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Abstract. Let E/Q be an elliptic curve. Silverman and Stange
define primes p and q to be an elliptic amicable pair if #E(Fp) = q
and #E(Fq) = p. More generally, they define the notion of aliquot
cycles for elliptic curves. Here we study the same notion in the case
that the elliptic curve is defined over a number field K. We focus
on proving the existence of an elliptic curve E/K with aliquot cycle
(p1, . . . , pn) where the pi are primes of K satisfying mild conditions.

1. Introduction

The notion of amicable pairs of integers has been around since at
least the Pythagoreans. Recall a pair of positive integers (m,n) is
referred to as an amicable pair if the sum of the proper divisors of m is
equal to n and the sum of the proper divisors of n is m. The first such
pair is given by (220, 284). There are many related notions to amicable
numbers in elementary number theory, but this paper is concerned with
the notion of amicable pairs for elliptic curves as defined by Silverman
and Stange [4]. Let K be a number field and E/K an elliptic curve.
We say a pair of primes (p, q) of OK form an amicable pair for E if

#E(Fp) = N q

#E(Fq) = N p

where we use N to denote the norm from K to Q and where Fp denotes
OK/p. More generally, one can define an elliptic aliquot cycle as a
collection of primes (p1, . . . , pn) satisfying

#E(Fpi) = N pi+1 for i = 1, . . . , n− 1 and(1)

#E(Fpn) = N p1.
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Aliquot cycles for elliptic curves defined over Q were studied extensively
in [4]. Given an elliptic curve E/Q they provide asymptotics for the
function QE(X) that counts the number of aliquot cycles (p1, . . . , pn)
with p1 = min pi and p1 ≤ X. They also show that for any positive
integer n there exists an elliptic curve E/Q that has an aliquot cycle of
length n. This paper focuses on this existence result for elliptic curves
over number fields.

We begin by showing that if we allow primes of degree one we recover
that given any integer n and any number field K, there is an elliptic
curve E/K that has an aliquot cycle of length n. The proof follows
along the same lines as that given in [4] with the only added input the
distribution of primes of degree 1. However, if we restrict to the case
where at least one of the primes is required to have degree at least 2
things are very different. This is to be expected as the density of primes
of degree greater than 1 is much thinner than that of degree 1 primes.
We note that any sequence of primes with a common norm forms an
aliquot cycle (see the discussion immediately following Theorem 2.4)
and thus it is of interest to focus on elliptic aliquot cycles involving
more than one norm. We prove that the only possible such sequences
of primes (p1, . . . , pn) with equal degree f > 1 is for n = f = 2 and
p1 | 2, p2 | 3. We then study the case of primes with unequal degrees
possibly bigger than 1. This case is interesting in that it is possible
to have such aliquot cycles. In fact, we give a criterion for a sequence
of primes to be an elliptic aliquot cycle (see Theorem 2.4). We also
provide an algorithm for constructing such an elliptic curve and give
two explicit examples.

Finally, we conclude with a section describing some potential future
research expanding these notions to hyperelliptic curves.

2. Existence of Aliquot Cycles for Elliptic Curves over
Number Fields

We first establish necessary conditions for a sequence p1, p2, . . . , pn
of primes of OK to be an aliquot cycle for some elliptic curve E/K.
First, note that the Hasse bound tells us that if our sequence is to
be an elliptic aliquot cycle then the norms of consecutive primes in
our sequence must be close together. In fact, if p and q are primes
appearing consecutively in the sequence (where we consider pn and p1
as appearing consecutively), then the Hasse bound requires that

(2) |N p + 1− N q| ≤ 2
√

N p.
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We recall the following consequence of Deuring’s theorem due to Schoof
which further restricts which sequences of primes can be elliptic aliquot
cycles. The statement given here is a special case of [3, Theorem 4.2]
combined with Mihăilescu’s Theorem (Catalan’s conjecture) [2].

Theorem 2.1 (Deuring-Schoof). Suppose that K is a number field with
ring of integers OK and that p and q are primes of OK lying above the
rational primes p and q respectively. There is an elliptic curve E/Fp

with #E(Fp) = N q if and only if one of the following conditions holds.

