ 0(mod�−M), we obtain a contradiction to Corollary 4.2, so we

must have a nontrivial congruence. Secondly, since all of the F j’s with m< j ≤ r lie in

SNM
k (Sp4(Z)) and as we noted earlier that this space is stable under Hecke operators,

we have that tSF j is in SNM
k (Sp4(Z)) for m< j ≤ r. As G is a linear combination of forms

in SNM
k (Sp4(Z)), we must have G ∈ SNM

k (Sp4(Z)). Thus, if we show that ord�(αc0,0) is

less then 0, we have a nontrivial congruence between F f and a form in SNM
k (Sp4(Z)), in

particular, between a Saito–Kurokawa lift and a non-Saito–Kurokawa lift.

Our discussion of αc0,0 will be brief as most of the work done in [4] applies

verbatim to this situation. Corollary 4.3 allows us to apply Theorem 4.4 to 〈F c
0 , F c

0 〉 as

this is 〈F f , F f 〉. Following the same argument as in [4], we are able to conclude that

αc0,0 = Bk,N,D,χL(k, f, D, χ)

where

L(k, f, D, χ) = L�(3 − k, χ)Lalg(k − 1, f, χD)Lalg(1, f, χ)Lalg(2, f, χ)

Lalg(k, f)
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and

Bk,N,D,χ = (−1)k+122k+43u|D|kτ(χD)τ (χ)
2

(k − 1)[Sp2(Z) : 
2
0(N)]|D|3/2|cgf (|D|)|2L�(1, f, χ)L�(2, f, χ)

where D < 0 is a fundamental discriminant so that χD(−1) = −1. It was shown in [4] that

as long as gcd(p, D[Sp4(Z) : 
(4)
0 (N)]) = 1 one has ord�(Bk,N,D,χ ) ≤ 0. Thus, we obtain a

divisibility condition on L-functions associated to f guaranteeing the existence of the

congruence which allows us to conclude the following theorem.

Theorem 5.4. Let k > 9 be an even integer and p a prime so that p > 2k − 2. Let f ∈
S2k−2(SL2(Z),O) be a newform and F f the Saito–Kurokawa lift of f . Let f be ordinary

at p and ρ f,p be irreducible. If there exists N > 1, a fundamental discriminant D < 0 so

that χD(−1) = −1, p � ND[Sp4(Z) : 
(4)
0 (N)], and a Dirichlet character χ of conductor N

so that

−M = ord�(L(k, f, D, χ)) < 0,

then there exists G ∈ SNM
k (Sp4(Z)) so that

F f ≡ G(mod� M). �

We repeat Lemma 6.4 of [4] here for completeness, though it will not be needed.

Lemma 5.5. With the setup as in Theorem 5.4, there exists an eigenform F ∈
SNM

k (Sp4(Z)) so that F f ≡ev F (mod�). �

Proof. Let G be as in Theorem 5.4. The Hecke algebra TS
O decomposes as

TS
O

∼=
∏

TS
O,m

where the product is over the maximal ideals of TS
O containing � . Write mF f for the

maximal ideal corresponding to F f , that is, mF f is the kernel of the O-algebra homomor-

phism λF f : TS
O → O sending t to the eigenvalue of t acting on F f . The decomposition

gives that there exists a Hecke operator t ∈ TS
O so that tF f = F f and tF = 0 if F does not

correspond to the ideal mF f , that is, if F �≡ev F f (mod�).
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Write G = ∑
ci Fi. By construction, the only Fi that appear are in SNM

k (Sp4(Z)).

Applying the Hecke operator t to G, we see that F f ≡ tG(mod�) and so tG �≡ 0(mod�).

Thus, there is an eigenform F ∈ SNM
k (Sp4(Z)) so that F f ≡ev F (mod�) as claimed. �

We close this section by phrasing our results in terms of the CAP ideal [19]. This

ideal can be thought of as a generalization of the Eisenstein ideal to our situation. As the

Eisenstein ideal measures congruences to be Eisenstein series, the CAP ideal measures

congruences between F f and non-CAP modular forms.

Let TNM
O denote the image of TS

O inside of EndC(SNM
k (Sp4(Z))). Let φ : TS

O → TNM
O

denote the canonical O-algebra surjection. Denote the annihilator of F f in TS
O by

Ann(F f ). The annihilator of F f in TS
O is a prime ideal, and one has that the map λF f

induces an O-algebra isomorphism

TS
O/Ann(F f ) ∼= O.

As the map φ is surjective, one has that φ(Ann(F f )) is an ideal in TNM
O . We call this ideal

the CAP ideal associated to F f .

One has that there exists an r ∈ Z≥0 so that the following diagram commutes:

note that all of the maps in the above diagram are O-algebra surjections.

Corollary 5.6. With r as in the diagram above and M as in Theorem 5.4, we have

r ≥ M. �

TS
O

φ ��

��

TNM
O

��
TS
O/Ann(F f )

φ ��

λF f

��

TNM
O /φ(Ann(F f ))

�
��

O �� O/� rO.

Proof. Let G be as in Theorem 5.4. Choose a t ∈ φ−1(� r) ⊂ TS
O. Note that this means

that tG = � rG. We also have by the commutativity of the diagram that t ∈ Ann(F f ), and

so the congruence in Theorem 5.4 gives � rG ≡ 0(mod� M), that is,

G ≡ 0(mod� M−r).
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Now assume that r < M. The fact that F f ≡ G(mod� M) and G ≡ 0(mod�) implies that

F f ≡ 0(mod�).

However, this is impossible, and so we must have r ≥ M as claimed. �

6 Residually Reducible Representations and Lattices

In this section we construct the lattice we will use in Section 8 to give a lower bound on

the appropriate Selmer group. Our main result here is a generalization of Theorem 1.1

of [38]. Whereas his result deals with the case of ρss splitting into two irreducible rep-

resentations, our results are for when ρss splits into three irreducible representations.

The proofs given here are adapted from those in [38] to our situation. As Theorem 1.1 of

[38] is a variant of the main result of [36], our result here is very much a variant of the

main result of [5]. The results contained in this section or some alternative version of

them will also appear in [34].

