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Goal of the lectures

Let GQ = Gal(Q/Q). Let E be a field, and let

χ : GQ −→ E×

be a continuous character.

We will be interested in constructing classes

[κ] ∈ H1(GQ,E (χ)).

(Continuous cohomology)

Typically E will be a finite extension of Fp or Qp.
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Prescribed local behavior

Let Gp ⊂ GQ denote a decomposition group at p.

This corresponds to taking an embedding Q ⊂ Qp, with
Gp = Gal(Qp/Qp).

We will want to control the local images

[κ]p = res
GQ

Gp
[κ] ∈ H1(Gp,E (χ)).

For instance, we may want [κ]p = 0 when a certain L-function
vanishes, or [κ]p related to a p-adic L-function.
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Converse to Herbrand’s Theorem
(Ribet)

Iwasawa’s Main Conjecture
(Mazur-Wiles, Wiles, Skinner-Urban)

Mazur–Tate–Teitelbaum Conjecture
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Steps in Ribet’s Method

Step 1: Reformulate problem as stating the existence of a
global class [κ] ∈ H1(GQ,E (χ)) with a prescribed local
restriction, e.g. with [κ]p related to a p-adic L-function Lp.

Step 2: Construct a family of (ordinary) cusp forms with
knowledge of the Fourier coefficients, e.g. ap related to Lp.

Step 3: Specialize the Galois representation associated to the
family at a point where it is reducible. Extract a cohomology
class from the reducible representation.

Step 4: Use the fact that the family is ordinary to relate the
local restriction [κ]p to ap, and hence to Lp as desired.
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Ribet’s converse to Herbrand

Let A = ideal class group of Q(µp), let C = A⊗ Fp.
Canonical character

ω : GQ → Gal(Q(µp)/Q) ∼= F×p

Then

C =

p−2⊕
i=0

C (ωi ),

where

C (ωi ) = {c ∈ C : σ(c) = ωi (σ) · c for all σ ∈ GQ}.

Theorem (Ribet)

Let j be even, 2 ≤ j ≤ p − 3. Then p | Bj implies C (ω1−j) 6= 0.
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Step 1: Reformulation

By class field theory, C = Gal(H/Q(µp)), where

H = maximal abelian unramified ext of Q(µp) with exponent p.

H
C

yyyyyyyy

Q(µp)

F×p EEEEEEEE

Q



Conjugation action

Gal(Q(µp)/Q) ∼= F×p acts on Gal(H/Q(µp)) by conjugation:

σ(τ) = σ̃τ σ̃−1,

where σ̃ ∈ Gal(H/Q) lifts σ.

This corresponds to the usual Galois action of Gal(Q(µp)/Q) on
ideal classes C .
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Gal(H/Q) ∼= C o F×p .
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Therefore, with χ = ω1−j , we see that C (χ) 6= 0 is equivalent to
the existence of an abelian extension H/Q(µp) such that:

H/Q(µp) is unramified;

Gal(H/Q(µp)) has size p;

The conjugation action of Gal(Q(µp)/Q) on Gal(H/Q(µp)) is
via χ.

In this situation,
Gal(H/Q) ∼= Fp o F×p .

Let κ : GQ → Fp denote projection onto first factor.
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κ is a 1-cocycle for χ:

κ(στ) = κ(σ) + χ(σ)κ(τ).

We get a non-trivial class

[κ] ∈ H1(GQ,Fp(χ)).

Since κ is unramified, we find that

res
GQ

I`
[κ] ∈ H1(I`,Fp(χ))

is trivial for all `.

These steps are reversible: the splitting field of an unramified
non-trivial [κ] gives the desired H.
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Cohomology classes and Galois representations

The cocycle
κ ∈ Z 1(GQ,Fp(χ))

gives a Galois representation:

ρ : GQ → GL2(Fp)

defined by

ρ(σ) =

(
1 κ(σ)χ−1(σ)
0 χ−1(σ)

)
In order to show the existence of κ, we will construct ρ.

Yoga: Galois representations come from modular forms.
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(Special case of) Iwasawa’s Main Conjecture

From now on
ω : GQ → (Z/pZ)× → Z×p

is the Teichmuller character.