(1) (N p,N q− 1) = 1 and |N p + 1− N q| ≤ 2
√

N p,
(2) N p = p2r with p 6≡ 1 (mod 3) and Nq = p2r ± pr + 1,
(3) N p = 32r+1 and N q = 32r+1 ± 3r+1 + 1,
(4) N p = 22r+1 and N q = 22r+1 ± 2r+1 + 1,
(5) (N p,N q) = (2r − 1, 2r), ((2r − 1)2, 22r), or (22r, (2r − 1)2) pro-

vided that 2r − 1 is prime.
(6) (N p,N q) =(2,3), (4,9), (9,4), (8,9), (81,64), (64,81), (4,5),

(16,17), (256,257), (65536,65537), (16,25), (256,289), (65536,66049),
(655362, 655372), (25,16), (289,256), (66049,65536), or
(655372, 655362).

(7) (N p,N q) = (22k , 22k +1), ((22k +1)2, 22k+1
), or (22k+1

, (22k +1)2)

provided 22k + 1 is prime.

Definition 2.2. A collection of primes p1, . . . , pn is a Deuring n-cycle
if it has the property that each pair of primes appearing consecutively
in the sequence (where we include (pn, p1) as consecutive primes from
the sequence) satisfies one of the conditions of Theorem 2.1.

Remark 2.3. Suppose that we are given a sequence of primes in some
number field K and we wish to know if it is a Deuring n-cycle. Let p
and q be consecutive primes of the sequence lying above rational primes
p and q respectively.

(1) If p, q ≥ 5, then one needs only to consider conditions 1 and 2.
(2) If p, q ≥ 3, then one needs only to consider conditions 1, 2 and 3.
(3) Condition 7 relies on the existence of Fermat primes and is

likely superfluous, since we have included the contributions of
this form from the known Fermat primes in condition 6.

This gives the following criterion for a sequence of primes to be an
elliptic aliquot cycle.

Theorem 2.4. Suppose that K is a number field with ring of integers
OK. A sequence p1, . . . , pn of primes of OK is an aliquot cycle for some
elliptic curve E/K if and only if it is a Deuring n-cycle. Further if the
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sequence is a Deuring n-cycle, then the sequence is an aliquot cycle for
infinitely many elliptic curves E/K.

Proof. Suppose p1, . . . , pn is an aliquot cycle for some elliptic curve
E/K. Then, it follows immediately from Theorem 2.1 that p1, . . . , pn
is a Deuring n-cycle.

Now, suppose that p1, . . . , pn is a Deuring n-cycle. Under our hy-
pothesis, Theorem 2.1 guarantees for each 1 ≤ i ≤ n− 1 the existence
of a curve Ei/Fpi with #E(Fpi) = N pi+1 and the existence of a curve
En/Fpn with #E(Fpn) = N p1. Thus we can use the Chinese remain-
der theorem to construct an elliptic curve E/K whose coefficients are
congruent to those of Ei modulo pi for 1 ≤ i ≤ n and the sequence
p1, . . . , pn will be an aliquot cycle for any curve which has coefficients
congruent modulo p1 · · · · · pn to those of E. �

We are now in a position to prove the existence of aliquot sequences
in any number field K. We first note that if p1, . . . , pn is a sequence of
primes of OK with a common norm, then condition (1) of Theorem 2.1
is met and thus there are infinitely many elliptic curves E/K for which
the sequence is aliquot. Henceforth, we will focus our search on elliptic
aliquot cycles involving more than one norm. Note for such an aliquot
cycle, we can extend the cycle by adding primes of a common norm.
We should also note that primes of a common norm may appear non-
consecutively in an aliquot cycle. This will give us more freedom in
satisfying the conditions of Theorem 2.4.

The following theorem essentially follows from the arguments given
in [4]. We include it with proof for the sake of completeness.