Let O be a discrete valuation ring and R a reduced local commutative algebra

that is finite over O and is Henselian. Let mR be the maximal ideal of R and κR the

residue field. We use the fact that R is reduced to embed it into a product of its irre-

ducible components

R ⊂ R̃ =
∏
℘

O℘ ⊂
∏
℘

F℘ = FR

where F℘ is the field of fractions of O℘ . Let m℘ be the maximal ideal of O℘ and κ℘ the

residue field.

Let MFR be a finite free FR-module, and let L be a R-submodule of MFR . We say

L is a R-lattice if L is finite over R and L ⊗R FR = MFR .

Theorem 6.1. Let A be an R-algebra, and let ρ be an absolutely irreducible represen-

tation of A on F n
R . Suppose that there are at least ndistinct elements in κ×

R , and suppose

that there exist three representations ρi for 1 ≤ i ≤ 3 in Mni (R) and I ⊂ R a proper ideal

of R such that

1. the coefficients of the characteristic polynomial of ρ belong to R;

2. the characteristic polynomials of ρ and ρ1 ⊕ ρ2 ⊕ ρ3 are congruent modulo I ;

3. the residual representations ρi are absolutely irreducible for 1 ≤ i ≤ 3;

4. ρi �≡ ρ j if i �= j.
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Then there exists an A -stable R-lattice L in F n
R and R-lattices T1 and T2 of FR such

that we have the following exact sequence of A -modules:

0 �� N1 ⊕ N2 �� L ⊗ R/I �� ρ3 ⊗ R/I
s��

�� 0,

where Ni = ρi ⊗ Ti/ITi for i = 1,2 and s is a section (though only of R/I -modules).

Moreover, L has no quotient isomorphic to a representation ρ′ with ρ′ ss = ρ1 ⊕ ρ2. �

Let ρ℘ : A → Mn(F℘) be the representation arising from ρ via the projection

FR → F℘ . Since the trace of ρ℘ takes values in O℘ , we can find an A -stable O℘-lattice

L℘ in F n
℘ . Write ρ℘ for the residual representation ρ℘ : A → Mn(κ℘). We abuse the

notation and write ρi for the residual representation ρi : A → Mni (κR) as well as the

residual representation arising from the natural projection from κR → κ℘ . The fact that

ρss
℘ = ρ1 ⊕ ρ2 ⊕ ρ3 allows us to conclude that there is an O℘-basis of L℘ so that

ρ℘ : A → Mn(O℘) (11)

with

ρ℘(a) =

⎛
⎜⎜⎝
ρ1(a)  1  2

 3 ρ2(a)  4

0 0 ρ3(a)

⎞
⎟⎟⎠ (12)

and  1 = 0 or  3 = 0. In other words, there is an O℘-basis of L℘ and a permutation σ of

{1,2} so that

ρ℘(a) =

⎛
⎜⎜⎝
ρσ(1)(a)  1  2

0 ρσ(2)(a)  4

0 0 ρ3(a)

⎞
⎟⎟⎠. (13)

We adopt the convention that σ(3) = 3. Write n′
i = ∑i

j=1 ni, !i = ρσ(i), mi = nσ(i), and m′
i =∑i

j=1 mj. Set ρR̃ = (ρ℘)℘ : A → Mn(R̃).

The fact that each ρi is absolutely irreducible implies that imρi = Mni (κR). Com-

bining this with ρi �≡ ρ j if i �= j allows us to conclude that there exists a0 ∈ A so that

det(X − ρR̃(a0)) has n distinct roots α1, . . . , αn where ρR̃(a) ∈ Mn(R̃/Rad(R̃)). Hensel’s
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lemma guarantees that there exist n distinct elements α1, . . . , αn ∈ R that are roots of

det(X − ρR̃(a0)) so that αi ≡ αi(modmR). After a change of basis, we may assume that

ρR̃(a0) = diag(α1, . . . , αn).

Lemma 2.1 of [5] gives that the R-submodule of Mn(R̃) generated by the powers of ρR̃(a0)

is exactly the set of diagonal matrices with entries in R. So for all i with 1 ≤ i ≤ n, there

exists fi ∈ A so that

ρR̃( fi) = E(αi) = diag(0, . . . ,0,1,0, . . . 0)

with 1 in the ith place. We also set a1,a2, and a3 to be the elements in A so that

ρR̃(a1) = E1 =

⎛
⎜⎜⎝

1n1 0 0

0 0n2 0

0 0 0n3

⎞
⎟⎟⎠,

ρR̃(a2) = E2 =

⎛
⎜⎜⎝

0n1 0 0

0 1n2 0

0 0 0n3

⎞
⎟⎟⎠,

and

ρR̃(a3) = E3 =

⎛
⎜⎜⎝

0n1 0 0

0 0n2 0

0 0 1n3

⎞
⎟⎟⎠.

Similarly, we define a′
1,a′

2, and a′
3 to be the elements in A so that

ρR̃(a′
1) = E ′

1 =

⎛
⎜⎜⎝

1m1 0 0

0 0m2 0

0 0 0m3

⎞
⎟⎟⎠,

ρR̃(a′
2) = E ′

2 =

⎛
⎜⎜⎝

0m1 0 0

0 1m2 0

0 0 0m3

⎞
⎟⎟⎠,
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and

ρR̃(a′
3) = E ′

3 =

⎛
⎜⎜⎝

0m1 0 0

0 0m2 0

0 0 1m3

⎞
⎟⎟⎠.

We now consider R̃n with an action of A given by ρR̃ . Let (e1, . . . , en) be the

canonical basis, and set L as the R-sublattice of R̃n generated by ρR̃(a)en as a runs

through A . It is clear that L is A -stable by construction. Set Li = Ei(L ) for i = 1,2,3.

Trivially, we have L = L1 ⊕ L2 ⊕ L3.

