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In this part wewill prove that the j-invariant of a CMelliptic curve is an algebraic integer,
andprepare for the proof that these algebraic integers generate certain class �elds ofK. Recall
that the j-invariant is an invariant function for the group Γ = SL2(Z) which is holomorphic
on the upper half plane and has a Fourier expansion q−1 + . . . at in�nity.

1 The modular equation

Let nbe a positive integer, and let ∆∗n denote the set of integral 2×2matriceswith determinant
n and entries with no common factor. �en one has the following elementary result:

Proposition 1 (Exercise, using the elementary divisor theorem) We have the decomposi-

tion ∆∗n = Γ
⎛
⎝
n 0
0 1

⎞
⎠
Γ and ∆∗n = ⋃ Γαi where αi runs over matrices of the form

αi =
⎛
⎝
a b
0 d

⎞
⎠

with 0 < a, 0 ≤ b < d, and ad = n.

Lemma 2 Suppose f is a holomorphic function on the upper half plane which is invariant
under the action of Γby fractional linear transformations andwhich ismeromorphic at in�nity.
�en f is a polynomial in the function j(z), with coe�cients in the Z-module generated by the
Fourier coe�cients of f.

Proof. Let us write f = c−mq−m + . . . . �en f − c−m jm has the properties in the statement
of the theorem, and has a pole of order at most m − 1 at in�nity. Repeating this process, we
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�nd a polynomial P in jwith coe�cients that are linear combinations of the coe�cients of f
such that f−P(j) vanishes at in�nity and is holomorphic on the upper half plane. It follows
that f − P(j) is identically zero, which proves our assertion.
Now let n be a positive integer and let αi be representatives for the right cosets of ∆∗n as

in the proposition above. Consider the formal product

Φn(X) =∏(X − j○ αi).

�is is a polynomial in the variable X with coe�cients that are holomorphic functions
on the upper half plane.

Lemma 3 �e coe�cients of Φn(X) are invariant under the action of Γ. �ey are meromor-
phic at in�nity and holomorphic on the upper half plane.

Proof. By de�nition, the coe�cients of Φn are elementary symmetric functions of the j○αi.
Since the action of Γ permutes the cosets Γαi in ∆∗n, the �rst assertion follows. It is clear that
each function j○αi is holomorphic on the upper half plane since jis so, and themeromorphy

at in�nity comes from the explicit formula for αi =
⎛
⎝
a b
0 d

⎞
⎠
, which shows in fact that j○ αi

has a Laurent expansion in q1/d (and that it has coe�cients inQ(ζd)).

Corollary 4 �e coe�cients of Φn(X) are polynomials in jwith coe�cients lying in Z. �us
we may write Φn(X) = Φn(X, j) ∈ Z[X, j].

Proof. It is clear that the coe�cients of Φn(X) are polynomials in jof degree dividing n
with coe�cients lying in the cyclotomic �eld Q(ζn). �us we may view the coe�cients of
Φn as elements of the Laurent series �eldQ(ζn)((q)). One checks that the automorphisms
of Q(ζn) acting on the roots of unity permute the power series expansions of the functions
j○αi, and this shows in fact that these power series, being expansions of functions symmetric
in the j○ αi, in fact have coe�cients in Q. �at these coe�cients are integral follows from
the fact that the coe�cients of the functions jand j○ αi are so.

�eorem 5 �e polynomial Φn(X, j) is irreducible over C(j), is symmetric in X and j, and
if n is not a perfect square, then Φn(j, j) is a polynomial in jof degree greater than 1 and has
leading coe�cient ±1.
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Proof. �e �rst assertion follows from the fact that Γ permutes the functions j○ αi transi-
tively.
As for the symmetry, observe that j(z/n) is a root of Φn(X, j), since one of the matri-

ces αi is equal to
⎛
⎝
1 0
0 n

⎞
⎠
, so that Φn(j(z/n), j(z)) is identically zero. It follows then that

Φ(j(z), j(nz)) is identically zero as well. �us j(nz) is a root of the polynomial Φn(j,X).