Theorem 2.5. Given a number field K and a natural number n ∈ N,
there are infinitely many length n sequences of primes p1, p2, . . . , pn ⊆
OK with pairwise distinct norms and for each such sequence infinitely
many elliptic curves E satisfying E(Fpi) = N pi+1 for 1 ≤ i ≤ n − 1
and E(Fpn) = N p1.

Proof. Let K be any number field and let n ∈ N. In light of The-
orem 2.4, it will be sufficient to show that there are infinitely many
Deuring n-cycles with pairwise distinct norms. This is guaranteed by
the Chebotarev density theorem. To see this note that if for some n
there were no sequence of degree 1 prime ideals with pairwise distinct
norms p1, p2, . . . , pn ⊆ OK satisfying the condition

(3) N p1 < N p2 < · · · < N pn < N p1 + 2
√

N p1,

then the rational primes up to any bound X which split completely
in OK would be less numerous than n times the number of squares
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up to X which would violate the Chebotarev theorem. Now note that
if condition (3) is satisfied for a sequence of degree one primes with
pairwise distinct norms, then condition (1) of Theorem 2.1 is satisfied
and the sequence is indeed a Deuring n-cycle. Thus, we are guaranteed
infinitely many length n sequences of prime ideals p1, p2, . . . , pn ⊆ OK

satisfying the hypotheses of Theorem 2.4 and the theorem follows. �

We note that the aliquot cycles given by this technique may all be
made up of primes of degree 1 and thus are not much different than
the sequences exhibited in [4]. It is thus interesting to search for ellip-
tic curves E/K which have aliquot cycles involving primes of degree
greater than 1.

3. Amicable pairs of primes of degree greater than 1

We saw in the previous section that the behavior of degree one primes
over number fields mirrors that of the case over Q already studied
by Silverman-Stange [4]. In this section we see the situation is much
different if we consider primes of degree greater than one. We begin
with the following result.

Theorem 3.1. Let E/K be an elliptic curve. Let p and q be primes
of the same degree f > 1 but with different norms. Then (p, q) forms
an amicable pair if and only if [K : Q] is even and (N p,N q) = (4, 9).

Proof. Let E/K be an elliptic curve. Let p and q be primes of degree
f ≥ 2 and with differing norms. Suppose they do form an amicable
pair. Let p be the rational prime so that p | p and q the rational prime
so that q | q. Assume without loss of generality that p < q. We have
via Hasse’s bound that

|qf − pf − 1| = |#E(Fp)− pf − 1| ≤ 2pf/2.

Note we are essentially measuring the distance between the prime pow-
ers pf and qf . It is now a simple matter to show if f ≥ 2 they cannot
be this close together unless p = 2, q = 3 and f = 2.

First, suppose that p = 2 and q = 3 and f > 2. Then we have

|3f − 2f − 1| = |(2 + 1)f − 2f − 1|

=

∣∣∣∣∣
f∑

j=0

(
f

j

)
2f−j − 2f − 1

∣∣∣∣∣
≥ f2f−1

> 2 · 2f/2
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where the last inequality follows from the fact that f > 2. Thus, such
a (p, q) cannot form an amicable pair, since it violates the Hasse bound
(2).

Now suppose that q > p > 2. The value |qf − pf − 1| is minimized
when q = p+ 2. Arguing as above we have

|(p+ 2)f − pf − 1| > 2fpf−1

> 2pf/2

where we have used that f ≥ 2. This clearly violates the Hasse bound
(2).

Thus the only possibility for (p, q) to be amicable is if (N p,N q) =
(4, 9). Finally, if (N p,N q) = (4, 9), then condition (6) of Theorem 2.1
is satisfied and (p, q) is thus a Deuring 2-cycle. The theorem now
follows from Theorem 2.4. �

We have the following example of such a number field K.

Example 3.2. Let K = Q(
√

5). One has that 2 and 3 are both inert in
this field. Set p2 = 2OK and p3 = 3OK . Then N p2 = 22 and N p3 = 32.
We use Sage [5] to see that the elliptic curve E2/K : y2+y = x3 satisfies
#E2(Fp2) = 32 and E3/K : y2 = x3 + 2

√
5x satisfies #E3(Fp3) = 22.

