
Complex multiplication: part 1

July 12, 2009

1 Introduction

What is complex multiplication?
It’s an umbrella term which can (and does) refer to many things, depending on the con-

text. All these things are related, and the goal of these lectures is to at least establish the basic
de�nitions and properties:

1. Elliptic curves with complex multiplications (“extra” endomorphisms)

2. Generation of class �elds of imaginary quadratic �elds

3. Modular forms associated to positive de�nite binary quadratic forms

4. Hecke L-functions associated to imaginary quadratic �elds

5. Construction of special points on the moduli spaces associated to elliptic curves

In this course we’ll talk about 1, 2, and 5.

2 Preliminaries

For the purposes of this course, an elliptic curve is a complex torus E = EΛ = C/Λ where
Λ ≅ Z2 is a lattice in C, so that Λ ⊗ R = C. If Λ = Λτ = Z + Zτ then we write Eτ for the
corresponding elliptic curve. Without loss of generality, we may assume that τ is an element
of the upper half plane.
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We de�ne the Weierstrass P-function for E (or Λ) as

P(z; τ) =
1
z2
− ∑
α∈Λ,α≠0

1
(z − α)2

−
1
α2
.

�en the Weierstrass equation for Eτ (for τ �xed) is

(P ′(z))2 = 4P(z)3 − g2(τ)P(z) − g3(τ)

where
g2 = 60 ∑

α≠0,∈Λτ

α−4

and
g2 = 140 ∑

α≠0,∈Λτ

α−6.

Concretely, this means that the point (X,Y) = (P(z; τ),P ′(z; τ)) lies on the locus of
zeroes of the equation

Y2 = X3 − g2(τ)X − g3(τ).

Finally, we introduce the Ramanujan ∆-function and the j-invariant:

∆(τ) = g32 − 27g23 ,

and
j(τ) =

g32
∆(τ)

.

It is sometimes useful to reformulate the de�nitions of the gi, j, and ∆ in terms of lattices
Λ rather than the variable τ. In this case, we see that

α2kgk(αΛ) = gk(Λ)

so that gk is homogeneous of weight 2k. Similarly, ∆ has weight 12 and jhas weight zero.
We will not develop any of the analytic theory of these functions here. Rather, we simply

collect the properties that we need. For the statements, let us set q = q(τ) = exp(2πiτ).

• j is holomorphic on the upper half plane and has a simple pole at in�nity. Further-
more, j is invariant under the composition action of SL2(Z) and we have the expan-
sion j(τ) = 1

q +P(q) where P(q) ∈ Z[[q]] valid for the real part of τ su�ciently large.
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• �e functions ∆ and gk are invariant under z↦ z + 1 and have Fourier expansions in
q with integer coe�cients.

• if z = aτ + b with a,b �xed in Q, then as a function of τ, the function P(z, τ) has a
�nite-tailed expansion in q1/M for someM whose coe�cients are cyclotomic integers.

�eproofs of these statementsmay be found in Lang, Chapter 4, §2. Wenote also that the
function j is an (analytic) isomorphism invariant of the elliptic curve Eτ: we have Eτ ≅ Eτ′
if and only if τ = γτ′ for γ ∈ SL2(Z), which holds if and only if j(τ) = j(τ′).

3 The basic definition

Let E = C/Λ be an elliptic curve over C. We say that E has complex multiplication, or CM
for short, if End(E) ≠ Z.

Example 1 : Suppose Λ = Z+τZ = OK is the ring of integers in an imaginary quadratic �eld
K. �en clearly αΛ ⊂ Λ for any α ∈ OK, so z ↦ αz de�nes an endomorphism of E which is
not multiplication by an integer on E unless α ∈ Z. For instance, we can take Λ = Z + Zi to
be the ring of Gaussian integers. In this case we have a model for E given by

Y2 = X3 + X.

�is E has j-invariant 1728. In general there are very few CM elliptic curves de�ned overQ,
as we will see below. Note also that the map (X,Y) ↦ (−X, iY) is an endomorphism of E,
which we view as being multiplication by i.

�eorem 2 (exercise) Suppose that Ei = C/Λi are elliptic curves, for i = 1, 2. Suppose that
there is a complex analytic homomorphism f ∶ Ei → E2. �en there is a complex number β
with βΛ1 ⊂ Λ2 such that f is induced by the map z↦ βz on C.