For j even, 2 ≤ j ≤ p − 3, there is a p-adic L-function Lp(ωj , s).
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Q(µpn)

(Z/pnZ)× GGGGGGGGG

Q

C∞ := lim
←

Cn has an action of

Gal(Q(µp∞)/Q) ∼= Z×p
∼= (Z/pZ)× × (1 + pZp).

Let g = topological generator of 1 + pZp, and suppose γ 7→ (1, g).



(Consequence of) Iwasawa’s Main Theorem

Theorem (Mazur-Wiles)

If Lp(ωj , s) = 0 for s ∈ Zp, then g s is an eigenvalue of γ acting on

(C∞ ⊗Qp)(ω1−j).

Step 1: Reformulation

If Lp(ωj , s) = 0 for s ∈ Zp, then there exists a non-trivial
unramified class in

[κ] ∈ H1(GQ,Qp(ω1−jεs)),

where

ε : GQ → Gal(Q(µp∞)/Q) ∼= (Z/pZ)× × (1 + pZp)

is projection to the second factor.
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Construct κ from a Galois representation

ρ : GQ → GL2(Qp)

with

ρ(σ) =

(
1 b(σ)
0 ωj−1ε−s(σ)

)
and κ(σ) = b(σ)/ωj−1ε−s(σ).

Our source for Galois representations is...
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Modular Forms

Let χ : (Z/NZ)× → Q
×

, χ(−1) = (−1)k .

A modular form of level N, character χ, and weight k is a
holomorphic function f : H → C such that

(cz + d)−k f

(
az + b

cz + d

)
= χ(a)f (z)

for

(
a b
c d

)
∈ Γ0(N), and

f (z) =
∞∑

n=0

anqn, q = e2πiz .

Modular forms denoted Mk(N, χ).

Cusp forms: a0 = 0 for every f |γ , denoted Sk(N, χ).



Hecke operators

For each ` - Np, there is a Hecke operator T` on Sk(N, χ; Zp)
given on q-expansions by:

T`

( ∞∑
n=0

anqn

)
=
∞∑

n=0

(an` + χ(`)`k−1an/`)qn.

Here an/` = 0 if ` - n.

Similarly for ` | N, we have

U`

( ∞∑
n=0

anqn

)
=
∞∑

n=0

an`q
n.

These operators define a Zp-algebra called the Hecke algebra Tk .
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Theorem (Deligne-Serre)

Let k ≥ 1 and χ : (Z/NZ)× → Q
×

a character. Let f ∈ Sk(N, χ)
be a cuspidal newform. There exists an irreducible continuous
Galois representation

ρ : GQ −→ GL2(Qp)

that is unramified outside Np, such that for all ` - Np,

trace(ρ(Frob`)) = a`

and
det(ρ(Frob`)) = χ(`)`k−1.

Here
f (q) =

∞∑
n=1

anqn,

so a` is the eigenvalue of the Hecke operator T`.



Ordinary forms

The form f is called ordinary at p if

x2 − apx + χ(p)pk−1

has a root αp that is a p-adic unit.

If k > 1 (or χ(p) = 0) this is equivalent to ap being a p-adic unit.
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Ordinary representations

Theorem

Let f be a cuspidal eigenform that is ordinary at p. There is a
basis such that the restriction of ρ to Gp has the form

ρ|Gp
∼=
(
η1 ∗
0 η2

)
where η2 : Gp → Z×p is the unramified character such that

η2(Frobp) = αp.



Interpolating these representations

For each k ≥ 2, let fk be a newform. Suppose that the associated
representations

ρk(σ) =

(
ak(σ) bk(σ)
ck(σ) dk(σ)

)
have the remarkable property that the function k 7→ ak(σ) extends
to a continuous function Zp → Qp, and similarly for the other
matrix coefficients.

Then for any k ∈ Zp, we get a Galois representation, and it is
certainly possible that these other specializations are reducible.
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Knowledge of ρk

Furthermore, since {k ∈ Z, k ≥ 2} is dense in Zp, we know the
trace and determinant of the representation by continuity.

Finally, if the fk are all ordinary, we know what the representation
looks like when restricted to Gp.
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Interpolation, following Iwasawa and Hida

Let Λ = Zp[[T ]].

Let g be a topological generator of 1 + pZp, e.g. g = 1 + p.

For each k ∈ Zp, define νk : Λ→ Z×p by

νk(1 + T ) = gk−2.

