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Stark’s Basic Conjecture

John Tate

Some Notation.
In these notes, k denotes a number field, i.e., a finite extension of the field Q of
rationals, and Ok is its ring of integers. If I is an ideal in Ok, we denote its number
of residue classes |Ok/I| by NI. This number is also the positive generator of the
ideal NK/QI ⊂ Z, and is a multiplicative function of ideals. By a place v of k
we mean an equivalence class of non-trivial absolute values on k. These are of
three types, finite, real and complex, corresponding, respectively, to a prime ideal
P in Ok, to an embedding of k into R, and to a pair of distinct complex conjugate
embeddings of k into C. We denote the number of real places by r1 = r1(k) and
the number of complex ones by r2 = r2(k). For each finite place v we denote the
corresponding prime ideal by Pv and the residue field by Fv. We sometimes denote
the cardinality |Fv| of Fv by qv = NPv.

1. L-functions.

The L-functions associated with number fields are of two fundamentally different
types. We will first discuss the very classical abelian ones, made with characters of
generalized ideal class groups, which go back to Dirichlet and are the simplest sort
of “automorphic” L-functions. Then we will discuss the “nonabelian” L-functions
introduced by E. Artin, which are made with representations of Galois groups,
and were the first examples of explicitly defined “motivic” L-functions. Artin L-
functions made with one dimensional representations of a Galois group are equal
to classical abelian L-functions, thanks to Artin’s reciprocity law.

1.1. Ideal class characters.
Define a “level” to be a pair m = (mf ,m∞) consisting of an ideal mf in Ok and a
set m∞ of real places of k. For a ∈ Ok, write a ≡ b mod×m if a and b are prime
to m, a ≡ b mod mf and a/b > 0 at each place in m∞. A (generalized) ideal class
character mod m is a multiplicative function χ of ideals I prime to m such that
χ(I) = 1 if I is a principal ideal generated by a number a ≡ 1 mod×m. For example,
if k = Q, then a character mod (mZ, {∞)} is the same as a Dirichlet character mod
m, if we identify ideals prime to m with their positive integer generators.

Exercise: (a) Let Im denote the group of fractional ideals prime to m, i.e., gener-
ated by prime ideals not dividing mf . Let Pm denote the subgroup of the principal
ideals which are generated by elements c ∈ k∗ of the form c = a

b with a ≡ b mod×m.
Show that a character mod m in the above sense is the same as the restriction to
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4 JOHN TATE, STARK’S BASIC CONJECTURE

integral ideals of a homomorphism χ : Im → C∗ which is trivial on Pm, hence is
the same as a character of the group Cm := Im/Pm.

(b) Show that there is an exact sequence

O∗
k → (Ok/mf )∗ ×

∏

v∈m∞

k∗v/(k∗v)>0 → Cm → C → 0

where C = C(Ok,∅) is the usual ideal class group. It follows that the groups Cm are
finite. Hence the values of an ideal class character χ are complex roots of 1, and in
particular, have absolute value 1.

(c) The set of levels is partially ordered under the relation

m1 ≤ m2 ⇔ (m1)f |(m2)f and (m1)∞ ⊂ (m2)∞
If m1 ≤ m2, the identity map on ideals induces a homomorphism Cm2 → Cm1 . Show
this homomorphism is surjective (even if there are primes dividing m2 which do not
divide m1). This allows us to identify characters mod m1 with certain characters
mod m2 and to view the group of all ideal class characters as the Pontrjagin dual of
the profinite group proj limm Cm. Show for each character χ that there is a smallest
level m such that χ is a character mod m. This level is called the conductor of χ
and denoted by mc. One says χ is primitive mod mχ, and imprimitive mod m for
all m > mχ.

1.2. Classical abelian L-functions.
Associated with each ideal class character χ is a function L(s, χ) of a complex
variable s, defined in the right half-plane )(s) > 1 by

(1.2.1) L(s, χ) =
∏

P

1
1− χ(P )NP−s

=
∑

I

c(I)NI−s,

where the product is over the prime ideals P not dividing mχ and the sum over all
integral ideals I prime to mχ. The formal equality of the product and sum follows
from unique factorization and the fact that the function of ideals X(I) := χ(I)NI−s

is multiplicative , so that for x > 0
∏

NP≤x

(1−X(P ))−1 =
∏

NP≤x

∞∑

nP =0

X(P )nP

=
∑

(...,nP ,...)

