Modular constructions of Galois cohomology classes with prescribed local properties

(Ribet's Method)

Samit Dasgupta

University of California, Santa Cruz

June 15, 2010

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Let $G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. Let E be a field, and let $\chi: G_{\mathbf{Q}} \longrightarrow E^{\times}$

be a continuous character.

We will be interested in constructing classes

 $[\kappa] \in H^1(G_{\mathbf{Q}}, E(\chi)).$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

(Continuous cohomology)

Typically *E* will be a finite extension of \mathbf{F}_p or \mathbf{Q}_p .

Let $G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. Let *E* be a field, and let

$$\chi: G_{\mathbf{Q}} \longrightarrow E^{\times}$$

be a continuous character.

We will be interested in constructing classes

 $[\kappa] \in H^1(G_{\mathbf{Q}}, E(\chi)).$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

(Continuous cohomology)

Typically *E* will be a finite extension of \mathbf{F}_p or \mathbf{Q}_p .

Let $G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. Let *E* be a field, and let

$$\chi: G_{\mathbf{Q}} \longrightarrow E^{\times}$$

be a continuous character.

We will be interested in constructing classes

$$[\kappa] \in H^1(G_{\mathbf{Q}}, E(\chi)).$$

(Continuous cohomology)

Typically *E* will be a finite extension of \mathbf{F}_p or \mathbf{Q}_p .

Let $G_p \subset G_Q$ denote a decomposition group at p.

This corresponds to taking an embedding $\overline{\mathbf{Q}} \subset \overline{\mathbf{Q}}_p$, with $G_p = \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$.

We will want to control the local images

$$[\kappa]_p = \operatorname{res}_{G_p}^{G_{\mathbf{Q}}}[\kappa] \in H^1(G_p, E(\chi)).$$

For instance, we may want $[\kappa]_p = 0$ when a certain *L*-function vanishes, or $[\kappa]_p$ related to a *p*-adic *L*-function.

Let $G_p \subset G_Q$ denote a decomposition group at p.

This corresponds to taking an embedding $\overline{\mathbf{Q}} \subset \overline{\mathbf{Q}}_p$, with $G_p = \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$.

We will want to control the local images

$$[\kappa]_{p} = \operatorname{res}_{G_{p}}^{G_{Q}}[\kappa] \in H^{1}(G_{p}, E(\chi)).$$

For instance, we may want $[\kappa]_p = 0$ when a certain *L*-function vanishes, or $[\kappa]_p$ related to a *p*-adic *L*-function.

• Converse to Herbrand's Theorem (Ribet)

- Iwasawa's Main Conjecture (Mazur-Wiles, Wiles, Skinner-Urban)
- Mazur–Tate–Teitelbaum Conjecture (Greenberg–Stevens)

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

- Converse to Herbrand's Theorem (Ribet)
- Iwasawa's Main Conjecture (Mazur-Wiles, Wiles, Skinner-Urban)
- Mazur–Tate–Teitelbaum Conjecture (Greenberg–Stevens)

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

- Converse to Herbrand's Theorem (Ribet)
- Iwasawa's Main Conjecture (Mazur-Wiles, Wiles, Skinner-Urban)
- Mazur–Tate–Teitelbaum Conjecture (Greenberg–Stevens)

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

- Converse to Herbrand's Theorem (Ribet)
- Iwasawa's Main Conjecture (Mazur-Wiles, Wiles, Skinner-Urban)
- Mazur–Tate–Teitelbaum Conjecture (Greenberg–Stevens)

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

- Step 1: Reformulate problem as stating the existence of a global class [κ] ∈ H¹(G_Q, E(χ)) with a prescribed local restriction, e.g. with [κ]_p related to a p-adic L-function L_p.
- Step 2: Construct a family of (ordinary) cusp forms with knowledge of the Fourier coefficients, e.g. a_p related to L_p.
- Step 3: Specialize the Galois representation associated to the family at a point where it is reducible. Extract a cohomology class from the reducible representation.
- Step 4: Use the fact that the family is ordinary to relate the local restriction [κ]_p to a_p, and hence to L_p as desired.

- Step 1: Reformulate problem as stating the existence of a global class [κ] ∈ H¹(G_Q, E(χ)) with a prescribed local restriction, e.g. with [κ]_p related to a p-adic L-function L_p.
- Step 2: Construct a family of (ordinary) cusp forms with knowledge of the Fourier coefficients, e.g. a_p related to L_p.
- Step 3: Specialize the Galois representation associated to the family at a point where it is reducible. Extract a cohomology class from the reducible representation.
- Step 4: Use the fact that the family is ordinary to relate the local restriction [κ]_p to a_p, and hence to L_p as desired.

- Step 1: Reformulate problem as stating the existence of a global class [κ] ∈ H¹(G_Q, E(χ)) with a prescribed local restriction, e.g. with [κ]_p related to a p-adic L-function L_p.
- Step 2: Construct a family of (ordinary) cusp forms with knowledge of the Fourier coefficients, e.g. a_p related to L_p.
- Step 3: Specialize the Galois representation associated to the family at a point where it is reducible. Extract a cohomology class from the reducible representation.
- Step 4: Use the fact that the family is ordinary to relate the local restriction [κ]_p to a_p, and hence to L_p as desired.

- Step 1: Reformulate problem as stating the existence of a global class [κ] ∈ H¹(G_Q, E(χ)) with a prescribed local restriction, e.g. with [κ]_p related to a p-adic L-function L_p.
- Step 2: Construct a family of (ordinary) cusp forms with knowledge of the Fourier coefficients, e.g. a_p related to L_p.
- Step 3: Specialize the Galois representation associated to the family at a point where it is reducible. Extract a cohomology class from the reducible representation.
- Step 4: Use the fact that the family is ordinary to relate the local restriction [κ]_p to a_p, and hence to L_p as desired.