On the other hand, taking αi =
⎛
⎝
n 0
0 1

⎞
⎠
shows that j(nz) is also a root of Φn(X, j). Since

Φn(X, j) is irreducible and has a common root with Φn(j,X) it follow that Φn(X, j) divides
Φn(j,X). By Gauss’ Lemma, we must have

Φn(j,X) = g(j,X)Φn(X, j)

in Z[j,X] and hence Φn(j,X) = g(j,X)g(X, j)Φn(j,X). It follows that g(j,X) = ±1. If
g(j,X) = −1 thenwe get Φn(j, j) = −Φn(j, j) = 0, which contradicts the fact that Φn(X, j)is
irreducible over Z[j]. �us g = 1 and we get the second statement.
To get the last part, assume that n is not a square, so that in the given form for thematrices

αi we have a ≠ d. �en we have

j− j○ αi = ( 1
q
+ . . .) − ( 1

ζbdqa/d
)

and there is no cancellation in the leading terms of the two pieces. �us the leading coe�-
cient of the Laurent expansion is a root of unity, and the expansion for Φn(j, j) starts with
±1
qm , since this leading coe�cient is both an integer and a root of unity. �us Φm(j, j) is a
polynomial in jwith leading coe�cient ±1 as claimed.

Lemma 6 (exercise) If τ is an element of the upper half plane and E is the elliptic curve cor-
responding to the lattice Z+Zτ, then the roots ofΦn(X, j(τ)) are precisely the j-invariants of
elliptic curves E′ such that there exists a cyclic isogeny E → E′ of degree n.

We also have the following simple observation:

Lemma 7 (Exercise) Let τ ∈ K and let E denote the elliptic curve corresponding to the lattice
Λ = Z + Zτ as above. �en there exists an n such that there is a cyclic endomorphism E → E
of degree n.

Granting these facts for the moment, we can give the proof of the following basic result:
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�eorem 8 If τ is an element of an imaginary quadratic �eld, then j(τ) is an algebraic integer.

Proof. Let τ ∈ K and E be as in the statement of the lemma above. �en we �nd that
there exists a non-square n such that j(τ) satis�es the equation Φn(j(τ), j(τ))) = 0. But
Φn(X,X) is a polynomial with integer coe�cients and leading coe�cient±1, so the theorem
follows.

2 Points of finite order on elliptic curves

Let Γ = SL2(Z) as before. Let Γ(N) be the subgroup of Γ which is the kernel of reduction
modulo N.

Lemma 1 (Exercise) �e reduction map Γ→ SL2(Z/NZ) is surjective.

Now let f be a meromorphic function on the upper half plane, invariant under Γ(N).
Let q1/N = e(2πiτ/N) as usual; then we see in the usual way that f has a Fourier expansion
in powers of q1/N . We say that f is modular of level N if f ○ γ has a �nite-tailed Laurent
expansion in q1/N at in�nity for every γ ∈ Γ. We let FN denote the �eld (over C) of modular
functions of level N. �en clearly there is an action of the �nite group Γ/Γ(N) on the �eld
FN where Γ acts by composition.

�eorem 2 (Exercise) We have F1 = C(j).

A more interesting question is to determine generators of the �eld FN . Let a = (r, s)
denote an element of ( 1

NZ/Z)2 and de�ne the Fricke by

fa(τ) = −2735
g2(τ)g3(τ)
∆(τ)

P(r + sτ; τ). (1)

�us fa(τ) is a normalized x-coordinate for the point r + sτ of order N in Eτ. It is clear
that if γ ∈ Γ then

fγa(τ) = fa(τ) ○ γ.

�is implies in particular that fa is a modular function of level N (since the q-expansions
of each fa can be checked to be �nite-tailed at in�nity, using the results stated in Lecture 1).
We note also that if Λ is an arbitrary lattice, then we can also de�ne numbers

fa(Λ)
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where 1
NΛ/Λ by means of the formula above.

�eorem 3 We have FN = C(j, fa) where a runs through the elements of ( 1
NZ/Z)2.

Proof. Let L denote the �eld in the statement of the theorem. �en it is clear that Γ/±Γ(N)
acts as a group of automorphisms of L/C(j) (note ±1 acts trivially since the P-function is
even). Furthermore, if γ in Γ acts trivially on L, then one checks that γ ∈ Γ(N). �us the
Galois group of L over C(j) is Γ/ ± Γ(N) and the result follows.
�is corollary says that over C, the generic elliptic curve with transcendental jhas the

property that the X-coordinates of its division points of order N generate an extension of
C(j) with Galois group SL2(Z/NZ). �is is in sharp contrast with the case of CM curves,
where (as we shall see) the values of the fa at imaginary quadratic τ generate certain ray class
�elds. Actually, if j(E) is algebraic and E is not a CM elliptic curve, then the �eld generated
by the coordinates of the division points of E over the �eld of de�nition j(E) is typically
large, with Galois group containing SL2(Z/NZ). However, this is not obvious!
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