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Abstract. In this short note we provide computational evidence for the
main result found in On the Bloch-Kato conjecture for elliptic modular
forms of square-free level.

1. Introduction

Let κ ≥ 6 be an even integer, M an odd square-free integer, and f ∈
S2κ−2(Γ0(M)) a newform. Let V be the motive associated to f and let Vλ

be the λ-adic realization of V where λ is a prime of residue characteristic ℓ.
In [1] we prove that under some reasonable assumptions that one direction
of the λ-part of the Bloch-Kato conjecture for Vλ(κ−2) is true by bounding
the ℓ-valuation of the order of the Bloch-Kato Selmer group of Vλ(κ − 2)
below by the ℓ-valuation of relevant special value of the L-function of f . We
prove this by constructing a congruence between the Saito-Kurokawa lift of
f and a cuspidal Siegel modular form. The two main hypotheses used in
this result are non-vanishing modulo λ results about certain special values of
L-functions associated to f . In this note we conjecture that one can always
satisfy these hypotheses and provide computational evidence to support this
conjecture.

2. Main Hypotheses and Conjectures

In this section we discuss the two main hypotheses in used in the main
theorem found in [1], namely, that there exists a fundamental discriminant
D < 0 with gcd(ℓM,D) = 1, χD(−1) = −1 so that

ordλ(Lalg(κ− 1, f, χD)) = 0
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and an there exists an integer N > 1 with M | N , ℓ - N , and an even
Dirichlet character χ of conductor N so that

ordλ(L(3− κ, χ)Lalg(1, f, χ)Lalg(2, f, χ)) = 0.

Consider first the central critical value Lalg(κ−1, f, χD). There have been
several results on the λ-divisibility of this particular special value due to its
relation with the Fourier coefficients of the half-integral weight modular
form SHD(f). For example, it is shown in [3, Corollary 3] that for non-
exceptional primes ℓ -M there is a period Ω of f so that for infinitely many
fundamental discriminants D < 0 one has

ordλ

(
Dκ−3/2Lalg(κ− 1, f, χD)

Ω

)
= 0.

As we are assuming ρf,λ is irreducible, ℓ is automatically a non-exceptional
prime for f (see [5, Corollary 2] for example.) However, we are unable to
apply this result in our situation as the period Ω used is not the canonical
period Ω+

f that we are using to normalize the L-value. We are unaware of

any known period relation between Ω and Ω+
f .

We next consider L(3 − κ, χ). It is well known that L(3 − κ, χ) =
−Bκ−2,χ/(κ − 2), which means that the λ-adic valuation of L(3 − κ, χ) is
given by that of Bκ−2,χ and so can be related to class numbers. For in-
stance, let p be a prime with p ̸= ℓ, n ≥ 1 and φ be a Dirichlet character. In
this setting Washington proves ([6]) that for all but finitely many Dirichlet
characters ψ of p-power conductor with φψ(−1) = (−1)n one has

ordλ(L(1− n, φψ)/2) = 0.

In our set-up we can take n = κ − 2, χ = φψ, and observe that χ(−1) =
(−1)κ = (−1)κ−2 to see there are infinitely many χ so that

ordλ(L(3− κ, χ)) = 0.

If this were the only L-value controlled by χ we would be able to remove the
hypothesis regarding this L-value. However, we need for Lalg(1, f, χ)Lalg(2, f, χ)
to be a λ-adic unit, which means χ must be chosen so these L-values are si-
multaneously λ-adic units. This leads to two conjectures on the ℓ-divisibility
of twists of special values of L-functions. The first conjecture is given as fol-
lows.

Conjecture 1. Let M be an odd square-free integer and κ ≥ 6 an even
integer. Let f ∈ Snew

2κ−2(Γ0(M),O) be a newform with O a suitably large
finite extension of Zℓ and ℓ > 2κ − 2. Let λ be a prime of O dividing
Lalg(κ, f). Then there exists a Dirichlet character χ of conductor N with
M | N so that λ - Lalg(1, f, χ)Lalg(2, f, χ).

Our second conjecture is a strengthening of the first conjecture. Note we
present these as two separate conjectures due to the fact that we can provide
slightly more computational evidence for Conjecture 1 as will be discussed
below.
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Conjecture 2. Let M be an odd square-free integer and κ ≥ 6 an even
integer. Let f ∈ Snew

2κ−2(Γ0(M),O) be a newform with O a suitably large
finite extension of Zℓ and ℓ > 2κ − 2. Let λ be a prime of O dividing
Lalg(κ, f). Then there exists a Dirichlet character χ of conductor N with
M | N so that λ - L(3− κ, χ)Lalg(1, f, χ)Lalg(2, f, χ).

