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Our present goal is to prove that the j-invariants of the elliptic curves of conductor 1
generate the Hilbert class �eld of K. More generally, we want to show that the invariants of
the curves of conductor c generate the ring class �eld of conductor c.

1 Summary of the situation

Let us recall the basic set-up. We �x a positive integer c.

• �ere are h = hc non-isomorphic CM curves Ei of conductor c, where hc is the class
number of the order R = Rc = OK,c.

• �e curves Eimay be decribed as Ei ≅ C/ai where ai runs over a set of representatives
of the ideal classes of R.

• �ere is an action of the ideal class group G = Gc of R on the set of isomorphism
classes of curves of conductor c induced by multiplication of ideals: if b in an ideal of
R and Ei = C/ai then [b] ⋅ Ei is the elliptic curve C/aib, and one sees that this passes
to equivalence classes of ideals b and isomorphism classes of curves.

• �e value of the j-invariant on each ideal class of R is an algebraic integer.

In view of the last two items above, and the identi�cation of G with the Galois group
Gal(K(c)/K), it seems reasonable to hope that the j-invariants of the Ei generate K(c) and
that the multiplication of ideals giving the action on curves goes over to the Galois action
on j-invariants. �is is what we shall prove below.
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2 The key ingredient: Kronecker congruence

We�rst dispose of the casewhere c = 1, leaving the case of general c for the adelic formulation
of our results, which will come later. �us we take R = OK and G to be the usual ideal class
group of K.
Let p denote a rational prime number which is split in K. Let L/K denote the Galois

closure of the �eld generated by the j-invariants j(ai). Let a = ai be �xed. �en if p is a
factor of p in K, consider the elliptic curve C/p−1a. We will show that for all but �nitely split
primes p, we have

j(p−1a) ≡ j(a)p (mod P) (1)

whereP is a prime above p in L. Observe that the statement above assumes the fact that the
j-invariants in question are algebraic integers.
Let us assume this congruence for the moment.

�eorem 1 �e �eld L is the Hilbert class �eld of K.

Proof. Let Frob(P) ∈ Gal(L/K) denote the Frobenius automorphism ofP. �en the con-
gruence (1) may be restated as

Frob(P)(j(a)) ≡ j(p−1a) (mod P).

Since there are only �nitely many ideal classes [ai] and consequently only �nitely many j-
invariants j(ai) to consider, we may assume that p is relatively prime to the �nitely many
numbers obtained by taking di�erences of the conjugates of the j(ai). �en the the congru-
ence above is in fact an equality:

Frob(P)(j(a)) = j(p−1a).

But now we are done, since this implies already that all the numbers j(ai) are conjugate
over K. Indeed, we can �nd in�nitely many split primes p in any ideal class of K, so that the
set p−1a runs over all the ideal classes. Furthermore, Frob(P) is trivial precisely when p is
principal, since p−1a is in the same ideal class as a precisely for principal p. �us the primes
of degree 1 in K splitting in E are the ones which are principal. It follows that L is the Hilbert
class �eld of K.

Corollary 2 We have H = K(j(a)) for any ideal a of K.
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3 Proof of the Kronecker congruence

�e proof of the key congruence is not hard, although it is somewhat technical. �us far we
have been able to get away with viewing the curves Ei as being de�ned over C, but the free
ride is over, and we have to deal with them as elliptic curves de�ned over number �elds and
wrestle with what reduction modulo a prime actually means.
For the purposes of this course, we will proceed formally, and assume that reduction

modulo a prime works the way one would like, at least if we avoid a �nite set of primes of
bad reduction. We will state what we need, but we emphasize that the results we use all
follow from a systematic development of Néron models.
So let us brie
y state what is required. Let E1 and E2 denote elliptic curves over a number

�eld L and letP denote a prime of L. We assume that there existWeierstrassmodels for Ei/L
which have the property that the corresponding discriminants are prime toP. Let let R be
the localization of the ring of integers of L atP, and let F denote the residue �eld of R atP.
�en let Ei denote the elliptic curves over F de�ned by reducing the coe�cients of the given
equations of the Ei. Under our assumptions, the curves Ei are elliptic curves over F.
�e key property is the following. Let Ai = H0(Ei,Ω1)L denote the 1-dimensional L-

space of di�erentials on Ei. �en Ai is contravariantly functorial: if there is an isogeny
µ ∶ E1 → E2, then there is an inducedmapA2 → A1. If E1 = E2 then there is an endomorphism
A→ A, induced by multiplication by an element a(µ) ∈ L, since A is a 1-dimensional space.
Similarly, let Ai = H0(Ei,Ω1)Fp

denote the corresponding object over Fp. �en each Ai
is a 1-dimensional space over Fp, and, if µ is an isogeny E1 → E2, then there is an induced
map A2 → A1.
�e key property of good reduction that we need is the following.