We use the Chinese remainder theorem to combine these curves to form
E/K : y2 + 3y = x3 + 2

√
5x. This curve has (p2, p3) as an amicable

pair.

Our next step is to consider the case where p and q are primes of
degrees e and f respectively with e 6= f . This naturally leads to the
question: are there any number fields K that have Deuring n-cycles
for n > 2? In the next section we address this question by giving a
method for constructing such number fields given rational prime powers
satisfying mild conditions. We also give some specific examples.

4. Existence of number fields with Deuring cycles

In this section we give a method for constructing examples of number
fields K that have Deuring cycles.

Definition 4.1. A sequence of rational prime powers pf11 , . . . , p
fn
n is

a potential Deuring n-cycle provided that if we could find a number
field K and a sequence of primes p1, . . . , pn ⊆ OK with N pi = pfii for
1 ≤ i ≤ n this sequence would be a Deuring n-cycle.

We will show that given a potential Deuring n-cycle where prime
powers are allowed to be repeated a limited number of times, there is a
number fieldK and a Deuring n-cycle of primes inOK with norms given
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by the prime powers in the given sequence. We construct two examples.
For the first we construct a specific number field K, a Deuring 2-cycle
(p, q), and an elliptic curve E/K for which (p, q) forms an amicable
pair and for the second we give a specific number field K, a Deuring
10-cycle, and an elliptic curve E/K for which the Deuring 10-cycle
forms an aliquot cycle.

We will make use of the following well-known theorem.

Theorem 4.2. Let K = Q(α) where α is a root of an irreducible
polynomial f(x) ∈ Z[x]. Let p be a prime with p - [OK : Z[α]]. If f(x)
has irreducible factorization in Fp[x] given by f(x) = g1(x) · · · gk(x)
then

pOK =
k∏

i=1

〈p, gi(α)〉.

Using this theorem, we have the following method for constructing
an appropriate number field.

Corollary 4.3. Let pf11 , . . . , p
fn
n be a potential Deuring n-cycle with the

added property that the number of occurrences of any prime power pf

does not exceed the number of monic irreducible polynomials of degree
f over Fp. Then there exists a number field K and primes p1, . . . , pn ⊂
OK so that N pi = pfii , i.e., (p1, . . . , pn) is a Deuring n-cycle for K.

Proof. Let pf11 , . . . , p
fn
n be a potential Deuring n-cycle with the added

property that the number of occurrences of any prime power pf in the
sequence does not exceed the number of monic irreducible polynomials
of degree f over Fp. Let us denote the distinct primes in the sequence
as q1, . . . , qm and let us denote the not necessarily distinct powers of qi
by q

fi,1
i , . . . , q

fi,ki
i .

For each 1 ≤ i ≤ m and 1 ≤ j ≤ ki, let hi,j(x) ∈ Fqi [x] be an
irreducible monic polynomial of degree fi,j chosen so that hi,1, . . . , hi,ki
are distinct. Note that this can be done since we limit the number of
occurrences of q

fi,j
i in our sequence to less than or equal to the number

of monic irreducible polynomials in Fqi [x] of degree fi,j. Now choose
D > 1 large enough so that for each 1 ≤ i ≤ m we can choose a
monic irreducible polynomial gi ∈ Fqi [x] of degree D−

∑ki
j=1 fi,j which

is distinct from hi,1, . . . , hi,ki .
Now, select any prime r which does not divide any member of our

sequence and a monic irreducible polynomial k(x) ∈ Fr[x] of degree
D. Apply the Chinese remainder theorem to the coefficients of the
polynomials gi(x)

∏ki
j=1 hi,j(x) (1 ≤ i ≤ m) and k(x) to construct a

polynomial F (x) ∈ Z[x] so that F (x) ≡ gi(x)
∏ki

j=1 hi,j(x) (mod qi) for
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each 1 ≤ i ≤ m and F (x) ≡ k(x) (mod r). Since k(x) is irreducible
modulo r, we must have F (x) is irreducible in Q[x]. Let α ∈ Q be a
root of F (x) and set K = Q(α).