3. Evidence

We now provide some evidence for these conjectures in the case that
M and κ are relatively small. We restrict ourselves to computing using
MAGMA ([2]) for the values Lalg(1, f, χ)Lalg(2, f, χ) and Sage ([4]) for L(3−
κ, χ). We are restricted to the cases of M = 1, 3, 5 due to the memory
involved in doing such computations. This restriction is forced due to large
sizes of the spaces of newforms as κ and M increase. We are also restricted
to quadratic characters due to our computational methods used in MAGMA.

For Conjecture 1 every relevant example we checked worked with the
simplest possible character. However, Conjecture 2 is significantly more
difficult to compute examples for. One difficulty with the second conjecture
is due to the fact that since κ is assumed to be even, L(3−κ, χ) = 0 unless χ
is an even character. As mentioned above we are also forced to use quadratic
characters. Combining these restrictions with the fact that the conductors
must remain small for computational purposes and we are essentially forced
to use χ = χ5. The only case where Conjecture 2 was computable and did
not work is the case of level Γ0(5) and weight 18. In this case 19 | Lalg(10, f)
and 19 | L(−7, χ5). We now briefly explain our calculations.

Let f (1), . . . , f (r) denote a GalQ-conjugacy class of newforms in Snew
2κ−2(Γ0(M)).

This determines an irreducible space of cuspidal modular symbols defined
over Q. We denote this space by T . For j ∈ {1, 2, . . . , 2κ− 3}, we define

Lalg(j, T ) =
r∏

i=1

Lalg(j, f
(i)).

MAGMA allows one to compute the rational number Lalg(j, T ). We now
give a detailed account of a particular example, and then content ourselves
to list the rest of the examples.

The following detailed example provides evidence for Conjecture 2.

Example 3. We let 2κ − 2 = 22 and M = 5 for this example. Let S =
Snew
22 (Γ0(5)). Working in MAGMA notation, we consider the subspaces given

by S[1] and S[2]. The space S[1] has dimension 6 and corresponds to the
newform

f
(1)
1 = q + αq2 +

1

23
(−2α2 − 196α+ 5169498)q3 + (α2 − 2097152)q4 + · · ·

where α is a root of the polynomial x3 + 1312x2 − 2780624x − 2939762688
and the space S[2] has dimension 8 and corresponds to the newform

f
(1)
2 = q+βq2+

1

2592
(−β3+430β2+5624840β−1581976320)q3+(β2−2097152)q4+· · ·



4 MAHESH AGARWAL AND JIM BROWN

where β is a root of the polynomial x4−2910x3−4542888x2+15642931840x−
4309053579264. Write f

(1)
1 , . . . , f

(6)
1 for the Galois conjugates of f

(1)
1 and

f
(1)
2 , . . . , f

(8)
2 for the Galois conjugates of f

(1)
2 . Then we have

Lalg(j, S[1]) =
6∏

i=1

Lalg(j, f
(i)
1 )

Lalg(j, S[2]) =

8∏
i=1

Lalg(j, f
(i)
2 ).

For n = 1, 2 we use MAGMA to determine that 643 | Lalg(12, S[1]) and
5747117 | Lalg(12, S[2]).

We now focus on S[1] as the other case is handled in exactly the same
way. Let K be the number field given by adjoining α to Q. Let OK be
the ring of integers of K. Thus, there is a prime λ ⊂ OK over 643 so that

λ | Lalg(12, f
(1)
1 ). We now show that if we set χ = χ5 our conjecture is true.

In order to calculate Lalg(1, f, χ), we observe that Lalg(1, f, χ) = Lalg(1, fχ)
for fχ ∈ Snew

22 (Γ0(25), χ
2) the newform obtained by twisting f by χ. We

use MAGMA to create the space of modular symbols corresponding to this
space, call it Sχ. One now just calculates the L-values Lalg(1, Sχ[n]) and
Lalg(2, Sχ[n]) for n = 1, . . . , 9 to see that they are relatively prime to 643
as desired where 9 is the number of Galois conjugacy classes of newforms in
Sχ.

We now give tables for the primes ℓ > 2κ − 2 with ℓ dividing the ap-
propriate L-value, along with the character used to satisfy the conjecture.
Note that for level SL2(Z) there is always only one Galois conjugacy class of
newforms so we omit that from the table. For level Γ0(M) with M > 1, we
have a separate column listing n where n is the conjugacy class S[n] where
the form is found using the above notation for S.

