Complex Multiplication: Part 2
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In this part we will prove that the j-invariant of a CM elliptic curve is an algebraic integer,
and prepare for the proof that these algebraic integers generate certain class fields of K. Recall
that the j-invariant is an invariant function for the group I' = SL,(Z) which is holomorphic

on the upper half plane and has a Fourier expansion g™* + ... at infinity.

1 THE MODULAR EQUATION

Let n be a positive integer, and let A% denote the set of integral 2x2 matrices with determinant

n and entries with no common factor. Then one has the following elementary result:

Proposition 1 (Exercise, using the elementary divisor theorem) We have the decomposi-

n o .
['and A}, = UT«; where a; runs over matrices of the form

o 1
(a b)
x; =
o d

Lemma 2 Suppose f is a holomorphic function on the upper half plane which is invariant

tion A}, = F(

witho<a,o<b<d, and ad = n.

under the action of T by fractional linear transformations and which is meromorphic at infinity.
Then f is a polynomial in the function j(z), with coefficients in the Z-module generated by the
Fourier coefficients of f.

Proof. Let us write f = c_,,g~™ +.... Then f — c_,,j™ has the properties in the statement

of the theorem, and has a pole of order at most m — 1 at infinity. Repeating this process, we



find a polynomial P in j with coefficients that are linear combinations of the coefficients of f
such that f — P(j) vanishes at infinity and is holomorphic on the upper half plane. It follows
that f — P(j) is identically zero, which proves our assertion.

Now let n be a positive integer and let «; be representatives for the right cosets of A} as

in the proposition above. Consider the formal product

®,(X) = [T(X - joa).

This is a polynomial in the variable X with coefficients that are holomorphic functions

on the upper half plane.

Lemma 3 The coefficients of @, (X) are invariant under the action of T. They are meromor-

phic at infinity and holomorphic on the upper half plane.

Proof. By definition, the coefficients of @, are elementary symmetric functions of the jo«;.
Since the action of I permutes the cosets I'a; in A%, the first assertion follows. It is clear that

each function joa; is holomorphic on the upper half plane since j is so, and the meromorphy

a
at infinity comes from the explicit formula for «; = 4 which shows in fact that jo «;
o

has a Laurent expansion in g/ (and that it has coefficients in Q({,)).

Corollary 4 The coefficients of ®,(X) are polynomials in j with coefficients lying in Z. Thus
we may write ®,(X) = ©,(X, j) € Z[ X, j].

Proof. 1t is clear that the coefficients of ®@,(X) are polynomials in j of degree dividing n
with coefficients lying in the cyclotomic field Q((,). Thus we may view the coefficients of
®,, as elements of the Laurent series field Q((,)((g)). One checks that the automorphisms
of Q({,) acting on the roots of unity permute the power series expansions of the functions
joa;, and this shows in fact that these power series, being expansions of functions symmetric
in the j o «;, in fact have coeflicients in Q. That these coeflicients are integral follows from

the fact that the coeflicients of the functions j and j o «; are so.

Theorem 5 The polynomial @, (X, j) is irreducible over C(j), is symmetric in X and j, and
if n is not a perfect square, then ®,(j, j) is a polynomial in j of degree greater than 1 and has

leading coefficient 1.



Proof. 'The first assertion follows from the fact that I' permutes the functions j o «; transi-
tively.

As for the symmetry, observe that j(z/n) is a root of ®,(X, j), since one of the matri-

ces a; is equal to be , so that @, (j(z/n), j(z)) is identically zero. It follows then that
o n

®(j(z), j(nz)) is identically zero as well. Thus j(nz) is a root of the polynomial @, (j, X).