Lemma 6.2. The lattice Li is free of rank ni over R for 1 ≤ i ≤ 3. �

Proof. This is Lemma 1.1 of [38]. We give the proof here for i = 3 as the other two cases

are identical. The definition of L3 given that L3 ⊗R κR is generated by

⎛
⎜⎜⎝

0n1 0 0

0 0n2 0

0 0 ρ3(a)

⎞
⎟⎟⎠ en

as a runs through A . The fact that imρ3 = Mn3(κR) gives that L3 ⊗R κR = κRen′
2+1 ⊕

· · · ⊕ κRen. For n′
2 + 1 ≤ i ≤ n, let e′

i ∈ L3 be a lifting of ei. Theorem 2.3 in [23] (essentially

Nakayama’s lemma) gives that L3 = Re′
n′

2+1 + · · · + Re′
n. We can now use the fact that

L3 ⊗R FR is of rank n3 = n− n′
2 over FR to conclude that the sum must be direct. �

Write ρL = ρR̃ |L . We can write the decomposition L = L1 ⊕ L2 ⊕ L3 as L =
Lσ(1) ⊕ Lσ(2) ⊕ L3, which allows us to write ρL in blocks

ρL (a) =

⎛
⎜⎜⎝

A1,1(a) A1,2(a) A1,3(a)

A2,1(a) A2,2(a) A2,3(a)

A3,1(a) A3,2(a) A3,3(a)

⎞
⎟⎟⎠

where

Ai, j(a) = ResLσ( j) (E
′
i ◦ ρR̃(a)) ∈ HomR(Lσ( j),Lσ(i)).
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Lemma 6.3. The map

A → HomR(L3,Lσ(1)) ⊕ HomR(L3,Lσ(2)) ∼= HomR(L3,Lσ(1) ⊕ Lσ(2))

a �→ (A1,3(a), A2,3(a))

is surjective as a map of R-modules. Moreover, if there exists an a ∈ A so that A1,2(a) �=
0, then the map

A → HomR(Lσ(2),Lσ(1)) ⊕ HomR(L3,Lσ(1)) ⊕ HomR(L3,Lσ(2))

a �→ (A1,2(a), A3,1(a), A2,3(a))

is surjective as a map of R-modules. �

Proof. This is a generalization of Lemma 1.2 of [38]. The necessary work was done in

Lemma 2.3 of [5], so here we merely reduce to what was shown there.

We prove the first statement. If we can show that the map

A ⊗R κR
ϑ→ HomκR(L3 ⊗R κR ,Lσ(1) ⊗R κR) ⊕ HomκR(L3 ⊗R κR ,Lσ(2) ⊗R κR)

∼=
n⊕

i=m′
2+1

HomκR(κRei,Lσ(1) ⊗R κR) ⊕
n⊕

k=m′
2+1

HomκR(κRek,Lσ(2) ⊗R κR)

∼=
n⊕

i=m′
2+1

m′
1⊕

j=1

HomκR(κRei, κRej) ⊕
n⊕

k=m′
2+1

m′
2⊕

l=m′
1+1

HomκR(κRek, κRel)

is surjective, then Nakayama’s lemma will give the result. However, to see surjectivity

here, it is enough to see that the image contains each (i, j) × (k, l)-factor. In terms of the

block decomposition into matrices as above, this amounts to showing that eu,v is in the

image for all 1 ≤ u ≤ m′
2, m′

2 + 1 ≤ v ≤ n for eu,v the matrix with a 1 in the uvth entry and

0’s elsewhere. That this is true is shown in Lemma 2.3 of [5].

The second statement follows from the same method. �

As we are viewing these morphisms of R-modules as matrices with entries in

FR , we can compute their traces. We now rehash the work in [5] in our current setting.
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Lemma 6.4. For all a ∈ A and 1 ≤ i ≤ 3, we have Tr(Ai,i(a)) ∈ R and

Tr(Ai,i(a)) ≡ Tr(!i(a))(mod I ). �

Proof. Observe that one has Tr(Ai,i(a)) = Tr(E ′
iρR̃(a)E ′

i) = Tr(ρR̃(a′
iaa′

i)) ∈ R, and so the

first statement holds.

By assumption (2) we have that for all a ∈ A ,

Tr(!1(a
′
iaa′

i)) + Tr(!2(a
′
iaa′

i)) + Tr(!3(a
′
iaa′

i)) ≡ Tr(ρR̃(a′
iaa′

i)) = Tr(Ai,i(a))(mod I ).

We have that !i(a′
j) ≡ 0(mod I ) unless i = j. Thus, we obtain

Tr(Ai,i(a)) ≡ Tr(!i(a))(mod I )

for 1 ≤ i ≤ 3. �

Lemma 6.5. For all a,b ∈ A and 1 ≤ j ≤ 3, we have

Tr

⎛
⎜⎜⎝

∑
1≤i≤3

i �= j

Aj,i(a)Ai, j(b)

⎞
⎟⎟⎠ ∈ R

and

Tr

⎛
⎜⎜⎝

∑
1≤i≤3

i �= j

Aj,i(a)Ai, j(b)

⎞
⎟⎟⎠ ≡ Tr

⎛
⎜⎜⎝

∑
1≤i≤3

i �= j

Aj,i(b)Ai, j(a)

⎞
⎟⎟⎠ (mod I ).

�

Proof. We prove the case with j = 3 as the others are completely analogous. Let a,b ∈
A . Observe that

Tr

(
2∑

i=1

A3,i(a)Ai,3(b)

)
= Tr(E ′

3ρR̃(ab)E ′
3)

= Tr(ρR̃(a3aba3)) ∈ R.
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This proves the first claim.

Using the previous lemma, we have that

Tr(A3,3(ab)) ≡ Tr(!3(ab))(mod I )

= Tr(!3(a)ρ3(b))

= Tr(!3(b)ρ3(a))

= Tr(!3(ba))

≡ Tr(A3,3(ba))(mod I ).

Thus, Tr(A3,3(ab)) ≡ Tr(A3,3(ba))(mod I ) for all a,b ∈ A . We combine this with the fact

that ρR̃(ab) = ρR̃(a)ρR̃(b) to reach the desired congruence modulo I . �

Lemma 6.6. For all a ∈ A , we have Ai, j(a) ∈ HomR(Lσ( j),mRLσ(i)) for i > j. �

Proof. Suppose there exists a ∈ A so that Ai, j(a) /∈ HomR(Lσ( j),mRLσ(i)). Then there

exists ℘ so that after localization at ℘, one has ρ℘(r)(Lσ( j),℘) that is not contained in

m℘Lσ(i),℘ . However, this contradicts equation (13). �

We use this lemma as our base case in an induction argument as used in [5] and

[38]. We prove that for i > j, we have

Ai, j(a) ∈ HomR(Lσ( j), (m
k
R + I )Lσ(i)) (14)

for all a ∈ A . Assume inductively that the statement is true for some k. We break the

proof into two steps. First, we prove that the statement is true for a ∈ ker(ρ ⊗R κR).