Ribet's converse to Herbrand

Let A = ideal class group of $\mathbf{Q}(\mu_p)$, let $C = A \otimes \mathbf{F}_p$. Canonical character

$$\omega: G_{\mathbf{Q}}
ightarrow \mathsf{Gal}(\mathbf{Q}(\mu_p)/\mathbf{Q}) \cong \mathbf{F}_p^{ imes}$$

Then

$$C = \bigoplus_{i=0}^{p-2} C(\omega^i),$$

where

$$\mathcal{C}(\omega^i) = \{ c \in \mathcal{C} : \sigma(c) = \omega^i(\sigma) \cdot c \text{ for all } \sigma \in \mathcal{G}_{\mathsf{Q}} \}.$$

Theorem (Ribet)

Let j be even, $2 \le j \le p-3$. Then $p \mid B_j$ implies $C(\omega^{1-j}) \ne 0$.

Ribet's converse to Herbrand

Let A = ideal class group of $\mathbf{Q}(\mu_p)$, let $C = A \otimes \mathbf{F}_p$. Canonical character

$$\omega: G_{\mathbf{Q}}
ightarrow \mathsf{Gal}(\mathbf{Q}(\mu_p)/\mathbf{Q}) \cong \mathbf{F}_p^{ imes}$$

Then

$$C = \bigoplus_{i=0}^{p-2} C(\omega^i),$$

where

$$\mathcal{C}(\omega^i) = \{ c \in \mathcal{C} : \sigma(c) = \omega^i(\sigma) \cdot c ext{ for all } \sigma \in \mathcal{G}_{\mathbf{Q}} \}.$$

Theorem (Ribet)

Let j be even, $2 \le j \le p-3$. Then $p \mid B_j$ implies $C(\omega^{1-j}) \ne 0$.

Ribet's converse to Herbrand

Let A = ideal class group of $\mathbf{Q}(\mu_p)$, let $C = A \otimes \mathbf{F}_p$. Canonical character

$$\omega: G_{\mathbf{Q}}
ightarrow \mathsf{Gal}(\mathbf{Q}(\mu_p)/\mathbf{Q}) \cong \mathbf{F}_p^{ imes}$$

Then

$$C = \bigoplus_{i=0}^{p-2} C(\omega^i),$$

where

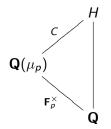
$$\mathcal{C}(\omega^i) = \{ c \in \mathcal{C} : \sigma(c) = \omega^i(\sigma) \cdot c \text{ for all } \sigma \in \mathcal{G}_{\mathbf{Q}} \}.$$

Theorem (Ribet)

Let j be even, $2 \le j \le p-3$. Then $p \mid B_j$ implies $C(\omega^{1-j}) \ne 0$.

By class field theory, $C = Gal(H/\mathbf{Q}(\mu_p))$, where

H = maximal abelian unramified ext of $\mathbf{Q}(\mu_p)$ with exponent p.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjugation action

 $\operatorname{Gal}(\mathbf{Q}(\mu_p)/\mathbf{Q}) \cong \mathbf{F}_p^{\times}$ acts on $\operatorname{Gal}(H/\mathbf{Q}(\mu_p))$ by conjugation:

$$\sigma(\tau) = \tilde{\sigma}\tau\tilde{\sigma}^{-1},$$

where $\tilde{\sigma} \in \text{Gal}(H/\mathbf{Q})$ lifts σ .

This corresponds to the usual Galois action of $Gal(\mathbf{Q}(\mu_p)/\mathbf{Q})$ on ideal classes *C*.

$$\operatorname{Gal}(H/\mathbf{Q})\cong C\rtimes \mathbf{F}_p^{\times}.$$

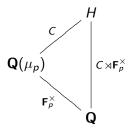
Conjugation action

 $\operatorname{Gal}(\mathbf{Q}(\mu_p)/\mathbf{Q}) \cong \mathbf{F}_p^{\times}$ acts on $\operatorname{Gal}(H/\mathbf{Q}(\mu_p))$ by conjugation:

$$\sigma(\tau) = \tilde{\sigma}\tau\tilde{\sigma}^{-1},$$

where $\tilde{\sigma} \in \text{Gal}(H/\mathbf{Q})$ lifts σ .

This corresponds to the usual Galois action of $Gal(\mathbf{Q}(\mu_p)/\mathbf{Q})$ on ideal classes *C*.



$$\operatorname{Gal}(H/\mathbf{Q})\cong C\rtimes \mathbf{F}_p^{\times}.$$

Therefore, with $\chi = \omega^{1-j}$, we see that $C(\chi) \neq 0$ is equivalent to the existence of an abelian extension $H/\mathbf{Q}(\mu_p)$ such that:

- $H/\mathbf{Q}(\mu_p)$ is unramified;
- Gal $(H/\mathbf{Q}(\mu_p))$ has size p;
- The conjugation action of $Gal(\mathbf{Q}(\mu_p)/\mathbf{Q})$ on $Gal(H/\mathbf{Q}(\mu_p))$ is via χ .

In this situation,

$$\operatorname{Gal}(H/\mathbf{Q})\cong \mathbf{F}_p\rtimes \mathbf{F}_p^{\times}.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Let $\kappa : G_{\mathbf{Q}} \to \mathbf{F}_{p}$ denote projection onto first factor.

Therefore, with $\chi = \omega^{1-j}$, we see that $C(\chi) \neq 0$ is equivalent to the existence of an abelian extension $H/\mathbf{Q}(\mu_p)$ such that:

- $H/\mathbf{Q}(\mu_p)$ is unramified;
- $Gal(H/\mathbf{Q}(\mu_p))$ has size p;
- The conjugation action of $Gal(\mathbf{Q}(\mu_p)/\mathbf{Q})$ on $Gal(H/\mathbf{Q}(\mu_p))$ is via χ .

