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Overview

The goal today is to discuss surfaces; Tate’s conjectures relating
divisors, cohomology, and zetas; and Tate’s theorem on products of
curves.

There will be more algebraic geometry than in the previous lecture,
but I hope to make the main ideas understandable to those
without extensive background.



Motivation

If we think of the equation

y2 + xy = x3 + t

as having coefficients in K = k(t), then we are looking at a curve,
an elliptic curve. If we think of it as an equation with coefficients in
k , then we are considering a surface. Obviously there will be close
connections between the curve and the surface. Today we’ll look
at general surfaces over k; next time we’ll deduce consequences for
elliptic curves over k(t) and more general function fields.



Divisors on surfaces

Throughout, k will be a field, often finite. Let S be a surface,
namely a non-singular, projective, absolutely irreducible variety of
dimension 2 defined over k .

A prime divisor C ⊂ S is an irreducible, reduced, closed subset of
dimension 1. A divisor is a Z-linear combination of prime divisors.
Since S is non-singular, C is defined locally by one equation (i.e.,
Cartier and Weil divisors are the same here.)

We write
D =

∑
C

nCC .



Linear equivalence

If C is a prime divisor on S and f is a non-zero rational function
on S , then we have a well defined ordC (f ), the order of zero or
pole of f along C .

The divisor of a non-zero rational function is

div(f ) =
∑
C

ordC (f )C .

We say that a divisors D and D ′ are linearly equivalent if their
difference is the divisor of a rational function: D − D ′ = div(f ).



Exercise: This is the same as saying that there is a family of
divisors Dx parameterized by x ∈ P1 such that D0 = D and
D∞ = D ′.

Pic(S) is by definition the group of divisors modulo linear
equivalence.



Algebraic equivalence

Assume that k is algebraically closed. We declare that two divisors
are algebraically equivalent if they lie in a family of divisors
parameterized by a curve.

The Néron-Severi group of NS(S) is by definition the group of
divisors modulo algebraic equivalence. It is obviously a quotient of
Pic(S).

For general k, we define NS(S) as the image of Pic(S) in NS(S).

We define Pic0(S) to make the sequence

0→ Pic0(S)→ Pic(S)→ NS(S)→ 0

exact.



Examples

If S = P2, then Pic(S) = NS(S) = Z. The class of a plane curve is
its degree.

If E1 and E2 are elliptic curves and S = E1 × E2, then
Pic0(S) ∼= E1 × E2 and NS(S) ∼= Z2 × Hom(E1,E2). The
projection onto Hom(· · · ) sends a divisor to the action of the
induced correspondence. Note the arithmetic nature of NS(S).



If C1 and C2 are curves each with a k-rational point, then
NS(C1 × C2) ∼= Z2 × Hom(JC1 , JC2).

In general, Pic0(S) is closely related to an abelian variety and
NS(S) is a finitely generated abelian group. NS is analogous to a
Mordell-Weil group (this is in fact more than an analogy) and is
considered to be hard to compute.



Cohomology

For ` 6= char(k), general machinery gives us `-adic cohomology
groups H i (S ,Q`) which are finite dimensional Q`-vector spaces
with a continuous action of G = Aut(k/k). They vanish unless
0 ≤ i ≤ 4 = 2 dim S .

Tate twists:

Z`(1) =

(
proj lim

n
µ`n

)
and Z`(m) = Z`(1)⊗m

These are legitimate coefficients and we have

H i (S ,Z`(m)) ∼= H i (S ,Z`)⊗Z`
Z`(m) =: H i (S ,Z`)(m).

Similarly for Q`(m).



Cycle classes

Divisors on S have classes in H2(S ,Z`(1)).

Take cohomology of

0→ µ`n → Gm → Gm → 0

and an inverse limit to get

H1(S ,Gm)⊗̂Z` → H2(S ,Z`(1))

and note that

H1(S ,Gm)⊗̂Z`
∼= Pic(S)⊗̂Z`

∼= NS(S)⊗ Z`.

Then use NS(S) ↪→ NS(S).



