
OCCIDENTAL COLLEGE REU 2023: POTENTIAL PROBLEMS

A. Potential Research Problems.

Some possible problems for this summer are outlined below in Sections A-1 and A-2. This list
is by no means exhaustive of the problems under consideration, it merely provides a representative
sample of the types of problems under consideration. Students will have some say in picking the
problems so they can work on something of interest.

A-1. Arithmetic structures on graphs. Let G be a connected non-oriented graph with n ver-
tices V1, . . . , Vn. Let cij be the number of edges linking Vi to Vj . Let A denote the adjacency matrix
of G, i.e., A = (aij) with aii = 0 and aij = cij for i 6= j.

Definition A.1. An arithmetical graph consists of a connected graph G, a diagonal matrix D =
diag(d1, . . . , dn) with di ∈ Z≥1, and a vector R = (r1, . . . , rn) with ri ∈ Z≥1 and gcd(r1, . . . , rn) = 1
so that (D −A)R = 0; we denote this by (G,M,R) where M = D −A.

One should note that each connected graph has an least one arithmetical structure on it, namely,
set di to be the degree of the vertex Vi.

The matrices M arise in algebraic geometry, in particular, they are intersection matrices of
degenerating curves [4]. There has been work on arithmetical graphs purely from the graph theoretic
point of view, and that is what is proposed here. For instance, it is shown in [4] that there are a
finite number of arithmetical structures on any particular graph [4, Lemma 1.6]. If one restricts
to considering paths and cycles one can get more precise results. For instance, the number of
arithmetical structures on the path Pn is the Catalan number Cn−1 = 1

n

(
2n−2
n−1

)
[1, Theorem 3].

While requiring D and R to have integer entries is natural when considering this from an algebraic
geometry point of view, it is interesting to extend the notion of an arithmetical structure on a
graph to include other arithmetic rings. For instance, instead of requiring D and R to have integer
entries, one could consider D,R to have entries consisting of monic polynomials in Fp[T ]. As is
well known, the ring Fp[T ] mimics many of the interesting arithmetic properties of Z and requiring
the polynomials to be monic is a natural replacement for requiring di, ri ∈ Z≥1. It would also

be interesting to consider rings of integers of number fields, Z[i] or Z[
√

3] for example. When we
replace Z≥1 with a ring O, we will refer to this as an O-arithmetical structure.

Project 1 The first step in such generalizations is to gather examples and computational data. The
students will learn about Fp, how to compute in the ring Fp[T ], and work out examples of
Fp[T ]-arithmetic structures on various graphs. Ideally they will classify all Fp[T ]-arithmetic
structures on some basic graphs like short paths.

Project 2 This project would either go after Project 1 if the REU students moved particularly fast,
or it could be an REU project for a future summer after students have worked on the first
project and produced results that can be read by the future students. The project will be
to investigate the following questions. Are there finitely Fp[T ]-arithmetical structures on a
connected non-oriented graph G? How about if we consider other rings such as the ring of
integers in a number field? For a totally real number field it would be natural to consider
elements that are totally positive, i.e., they are positive for all real embeddings of the field.
For number fields that are not totally real, it may be most natural to work with ideals
to avoid the issue of positivity of the elements. Some of these ideas would require some
abstract algebra, but particular cases could be worked out without a great deal of required
background; the particular abstract algebra needed would be taught in the first 2-3 weeks
of the program.
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Project 3 In addition to the general questions in the previous project, we can examine O-arithmetical
structures on simple graphs such as paths and cycles. This is done for O = Z in [1]. It
will be interesting to see how the count changes when one replaces Z with other interesting
rings. For instance, is the arithmetic of the ring O reflected in the counts and if so, how?

A-2. Coding theory, lattices, and theta series. Let p be a prime and consider a finite field
F of cardinality q = pf for some f ≥ 1. A [n, k]-linear code C is a k-dimensional subspace of the
vector space Fn. We refer to elements of C as codewords. Binary codes, i.e., codes where p = 2,
are well-studied (at least for f = 1, 2), but codes for p > 2 or for f > 2 are less prevalent in the
literature. For simplicity, consider an [n, k]-code C defined over Fp. One has a natural surjective
map π : Zn → Fn

p given by reduction modulo p in each component. Using this surjection, one

has a lattice π−1(C) = ΛC ⊂ Zn associated to C and this lattice reflects some of the properties of
the code. For instance, C is self-dual if and only if ΛC is unimodular. In the case f > 1, there
is not a canonical surjection from Zn onto Fn, but one can construct a surjection π : On → Fn

where O is the ring of integers of a number field where p has the appropriate factorization so that
F can be realized as a quotient of O. During the summer of 2018 the PI co-supervised a group
of students with F. Manganiello that studied codes and their related lattices and theta series for
f = 2. In particular, they showed that one can construct a field K = Q(

√
d) with p inert in K

and a field L = K(ζp) so that one has a surjection On
L → Fn. Moreover, they showed that under

this construction the lattice arising from a self-dual code C is not a unimodular lattice. Associated
to the lattice ΛC they constructed a theta series θC that is a Hilbert modular form. During the
summer of 2021 the PI supervised a group of four students that considered real quadratic fields
K = Q(

√
`) so that 2 is inert in OK which gives a surjection On

K → Fn
4 given by reduction modulo

2. The students studied the theta series as one varies `. They showed that if one fixes a code C,
the theta series for various ` agree up to a certain number of coefficients. While the theta series
are modular forms, that fact was used in the project of 2018 but not at all in 2021 so one can vary
the level of difficulty of these projects based on the student’s background. Some further projects
in this area:

Project 1 It is known from the work of the 2021 REU group that if one considers real quadratic
fields K1 = Q(

√
`1),K2 = Q(

√
`2) where 2 is inert in K1,K2, then the theta series θC,`1

and θC,`2 associated to a code C have a certain number of equal Fourier coefficients with
the number depending on the smaller prime `1, `2. A similar result is known for imaginary
quadratic fields ([2, 3, 6].) The next natural step is to consider fields that are not quadratic.
For instance, one can consider cubic fields with abelian Galois group. One can show that
one can construct a surjection, lattice, and theta series as in the quadratic case here as
well. While one does not have an easy way to vary the fields in an infinite family as in the
quadratic case, one can still look at the theta series and see if they agree as one changes
fields. This could be done for codes over F8 or Fp3 . One could also play this same game
with other fields such as Q(ζp) for codes over Fp or more generally over Q(ζn) for other
finite fields F depending on how p factors in Q(ζn). This area of inquiry allows students
to learn algebra and some number theory while exploring tractable problems along these
lines. This area is full of undergraduate level problems to explore.

Project 2 In the REU project from 2018 a relation between the theta series θC and the complete
weight enumerator of the code was given. However, this was not optimal as it did not
take into account all of the symmetries of the theta series. One would like to construct
an appropriate generalized Lee weight as defined in [5] so that the theta series is given
in terms of this weight. This involves finding a map from Znj → Fn

p2 for some j ≥ 1
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that captures the symmetries of the theta series when one calculates the weights of the
codewords. Experimenting with various such weight functions is an interesting project.
One could also computationally look for relations between the theta series associated to the
code and various weight one theta series and try to reverse engineer the generalized Lee
weight from the relations found. Again, this sounds very complicated but it can be done
with a computer algebra system as it essentially comes down to calculating some Fourier
coefficients and then looking at monomials relations between the series.
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