Lemma 6.7. Let a ∈ ker(ρ ⊗R κR). Then under our induction hypothesis, we have

Ai, j(a) ∈ HomR(Lσ( j), (m
k+1
R + I )Lσ(i))

for i > j. �

Proof. The fact that a ∈ ker(ρ ×R κR) implies that Aj,i(a)(Lσ(i)) ⊂ mRLσ( j). Thus, our

induction hypothesis gives that for any b ∈ A , we have

Ai, j(b)Aj,i(a)(Lσ(i)) ⊂ Ai, j(b)mR(Lσ( j)) = mR Ai, j(b)(Lσ( j)) ⊂ (mk+1
R + I )Lσ(i).
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Thus, by Lemma 6.5, we have

Tr

⎛
⎜⎜⎝

∑
j

j �=i

Ai, j(a)Aj,i(b)

⎞
⎟⎟⎠ ∈ m

k+1
R + I.

Consider now fixed i0 and j0 with i0 > j0. Let � ∈ Lσ( j0). We wish to show that

Ai0, j0(a)� ∈ (mk+1
R + I )Lσ(i0). Write

Ai0, j0(a)� =
m′

i0∑

s=m′
i0−1+1

αse
′
s

for some αs ∈ R. Lemma 6.3 guarantees that for each m′
i0−1 + 1 ≤ s ≤ m′

i0
, there exists a

ts ∈ A so that Aj0,i0(ts)(e′
s) = �, Aj0,i0(ts)(e′

r) = 0 for r �= s, and Aj,i0(ts)(e′
r) = 0 for all j �= j0,

m′
j−1 + 1 ≤ r ≤ m′

j. Thus, we have αi0 = Tr(Ai0, j0(a)Aj0,i0(ts)) ∈ m
k+1
R + I for each m′

i0−1 +
1 ≤ s ≤ m′

i0
, which gives the first result. �

Lemma 6.8. Under our induction hypothesis, we have

Ai, j(a) ∈ HomR(Lσ( j), (m
k+1
R + I )Lσ(i))

for all a ∈ A and i > j. �

Proof. Consider Im ρ ⊗ κR ⊂ Hom(L ⊗ κR ,L ⊗ κR). We denote the projection of ρ(a)

on to Hom(Lσ(t) ⊗ κR ,Lσ(s) ⊗ κR) by A
s,t

. Applying Lemma 6.6, we have a decomposition

Im ρ ⊗ κR =
∑

1≤s≤t≤3

(Im ρ ⊗ κR)s,t

and so we can denote any element of Im ρ ⊗ κR by a matrix

⎛
⎜⎜⎝

A
1,1

A
1,2

A
1,3

0 A
2,2

A
2,3

0 0 A
3,3

⎞
⎟⎟⎠

with A
s,t ∈ (Im ρ ⊗ κR)s,t.
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Lemma 6.7 gives well-defined linear maps

�i, j : Im ρ ⊗ κR → HomR(Lσ( j), (m
k
R + I )Lσ(i)/(m

k+1
R + I )Lσ(i))

for i > j induced by the map a �→ Ai, j(a). To finish the induction, it is enough to show

that �i, j is 0 for i > j. Observe that by definition, �i, j is zero on diagonal matrices for

i > j. The relation

Ai, j(ab) =
3∑

s=1

Ai,s(a)As, j(b)

gives the equation

�i, j(B C ) =
j∑

s=1

�i,s(B)C
s, j +

i∑
s= j+1

�i,s(B)�s, j(C ) +
3∑

s=i+1

B
i,s
�s, j(C ).

It is enough to show that for each 1 ≤ u ≤ v ≤ 3, �i, j(D) = 0 for D defined by D
i, j = 0

unless i = u, j = v. We have

�i, j(D) = �i, j(Dρ(a′
v))

=
j∑

s=1

�i,s(D)ρ(a′
v)

s, j +
i∑

s= j+1

�i,s(D)�s, j(ρ(a
′
v)) +

3∑
s=i+1

D
i,s
�s, j(ρ(a

′
v))

=
j∑

s=1

�i,s(D)ρ(a′
v)

s, j (15)

= �i, j(D) (16)

= 0. (17)

Note that equation (15) follows from the fact that ρ(a′
v) = E ′

v, j < s, and �s, j of a diagonal

matrix is 0 for s �= j. Equation (16) follows from noting ρ(a′
v)

s, j = 0 unless s = j = v, in

which case ρ(a′
v)

v,v = Iv. Finally, we see that �i, j(D) = 0 unless (i, j) = (u, v), but this is

impossible since i > j and u ≤ v. This completes the proof and hence the induction. �

We summarize what we have proven thus far (in terms of ρi’s and Li’s) in the

following proposition. The only point that needs mentioning is the statement about the

action on the quotient that also requires Theorem 1 in [9].
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Proposition 6.9. The lattice (L1 ⊗ R/I ) ⊕ (L2 ⊗ R/I ) is stable under the action of A ,

and the action of A on the quotient (L ⊗ R/I )/((L1 ⊗ R/I ) ⊕ (L2 ⊗ R/I )) is isomor-

phic to ρ3 ⊗ R/I . Moreover, either HomR/I (L1 ⊗ R/I,L2 ⊗ R/I ) = 0 or HomR/I (L2 ⊗
R/I,L1 ⊗ R/I ) = 0. �

It now remains to consider the action of A on (L1 ⊗ R/I ) ⊕ (L2 ⊗ R/I ).

Lemma 6.10. 1. The R-modules

L1(αi) = E(αi)L1 = ker(ρR̃(a0) − αi Id) ∩ L1

are mutually isomorphic to some module T1 for 1 ≤ i ≤ n1 and similarly the

R-modules

L2(αi) = E(αi)L2 = ker(ρR̃(a0) − αi Id) ∩ L2

are mutually isomorphic to some module T2 for n1 + 1 ≤ i ≤ n2.