In this situation,

$$\mathsf{Gal}(H/\mathbf{Q})\cong \mathbf{F}_p\rtimes \mathbf{F}_p^{ imes}.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Let $\kappa : G_{\mathbf{Q}} \to \mathbf{F}_p$ denote projection onto first factor.

$$\kappa(\sigma\tau) = \kappa(\sigma) + \chi(\sigma)\kappa(\tau).$$

We get a non-trivial class

$$[\kappa] \in H^1(G_{\mathbf{Q}}, \mathbf{F}_p(\chi)).$$

Since κ is unramified, we find that

$$\operatorname{res}_{I_{\ell}}^{G_{\mathbf{Q}}}[\kappa] \in H^{1}(I_{\ell}, \mathbf{F}_{p}(\chi))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is trivial for all ℓ .

$$\kappa(\sigma\tau) = \kappa(\sigma) + \chi(\sigma)\kappa(\tau).$$

We get a non-trivial class

$[\kappa] \in H^1(G_{\mathbf{Q}}, \mathbf{F}_{\rho}(\chi)).$

Since κ is unramified, we find that

$$\operatorname{res}_{I_{\ell}}^{G_{\mathbf{Q}}}[\kappa] \in H^{1}(I_{\ell}, \mathbf{F}_{p}(\chi))$$

is trivial for all ℓ .

$$\kappa(\sigma\tau) = \kappa(\sigma) + \chi(\sigma)\kappa(\tau).$$

We get a non-trivial class

$$[\kappa] \in H^1(G_{\mathbf{Q}}, \mathbf{F}_{\rho}(\chi)).$$

Since κ is unramified, we find that

$$\operatorname{res}_{I_{\ell}}^{G_{\mathbf{Q}}}[\kappa] \in H^{1}(I_{\ell}, \mathbf{F}_{\rho}(\chi))$$

is trivial for all ℓ .

$$\kappa(\sigma\tau) = \kappa(\sigma) + \chi(\sigma)\kappa(\tau).$$

We get a non-trivial class

$$[\kappa] \in H^1(G_{\mathbf{Q}}, \mathbf{F}_{\rho}(\chi)).$$

Since κ is unramified, we find that

$$\operatorname{res}_{I_{\ell}}^{G_{\mathbf{Q}}}[\kappa] \in H^{1}(I_{\ell}, \mathbf{F}_{p}(\chi))$$

is trivial for all ℓ .

Cohomology classes and Galois representations

The cocycle

$$\kappa \in Z^1(G_{\mathbf{Q}}, \mathbf{F}_{p}(\chi))$$

gives a Galois representation:

$$\rho: G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathbf{F}_p)$$

defined by

$$\rho(\sigma) = \begin{pmatrix} 1 & \kappa(\sigma)\chi^{-1}(\sigma) \\ 0 & \chi^{-1}(\sigma) \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

In order to show the existence of κ , we will construct ρ .

Yoga: Galois representations come from modular forms.

Cohomology classes and Galois representations

The cocycle

$$\kappa \in Z^1(G_{\mathbf{Q}}, \mathbf{F}_{p}(\chi))$$

gives a Galois representation:

$$\rho: G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathbf{F}_p)$$

defined by

$$\rho(\sigma) = \begin{pmatrix} 1 & \kappa(\sigma)\chi^{-1}(\sigma) \\ 0 & \chi^{-1}(\sigma) \end{pmatrix}$$

・ロト・日本・モート モー うへぐ

In order to show the existence of κ , we will construct ρ .

Yoga: Galois representations come from modular forms.

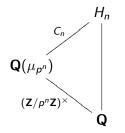
(Special case of) Iwasawa's Main Conjecture

From now on

$$\omega: G_{\mathbf{Q}} \to (\mathbf{Z}/p\mathbf{Z})^{\times} \to \mathbf{Z}_{p}^{\times}$$

is the Teichmuller character.

For j even, $2 \le j \le p - 3$, there is a p-adic L-function $L_p(\omega^j, s)$.



 $C_{\infty} := \lim_{\leftarrow} C_n$ has an action of $\operatorname{Gal}(\mathbf{Q}(\mu_{p^{\infty}})/\mathbf{Q}) \cong \mathbf{Z}_p^{\times} \cong (\mathbf{Z}/p\mathbf{Z})^{\times} \times (1 + p\mathbf{Z}_p).$ Let g = topological generator of $1 + p\mathbf{Z}_p$, and suppose $\gamma \mapsto (1, g)$.

(Consequence of) Iwasawa's Main Theorem

Theorem (Mazur-Wiles)

If $L_p(\omega^j, s) = 0$ for $s \in \mathbb{Z}_p$, then g^s is an eigenvalue of γ acting on $(C_{\infty} \otimes \mathbb{Q}_p)(\omega^{1-j}).$

Step 1: Reformulation

If $L_p(\omega^j, s) = 0$ for $s \in \mathbb{Z}_p$, then there exists a non-trivial unramified class in

$$[\kappa] \in H^1(G_{\mathbf{Q}}, \mathbf{Q}_p(\omega^{1-j}\epsilon^s)),$$

where

$$\epsilon: \mathcal{G}_{\mathbf{Q}}
ightarrow \mathsf{Gal}(\mathbf{Q}(\mu_{p^{\infty}})/\mathbf{Q}) \cong (\mathbf{Z}/p\mathbf{Z})^{ imes} imes (1+p\mathbf{Z}_p)$$

- ロ ト - 4 回 ト - 4 □

is projection to the second factor.

(Consequence of) Iwasawa's Main Theorem

Theorem (Mazur-Wiles)

If $L_p(\omega^j, s) = 0$ for $s \in \mathbb{Z}_p$, then g^s is an eigenvalue of γ acting on $(C_{\infty} \otimes \mathbb{Q}_p)(\omega^{1-j}).$

Step 1: Reformulation

If $L_p(\omega^j, s) = 0$ for $s \in \mathbf{Z}_p$, then there exists a non-trivial unramified class in

$$[\kappa] \in H^1(G_{\mathbf{Q}}, \mathbf{Q}_{\rho}(\omega^{1-j}\epsilon^s)),$$

where

$$\epsilon: \mathsf{G}_{\mathbf{Q}} \to \mathsf{Gal}(\mathbf{Q}(\mu_{p^{\infty}})/\mathbf{Q}) \cong (\mathbf{Z}/p\mathbf{Z})^{\times} \times (1 + p\mathbf{Z}_p)$$

is projection to the second factor.