�eorem 1 (See Silverman’s book) Let the hypotheses be as above. �en there exist rank 1
free R-modules Ai such that the following properties hold:

• Ai = Ai ⊗ L

• Ai = Ai ⊗ R/PS

• If µ ∶ E1 → E2 is an isogeny, then there is a canonical isogeny µ ∶ E1 → E2 called the
reduction of µ, and there is a canonical map A2 → A1 which is compatible via the above
tensor product with the corresponding maps on Ai and Ai.
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• �e degree of µ is the same as the degree of µ.

Corollary 2 Suppose E1 = E2 and µ is an endomorphismof E. �en the inducedmapH0(E,Ω1)L →

H0(E,Ω1)L is induced by multiplication by an element a(µ) ∈ S. �e endomorphism of
H0(E,Ω1)Fp

induced by µ is simply multiplication by the image of a(µ) in S/PS.

With this in hand, we proceed as follows. For each ideal class [ai] of K, we pick aWeier-
strass model of Ei over the Galois closure of the �eld generated by the j(ai) over K. We pick
a split prime p of K which is relatively prime to the following quantities:

• �e di�erences of the conjugates of the j(ai)

• �e discriminants of the selected Weierstrass models of the Ei

• �e discriminant of L.

Since a ⊂ p−1a, we have a natural map

C/a→ C/p−1a.

Note that this map has degree p. Let b denote an ideal of OK such that pb = (α) is princi-
pal. We may assume that b is prime to p. �en multiplication by α followed by the natural
projection gives a map

C/p−1a→ C/ba→ C/a.

�e composite map
C/a→ C/p−1a→ C/ba→ C/a (2)

is clearly induced by multiplication by α, as can be seen by tracing around the e�ect on C.
Furthermore, the �rst arrow above has degree p as was previously remarked, the second
arrow is an isomorphism, and the third arrow has degree equal to the norm of b, which is
prime to p.
We now want to reduce the endomorphism [α] modulo P, and we claim that the re-

duction of α is inseparable in characteristic p. We remark here that since α is contained in
K ⊂ L, the endomorphism [α] is indeed de�ned over L.
Nownote that overCwehave that ifω is the di�erentialdzonE = C/Λ, then the pullback

[α]∗ω = αω. In other words, µ induces multiplication by α on the 1-dimensional complex

4



vector space H0(E,Ω1) over C. �us [α] induces multiplication by α on H0(E,Ω1)L, so we
see that in characteristic p, the reduction of [α] induces multiplication by α on H0(E,Ω1)

over Fp, and that this is zero, since α is divisible by p.
On the other hand, µ factors as a composite of two maps, one of degree p, and the other

of degree prime to p. Enlarging the �eld L if neccesary, we may assume that each of these
isogenies is de�ned over L. Since the reduction of the second map is separable, it follows
that the the reduction of the former is purely inseparable and since it has degree p, it must
be the Frobenius map raising to p-th powers, up to an automorphism of the reduced curve.
�us we get

j(p−1a) ≡ j(a)p (mod P)

as required. (Note that this conclusion is not a�ected by any possible extension of the �eld
L e�ected for purposes of the proof above; the conclusion holds in any Galois extension of
K containing the j-invariants in question.)

Corollary 3 (exercise) �e Hilbert class �eld of K is generated by j(E) where E is any one
elliptic curve of conductor 1.

4 Points of order N

We now want to look at the �eld generated by adding the coordinates of points of order N
together with the j-invariants. However, this will require a certain precision about the exact
models we choose for our elliptic curves, which we have thus far been able to avoid. So let
E be an elliptic curve over C with E ≅ C/Λ for some Λ. As we have seen above, the choice
of Λ leads to a Weierstrass model for E:

E ∶ Y2 = 4X3 − g2(Λ)X − g3.