2. As an A -module, L j ⊗ R/I ∼= ρ j ⊗ T j/IT j for j = 1,2. �

Proof. We prove this theorem for L1 as the argument for L2 is exactly the same. Recall

that we let fi ∈ A denote the element so that ρR̃( fi) = diag(0, . . . ,0,1,0, . . . ,0) with a

1 in the ith place. Given any i, j ∈ {1, . . . ,n1}, the irreducibility of ρ1 gives an element

σi, j ∈ A so that ρR̃(σi, j)ei = ej. Thus, ρR̃( fjσi, j fi) gives a morphism φi, j from L1(αi) to

L1(α j). Our choice of fi’s and σi, j given that φi, j ◦ φ j,i gives an automorphism of L1(αi),

and so φi, j is an isomorphism. This gives the first result where we set T1 = L1(α1) and

T2 = L2(αn1+1).

Fix an isomorphism L1 ⊗ R/I ∼= (T1/IT1)
n1 . Set E = EndR/I (T1/IT1) (a noncom-

mutative Artinian algebra) and θ : R/I → E the canonical algebra homomorphism. The

action of A on L1 ⊗ R/I gives a representation ρ′
1 in Mn1(E ) so that Tr(ρ′

1(a)) ∈ θ(R/I ) is

defined for all a ∈ A , and we have Tr(ρ′
1(a)) = θ(Tr(ρ1(a))) for all a ∈ A . A generalization

of Theorem 1.1.2 in [9] then gives the result. See the proof of Lemma 1.5 in [38] for the

proof of this generalization. �
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Proof of Theorem 6.1. In light of Proposition 6.9 and Lemma 6.10, it only remains to

prove the last statement of the theorem. Suppose some quotient of L is isomorphic to

ρ′ with ρ′ ss = ρ1 ⊕ ρ2. Let L ′ be the sublattice of L that is stable under the action of A

so that L /L ′ ∼= ρ′. From our decomposition of L , we inherit a decomposition of L ′ as

L ′ = L ′
1 ⊕ L ′

2 ⊕ L ′
3. Thus, we have

L /L ′ = L1/L
′
1 ⊕ L2/L

′
2 ⊕ L3/L

′
3

∼= ρ′.

However, our assumption on ρ′ ss gives that L3 = L ′
3. This, combined with the fact that

L is generated by L3 over A , gives L = L ′, a contradiction. Thus, no such quotient can

exist. It is useful to observe that what this is saying in terms of the matrices is that A1,3

and A2,3 cannot both be 0. �

7 Selmer Groups

Let K be a field, and write GK for Gal(K/K). Let M be a topological GK-module. We

write the cohomology group H1
cont(GK , M) as H1(K, M) where “cont” refers to continuous

cocycles. For a prime �, we write D� for the decomposition group at � and identify it with

GQ�
.

Let E/Qp be a finite extension. Let O be the ring of integers of E and � a

uniformizer. Let V be a finite dimensional Galois representation over E . We will also

find it convenient to write ρ : GQ → GLn(E) to denote the Galois representation V when

dimE (V) = n. We switch interchangeably between these notations depending upon con-

text. Let T ⊆ V be a Galois-stable O-lattice, that is, T is stable under the action of GQ

and T ⊗O E ∼= V . Set W = V/T .

We write Bcris for the ring of p-adic periods [14]. Set

D = (V ⊗Qp Bcris)
Dp

and

Cris(V) = H0(Qp, V ⊗Qp Bcris).

We say the representation V is crystalline if dimQp V = dimQp Cris(V). Let Fili D be a

decreasing filtration of D. If V is crystalline, we say V is short if Fil0 D = D, Filp D = 0,

and if whenever V ′ is a nonzero quotient of V , then V ′ ⊗Qp Qp(p− 1) is ramified. Note
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that Qp(n) is the 1-dimensional space over Qp on which GQ acts via the nth power of the

p-adic cyclotomic character.

The local Selmer groups are defined as follows. Set

H1
f (Q�, V) =

{
H1

ur(Q�, V) � �= p

ker(H1(Qp, V) → H1(Qp, V ⊗Qp Bcris)) � = p

where

H1
ur(Q�, M) = ker(H1(Q�, M) → H1(I�, M))

for any D�-module M where I� is the inertia group at �. With W as above, we define

H1
f (Q�, W) to be the image of H1

f (Q�, V) under the natural map H1(Q�, V) → H1(Q�, W).

Definition 7.1. The Selmer group of W is given by

Sel(W) = ker

(
H1(Q, W) →

⊕
�

H1(Q�, W)

H1
f (Q�, W)

)
,

that is, it is the cocycles c ∈ H1(Q, W) that lie in H1
f (Q�, W) when restricted to D�. �

Before we can define the degree n Selmer groups of interest, we must recall the

notion of extensions of modules and the relationship between these extensions and the

first cohomology group. An extension of M by N is a short exact sequence

0 �� N
α �� X

β �� M �� 0

where X is a R[G]-module and α and β are R[G]-homomorphisms. We sometimes refer

to such an extension as the extension X. We say two extensions X and Y are equivalent

if there is a R[G]-isomorphism γ making the following diagram commute

0 �� N
αX ��

idN

��

X
βX ��

γ

��

M ��

idM

��

0

0 �� N
αY �� Y

βY �� M �� 0.
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Let Ext1
R[G](M, N) denote the set of equivalence classes of R[G]-extensions of M by N

which split as extensions of R-modules, that is, if X is the extension of M by N, then

X ∼= M ⊕ N as R-modules.

The following result will allow us to appropriately define the degree n Selmer

group. The case where M = N is given as Proposition 4 in [41].

Theorem 7.2. [7, Theorem 9.2] Let M and N be R[G]-modules. There is a one–one corre-

spondence between the sets H1(G,HomR(M, N)) and Ext1
R[G](M, N). �

The map from Ext1
R[G](M, N) to H1(G,HomR(M, N)) is given as follows. Let

0 �� N
α �� X

β �� M ��

sX

��
0

be an extension with sX an R-section of X. This extension is mapped to the cohomology

class g �→ cg where cg : M → N is defined by

cg(m) = α−1(ρ(g)sX(ρM(g−1)m) − sX(m))

where ρ denotes the G-action on X and ρM the G-action on M.

As it will be useful later, we briefly consider the case where N = N1 ⊕ N2. In this

case, we have that

Ext1
R[G](M, N) ∼=

2∏
i=1

Ext(M, Ni)

and

H1(G,HomR(M, N)) ∼= H1(G,HomR(M, N1) ⊕ HomR(M, N2))

∼= H1(G,HomR(M, N1)) ⊕ H1(G,HomR(M, N2)).