The first table for level SL2(Z) is relevant for both conjectures where
χ = χ5, but is only relevant for Conjecture 1 when χ = χ−3. This is be-
cause L(3 − κ, χ−3) = 0. As such, the table for level Γ0(3) is relevant only
for Conjecture 1 where the table for Γ0(5) applies to both conjectures. The
table for Γ0(3) is all with χ = χ−3 and the table for Γ0(5) is all with χ = χ5,
so we omit the characters from the table. It should also be noted that when
the character is χ5, we have checked that Conjecture 2 is valid, where if
the character is χ−3 the table only indicates where Conjecture 1 has been
checked.
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Table 1: Forms of level SL2(Z)

2κ− 2 p χ
42 1423 χ5

46 83 χ5

157 χ5

54 516223 χ5

58 12457 χ5

70457 χ5

62 149 χ−3

27706741 χ−3

66 116639 χ−3

14605602473899 χ−3

70 22549 χ−3

1869909325769 χ−3

74 211 χ−3

58613 χ−3

2523187 χ−3

44047987 χ−3

78 547 χ−3

4425713 χ−3

1620600215209 χ−3

4121958671029649 χ−3

82 439 χ−3

27993232781302155093782853761791502242409 χ−3

86 220369 χ−3

42030347623060871828088247259047724801 χ−3

90 4873723027 χ−3

76072832455593285107519 χ−3

166234420403638612424126983 χ−3

94 107 χ−3

293 χ−3

634681 χ−3

3892369040821801 χ−3

356725786558457817292127829989891675270677 χ−3

98 9059291302950042553232217108421845752065468790318747726068741 χ−3

102 821 χ−3

6659826527 χ−3

4040743568189 χ−3

2483164814870114539812997726590348996714535518516569 χ−3

106 145723 χ−3

1185855274189 χ−3

10324153484994367 χ−3

1342779441459373807 χ−3
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4061787151237311599 χ−3

5158972363737149254575899 χ−3

Table 2: Forms of level Γ0(3)

2κ− 2 n p
22 2 59
26 1 31

2 1987
30 1 59

2 8803
34 1 173

1262893
2 28137589

38 1 67
5413

2 5639
1478280899

42 1 8674292309
2 1587996761303

46 1 257
48450529855090691

2 67
761
63697
221687857

50 1 2731
5869
19553
60017

2 113
2566431039463
20282395300337

54 1 182431
182379239015315248421

2 9087839
8467292699
8077851743053

58 1 79
5533963
20048689
21108577965774547722701

2 9005743
5941844304708688142671044249523
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62 1 131
706535743289846291366720003502598093747

62 2 239
683
769
51673691443395602572890553163719258308799181

66 1 79
367
3691
4561
48247
477154729
2447505820819

2 449
7937
14723
226189
3401465858983921
13415063357419692383

70 1 22933560736008655510317391
18872507689228115498600821646303009

2 3570869
4292759
4002570937312008602889068909029626649472666011168483

74 1 97
2823782483
3247814366740389167750977464219804454672395910843996351

2 2861
15307
977447906509122866984325509134428216106126790433835596596041669291325666771

78 1 475567730893442471551387498063600201329146259788806270454211843850798674527
2 13297

38113
790481720293
75938431261972977691967
2509540592987488173577843598008452099443
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Table 3: Forms of level Γ0(5)

2κ− 2 n p
22 1 643

2 5747117
26 1 211

2 932457391
30 1 1125063119

2 220256171797
34 1 16229

1575631
22394087

2 887
976062821
2928363533

38 1 199
303053731874853150610039

2 36383
68699
719223
7743683
17356170869

42 1 67741
238781
688759026572423

2 271
1237
33809
13096189
566670938148211607

46 1 53
179
529
1220599
6338531
2029455874906963863359

2 67
127
157
24618526540095105171397507491553617934953191

50 1 13331
1120377270386712655804673055968742017507738517667

2 4099
311228684644799
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365795902248070714000682494824248493152934426866641
54 1 15641

74101
9606026484276778800028639
14146625075080508937462873089

2 67
5147
697096694940722689
1210061460886656457944560995963319131602423445745528453

58 1 15541741351
472346356950959479355161
228877808464406868525493918115986639507019879749

2 101
119932931985149378733306187728588657087358307307626725440 · · ·

8516068913114892925546404698424100493063
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