Construct κ from a Galois representation

$$ho: G_{\mathbf{Q}}
ightarrow \mathsf{GL}_2(\mathbf{Q}_p)$$

with

$$\rho(\sigma) = \begin{pmatrix} 1 & b(\sigma) \\ 0 & \omega^{j-1} \epsilon^{-s}(\sigma) \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

and $\kappa(\sigma) = b(\sigma)/\omega^{j-1}\epsilon^{-s}(\sigma).$

Our source for Galois representations is...

Construct κ from a Galois representation

$$ho: G_{\mathbf{Q}}
ightarrow \mathsf{GL}_2(\mathbf{Q}_p)$$

with

$$\rho(\sigma) = \begin{pmatrix} 1 & b(\sigma) \\ 0 & \omega^{j-1} \epsilon^{-s}(\sigma) \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

and $\kappa(\sigma) = b(\sigma)/\omega^{j-1}\epsilon^{-s}(\sigma)$.

Our source for Galois representations is...

Modular Forms

Let
$$\chi : (\mathbf{Z}/N\mathbf{Z})^{\times} \to \overline{\mathbf{Q}}^{\times}$$
, $\chi(-1) = (-1)^k$.

A modular form of level N, character χ , and weight k is a holomorphic function $f : \mathcal{H} \to \mathbf{C}$ such that

$$(cz+d)^{-k}f\left(rac{az+b}{cz+d}
ight) = \chi(a)f(z)$$

for
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$
, and
 $f(z) = \sum_{n=0}^{\infty} a_n q^n, \qquad q = e^{2\pi i z}$

Modular forms denoted $M_k(N, \chi)$.

Cusp forms: $a_0 = 0$ for every $f|_{\gamma}$, denoted $S_k(N, \chi)$.

Hecke operators

For each $\ell \nmid Np$, there is a Hecke operator T_{ℓ} on $S_k(N, \chi; \mathbf{Z}_p)$ given on *q*-expansions by:

$$T_{\ell}\left(\sum_{n=0}^{\infty}a_nq^n\right)=\sum_{n=0}^{\infty}(a_{n\ell}+\chi(\ell)\ell^{k-1}a_{n/\ell})q^n.$$

Here $a_{n/\ell} = 0$ if $\ell \nmid n$.

Similarly for $\ell \mid N$, we have

$$U_{\ell}\left(\sum_{n=0}^{\infty}a_nq^n\right)=\sum_{n=0}^{\infty}a_{n\ell}q^n.$$

These operators define a Z_p -algebra called the Hecke algebra T_k .

Hecke operators

For each $\ell \nmid Np$, there is a Hecke operator T_{ℓ} on $S_k(N, \chi; \mathbf{Z}_p)$ given on *q*-expansions by:

$$T_{\ell}\left(\sum_{n=0}^{\infty}a_nq^n\right)=\sum_{n=0}^{\infty}(a_{n\ell}+\chi(\ell)\ell^{k-1}a_{n/\ell})q^n.$$

Here $a_{n/\ell} = 0$ if $\ell \nmid n$.

Similarly for $\ell \mid N$, we have

$$U_\ell\left(\sum_{n=0}^\infty a_n q^n\right) = \sum_{n=0}^\infty a_{n\ell} q^n.$$

These operators define a Z_{p} -algebra called the Hecke algebra T_{k} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Theorem (Deligne-Serre)

Let $k \ge 1$ and $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \overline{\mathbb{Q}}^{\times}$ a character. Let $f \in S_k(N, \chi)$ be a cuspidal newform. There exists an irreducible continuous Galois representation

$$ho: G_{\mathbf{Q}} \longrightarrow GL_2(\overline{\mathbf{Q}}_p)$$

that is unramified outside Np, such that for all $\ell \nmid Np$,

 $trace(\rho(Frob_{\ell})) = a_{\ell}$

and

$$\det(\rho(Frob_{\ell})) = \chi(\ell)\ell^{k-1}$$

Here

$$f(q)=\sum_{n=1}^{\infty}a_nq^n,$$

so a_{ℓ} is the eigenvalue of the Hecke operator T_{ℓ} .

Ordinary forms

The form f is called *ordinary at p* if

$$x^2 - a_p x + \chi(p) p^{k-1}$$

has a root α_p that is a *p*-adic unit.

If k > 1 (or $\chi(p) = 0$) this is equivalent to a_p being a p-adic unit.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Ordinary forms

The form f is called *ordinary at p* if

$$x^2 - a_p x + \chi(p) p^{k-1}$$

has a root α_p that is a *p*-adic unit.

If k > 1 (or $\chi(p) = 0$) this is equivalent to a_p being a p-adic unit.

Ordinary representations

Theorem

Let f be a cuspidal eigenform that is ordinary at p. There is a basis such that the restriction of ρ to G_p has the form

$$\rho|_{G_p} \cong \begin{pmatrix} \eta_1 & * \\ 0 & \eta_2 \end{pmatrix}$$

where $\eta_2: G_p \to \mathbf{Z}_p^{\times}$ is the unramified character such that

 $\eta_2(Frob_p) = \alpha_p.$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

For each $k \ge 2$, let f_k be a newform. Suppose that the associated representations

$$\rho_k(\sigma) = \begin{pmatrix} \mathsf{a}_k(\sigma) & \mathsf{b}_k(\sigma) \\ \mathsf{c}_k(\sigma) & \mathsf{d}_k(\sigma) \end{pmatrix}$$

have the remarkable property that the function $k \mapsto a_k(\sigma)$ extends to a continuous function $\mathbf{Z}_p \to \overline{\mathbf{Q}}_p$, and similarly for the other matrix coefficients.

- ロ ト - 4 回 ト - 4 □

Then for any $k \in \mathbb{Z}_p$, we get a Galois representation, and it is certainly possible that these other specializations are reducible.

