
2. Stark’s basic conjecture.

2.1 The S-unit theorem. In this section we deal mainly with one number field. We denote
it by K and its places by w because the concepts we discuss will be applied to the top field K
of a Galois extension K/k. Let S be a finite set of places of K containing the set S∞ of infinite
places. It is often convenient to work with the Dedekind ring of “S-integers”

OS = {α ∈ K | |a|w ≤ 1, for all w /∈ S},

the localization of OK whose primes “are” those of OK not in S. The group O∗S of “S-units”, the
elements u ∈ K such that |u|w = 1 for all w /∈ S, plays a key role in Stark’s conjectures. In this
section we recall the S-unit theorem and establish some notation.

Let Y = YS denote the free Z-module with basis the places in S. For y =
∑
w∈S nww ∈ S, put

ε(y) =
∑
w∈S nw and let X = XS = Ker(ε), so that we have an exact sequence

(2.1.1) {0} → X → Y → Z→ {0}

The S-unit theorem concerns the map λ = λS

(2.1.2) λ : O∗S → RYS

defined by λ(u) =
∑
w∈S log |u|w · w.

Notation: RY is the real vector space with basis {w}, w ∈ S. More generally, for a ring R and
an abelian group A we will denote the R-module R⊗Z A simply by RA. Also, by | |w we denote
the the normed absolute value at the place w. We define |α|w as the factor by which the additive
Haar measure in the completion Kw is stretched under multiplication by α. For complex w this
is the square of the usual absolute value value, and does not satisfy the triangle inequality.

For α 6= 0 the product formula
∏

allw |α|w = 1 holds and shows that λ(u) ∈ RXS for all S-units
u,

(2.1.3) Theorem. The kernel of λ is the finite cyclic group µ(K) of roots of 1 in K. The image
of λ is a lattice spanning RX.

Let r = rS = dim RX = |S| − 1, and let {u1, u2, ..., ur} be a fundamental system of S-units,
that is, units whose images λ(Ui) form a basis for the lattice λ(O∗S). Let S = {w0, w1, ..., wr}.
The S-regulator

(2.1.4) RS := absolute value of det1≤i,j≤r log |ui|wj

is the covolume of the lattice in RX in the measure |dx1dx2 · · · dxr| on X, which by symmetry is
independent of our numbering of the wj

2.2 Incomplete L-functions. Now we assume the same setup as earlier: K/k finite Galois
with group G; V a representation of G; v a variable place of k and w a place of K above v; Gw
and Iw are the decomposition and inertia groups for w over k. Let S be a finite set of places of k
containing the set S∞ of infinite places and for an extension field k′ of k, let Sk′ denote the set
of plces v′ of k′ above S.

It is important to consider the Euler product

(2.2.1) LS(s, V ) =
∏
v/∈S

Lv(s, V )
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whose factors are those of L(s, V ) corresponding to prime ideals of Ok not in S. The “induction
rule”

(2.2.2) LS(s, Indkk′ W ) = LSk′ (s,W ),

still holds for these incomplete LS ’s, because we proved (1.9.2) for each individual Euler factor
Lv, not only for their product.

Stark’s conjectures concern the leading term of the Taylor expansion of LS(s, V ) at s = 0,
which we denote by cS(V )srS(V ). Thus, rS(V ) is the order of vanishing of LS(s, V ) at s = 0, and

(2.2.3) cS(V ) = lims→0
LS(s, V )
srS(V )

6= 0.

2.3 Order of zero. In this paragraph we prove

(2.3.1) Theorem. rS(V ) = −dimV G +
∑
v∈S dimV Gw .

Proof. We get this from the functional equation and the very simple behavior near s = 1.
At s = 1 none of the local L functions Lv(s, V ) has a zero or pole, as is obvious from their
definition. Hence, Λ(s, V ), L(s, V ), and LS(s, V ) for all S have the same order at s = 1. This
order is −dimV G, or, equivalently, ζk(s) has order -1 (simple pole), and for each other irreducible
representation V of G, L(1, V ) 6= 0,∞. For an abelian character ψ this is an old story, starting
with Dedekind’s proof of his theorem on primes in arithmetic progressions, and the non-abelian
case follows from that via (1.7.3) and Exercise 1.7.5.

Now for s near 0, the functional equation (1.8.5) for Λ(s, V ) = LS(s, V )
∏
v∈S Lv(s, V ), namely

Λ(1− s, V ) = CBsΛ(s, V ∗),

shows that our theorem follows immediately from the fact that for every place v of k the local
function Lv(s, V ) has a pole of order dimV Gw . This is easily checked from the definitions, using
for infinite v the fact that sΓ(s) = Γ(s+ 1) > 0 for s > −1, and for finite v that the order of the
pole is the multiplicity of 1 as eigenvalue of the action of σw on V Iw , and V Gw = (V Iw )<σw>.

2.4 The zeta function. The incomplete zeta function

ζk,S(s) =
∏
v/∈S

(1− q−sv )−1,

has a zero of order rS = |S|−1 at s = 0, because each ‘dim’ in (2.3.1) is 1. The leading coefficient
is also an old story.

(2.3.1) Theorem. As s→ 0, ζS(s) ∼ hSRS

w s|S|−1.
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