Thus, in this case given an extension X ∈ Ext1
R[G](M, N), we obtain cohomology classes

c1 ∈ H1(G,HomR(M, N1)) and c2 ∈ H1(G,HomR(M, N2)).

Let W[n] be the O-submodule of W consisting of elements killed by �n. The pre-

vious theorem gives a bijection between Ext1
(O/�n)[Dp](O/�n, W[n]) and H1(Dp, W[n]). For
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� �= p, we define the local degree n Selmer groups by H1
f (Q�, W[n]) = H1

ur(Q, W[n]). At the

prime p, we define the local degree n Selmer group to be the subset of classes of exten-

sions of Dp-modules

0 �� W[n] �� X �� O/�n �� 0

where X lies in the essential image of the functor V defined in Section 1.1 of [11]. The

precise definition of V is technical and is not needed here. We content ourselves with

stating that this essential image is stable under direct sums, subobjects, and quotients

[11, §2.1]. For our purposes, the following two propositions are what are needed.

Proposition 7.3. [11, p. 670] If V is a short crystalline representation at p, T a Dp-stable

lattice, and X a subquotient of T/�n that gives an extension of Dp-modules as above,

then the class of this extension is in H1
f (Qp, W[n]). �

Proposition 7.4. [11, Proposition 2.2] The natural isomorphism

lim−→
n

H1(Q�, W[n]) ∼= H1(Q�, W)

induces isomorphisms

lim−→
n

H1
ur(Q�, W[n]) ∼= H1

ur(Q�, W)

and

lim−→
n

H1
f (Qp, W[n]) ∼= H1

f (Qp, W).
�

Let M be a Zp-module. We denote the Pontryagin dual Homcont(M,Qp/Zp) of M

by M∨. In particular, we denote the dual of the Selmer group Sel(W) by S(W) to ease the

notation.

We close this section with the following results on S(W).

Lemma 7.5. [19, Lemma 9.4] S(W) is a finitely generated O-module. �

Lemma 7.6. [19, Lemma 9.5] If the modulo � reduction ρ of ρ is absolutely irreducible,

then the length of S(W) as an O-module is independent of the choice of the lattice T . �
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8 A Lower Bound on the Selmer Group

Let E/Qp be a finite extension as before, large enough so that our results from Section 5

are defined over E . We enlarge E when necessary so that the appropriate Galois repre-

sentations in this section are defined over E as well. Let O be the ring of integers of E ,

� the uniformizer, p = (�) the prime ideal over p, and F the residue field.

Let ρ f,p : GQ → GL(Vf,p) be the p-adic Galois representation associated to an

eigenform f , Tf,p a GQ-stable O-lattice, and Wf,p = Vf,p/Tf,p. We denote twists by the

mth power of the cyclotomic character by writing Vf,p(m) and similarly for Wf,p(m).

We drop the subscript f and p except for the statement of theorems as they are fixed

throughout the section, that is, we set W = Wf,p, T = Tf,p, and V = Vf,p.

We have the following result giving the existence of 4-dimensional Galois repre-

sentations attached to Siegel eigenforms.

Theorem 8.1. [35, Theorem 3.1.3] Let F ∈ Sk(Sp4(Z)) be an eigenform, KF the number

field generated by the Hecke eigenvalues of F , and ℘ a prime of KF over p. There exists

a finite extension E of the completion of KF,℘ of KF at ℘ and a continuous semi-simple

Galois representation

ρF,℘ : GQ → GL4(E)

unramified away from p so that for all � �= p, we have

det(X · 14 − ρF,℘(Frob�)) = Lspin,(�)(X). �

The following result is crucial in producing elements in the Selmer group.

Theorem 8.2. [13, 37] Let F be as in Theorem 8.1. The restriction of ρF,℘ to the decom-

position group Dp is crystalline at p. In addition, if p > 2k − 2, then ρF,℘ is short. �

Recall that we denoted the image of TS
O in EndC(SNM

k (Sp4(Z))) by TNM
O . Let MS

denote the set of maximal ideals of TS
O and MNM denote the set of maximal ideals of

TNM
O . Write TNM

O = ∏
m∈MNM TNM

O,m
where the subscript m denotes localization at m. Again

we let φ denote the natural projection from TS
O to TNM

O . Let Mc denote the set of primes
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in MS that are preimages of elements of MNM under φ and Mnc = MS − Mc. Our fac-

torization of TS
O and TNM

O allows us to factor the map φ as

φ =
∏

m∈Mc

φm ×
∏

m∈Mnc

0m

where 0m is the zero map and φm : TS
O,m

→ TS
O,m′ is the projection with m′ ∈ MNM the

unique maximal ideal so that φ−1(m′) = m.

Theorem 8.3. We have

ordp(#S(Q, Wf,p(1 − k))) ≥ ordp(#T
NM
mF f

/φmF f
(Ann(F f )))

where for an O-module M, ordp(#M) = [O/� : Fp] lengthO(M). �

Corollary 8.4. Let k > 9 be an even integer and p a prime so that p > 2k − 2. Let f ∈
S2k−2(SL2(Z),O) be a newform and F f the Saito–Kurokawa lift of f . Let f be ordinary

at p and ρ f,p be irreducible. If there exists N > 1, a fundamental discriminant D < 0 so

that χD(−1) = −1, p � ND[Sp4(Z) : 
(4)
0 (N)], and a Dirichlet character χ of conductor N

so that

−M = ord�(L(k, f, D, χ)) < 0

then

ordp(#S(Q, Wf,p(1 − k))) ≥ M

where we recall

L(k, f, D, χ) = L�(3 − k, χ)Lalg(k − 1, f, χD)Lalg(1, f, χ)Lalg(2, f, χ)

Lalg(k, f)
.

�

Proof. This corollary is an immediate consequence of Theorem 8.3 and Corollary 5.6.�

The work in Section 6 and in particular Theorem 6.1 is the main input into the

proof of Theorem 8.3. We begin by adapting Theorem 6.1 to our current situation. First,

we set up some notation following [19].
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Let n = n1 + n2 + n3 with ni ≥ 1. Let Vi be E vector spaces of dimension ni afford-

ing continuous absolutely irreducible representations ρi : GQ → AutE (Vi) for 1 ≤ i ≤ 3.