For each $k \ge 2$, let f_k be a newform. Suppose that the associated representations

$$\rho_k(\sigma) = \begin{pmatrix} \mathsf{a}_k(\sigma) & \mathsf{b}_k(\sigma) \\ \mathsf{c}_k(\sigma) & \mathsf{d}_k(\sigma) \end{pmatrix}$$

have the remarkable property that the function $k \mapsto a_k(\sigma)$ extends to a continuous function $\mathbf{Z}_p \to \overline{\mathbf{Q}}_p$, and similarly for the other matrix coefficients.

Then for any $k \in \mathbf{Z}_p$, we get a Galois representation, and it is certainly possible that these other specializations are reducible.

Furthermore, since $\{k \in \mathbb{Z}, k \ge 2\}$ is dense in \mathbb{Z}_p , we know the trace and determinant of the representation by continuity.

Finally, if the f_k are all ordinary, we know what the representation looks like when restricted to G_p .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Furthermore, since $\{k \in \mathbb{Z}, k \ge 2\}$ is dense in \mathbb{Z}_p , we know the trace and determinant of the representation by continuity.

Finally, if the f_k are all ordinary, we know what the representation looks like when restricted to G_p .

Interpolation, following Iwasawa and Hida

Let $\Lambda = \mathbf{Z}_{p}[[T]]$.

Let g be a topological generator of $1 + p\mathbf{Z}_p$, e.g. g = 1 + p.

For each $k \in \mathbb{Z}_p$, define $\nu_k : \Lambda \to \mathbb{Z}_p^{\times}$ by

$$\nu_k(1+T) = g^{k-2}.$$

Every $\lambda \in \Lambda$ represents a function on \mathbb{Z}_p , via $k \mapsto \nu_k(\lambda)$.

We call elements of Λ , when viewed as functions on \mathbf{Z}_p , *Iwasawa* functions.

Interpolation, following Iwasawa and Hida

Let $\Lambda = \mathbf{Z}_p[[T]]$.

Let g be a topological generator of $1 + p\mathbf{Z}_p$, e.g. g = 1 + p.

For each $k \in \mathbf{Z}_p$, define $\nu_k : \Lambda \to \mathbf{Z}_p^{\times}$ by

$$\nu_k(1+T) = g^{k-2}$$

Every $\lambda \in \Lambda$ represents a function on \mathbf{Z}_p , via $k \mapsto \nu_k(\lambda)$.

We call elements of Λ , when viewed as functions on \mathbf{Z}_p , *Iwasawa* functions.

Interpolation, following Iwasawa and Hida

Let $\Lambda = \mathbf{Z}_p[[T]]$.

Let g be a topological generator of $1 + p\mathbf{Z}_p$, e.g. g = 1 + p.

For each $k \in \mathbf{Z}_p$, define $\nu_k : \Lambda \to \mathbf{Z}_p^{\times}$ by

$$\nu_k(1+T) = g^{k-2}$$

Every $\lambda \in \Lambda$ represents a function on \mathbf{Z}_p , via $k \mapsto \nu_k(\lambda)$.

We call elements of Λ , when viewed as functions on \mathbf{Z}_p , *Iwasawa functions*.

Example: power functions

Consider the function $k \mapsto a^{k-1}$ with $a \in 1 + p \mathbf{Z}_p$.

Let $a = g^{\beta}$, with $\beta \in \mathbf{Z}_{p}$.

Let

$$\lambda = a(1+T)^{\beta} = a \sum_{n=0}^{\infty} {\beta \choose n} T^n \in \Lambda.$$

Then

$$\nu_k(\lambda) = \nu_k(a(1+T)^{\beta}) = a(g^{k-2})^{\beta} = a^{k-1}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

Example: power functions

Consider the function $k \mapsto a^{k-1}$ with $a \in 1 + p \mathbf{Z}_p$.

Let $a = g^{\beta}$, with $\beta \in \mathbf{Z}_{p}$.

Let

$$\lambda = a(1+T)^{\beta} = a \sum_{n=0}^{\infty} {\beta \choose n} T^n \in \Lambda.$$

Then

$$\nu_k(\lambda) = \nu_k(a(1+T)^\beta) = a(g^{k-2})^\beta = a^{k-1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Λ-adic forms

Definition

A Λ -adic form of level Np and character χ is a q-expansion

$$f=\sum_{n=0}^\infty a_n q^n$$
 with $a_n\in\Lambda$

such that for all $k \in \mathbf{Z}$, $k \geq 2$,

$$u_k(f) = \sum_{n=0}^{\infty} \nu_k(a_n) q^n \in \mathbf{Z}_p[[q]]$$

is the *q*-expansion of a modular form $f_k \in M_k(Np, \chi \omega^{1-k}; \mathbf{Z}_p)$.

Here $\omega : (\mathbf{Z}/p\mathbf{Z})^{\times} \to \mathbf{Z}_{p}^{\times}$ is the Teichmuller character.

A Λ -adic form f is called a cusp form if for all $k \in \mathbb{Z}, k \ge 2$, the classical form f_k is a cusp form.

Note that this implies, but is not equivalent to, $a_0 = 0$.

The space of Λ -adic modular forms of level N and character χ is denoted $\mathcal{M}(N, \chi)$, and the subspace of cusp forms is denoted $\mathcal{S}(N, \chi)$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

A Λ -adic form f is called a cusp form if for all $k \in \mathbb{Z}, k \ge 2$, the classical form f_k is a cusp form.

Note that this implies, but is not equivalent to, $a_0 = 0$.

The space of Λ -adic modular forms of level N and character χ is denoted $\mathcal{M}(N,\chi)$, and the subspace of cusp forms is denoted $\mathscr{S}(N,\chi)$.