Tate’s conjecture T1

The image of the cycle class map obviously lands in the
G -invariant part of cohomology. The conjecture says that when k
is finitely generated, they are the same:

NS(S)⊗Q`
∼= H2(S ,Q`(1))G .



When k is finite, working a bit more we get an exact sequence

0→ NS(S)⊗ Z` → H2(S ,Z`(1))G → T`Br(S)→ 0

where Br(S) = H2(S ,Gm) is the (cohomological) Brauer group. It
follows that Rank NS(S) ≤ dim H2(S ,Q`(1))G with equality iff the
` part of Br(S) is finite.

It turns out (see below) that if this happens for one `, then it
happens for all ` and Br(S) is finite.



Zetas

From now on we take k finite. As usual,

Z (S ,T ) =
∏

closed x

(
1− T deg(x)

)−1
= exp

∑
n≥1

Nn
T n

n


where Nn is the number of Fqn -valued points of C .

ζ(S , s) = Z (S , q−s) has good analytic properties (analytic
continuation, functional equation, RH).



More precisely

Z (S ,T ) =
P1(T )P3(T )

P0(T )P2(T )P4(T )

where Pi (T ) = det(1− T Frq |H i (S ,Q`)) and the analytic
properties follow from this expression, PD, and RH.

Note that − ords=1 ζ(S , s) is the multiplicity of q as an eigenvalue
of Fr on H2(S ,Q`).

This is the same as the multiplicity of 1 as an eigenvalue of Fr on
H2(S ,Q`(1)), and is ≥ the dimension of H2(S ,Q`(1))G .



Tate’s conjecture T2

It says − ords=1 ζ(S , s) = Rank NS(S).

Since we have a priori inequalities

Rank NS(S) ≤ dimQ`
H2(S ,Q`(1))G ≤ − ords=1 ζ(S , s)

it’s clear that T2 implies T1. It turns out that T1 implies T2 and
since T2 is independent of `, so is T1.

In the next lecture. we’ll translate this string of inequalities into
similar statements for Mordell-Weil, Selmer, and L-zeroes and this
will yield several of the main theorems.



Properties of the Tate conjecture

T1 is birationally invariant. More generally, if X → Y is a
dominant rational map and T1 holds for X , then it holds for Y .

For surfaces, both statements can be seen easily using the
factorization of rational maps into blow ups along smooth centers.
[sketch]

(See Tate’s article in the Motives volume for a very elegant
argument that works in the general case.)

This descent property will become our descent result for BSD.



Tate’s theorem on products of curves

Let C1 and C2 be curves and assume for simplicity they have
k-rational points. Then it follows from Tate’s theorem on
endomorphisms of abelian varieties that T1 holds for S = C1 × C2.

To see what’s at issue, recall that

NS(C1 × C2) ∼= Z2 × Hom(JC1 , JC2)

and that

H2(C1 × C2) ∼=
(
H0(C1)⊗ H2(C2)

)
⊕
(
H2(C1)⊗ H0(C2)

)
⊕
(
H1(C1)⊗ H1(C2)

)
Twisting and taking G -invariants, the first two terms match up
trivially with the Z2.



Using auto-duality of Jacobians, the last term becomes(
H1(C1)⊗ H1(C2)

)
(1)G ∼= HomG (H1(C1),H1(C2))

∼= HomG (V`JC1 ,V`JC2).

Tate’s general result on endomorphisms of abelian varieties over
finite fields says

Hom(JC1 , JC2)⊗Q`→̃HomG (V`JC1 ,V`JC2)

and this is just what we need.

This argument can be used to show that T1 for any product
follows from T1 for the factors.

[Remark on what is actually constructed in Tate’s argument.]

[Zarhin and Faltings for general k]



DPC

Putting everything together we get a very useful result on the Tate
conjecture: if S is dominated by a product of curves:

C1 × C299KS

then T1 holds:

Rank NS(S) = dimQ`
H2(S ,Q`(1))G

When k is finite, we also have T2:

Rank NS(S) = − ords=1 ζ(S , s).