∏

NP≤x

X(P )nP =
∑

(...,nP ,...)

X(
∏

NP≤x

PnP ) =
∑

I

X(I),

where the last sum is over all integral ideals I prime to mχ whose prime factorization
involves only prime ideals with norm ≤ x. The absolute and uniform convergence
in )(s) ≥ σ > 1 as x →∞ follows from

∑

P

|X(P )| =
∑

P

NP−σ ≤ [k : Q]
∑

p

p−σ ≤
∞∑

n=1

n−σ ≤
∫ ∞

1
x−σdx =

1
σ − 1

.

Hecke proved that L(s, χ) has an analytic continuation to the whole s-plane if
χ ,= 1. For χ = 1, the zeta function ζk(s) := L(s, 1) is analytic in the whole
plane except for a simple pole at s = 1. The proof of analytic continuation gives
also a functional equation relating L(1− s, χ) and Ls, χ̄). One way to express this
functional equation is the following. For each infinite place v of k, define γv(s, χ)
to be Γ( s

2 ) if v is real and not contained in the conductor of χ, to be Γ( s+1
2 ) if v



JOHN TATE, STARK’S BASIC CONJECTURE 5

is real and in the conductor of χ, and Γ( s
2 )Γ( s+1

2 ) = 21−sπ1/2Γ(s) if v is complex.
Then there exist canstants Bχ > 0 and Cχ ∈ C∗ such that the functions

(1.2.2) Λ(s, χ) :=
∏

v |∞

γv(s, χ)L(s, χ)

satisfy

(1.2.3) Λ(1− s, χ) = CχBs
χΛ(s, χ̄).

1.3. Representations of finite groups.
Let G be a finite group. By a representation of G we mean a finite dimensional
left C[G]-module V . To give such representation is the same as to give a finite
dimensional C-vectorspace V , together with a homomorphism ρ : G → GL(V )
giving the action of G on V . (We use the symbol GL(V ) to denote Aut(V ) because
a basis for V gives an isomorphism Aut(V ) ∼→ GLn(C) for n = dim(V ).) But we
take the module point of view in which the symbol V includes the action of G, and
write simply σx instead of ρ(σ)x for x ∈ V and σ ∈ G. Two representations V and
W are said to be isomorphic if they are isomorphic as C[G]-modules. We assume
the reader knows the basic theory and simply list the results we need and some
notation and terminology we will use.

(i) Examples. a) The regular representation is V = C[G] with the action of G
given by left multiplication.

b) V = C, with σx = x for all σ ∈ G, x ∈ C is the trivial representation.
c) If V and V ′ are representations, then V ⊗C V ′ is also, with σ(x ⊗ x′) =

σx⊗ σx′.
d) The space HomC(V, V ′) of all linear maps f : V → V ′ is a representation,

with (σf)(x) = σ(f(σ−1x)). (Note: We often write fσ instead of σf , so fσ(x) =
σ(f(σ−1x)). But remember: (fσ)τ = f (τσ). Our action is always a left action.)

e) The dual representation to V is V ∗ := Hom(V, C). We have (V ∗)∗ = V ,
and HomC(V ∗, V ′) ∼→ Hom((V ′)∗, V ), canonically. Also, Hom(V, V ′) ∼→ V ∗ ⊗C V ′,
canonically.

(ii) Semisimplicity. C[G] is semisimple, i.e., every representation is a direct sum
of irreducible representations. (V is irreducible if it is a simple C[G]-module, i.e.,
has exactly two submodules, V and {0}.)