Λ-adic Hecke operators

For each $\ell \nmid Np$, there is a Hecke operator T_{ℓ} on the space of Λ -adic forms such that

$$\nu_k(T_\ell f) = T_\ell \nu_k(f).$$

The formula for T_{ℓ} is:

$$T_{\ell}(\sum a_n q^n) = \sum_{n=0}^{\infty} (a_{n\ell} + \chi(\ell)\lambda_{\ell}a_{n/\ell})q^n,$$

where $\lambda_{\ell} \in \Lambda$ such that $\nu_k(\lambda) = \langle \ell \rangle^{k-1}$. Here

$$\langle \ell \rangle = \ell / \omega(\ell) \equiv 1 \pmod{p}.$$

Λ-adic Hecke operators

For each $\ell \nmid Np$, there is a Hecke operator T_{ℓ} on the space of Λ -adic forms such that

$$\nu_k(T_\ell f) = T_\ell \nu_k(f).$$

The formula for T_{ℓ} is:

$$T_{\ell}(\sum a_n q^n) = \sum_{n=0}^{\infty} (a_{n\ell} + \chi(\ell)\lambda_{\ell}a_{n/\ell})q^n,$$

where $\lambda_{\ell} \in \Lambda$ such that $\nu_k(\lambda) = \langle \ell \rangle^{k-1}$. Here

$$\langle \ell \rangle = \ell / \omega(\ell) \equiv 1 \pmod{p}.$$

Similarly there is a Λ -adic operator U_{ℓ} for $\ell \mid Np$.

The operators T_{ℓ} for $\ell \nmid Np$ and U_{ℓ} for $\ell \mid Np$ define a Λ -algebra called the Hecke algebra **T**.

Eisenstein Series

Let $k \in \mathbf{Z}$, $k \geq 2$,

$$\eta: (\mathbf{Z}/a\mathbf{Z})^{\times} \to \overline{\mathbf{Q}}^{\times}, \qquad \psi: (\mathbf{Z}/b\mathbf{Z})^{\times} \to \overline{\mathbf{Q}}^{\times}$$

be characters such that $\eta \psi(-1) = (-1)^k$.

There is a modular form $E_k(\eta,\psi)\in M_k(ab,\eta\psi)$ with q-expansion

$$\mathsf{E}_k(\eta,\psi)(q) = \mathsf{a}_0 + \sum_{n=1}^{\infty} \sum_{d\mid n} \eta\left(\frac{n}{d}\right) \psi(d) d^{k-1} q^n,$$

where

$$a_0 = \begin{cases} \frac{1}{2}L(\psi, 1-k) & \text{if } \eta = 1 \text{ (with } a = 1) \\ 0 & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Eisenstein Series

Let $k \in \mathbf{Z}$, $k \geq 2$,

$$\eta: (\mathbf{Z}/a\mathbf{Z})^{\times} \to \overline{\mathbf{Q}}^{\times}, \qquad \psi: (\mathbf{Z}/b\mathbf{Z})^{\times} \to \overline{\mathbf{Q}}^{\times}$$

be characters such that $\eta\psi(-1) = (-1)^k$.

There is a modular form $E_k(\eta, \psi) \in M_k(ab, \eta\psi)$ with q-expansion

$$\mathsf{E}_k(\eta,\psi)(q) = \mathsf{a}_0 + \sum_{n=1}^\infty \sum_{d\mid n} \eta\left(rac{n}{d}
ight) \psi(d) d^{k-1} q^n,$$

where

$$a_0 = \begin{cases} rac{1}{2}L(\psi, 1-k) & ext{if } \eta = 1 ext{ (with } a = 1) \\ 0 & ext{otherwise.} \end{cases}$$

- ロ ト - 4 回 ト - 4 □

Weight 1 Eisenstein Series

The same is true if k = 1, except if $\eta \neq 1$ and $\psi = 1$, the constant term is

 $\frac{1}{2}L(\eta,0).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Note that $E_1(\eta, \psi) = E_1(\psi, \eta)$.

Weight 1 Eisenstein Series

The same is true if k = 1, except if $\eta \neq 1$ and $\psi = 1$, the constant term is

$$\frac{1}{2}L(\eta,0).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Note that $E_1(\eta, \psi) = E_1(\psi, \eta)$.

The Eisenstein series $E_k(\eta, \psi)$ is an eigenform, with eigenvalue

 $\eta(\ell) + \psi(\ell)\ell^{k-1}$

for T_{ℓ} when $\ell \nmid N$ and for U_{ℓ} when $\ell \mid N$.

 $M_k(N,\chi) = S_k(N,\chi) \oplus \operatorname{Eis}_k(N,\chi)$

where $\operatorname{Eis}_k(N, \chi)$ is the space spanned by $E_k(\eta, \psi)$ for all η, ψ such that ab = N and $\eta \psi = \chi$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The Eisenstein series $E_k(\eta, \psi)$ is an eigenform, with eigenvalue

 $\eta(\ell) + \psi(\ell)\ell^{k-1}$

for T_{ℓ} when $\ell \nmid N$ and for U_{ℓ} when $\ell \mid N$.

$$M_k(N,\chi) = S_k(N,\chi) \oplus \mathsf{Eis}_k(N,\chi)$$

where $\operatorname{Eis}_k(N, \chi)$ is the space spanned by $E_k(\eta, \psi)$ for all η, ψ such that ab = N and $\eta \psi = \chi$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

p-adic interpolation of Eisenstein Series

Suppose $\eta\psi(-1) = -1$. Consider

$$E_k(\eta,\psi\omega^{1-k})=a_0+\sum_{n=1}^{\infty}\sum_{d\mid n,(d,p)=1}\eta(d)\psi(d)\langle d\rangle^{k-1}q^n,$$

where $\psi \omega^{1-k}$ is always viewed to have modulus divisible by p.

Here $a_0 = 0$ if $\eta \neq 1$, and

$$a_0 = \frac{1}{2}L(\psi\omega^{1-k}, 1-k)$$

if $\eta = 1$.