Every λ ∈ Λ represents a function on Zp, via k 7→ νk(λ).

We call elements of Λ, when viewed as functions on Zp, Iwasawa
functions.
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Example: power functions

Consider the function k 7→ ak−1 with a ∈ 1 + pZp.

Let a = gβ, with β ∈ Zp.

Let

λ = a(1 + T )β = a
∞∑

n=0

(
β
n

)
T n ∈ Λ.

Then
νk(λ) = νk(a(1 + T )β) = a(gk−2)β = ak−1.
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Λ-adic forms

Definition

A Λ-adic form of level Np and character χ is a q-expansion

f =
∞∑

n=0

anqn with an ∈ Λ

such that for all k ∈ Z, k ≥ 2,

νk(f ) =
∞∑

n=0

νk(an)qn ∈ Zp[[q]]

is the q-expansion of a modular form fk ∈ Mk(Np, χω1−k ; Zp).

Here ω : (Z/pZ)× → Z×p is the Teichmuller character.



Λ-adic cusp forms

A Λ-adic form f is called a cusp form if for all k ∈ Z, k ≥ 2, the
classical form fk is a cusp form.

Note that this implies, but is not equivalent to, a0 = 0.

The space of Λ-adic modular forms of level N and character χ is
denoted M (N, χ), and the subspace of cusp forms is denoted
S (N, χ).
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Λ-adic Hecke operators

For each ` - Np, there is a Hecke operator T` on the space of
Λ-adic forms such that

νk(T`f ) = T`νk(f ).

The formula for T` is:

T`(
∑

anqn) =
∞∑

n=0

(an` + χ(`)λ`an/`)qn,

where λ` ∈ Λ such that νk(λ) = 〈`〉k−1. Here

〈`〉 = `/ω(`) ≡ 1 (mod p).
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Λ-adic Hecke algebra

Similarly there is a Λ-adic operator U` for ` | Np.

The operators T` for ` - Np and U` for ` | Np define a Λ-algebra
called the Hecke algebra T.



Eisenstein Series

Let k ∈ Z, k ≥ 2,

η : (Z/aZ)× → Q
×
, ψ : (Z/bZ)× → Q

×

be characters such that ηψ(−1) = (−1)k .

There is a modular form Ek(η, ψ) ∈ Mk(ab, ηψ) with q-expansion

Ek(η, ψ)(q) = a0 +
∞∑

n=1

∑
d |n

η
(n

d

)
ψ(d)dk−1qn,

where

a0 =

{
1
2L(ψ, 1− k) if η = 1 (with a = 1)

0 otherwise.
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Weight 1 Eisenstein Series

The same is true if k = 1, except if η 6= 1 and ψ = 1, the constant
term is

1

2
L(η, 0).

Note that E1(η, ψ) = E1(ψ, η).
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Eisenstein series are eigenforms

The Eisenstein series Ek(η, ψ) is an eigenform, with eigenvalue

η(`) + ψ(`)`k−1

for T` when ` - N and for U` when ` | N.

Mk(N, χ) = Sk(N, χ)⊕ Eisk(N, χ)

where Eisk(N, χ) is the space spanned by Ek(η, ψ) for all η, ψ such
that ab = N and ηψ = χ.
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p-adic interpolation of Eisenstein Series

Suppose ηψ(−1) = −1. Consider

Ek(η, ψω1−k) = a0 +
∞∑

n=1

∑
d |n,(d ,p)=1

η(d)ψ(d)〈d〉k−1qn,

where ψω1−k is always viewed to have modulus divisible by p.

Here a0 = 0 if η 6= 1, and

a0 =
1

2
L(ψω1−k , 1− k)

if η = 1.

Note that the Fourier coefficients for n ≥ 1 are Iwasawa functions.
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where ψω1−k is always viewed to have modulus divisible by p.

Here a0 = 0 if η 6= 1, and
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1

2
L(ψω1−k , 1− k)

if η = 1.

Note that the Fourier coefficients for n ≥ 1 are Iwasawa functions.
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Kubota–Leopoldt p-adic L-function

Actually, a0 is an Iwasawa function as well.

Theorem (Kubota-Leopoldt)

Let ψ(−1) = 1, and ψ 6= 1. There exists an element L (ψ) ∈ Λ
such that

νk(L (ψ)) = L(ψω−k , 1− k)

for all k ∈ Z, k ≥ 1.