On the other hand, taking «; = "2 shows that j(nz) is also a root of @, (X, j). Since
o 1

®,(X, j) is irreducible and has a common root with @,,(j, X) it follow that ®, (X, j) divides
®,(j, X). By Gauss’ Lemma, we must have

@, (j, X) = g(j» X)@u(X, j)

in Z[j, X] and hence @,(j,X) = g(j, X)g(X, j)®,(j, X). It follows that g(j, X) = +1. If
£(j, X) = —1thenwe get @, (j, j) = -, (j, j) = o, which contradicts the fact that ®, (X, j)is
irreducible over Z[ j]. Thus g = 1 and we get the second statement.
To get the last part, assume that # is not a square, so that in the given form for the matrices
a; we have a # d. Then we have
1
Caq®l"

and there is no cancellation in the leading terms of the two pieces. Thus the leading coefhi-

j—joai:<§+...>—< )

cient of the Laurent expansion is a root of unity, and the expansion for @, (j, j) starts with
qi—,i, since this leading coeflicient is both an integer and a root of unity. Thus @,,(j, j) is a

polynomial in j with leading coefficient +1 as claimed.

Lemma 6 (exercise) If 7 is an element of the upper half plane and E is the elliptic curve cor-
responding to the lattice Z + Zt, then the roots of @, (X, j(7)) are precisely the j-invariants of

elliptic curves E' such that there exists a cyclic isogeny E — E' of degree n.
We also have the following simple observation:

Lemma 7 (Exercise) Let 7 € K and let E denote the elliptic curve corresponding to the lattice
A =Z + Z7 as above. Then there exists an n such that there is a cyclic endomorphism E — E

of degree n.

Granting these facts for the moment, we can give the proof of the following basic result:



Theorem 8 If 7 is an element of an imaginary quadratic field, then j(7) is an algebraic integer.

Proof. Let 7 € K and E be as in the statement of the lemma above. Then we find that
there exists a non-square n such that j(7) satisfies the equation ®,(j(7), j(7))) = o. But
@, (X, X) is a polynomial with integer coefficients and leading coefficient +1, so the theorem

follows.

2 POINTS OF FINITE ORDER ON ELLIPTIC CURVES

Let T’ = SL,(Z) as before. Let I'(N) be the subgroup of ' which is the kernel of reduction
modulo N.

Lemma 1 (Exercise) The reduction map I — SL,(Z/NZ) is surjective.

Now let f be a meromorphic function on the upper half plane, invariant under T'(N).
Let g'/N = e(2mit/N) as usual; then we see in the usual way that f has a Fourier expansion
in powers of g/N. We say that f is modular of level N if f o y has a finite-tailed Laurent
expansion in g/N at infinity for every y € T. We let Fy denote the field (over C) of modular
functions of level N. Then clearly there is an action of the finite group I'/T(N) on the field

Fy where I' acts by composition.
Theorem 2 (Exercise) We have F, = C(j).

A more interesting question is to determine generators of the field Fy. Let a = (r,s)
denote an element of ({Z/Z)* and define the Fricke by

GG I 1
fa(T) = =273 A7) P(r 5T). (1)

Thus f,(7) is a normalized x-coordinate for the point r + s7 of order N in E.. It is clear
that if y € I then

fra(7) = fa(T) 0y
This implies in particular that f, is a modular function of level N (since the g-expansions

of each f, can be checked to be finite-tailed at infinity, using the results stated in Lecture 1).

We note also that if A is an arbitrary lattice, then we can also define numbers

fa(A)



where  A/A by means of the formula above.
Theorem 3 We have Fy = C(j, f.) where a runs through the elements of (;Z/Z)>.

Proof. Let L denote the field in the statement of the theorem. Then it is clear that I/ £ T'(N)
acts as a group of automorphisms of L/C(j) (note +1 acts trivially since the P-function is
even). Furthermore, if y in T acts trivially on L, then one checks that y € I'(N). Thus the
Galois group of L over C(j) is I/ + T(N) and the result follows.

This corollary says that over C, the generic elliptic curve with transcendental j has the
property that the X-coordinates of its division points of order N generate an extension of
C(j) with Galois group SL,(Z/NZ). This is in sharp contrast with the case of CM curves,
where (as we shall see) the values of the f, at imaginary quadratic 7 generate certain ray class
fields. Actually, if j(E) is algebraic and E is not a CM elliptic curve, then the field generated
by the coordinates of the division points of E over the field of definition j(E) is typically

large, with Galois group containing SL,(Z/NZ). However, this is not obvious!