Note that the Fourier coefficients for $n \ge 1$ are lwasawa functions

- ロ ト - 4 回 ト - 4 □ - 4

p-adic interpolation of Eisenstein Series

Suppose $\eta\psi(-1) = -1$. Consider

$$E_k(\eta,\psi\omega^{1-k})=a_0+\sum_{n=1}^{\infty}\sum_{d\mid n,(d,p)=1}\eta(d)\psi(d)\langle d\rangle^{k-1}q^n,$$

where $\psi \omega^{1-k}$ is always viewed to have modulus divisible by p.

Here $a_0 = 0$ if $\eta \neq 1$, and

$$a_0=\frac{1}{2}L(\psi\omega^{1-k},1-k)$$

if $\eta = 1$.

Note that the Fourier coefficients for $n \ge 1$ are lwasawa functions

p-adic interpolation of Eisenstein Series

Suppose $\eta\psi(-1) = -1$. Consider

$$E_k(\eta,\psi\omega^{1-k})=a_0+\sum_{n=1}^{\infty}\sum_{d\mid n,(d,p)=1}\eta(d)\psi(d)\langle d\rangle^{k-1}q^n,$$

where $\psi \omega^{1-k}$ is always viewed to have modulus divisible by p.

Here $a_0 = 0$ if $\eta \neq 1$, and

$$a_0=\frac{1}{2}L(\psi\omega^{1-k},1-k)$$

if $\eta = 1$.

Note that the Fourier coefficients for $n \ge 1$ are Iwasawa functions.

Kubota–Leopoldt *p*-adic *L*-function

Actually, a_0 is an Iwasawa function as well.

Theorem (Kubota-Leopoldt) Let $\psi(-1) = 1$, and $\psi \neq 1$. There exists an element $\mathscr{L}(\psi) \in \Lambda$ such that $\nu_k(\mathscr{L}(\psi)) = L(\psi\omega^{-k}, 1-k)$

for all $k \in \mathbf{Z}$, $k \ge 1$.

Notation:

$$L_p(\psi, s) = \nu_{1-s}(\mathscr{L}(\psi))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is the *p*-adic *L*-function attached to ψ .

Kubota–Leopoldt *p*-adic *L*-function

Actually, a_0 is an Iwasawa function as well.

Theorem (Kubota-Leopoldt) Let $\psi(-1) = 1$, and $\psi \neq 1$. There exists an element $\mathscr{L}(\psi) \in \Lambda$ such that $\nu_k(\mathscr{L}(\psi)) = L(\psi\omega^{-k}, 1-k)$

for all $k \in \mathbf{Z}$, $k \ge 1$.

Notation:

$$L_{p}(\psi, s) = \nu_{1-s}(\mathscr{L}(\psi))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is the *p*-adic *L*-function attached to ψ .

Pole of the *p*-adic zeta function

When
$$\psi=1$$
, there is a pole of $\zeta_{
ho}(s)={\sf L}_{
ho}(1,s)$ at $s=1$.

Theorem

There exists an element $\mathscr{G} \in \Lambda$ such that

$$\mathscr{L}(1) = rac{\mathscr{G}}{g^2(1+T)-1} \in \mathit{Frac}(\Lambda)$$

satisfies

$$\nu_k(\mathscr{L}(1)) = \frac{\nu_k(\mathscr{G})}{g^k - 1} = L(\omega^{-k}, 1 - k)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $k \in \mathbf{Z}$, $k \ge 1$.

Furthermore, $\nu_0(\mathscr{G}) \neq 0$.

Pole of the *p*-adic zeta function

When
$$\psi=1$$
, there is a pole of $\zeta_{
ho}(s)={\sf L}_{
ho}(1,s)$ at $s=1$.

Theorem

There exists an element $\mathscr{G} \in \Lambda$ such that

$$\mathscr{L}(1) = rac{\mathscr{G}}{g^2(1+T)-1} \in \mathit{Frac}(\Lambda)$$

satisfies

$$\nu_k(\mathscr{L}(1)) = \frac{\nu_k(\mathscr{G})}{g^k - 1} = L(\omega^{-k}, 1 - k)$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

for all $k \in \mathbf{Z}$, $k \ge 1$.

Furthermore, $\nu_0(\mathscr{G}) \neq 0$.

A-adic Eisenstein series

Theorem

Given η, ψ such that $\eta\psi(-1) = -1$, there exists a Λ -adic form $\mathscr{E}(\eta, \psi)$ of level ab and character $\eta\psi$ given by

$$\mathscr{E}(\eta,\psi) = \mathsf{a}_0 + \sum_{n=1}^{\infty} \sum_{d\mid n, (d,p)=1} \eta\left(rac{\mathsf{n}}{\mathsf{d}}\right) \psi(\mathsf{d}) \lambda_{\mathsf{d}} \mathsf{q}^n,$$

and

$$a_0 = egin{cases} rac{1}{2}\mathscr{L}(\psi\omega) & \textit{ if } \eta = 1 \ 0 & \textit{ otherwise.} \end{cases}$$

When $\psi = \omega^{-1}$, the constant term $a_0 = \frac{1}{2}\mathcal{L}(1)$ lies in Frac(Λ) and has a pole at k = 0.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

A-adic Eisenstein series

Theorem

Given η, ψ such that $\eta\psi(-1) = -1$, there exists a Λ -adic form $\mathscr{E}(\eta, \psi)$ of level ab and character $\eta\psi$ given by

$$\mathscr{E}(\eta,\psi) = \mathsf{a}_0 + \sum_{n=1}^{\infty} \sum_{d\mid n, (d,p)=1} \eta\left(\frac{n}{d}\right) \psi(d) \lambda_d q^n,$$

and

$$a_0 = egin{cases} rac{1}{2}\mathscr{L}(\psi\omega) & \textit{if } \eta = 1 \ 0 & \textit{otherwise.} \end{cases}$$

When $\psi = \omega^{-1}$, the constant term $a_0 = \frac{1}{2}\mathscr{L}(1)$ lies in Frac(Λ) and has a pole at k = 0.

It is harder to show the existence of Λ -adic cusp forms (just as it is harder to show the existence of classical cusp forms).

