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Overview

The goal today is to discuss the connection between Tate’s
conjectures and the BSD conjecture. It turns out that all of the
objects entering into the BSD and conjectures are
“subquotients” of objects appearing in the Tate and Artin-Tate
conjectures. Thus our results on the latter give results on BSD.



Elliptic curves and elliptic surfaces

Suppose K = k(C ) is a function field and E is an elliptic curve over
K . Then there is an essentially unique surface E with a relatively
minimal morphism π : E → C whose generic fiber is E/K .

If E is constant, say E ∼= E0 ×k K , then this is trivial: E = E0 × C .
To simplify, we will mostly ignore this case below.



To contruct E in the general case, choose any Weierstrass model
for E :

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 ai ∈ K (∗)

Let U ⊂ C be a non-empty open subset such that the ai are
regular on U and such that the equation is minimal for all x ∈ U.
Then (*) made homogeneous defines a hypersurface V in P2 × U
with a morphism V → U whose fibers are projective plane cubics.



At each of the finitely many points of C not in U, we change
Weierstrass equation to get a model which is defined and minimal
over some other open U ′ containing the point in question.
Working as above, we get an open surface V ′ mapping to U ′. We
can glue these over U ∩ U ′. (The change of coords we used gives
the glueing recipe.)

Repeating for each missing point, we arrive at a surface W
mapping surjectively to C whose generic fiber is E/K . (W is for
Weierstrass.)



The surface W is not quite what we want because it might be
singular. To fix this, we blow up singular points to arrive at a
non-singular surface E → C with generic fiber E/K . (The
singularities and the configurations of curves that appear were
classified by Néron and Kodaira.)



Example

Take K = k(t) with char(k) > 3 and E given by

y2 + xy = x3 − t4

The discriminant of this model is ∆ = t4(1− 16 · 27 · t4) and so it
is minimal at all x ∈ U = A1 ⊂ C = P1. So we consider

V = {y2z + xyz = x3 − t4z3} ⊂ P2 × U.



To bring in the fiber over infinity, let u = 1/t and change coords so
that the Weierstrass equation is

y ′2 + ux ′y ′ = x ′3 − u2

with ∆ = (u4 − 16 · 27)u4. This model is minimal at all finite
values of u, so we set

V ′ = {y ′2z ′ + ux ′y ′z ′ = x ′3 − u2z ′3} ⊂ P2 × U ′.

where U ′ = {u 6=∞} = {t 6= 0} ⊂ P1



To get W, we glue V \ {t = 0} and V ′ \ {u = 0} by identifying
([x ′, y ′, z ′], u) with ([t−2x , t−3y , z ], t−1). The result is W → P1.

To obtain E , we have to resolve the singular points. It turns out
that there are two, one each in the fibers over t = 0 and t =∞.
(The fiber over t = 1/(16 · 27) is singular, but the surface is
non-singular there.) It’s a fun exercise to do the explicit blow ups.
(Hint: the reduction types are I4 and IV .)



Points and divisors

Take E/K and E → C as above. To each point of E (K ) we can
associate a divisor on E (a section) by taking the Zariski closure.
This turns out to give a well-defined map E (K )→ NS(E), but this
is not in general a group homomorphism! It turns out to be better
to proceed in the other direction.

Before doing so, let’s consider the irredubible curves on E . Among
them we have the smooth fibers, the irreducible components of the
bad fibers. Any other irreducible curve on E will map finitely to C
and so will be a section or a “multisection.”
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NS and MW
Given a divisor D on E , take its intersection with the generic fiber
to get a divisor on E . The class of this divisor in Pic(E ) only
depends on the class of D in NS(E).

We introduce a filtration on NS(E) by letting L0 = NS(E), L1 =
classes whose intersection with the generic fiber has degree 0, and
L2 = the classes generated by the components of the fibers of π.
It’s obvious that L0/L1 ∼= Z generated by the class of the zero
section. It’s not too hard to show that L2 is the free group on the
components of fibers not meeting the zero section, together with
the class of any one fiber. The subquotient L1/L2 is the interesting
part:

Shioda-Tate: (E non-constant) L1/L2 ∼= Pic0(E ) = E (K ).

The numerical version of this says

Rank NS(E)− Rank E (K ) = 2 +
∑
x

(fx − 1)

where the sum is over the closed points of C and fx is the number
of irreducible components in the fiber over x .