From now on we �x an imaginary quadratic �eld K. �en suppose that Λ ⊂ K is a lattice
(this means it’s a subgroup isomorphic as a group to Z2 and that Λ⊗Q = K.
�e set of α ∈ Cwith αΛ ⊂ Λ is a subring R ⊂ OK, such that R has �nite index inO (such

an R is called an order of K) and the lattice Λ is called a fractional R-ideal. �e theory of the
rings R and their fractional ideals is very similar to that of the ring OK of integers in K (the
maximal order of K) and ordinary fractional ideals.
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�eorem 3 (exercise) Let R be an order in the imaginary quadratic �eld K. �en there exists
a unique positive integer c such that R = Z + cOK. �e integer c is called the conductor of R
and we write R = Oc.

De�nition 4 Let Λ denote a lattice in K and let R = Oc denote the largest order in K such
that αΛ ⊂ Λ for α ∈ R. �e integer c is called the conductor of Λ.

�eorem 5 Suppose E = C/Λ is an elliptic curve over C with complex multiplication. �en
there exists β ∈ C such that βΛ is a lattice in some imaginary quadratic �eld K.

�us, by replacing C/Λ by the isomorphic curve βC/βΛ = C/βΛ, we may assume that
the lattice Λ is a lattice in an imaginary quadratic �eld.
From now on we will consider elliptic curves of the form C/Λ where Λ is a lattice of

conductor c, for some positive c.

Remark 6 Let E be an elliptic curve which admits an abstract embedding ι ∶ R → End(E).
�en for each α ∈ R, we have an endomorphism [α] induced by the given embedding. On
the other hand, if ω is an invariant di�erential on E, then [α]∗ω = µ(α)ω for a complex
number µ(α). It is clear that µ is a homomorphism from R to C, and we may view R as a
subring of C by this identi�cation.

Our �rst task is to classify the CM elliptic curves up to isomorphism (at least over C).
�e most obvious way to group these elliptic curves is by the conductors. �us let c denote
a positive integer and let Xc denote the set of isomorphism classes of complex elliptic curves
C/Λwhere Λ is a lattice with associated order R = Oc.
�e basic case is that of the maximal order, namely, curves of conductor 1.

�eorem 7 �e CM elliptic curves of conductor 1 are in bijective correspondence with the el-
ements of the ideal class group of OK. In particular, there are hK nonisomorphic CM elliptic
curves of conductor 1, where hK is the class number of K.

Proof. Let E = C/Λ denote a CM elliptic curve of conductor 1. By de�nition, Λ is a lattice
in K which is stable under multiplication by OK. �us Λ de�nes a fractional ideal in K.
One checks without di�culty that the class of Λ modulo principal ideals depends only on
the isomorphism class of E, and that every ideal class of OK is obtained in this way from
some E. It remains only to show that if E and E′ give the same ideal class, then they are
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isomorphic. But this follows from�eorem 2.
Nowwe consider the case of curves of conductor c > 1, which is very similar. �e relevant

facts are as follows. �e proofs of the theorems are elementary but tedious and are mostly
le� as exercises. �e reader may also consult Lang, Chapter 8.
We set R = Oc ⊂ OK. We say that a lattice Λ in K is an R-lattice if it is stable under

multiplication by R. We say that Λ is principal if there exists some α ∈ K such that Λ = αR.
Note that a principal R-lattice has conductor c. �e product of R lattices is clearly an R-
lattice. We say that an R-lattice Λ is invertible if there exists another R-lattice Λ′ such that
ΛΛ′ is a principal R-lattice. Note that any ideal a in the ring R is automatically an R-lattice.
If a has conductor c, we say that a is a proper R-ideal.

�eorem 8 (Exercise) Let Λ denote a lattice of K of conductor c. �en Λ is invertible as a
lattice over R = Oc. Conversely, any invertible R-lattice has conductor c. �e set of lattices of
conductor c form a multiplicative group.

De�nition 9 Let a denote an ideal in R. We say that a is prime to c if a + cR = O, or
a + cOK = Oc. (�ese two conditions are equivalent.) Let IK,c denote the set of ideals of OK

that are prime to the ideal cOK and write IR,c for the ideals of R that are prime to c.