Assume the residual representations ρi are irreducible and non-isomorphic for 1 ≤ i ≤ 3.

Let V1, . . . ,Vm be n-dimensional E vector spaces affording absolutely irreducible contin-

uous representations !i : GQ → AutE (Vi) for 1 ≤ i ≤ m. Further assume that the modulo

� reductions of !i satisfy

!ss
i

∼= ρ1 ⊕ ρ2 ⊕ ρ3

for some GQ-stable lattice in Vi (and hence for all such lattices.)

For each σ ∈ GQ, let

n∑
j=0

aj(σ )X
j ∈ O[X]

be the characteristic polynomial of (ρ1 ⊕ ρ2 ⊕ ρ3)(σ ) and

n∑
j=0

cj(i, σ )X
j ∈ O[X]

be the characteristic polynomial of !i(σ ). Set

cj(σ ) =

⎛
⎜⎜⎝

cj(1, σ )
...

cj(m, σ )

⎞
⎟⎟⎠ ∈ Om

for 0 ≤ j ≤ n− 1. Let T ⊂ Om be the O-subalgebra generated by the set {cj(σ ) : σ ∈
GQ,0 ≤ j ≤ n− 1}. We can use the continuity of the !i along with the Chebotarev density

theorem to conclude that

T = {cj(Frob�) : 0 ≤ j ≤ n− 1, � �= p}.

Observe that T is a finite O-algebra. Let I ⊂ T be the ideal generated by the set

{cj(Frob�) − aj(Frob�) : 0 ≤ j ≤ n− 1, � �= p}. The definition of I gives that the map O →
T/I giving the O-algebra structure is surjective. Let J be the kernel of this map so that

we have O/J ∼= T/I .
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Corollary 8.5. Suppose F× contains at least ndistinct elements. Then there exists a GQ-

stable T-submodule L ⊂ ⊕m
i=1 Vi, T-submodules L1,L2, and L3 contained in L and

finitely generated T-modules T1 and T2 such that

1. as T-modules we have L = L1 ⊕ L2 ⊕ L3 and Li ∼= Tni for 1 ≤ i ≤ 3;

2. L has no T[GQ]-quotient isomorphic to ρ′ where ρ′ ss = ρ1 ⊕ ρ2;

3. (L1 ⊕ L2)/I (L1 ⊕ L2) is GQ-stable and there exists a T[GQ]-isomorphism

L /(L + I (L1 ⊕ L2)) ∼= M3 ⊗O T/I

for any GQ-stable O-lattice M3 ⊂ V3;

4. one has either HomT/I (M1 ⊗O T1/IT1, M2 ⊗O T2/IT2) = 0 or HomT/I (M2 ⊗O
T2/IT2, M1 ⊗O T1/IT1) = 0 for any GQ-stable O-lattices Mi ⊂ Vi for i = 1,2 ;

5. FittT(Ti) = 0 for i = 1,2 and there exists a T[GQ]-isomorphism

Li/ILi ∼= Mi ⊗O Ti/ITi

for any GQ-stable O-lattice Mi ⊂ Vi for i = 1,2. �

Proof. Everything in this corollary follows immediately from Theorem 6.1. Though

Fitting ideals are not mentioned there, the proof that FittT(Ti) = 0 follows immediately

from our work in Section 6. See Lemma 9.13 of [19] for the details. �

We now specialize to our situation.

• n1 = n3 = 1, n2 = 2;

• ρ1 = ε−1, ρ2 = ρ f,p ⊗ ε1−k, ρ3 = id. Note that what we are doing here is looking

at the components of the ρF f ,p ⊗ ε1−k.

• T = TNM
mF f

;

• G1, . . . ,Gm for the elements in an orthogonal eigenbasis of SNM
k (Sp4(Z)) such

that φ−1(mNM
Gi

) = mF f .

• I = the ideal of T generated by φmF f
(Ann F f );

• (Vi, !i) = the representation ρGi ,p for 1 ≤ i ≤ m.

Let Mi be a GQ-stable O-lattice inside Vi for 1 ≤ i ≤ 3. We will continue to use the

matrix notation as was used in Section 6 when it is convenient for our purposes. We now
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break into two cases depending on whether HomT/I (M1 ⊗O T1/IT1, M2 ⊗O T2/IT2) = 0

or HomT/I (M2 ⊗O T2/IT2, M1 ⊗O T1/IT1) = 0.

We begin with the case where HomT/I (M1 ⊗O T1/IT1, M2 ⊗O T2/IT2) = 0. Con-

sider the exact sequence

0 �� N1 ⊕ N2 �� L ⊗ T/I �� ρ3 ⊗ T/I
s��

�� 0,

where we have Ni = Mi ⊗O Ti/ITi for i = 1,2 (see Theorem 6.1 or Theorem 8.5 (3) and

(5)). As we saw in Section 7, this gives rise to a cocycle

c2 ∈ H1(GQ,HomT/I (M3 ⊗O T/I, M2 ⊗O T2/IT2)).

Observe that we have

HomT/I (M3 ⊗O T/I, M2 ⊗O T2/IT2) ∼= HomO(M3, M2) ⊗O T2/IT2

and so c2 can be regarded as a cocycle in H1(GQ,HomO(M3, M2) ⊗O T2/IT2). Define a

map

ι2 : HomO(T2/IT2, E/O) → H1(GQ,HomO(M3, M2) ⊗O E/O)

f �→ (1 ⊗ f)(c2).

Our assumption that HomT/I (M1 ⊗O T1/IT1, M2 ⊗O T2/IT2) = 0 and the fact that mod-

ulo � reduction of ρ f,p ⊗ ε1−k is absolutely irreducible give that we can choose T =
HomO(M3, M2) and we have W = HomO(M3, M2) ⊗O E/O.

Lemma 8.6. Im(ι2) ⊆ Sel(W). �

Proof. As our representations are unramified away from p, the only thing remaining

to prove is that the condition at p is satisfied. Observe that since T2/IT2 is a finitely

generated T-module and T/I ∼= O/J, it is also a finitely generated O-module. Thus, there

exists a positive integer nso that HomO(T2/IT2, E/O) = HomO(T2/IT2, (E/O)[n]). Thus,

we have

Im(ι2) ⊆ H1(GQ,HomO(M3, M2) ⊗O (E/O)[n]) = H1(GQ, W[n]).
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Proposition 7.4 gives that

lim−→
n

H1
f (Qp, W[n]) ∼= H1

f (Qp, W).