Cohomology

The interesting part of the cohomology of E is H2(E ,Q`). This
carries a filtration whose graded pieces are

H2(C ,Q`) H1(C ,R1π∗Q`) H0(C ,R2π∗Q`)

The first and last of these are easily made explicit and are
accounted for (wrt T1) by the zero section and the components of
the fibers. The middle group is interesting.



Full details are too complicate to summarize here, but it turns out
that

H1(E ,Z`(1))G ∼= Sel`(E ) := proj lim
n

Sel(E , [`n])

and

RankZ`
H2(E ,Z`(1))G − Rank Sel`(E ) = 2 +

∑
x

(fx − 1).

(The starting point is that the generic stalk of R1π∗Q` is the dual
of the Tate module of E .)

Similarly, using the Leray spectral sequence to compute
Br(E) = H2(E ,Gm), one finds that

Br(E) ∼= (E )



Zetas

Finally, let’s compare the zeta function of E with the L-function of
E , first in an elementary way, then in a fancy way. To keep the
notation under control, let’s assume that all bad fibers of π are
over k-rational points of C and that all components of the bad
fibers are k-rational.

Z (E ,T ) =
∏
x

(1− T deg(x))−1

=
∏
y

∏
π(x)=y

(1− T deg(x))−1

=
∏
y

Z (π−1(y),T )

where y runs through closed points of C .



Thus

Z (E ,T ) =
∏

goody

1− ayT + qyT 2

(1− T )(1− qyT )

∏
bady

1− ayT

(1− T )(1− qyT )fy

This is
Z (C ,T )Z (C , qT )

L(E ,T )(1− qT )(
P

fy−1)

Unwinding this using what we know about zetas (RH in
particular), we find that

P2(T ) = L(E ,T )(1− qT )2+
P

(fy−1)

and

− ords=1 ζ(E , s)− ords=1 L(E , s) = 2 +
∑

(fy − 1)



Zetas again

Let F = R1π∗Q`. Our definition of L(E ,T ) is equivalent to

L(E ,T ) =
∏
y

det(1− T Fry |Fy )−1

Thus by the Grothendieck-Lefschetz trace formula, we have

L(E ,T ) =
2∏

i=0

det(1− T Frq |H i (C ,F))(−1)i+1

When E is non-constant, the H0 and H2 vanish and we have

L(E ,T ) = det(1− T Fr |H1(C ,F))

This shows (again) that ords=1 L(E , s) ≥ RankZ`
Sel`(E ).



Summary

Combining today’s results with what we know about the Tate
conjecture, we have:

I Rank E (K ) ≤ RankZ`
Sel`(E ) ≤ ords=1 L(E , s)

I Equality holds iff | (E )| <∞.

I Equality holds iff the Tate conjecture holds for the associated
surface E .

I In particular, equality holds when E is dominated by a product
of curves (e.g., products of curves, rational surfaces) or is a
K3 surface.

[Rmk: Everything today has an analog for general curves over
function fields and their Jacobians.]



A useful class of examples

Let X be a smooth curve over K = k(t). Suppose there exists
g ∈ k[t, x , y ] ⊂ K [x , y ] which is the sum of exactly 4 non-zero
monomials satisfying mild conditions on the exponents (see below)
such that K (X ) ∼= Frac(K [x , y ]/(g). Then the BSD conjecture
holds for the Jacobian of X .

There are interesting such curves of every genus. E.g., if
char(k) 6 | (2g + 1)(2g + 2), consider the hyperelliptic curve

y2 = x2g+2 + x2g+1 + td

of genus g . If d 6= 0 in k , this satisfies the hypotheses.



Write the exponents of g in a 4× 3 matrix and add a 4th column
so that the row sums are 1. Call this guy A. Assume that
det(A) 6= 0. Let B be the integer matrix such that AB = δ with δ
minimal positive intger. Assume that δ 6= 0 in k .

Under these hypotheses, after possibly extending k, there are
dominant rational maps

F 2
δ → X → F 2

1

where F d
δ denotes the Fermat variety of dimension d and degree δ

and X is the surface associated to X .



There also dominant rational maps

F 1
δ × F 1

δ → F 2
δ .

Thus X is dominated by a product of curves, it satisfies the Tate
conjecture, and the Jacobian of X satisfies the BSD conjecture.

Next time we’ll show that there are large analytic ranks in the
example above as d varies and so conclude that there are large
algebraic ranks too.