�eorem 10 (Exercise) �ere is a bijection between IK,c and IR,c given by a ↦ a ∩ R whose
inverse is given by a↦ aOK. Any ideal of R that is prime to c has conductor c and is a proper
R-ideal.

�eorem 11 Let Λ be an R-lattice of conductor c and let m be a positive integer. �en there
exists an ideal a ⊂ R such that a = αΛ and a is prime to m.

Proof. See Lang, �eorem 5, Page 93. �e proof is computational – is there a better one?

De�nition 12 Let Ic denote the set of lattices of conductor c and Ic denote the set of principal
R-lattices (which are automatically of conductor c). We letGc = Ic/Pc and call this the group
of ideal classes of R.

In view of the theorem preceding the de�nition, one sees that every element of Gc has
a representative that is prime to the conductor c. �us we may replace Ic and Pc in the
de�nition by the corresponding sets of ideals prime to c. Using this, we can recover Gc as a
generalized ideal class group of the full ring of integers in K.

5



De�nition 13 Let PZ(c) denote the set of principal ideals of OK which have a generator α
such that α is congruent to a rational integer modulo cOK, and such that α is prime to c. Let
I(c) denote the set of ideals ofOK prime to c.

�eorem 14 (Exercise) We have an isomorphism I(c)/PZ(c) ≅ Gc given by a↦ a ∩ R.

Note now that PZ(c) contains the subgroup P1(c) of ideals satisfying the further condi-
tion that there is generator congruent to 1 (mod c). �us we have I(c) ⊃ PZ(c) ⊃ P1(c), and
this leads quickly to a formula for the order of Gc:

�eorem 15 (Exercise) �e order hc of Gc is given by

hc = hK
c

(O×
K ∶ R×)

∏
p∣c

(1 − χK(p)/p),

where χK denotes the quadratic character associated to K.

As far as CM elliptic curves are concerned, we �nally have the following predictable
result:

�eorem 16 (Exercise) �e CM elliptic curves of conductor c are in bijective correspondence
with elements of the group Gc, the bijection being induced by sending an R-ideal a of conductor
c to the elliptic curve C/a. �ere are hc nonisomorphic CM elliptic curves of conductor c.

In this course we will prove that the j-invariants of the elliptic curves of conductor c
generate the class �eld of K corresponding to the generalized ideal class group Gc.

4 Localization and class field theory

It will not surprise the reader that the foregoing results on ideals and lattices may be some-
whatmore simply attacked by adelic methods. �us let Λ be a lattice of conductor c inK and
for a rational prime p, let Lp = Λ⊗ Zp denote the completion of Λ at p. �en Lp is a lattice
in the completion Kp of K at p, and if p ∤ c, we �nd that Lp is a principal lattice over the
discrete valuation ring Rp = OK,p where the subcript p indicates completion again. It turns
out that for quadratic �elds this property holds even if p∣c (Lang attributes this to Ihara).

�eorem 1 (Exercise, or see Lang, pg 98) Let pbe arbitrary. �en the lattice Lp is principal
over the ring Rp.
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Given a lattice Λ, it is clear that Λp = OK,p for almost all p (since elements of the �nitely
generated Z-module Λ have only �nitely many denominators). Furthermore, given for each
p a lattice Mp ⊂ Kp such that Mp = OK,p for all but �nitely many p, there exists a unique
latticeM ⊂ K such thatMp = M ⊗ Zp for all p. �us, if Λ is a lattice of K and s = (sp) is an
idele of K, it makes sense to de�ne the lattice sΛ as the unique lattice M with Mp = spΛp.
�is action of the ideles on lattices will be important later.
As an exercise, the reader might try to de�ne the idele class group corresponding to the

ideal class group Gc de�ned above, and to unwind the action of the appropriate idele class
group on the lattices of conductor c.
To end this lecture, we recall the class �elds corresponding to the ideal class group Gc =

I(c)/PZ(c) and G1,c = I(c)/P1,c. �e former is the ring class �eld K(c)/K of conductor c: it
is characterized by the fact that the primes splitting completely in K(c) are precisely those
which are principal, with a generator congruent to a rational integer modulo c. As for the
latter, it is the ray class �eld K1, c/K: it is characterized by the fact the the primes splitting
completely are those which are principal and have a generator congruent to 1 modulo c.
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