At �rst glance, there is no particularly canonical choice of Λ.1 Since the coordinates of points
evidently depend on the model, we are led to seek an isomorphism invariant quantity. Let
us de�ne the Weber function h of E as follows. If j(E) ≠ 0, 1728

hE = −2735
g2g3
∆

⋅ X.

1Actually, there is a canonical choice, but it comes from considerations which are not particularly useful
here.
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Here we view g2 and g3 as constants, and X as a rational function on E. Recall also that
in terms of the complex analytic incarnation of E, the function X is just the Weierstrass P
function. �us, h is just a constant multiple of the P-function, once the choice of Λ is �xed.
Note also that hE vanishes identically if g2g3 = 0; this is excluded by our assumption that
j(E) ≠ 0, 1728, since there are the values of the j-invariant corresponding to g2g3 = 0.
If g2 = 0 we put

hE =
g32
∆
x2

and if j(E) = 1728 we put
hE =

g3
∆
x3.

�en in every case, hE is a rational function on E. Observe also that the values of hE at
points of �nite order coincide with the values of the Fricke functions fa de�ned previously.

Proposition 1 (exercise) �e Weber function gives a rational function E → P1. If u and u′

are points on E, we have hE(u) = hE(u′) if and only if there is an automorphism σ of E such
that σ(u) = u′.

�e starting point is the following observation. We know from the foregoing consider-
ations that the canonical projection E = C/a → C/p−1a = Eσ for σ = Frob(p) reduces to a
purely inseparable map of degree p in characteristic p. Such a map is equal to Frobenius, at
least up to an automorphism of Eσ.

Lemma 2 (exercise) We may compose the natural map E = C/a → C/p−1a = Eσ with an
automorphism of Eσ so that the deduced map E → Eσ reduces precisely to the Frobenius map.

�eorem 3 Let E be a CM elliptic curve of conductor 1. �en the �eld L generated over K by
j(a) and the numbers hE(u) for u running over the points of order N in E is the ray class �eld
of conductor N.

Proof. We will show that a degree 1 prime of K splits completely in L if and only if it is
principal, generated by an element congruent to 1 modulo N. �us suppose p = (α) is such
a prime and α ≡ 1 (mod N). We assume again that p is away from a �nite set of bad primes.
�en let a denote and ideal of K and consider the map

µ ∶ E = C/a→ C/p−1a = Eσ
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where σ = Frob(P) for a primeP above p. Since α is principal, the previous results on the
Hilbert class �eld show that in fact Eσ = E.
Using the lemma above, we can assume that the reduction of µ is the Frobenius endo-

morphism. Now if u is a point of order N on E, then uσ is a point of order N on Eσ and uσ

reduces to Frob(u) on the reduced curve Frob(E). �us µ(u) and uσ reduce to the same
point moduloP, so that µ(u) = σ(u) for each point of order N.
�en consider the composite

C/a→ C/α−1a→ C/a

where the second arrow is induced by multiplication by α. �e composite is the endomor-
phism of C/a induced by multiplication by α. Under our hypothesis on α, this endomor-
phism acts as the identity on the points of order N. Furthermore, as endomorphisms of E,
the multiplication-by-α map and the the map µ are equal up to an automorphism (multi-
plication by a root of unity in O×

K). Since the numbers hE(u) are invariant under automor-
phisms, it follows that σ acts as the identity on each hE(u), which shows that Frob(P) is
trivial on L, so p splits completely.
As for the converse, suppose p is a prime that has trivial Frobenius in L. �en in partic-

ular Frob(P) is trivial in the K(j(a))which is the Hilbert class �eld, so p = (α) is principal,
and, with notation as above, Eσ = E for E = C/a and Eσ = C/p−1a. �en ifu is a point of order
N corresponding to tou ∈ K/a, we have hE(u)σ = hE(u) since σ is trivial on L. Furthermore,
we can argue as in the previous case to see that the multiplication-by-α endomorphism acts
via σ on the points of order N. But now hσE = hE since hE is de�ned over K(j(E)) whence
we get (hE(u))σ = hσE(uσ) = hE(uσ) = hE(αu). It follows that hE(u) = hE(αu) for each u,
so that u and αu di�er by an automorphism of E. �us there exists a root of unity є (perhaps
dependent on u) such that αu = єu. Changing the generator α by this root of unity we get
αu = u, and since E[N] is principal as a module overOK/NOK, we �nd that the αu = u for
all u in E[N]. �us α ≡ 1 (mod N).
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