Notation:
Lp(ψ, s) = ν1−s(L (ψ))

is the p-adic L-function attached to ψ.
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Pole of the p-adic zeta function

When ψ = 1, there is a pole of ζp(s) = Lp(1, s) at s = 1.

Theorem

There exists an element G ∈ Λ such that

L (1) =
G

g2(1 + T )− 1
∈ Frac(Λ)

satisfies

νk(L (1)) =
νk(G )

gk − 1
= L(ω−k , 1− k)

for all k ∈ Z, k ≥ 1.

Furthermore, ν0(G ) 6= 0.
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Λ-adic Eisenstein series

Theorem

Given η, ψ such that ηψ(−1) = −1, there exists a Λ-adic form
E (η, ψ) of level ab and character ηψ given by

E (η, ψ) = a0 +
∞∑

n=1

∑
d |n,(d ,p)=1

η
(n

d

)
ψ(d)λdqn,

and

a0 =

{
1
2L (ψω) if η = 1

0 otherwise.

When ψ = ω−1, the constant term a0 = 1
2L (1) lies in Frac(Λ) and

has a pole at k = 0.
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Step 2: constructing a Λ-adic form

It is harder to show the existence of Λ-adic cusp forms (just as it is
harder to show the existence of classical cusp forms).

There are some explicit constructions, for example, families of Θ
series.

We will use Λ-adic Eisenstein series to construct Λ-adic cusp forms.

(Remember ∆ = c1 · E 3
4 − c2 · E 2

6 .)

The existence of Λ-adic cuspidal families follows from general
theory, much of which was done by Hida.
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Iterating Up

If f ∈ Sk(Np, χ; Zp) is a Up-eigenform, then

Upf = apf =⇒ Un
p f = an

pf .

If f is not ordinary, an
p → 0 as n→∞, so Un

p f → 0.

If f is ordinary, a
(p−1)pn

p → 1 as n→∞, so U
(p−1)pn

p f → f .



Hida’s ordinary projector

Definition

Define Hida’s ordinary projector by

e = lim
n→∞

Un!
p ∈ T.

e is an idempotent: e2 = e.

If f is an eigenform then ef = f if f is ordinary and ef = 0
otherwise.



Hida’s control theorem

Define the space of ordinary Λ-adic cusp forms by

S (N, χ)o = eS (N, χ).

Theorem (Hida)

The space of ordinary Λ-adic forms S (N, χ)o is a free Λ-algebra of
finite rank, and for every integer k ≥ 2, we have

νk(S (N, χ)o) = Sk(Np, χω1−k)o .

Furthermore, over Frac(Λ), the space S (N, χ)o has a basis of
eigenforms.



Step 3: associated Galois representation

Theorem (Hida, Wiles)

Let f ∈ S (N, χ)o be an ordinary Λ-adic cuspidal eigenform. There
exists an irreducible continuous Galois representation

ρ : GQ → GL2(Frac(Λ))

that is unramified outside Np, such that for all ` - Np,

trace(ρ(Frob`)) = a`

and
det(ρ(Frob`)) = χ(`)〈`〉k−1.

It is possible that the specialization of ρ at some k ∈ Zp is
reducible.



Step 4: the local restriction

Theorem (Hida, Wiles)

There is a basis such that the restriction of ρ to Gp has the form

ρ|Gp
∼=
(
η1 ∗
0 η2

)
where η2 : Gp → Λ× is the unramified character such that

η2(Frobp) = ap.



Steps in Ribet’s Method, revisited

Step 1: Reformulate problem as stating the existence of a
global class [κ] ∈ H1(GQ,E (χ)) with a prescribed local
restriction, e.g. with [κ]p related to a p-adic L-function Lp.

Step 2: Construct an ordinary Λ-adic family of cusp forms
with ap related to Lp.

Step 3: Specialize the Galois representation associated to the
family at a weight k ∈ Zp where it is reducible. Extract a
cohomology class [κ] from the reducible representation.

Step 4: Use the fact that the family is ordinary to relate the
local restriction [κ]p to ap, and hence to Lp as desired.
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Preview of coming attractions

In the remaining lectures, we will describe these steps in the case
of the Gross–Stark conjecture.