It only remains to show that qi - [OK : Z[α]] so that we can apply
Theorem 4.2 and we will be done. Recall that [OK : Z[α]] | disc(F ), so
it is enough to show qi - disc(F ) for 1 ≤ i ≤ m. Since for each 1 ≤ i ≤
m, Fqi is perfect and since the irreducible polynomials gi, hi,1, . . . , hi,ki
are distinct, it follows that gi(x)

∏ki
j=1 hi,j(x) has D distinct roots in

Fqi , say αi,1, . . . , αi,D. Further since the discriminant of a polynomial
can be expressed in terms of its roots, we have by our construction of
F that

disc(F ) ≡ disc

(
gi(x)

ki∏
j=1

hi,j(x)

)
(mod qi)

=
∏
i<j

(αi − αj)
2 6≡ 0 (mod qi).

Thus, we have the result. �

Once one has found a potential Deuring n-cycle of prime powers
satisfying the hypothesis of Corollary 4.3, it is fairly easy to construct
a suitable field K using the method of our proof. We give two explicit
examples.

Example 4.4. Let p1 = 13, f1 = 3, p2 = 47, and f2 = 2. Observe that

|472 − 133 − 1| = 11 ≤ 2 · 133/2

|133 − 472 − 1| = 13 ≤ 2 · 47,

(132, 472 − 1) = 1 and (472, 132 − 1) = 1,

so this is a potential Deuring 2-cycle. Let f(x) = x3 − 52x + 329 and
K = Q(α) where α is a root of f(x). Let p13 = 〈13, α3 + 4〉 and
p47 = 〈47, α2 − 5〉. One uses Sage to find

E13/K : y2 = x3 + (10α2 + 9α + 12)x+ (9α2 + 11α + 9)

satisfies #E13(Fp13) = 472 and

E47/K : y2 = x3 + (46α + 11)x+ (20α + 37)

satisfies #E47(Fp47) = 133. One then applies the Chinese remainder
theorem to these curves to find E/K given by

E/K : y2 = x3 + (517α2 + 516α + 246)x+ (282α2 + 349α + 178)

is an elliptic curve that satisfies #E(Fp1) = N p2 and #E(Fp2) = N p1
as desired.
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We also provide an example of an aliquot cycle of greater length.

Example 4.5. Consider the cycle given by (22, 3, 5, 7, 11, 13, 11, 7, 5, 3).
One easily checks this is a potential Deuring cycle. Following the al-
gorithm in the proof of Corollary 4.3 one sees that the number field
given by Q(α) with α a root of f(x) = x2 + x + 195195 realizes
(22, 3, 5, 7, 11, 13, 11, 7, 5, 3) as a Deuring 10-cycle. MAGMA [1] can
then be used to show E/K given by

E/K : y2 + αy = x3 + 100010x2 + (98α + 12552)x− (716α + 10004)

has (22, 3, 5, 7, 11, 13, 11, 7, 5, 3) as an aliquot cycle.

Remark 4.6. We recall that Legendre conjectured that there is al-
ways a prime between consecutive integer squares and computational
evidence seems to suggest more. It in fact seems reasonable to conjec-
ture that there are as many as

√
n primes between n2 and (n + 1)2.

Based on this it seems reasonable that there may always be a prime
between x = (

√
x)2 and x + 2

√
x = (

√
x + 1)2 − 1. If so, one could

construct an arbitrarily long sequence of prime powers starting at any
prime power which could be realized as the norm sequence of a Deuring
cycle of primes of some number field K constructed as above. To find
such a sequence of prime powers one simply continues to select prime
powers each within twice the square root of the previous one until sat-
isfied. One then repeats the sequence in reverse being careful not to
reuse 4 if it was used before until reaching the beginning again.

5. Future directions of research: hyperelliptic curves

If one wishes to generalize the notion of amicable pairs for elliptic
curves, a very natural object to look at is a hyperelliptic curve.