Thus, it is enough to show that Im(ι2) ⊆ H1
f (Qp, W[n]). However, this follows from the

fact that each (ρi,Vi) is short and crystalline at p. �

Lemma 8.7. (ker ι2)∨ = 0. �

Proof. Let f ∈ ker ι2, B f = (T2/IT2)/ker f , and I f = (E/O)/ Im f . Consider the short

exact sequence

0 → B f
f→ E/O → I f → 0.

We tensor this sequence with T and consider the long exact sequence of cohomology

that results as well as the natural map φ:

H1(GQ, T ⊗O T2/IT2)

φ

��

H1(1⊗ f)

������������������

H0(GQ, T ⊗O I f ) �� H1(GQ, T ⊗O B f )
H1(1⊗ f)�� H1(GQ, T ⊗O E/O).

The fact that GQ acts on M3 and M2 in such a way as to give rise to irreducible

non-isomorphic representations gives that H0(GQ, T ⊗O I f ) = 0. Thus, we must have

that H1(1 ⊗ f) is an injective map. Since f ∈ ker ι2 by assumption, we have H1(1 ⊗ f) ◦
φ(c2) = 0. Thus, the fact that H1(1 ⊗ f) is injective shows that c2 maps to 0 under the

map φ.

Given any g ∈ HomO(T2/IT2, E/O), one has that ker g has finite index in T2/IT2.

So in particular, we have that there exists an O-module A with ker f ⊆ A ⊂ T2/IT2 such

that (T2/IT2)/A ∼= O/� ∼= F. Thus, we have that the image of c2 in H1(GQ, T ⊗O F) is zero

under the composite

H1(GQ, T ⊗O T2/IT2)
φ→ H1(GQ, T ⊗O ((T2/IT2)/ker f)) → H1(GQ, T ⊗O F).

We now consider c1 ∈ H1(GQ,HomT/I (M3 ⊗O T/I, M1 ⊗O T1/IT1)). Let T ′ =
HomO(M3, M1). Choose an O-module B ⊂ T1/IT1 so that (T1/IT1)/B ∼= F. The fact that c2

vanishes in H1(GQ, T ⊗O F) gives that T ′ ⊗O F ∼= F(−1) where we write F(−1) to indicate
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the finite field F with a GQ-action given by ω−1. Thus, if c1 is nonzero in H1(GQ, T ′ ⊗O F),

that is, is nonzero in H1(GQ,F(−1)), we obtain, reasoning as above, an element in

Sel(F(−1)). However, such an element gives a nontrivial finite unramified abelian p-

extension K/Q(μp) with the action of Gal(K/Q) on Gal(K/Q(μp)) given by ω−1. Thus, we

obtain a nontrivial subgroup of the ω−1-isotypical piece of the p-part of the class group

of Q(μp). However, Herbrand’s theorem says that this implies p | B2 = 1/30, clearly a

contradiction. Thus, it must be that c2 is zero in H1(GQ, T ′ ⊗O F) (see [4] pages 316–317

for the details of the argument showing c2 must be zero). However, this gives that the

exact sequence

0 → (M1 ⊗O F) ⊕ (M2 ⊗O F) → (L /IL )/L ′ → M3 ⊗O F → 0

splits as a sequence of T[GQ]-modules where L ′ = �L + (M1 ⊗O B) + (M2 ⊗O B)). This

contradicts Corollary 8.5 (2). Thus, we have the result that (ker ι2)∨ = 0. �

We are now able to finish the proof of Theorem 8.3 in the case where

HomT/I (M1 ⊗O T1/IT1, M2 ⊗O T2/IT2) = 0.

Proof of Theorem 8.3. Lemma 8.6 immediately implies that we have the bound

ordp(#S(W)) ≥ ordp(#(Im ι2)
∨).

Similarly, we use Lemma 8.7 to conclude that

ordp(#(Im ι2)
∨) = ordp(# HomO(T2/IT2, E/O)∨).

Applying [18, page 98] to our situation, we obtain

HomO(T2/IT2, E/O)∨ ∼= (T2/IT2)
∨∨ ∼= T2/IT2.

This allows us to conclude that

ordp(#(Im ι2)
∨) = ordp(#T2/IT2).

Corollary 8.5 gives that FittT(T2) = 0 and so FittT(T2 ⊗T T/I ) ⊂ I . Thus, we have

ordp(#(T2 ⊗T T/I )) ≥ ordp(#T/I ).
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However, as ordp(#T2/IT2) = ordp(#(T2 ⊗T T/I )), we are able to combine these results

to obtain

ordp(#S(W)) ≥ ordp(#T/I )

as desired. �

It now only remains to deal with the case where HomT/I (M2 ⊗O T2/IT2, M1 ⊗O
T1/IT1) = 0. We will see that this argument goes much as before so we will be able to

reference the first case for most of the work. Again consider the cocycle

c1 ∈ H1(GQ,HomT/I (M3 ⊗O T/I, M1 ⊗O T1/IT1).

As before, we have

HomT/I (M3 ⊗O T/I, M1 ⊗O T1/IT1) ∼= HomO(M3, M1) ⊗O T1/IT1

and so c1 can be regarded as a cocycle in H1(GQ,HomO(M3, M1) ⊗O T1/IT1). Define a

map

ι1 : HomO(T1/IT1, E/O) → H1(GQ,HomO(M3, M1) ⊗O E/O)

f �→ (1 ⊗ f)(c1).

Our assumption that HomT/I (M2 ⊗O T2/IT2, M1 ⊗O T1/IT1) = 0 gives that we can

choose T ′ = HomO(M3, M1) ∼= O(−1) and we have W′ = HomO(M3, M1) ⊗O E/O ∼=
(E/O)(−1). As above in Lemma 8.6, we obtain that Im(ι1) ⊂ Sel((E/O)(−1)). However,

as was used in the proof of Lemma 8.7, Sel((E/O)(−1)) = 0. Thus, the image of ι1

must be zero. This puts us back into the situation where T = HomO(M3, M2) and W =
HomO(M3, M2) ⊗O E/O. We now are exactly in the situation we were in before, and so

the same arguments apply and give us the proof of Theorem 8.3.
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