There are some explicit constructions, for example, families of $\boldsymbol{\Theta}$ series.

We will use A-adic Eisenstein series to construct A-adic cusp forms.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(Remember $\Delta = c_1 \cdot E_4^3 - c_2 \cdot E_6^2$.)

The existence of Λ -adic cuspidal families follows from general theory, much of which was done by Hida.

It is harder to show the existence of Λ -adic cusp forms (just as it is harder to show the existence of classical cusp forms).

There are some explicit constructions, for example, families of $\boldsymbol{\Theta}$ series.

We will use Λ -adic Eisenstein series to construct Λ -adic cusp forms.

(Remember $\Delta = c_1 \cdot E_4^3 - c_2 \cdot E_6^2$.)

The existence of Λ -adic cuspidal families follows from general theory, much of which was done by Hida.

Iterating U_p

If
$$f \in S_k(Np, \chi; \mathbf{Z}_p)$$
 is a U_p -eigenform, then
 $U_p f = a_p f \Longrightarrow U_p^n f = a_p^n f.$

If f is not ordinary, $a_p^n \to 0$ as $n \to \infty$, so $U_p^n f \to 0$.

If f is ordinary,
$$a_p^{(p-1)p^n} o 1$$
 as $n \to \infty$, so $U_p^{(p-1)p^n} f \to f$.

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

Hida's ordinary projector

Definition

Define Hida's ordinary projector by

$$e=\lim_{n\to\infty}U_p^{n!}\in\mathbf{T}.$$

e is an idempotent: $e^2 = e$.

If f is an eigenform then ef = f if f is ordinary and ef = 0 otherwise.

・ロト ・ 通 ト ・ 注 ト ・ 注 ・ つ へ ()・

Hida's control theorem

Define the space of ordinary Λ -adic cusp forms by

$$\mathscr{S}(\mathsf{N},\chi)^{\mathsf{o}} = \mathsf{e}\mathscr{S}(\mathsf{N},\chi).$$

Theorem (Hida)

The space of ordinary Λ -adic forms $\mathscr{S}(N, \chi)^{\circ}$ is a free Λ -algebra of finite rank, and for every integer $k \geq 2$, we have

$$\nu_k(\mathscr{S}(N,\chi)^o) = S_k(Np,\chi\omega^{1-k})^o.$$

Furthermore, over $Frac(\Lambda)$, the space $\mathscr{S}(N, \chi)^o$ has a basis of eigenforms.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Step 3: associated Galois representation

Theorem (Hida, Wiles)

Let $f \in \mathscr{S}(N, \chi)^{\circ}$ be an ordinary Λ -adic cuspidal eigenform. There exists an irreducible continuous Galois representation

 $\rho: G_{\mathbf{Q}} \to GL_2(\operatorname{Frac}(\Lambda))$

that is unramified outside Np, such that for all $\ell \nmid Np$,

 $trace(\rho(Frob_{\ell})) = a_{\ell}$

and

$$\det(\rho(Frob_{\ell})) = \chi(\ell) \langle \ell \rangle^{k-1}.$$

It is possible that the specialization of ρ at some $k \in \mathbb{Z}_p$ is reducible.

Theorem (Hida, Wiles)

There is a basis such that the restriction of ρ to G_p has the form

$$\rho|_{\mathcal{G}_p} \cong \begin{pmatrix} \eta_1 & * \\ 0 & \eta_2 \end{pmatrix}$$

where $\eta_2: G_p \to \Lambda^{\times}$ is the unramified character such that

 $\eta_2(Frob_p) = a_p.$

Step 1: Reformulate problem as stating the existence of a global class [κ] ∈ H¹(G_Q, E(χ)) with a prescribed local restriction, e.g. with [κ]_p related to a p-adic L-function L_p.

 Step 2: Construct an ordinary Λ-adic family of cusp forms with a_p related to L_p.

- Step 3: Specialize the Galois representation associated to the family at a weight k ∈ Z_p where it is reducible. Extract a cohomology class [κ] from the reducible representation.
- Step 4: Use the fact that the family is ordinary to relate the local restriction [κ]_p to a_p, and hence to L_p as desired.

- Step 1: Reformulate problem as stating the existence of a global class [κ] ∈ H¹(G_Q, E(χ)) with a prescribed local restriction, e.g. with [κ]_p related to a p-adic L-function L_p.
- Step 2: Construct an ordinary Λ-adic family of cusp forms with a_p related to L_p.
- Step 3: Specialize the Galois representation associated to the family at a weight k ∈ Z_p where it is reducible. Extract a cohomology class [κ] from the reducible representation.
- Step 4: Use the fact that the family is ordinary to relate the local restriction [κ]_p to a_p, and hence to L_p as desired.

- Step 1: Reformulate problem as stating the existence of a global class [κ] ∈ H¹(G_Q, E(χ)) with a prescribed local restriction, e.g. with [κ]_p related to a p-adic L-function L_p.
- Step 2: Construct an ordinary Λ-adic family of cusp forms with a_p related to L_p.
- Step 3: Specialize the Galois representation associated to the family at a weight k ∈ Z_p where it is reducible. Extract a cohomology class [κ] from the reducible representation.
- Step 4: Use the fact that the family is ordinary to relate the local restriction [κ]_p to a_p, and hence to L_p as desired.

- Step 1: Reformulate problem as stating the existence of a global class [κ] ∈ H¹(G_Q, E(χ)) with a prescribed local restriction, e.g. with [κ]_p related to a p-adic L-function L_p.
- Step 2: Construct an ordinary Λ-adic family of cusp forms with a_p related to L_p.
- Step 3: Specialize the Galois representation associated to the family at a weight k ∈ Z_p where it is reducible. Extract a cohomology class [κ] from the reducible representation.
- Step 4: Use the fact that the family is ordinary to relate the local restriction [κ]_p to a_p, and hence to L_p as desired.

In the remaining lectures, we will describe these steps in the case of the Gross–Stark conjecture.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