Definition 5.1. Let K be a field. A hyperelliptic curve C/K of genus
g ≥ 1 is a non-singular plane curve of the form,

C : y2 + h(x)y = f(x)

where h ∈ K[x] of degree at most g and f ∈ K[x] is monic of degree
2g + 1.

Note that if char(K) 6= 2 one can perform a change of variables to
realize the curve in the form

y2 = f(x)

for f ∈ K[x] monic of degree 2g + 1.
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There are two natural ways one can define amicable pairs in this
context. One is to consider points on the curve C. In this case, we
want two primes p and q of good reduction so that

#C(Fq) = p,

#C(Fp) = q.

Such pairs do exist. The difficulty is that for genus g > 1 the set of
points C(Fp) does not form a group, so one loses many of the tools
used by Silverman-Stange to study amicable pairs.

Example 5.2. Let C be the genus 2 hyperelliptic curve given by y2 =
x5 + 2x4 +x2 +x+ 7. Then we have the following pairs of primes (p, q)
for 2 ≤ p < q ≤ 1000 that satisfy #C(Fp) = q,#C(Fq) = p:

(2, 3), (37, 41), (311, 331), (353, 401), (631, 661), (673, 677), (733, 743),

(881, 919).

Example 5.3. Let C be the genus 2 hyperelliptic curve given by y2 =
x5 + x + 1. Then we have the following pairs of primes (p, q) for 2 ≤
p < q ≤ 1000 that satisfy #C(Fp) = q,#C(Fq) = p:

(41, 47), (83, 109), (97, 107), (139, 151), (263, 293), (359, 383), (421, 457),

(431, 463), (523, 557), (733, 769), (743, 757), (911, 937), (977, 983).

In future work we plan on investigating the number of such pairs
for genus 2 hyperelliptic curves and determining if one can obtain con-
jectural asymptotic formulas analogous to those given in Silverman-
Stange.

The second way is to consider the Jacobian of the curve C. Every
hyperelliptic curve has an associated geometric object called its Jaco-
bian, denoted JacC . The Jacobian is a group, so we have some hope of
using similar techniques to Silverman-Stange here.

The following is the statement of Hasse’s theorem for hyperelliptic
curves. Elliptic curves have genus 1 and notice the corollary below
gives the Hasse interval when g = 1.

Corollary 5.4. Let C/Fp be a hyperelliptic curve of genus g. Then,

(pn/2 − 1)2g ≤ # JacC(Fpn) ≤ (pn/2 + 1)2g.

Remark 5.5. For elliptic curves, the Jacobian JacE(K) is isomorphic
to the group defined on the set E(K). Thus, both potential general-
izations specialize to the correct notion in the case of elliptic curves.

Theorem 5.6. Let C be a hyperelliptic curve of genus g > 1 defined
over Q with good reduction at primes p and q. Then, the statements
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# JacC(Fp) = q and # JacC(Fq) = p can only happen in the following
cases:

(1) g = 2: (p, q) = (2, 3) or (p, q) = (3, 5),
(2) g ≥ 3: (p, q) = (2, 3).

Proof. Suppose we have such a pair p and q. We apply the Hasse bound
given above with n = 1 to obtain equations

(
√
q − 1)g ≤ √p ≤ (

√
q + 1)g

(
√
p− 1)g ≤ √q ≤ (

√
p+ 1)g.

We have from this that

(
√
p− 1)g − 1 ≤ √q − 1.

It follows that we have

((
√
p− 1)g − 1)g ≤ (

√
q − 1)g ≤ √p.

Consider the polynomial fg(x) = ((x − 1)g − 1)g − x. Our above in-
equality implies that the only p for which p can be part of the pair
(p, q) occurs when fg(

√
p) ≤ 0. One easily sees that fg(x) ≥ 0 for all

x ≥ 2.62 and all g ≥ 2. Thus we have that p must be less than 7. Since
the same argument works for q we have reduced to the possibilities that
p, q ∈ {2, 3, 5}. Now it is a simple case of plugging in these primes to
determine which ones work. �
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