(iii) Characters. The character of a representation V is the function χV : G → C
defined by χV (σ) = Tr(σ | V ), the trace of the map x .→ σx of V into V . This χV

is a central function on G, meaning that it is constant on each conjugacy class, or,
equivalently, that the element

∑
σ∈G χ(σ)σ is in the center of C[G]. The degree of

the character χof a representation V is χ(1) = dimV . Examples.

(a) χC(σ) = 1, for all σ ∈ G.

(b) χC[G](1) = |G|, and χC[G](σ) = 0 for σ ,= 1.

(c) χV⊗CV ′(σ) = χV (σ) · χV ′(σ).

(d) χV ∗(σ) = χV (σ−1) = χ̄V (σ).

(χV (σ) is a sum of complex m-th roots of 1, if σm = 1.)

(e) χHom(V,V ′) = χV ∗⊗V ′ = χ̄V (σ)χ′V (σ).
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(iv) Orthogonality. One makes the space C of central functions on G into a
Hilbert space by putting 〈f, g〉G = 1

|G|
∑

σ∈G f(σ)ḡ(s).

(1.3.1) 〈χV , χV ′〉G = dim(HomG(V, V ′),

Let {Vi} be a complete set of non-isomorphic representations of G, and let χi be
the character of Vi. These χi form an orthonormal basis for C. Thus the number
of isomorphism classes of irreducible representations Vi is equal to dimC, that is,
to the number of conjugacy classes in G.

(v) Isotypical components; projections. Let V be a representation. Then by
semisimplicity,

(1.3.2) V = ⊕iV [i],

where V [i] is isomorphic to a direct sum of copies of Vi. The decomposition (1.3.2))
is unique. If x =

∑
i xi with xi ∈ V [i], then

(1.3.3) xi =
dimVi

|G|
∑

σ∈G

χ̄i(σ)σx,

In other words, dim Vi
|G|

∑
σ∈G χ̄i(σ)σ ∈ C[G] is the projection of V onto V [i] which

kills all the other V [j]’s.
The V [i]’s are called the isotypical components of V . The decomposition of

V [i] into a direct sum of copies of Vi corresponds to expressing HomG(Vi, V ) into a
direct sum of 1-dimensional subspaces and is not at all unique, but the number of
copies of Vi in such an expression, the multiplicity of Vi in V , is unique and equals
〈χi, χV 〉G. = dimHomG(Vi, V ).

One denotes the isotypical component of V corresponding to the trivial repre-
sentation C by V G = {x ∈ V |σx = x for all σ ∈ G. the corresponding projection,
1
|G|

∑
σ σ is especialy useful.

(v1) Induced representation; Frobenius reciprocity. Let RepG denote the cate-
gory of representations of G. Let f : H → G be a homomorphism of groups. In this
paragraph we discuss adjoint functors f∗ : RepG → RepH and f∗ : RepH → RepG.
The classic case is that in which f is an inclusion H ⊂ G. In that case f ∗ V is
called the restriction of V to H and denoted by resV or resG

H V , and f∗W is called
the representation of G induced by the representation W of the subgroup H, and
is denoted by IndW or IndG

H W . In general, if V is a representation of G, then
f∗V is the representation of H with the same underlying vector space as V , with
H acting through f , that is, τx = f(τ)x for τ ∈ H and x ∈ V . The functor f∗ in
the other direction comes with canonical elements ιW ∈ HomH(W, f∗f∗W ) and is
characterized by the fact that for every pair of representations W of H and V of G,
the map HomG(f∗W, V ) → HomH(W, f∗V ) given by φ .→ (f∗φ) ◦ ιW is bijective.
Since every group homomorphism f is a passage to quotiont followed by an iso-
morphism followed by an inclusion, it suffices. in order to describe f∗ explicitly, to
treat the two cases H → H/N and H ⊂ G. In the first of these, f∗W = WN , and
ιW is the projection of W onto WN j discussed in (v) just above. In the second,
classical, case, ιW is an inclusion W ⊂ f∗W , and IndG

H = f∗W = ⊕jσjW , where
the σj are representatives of the left cosets σjH of H in G. The action of G is
forced by this: σ

∑
i σiyi =

∑
i σσ(i)τiyi for yi ∈ W , where the subscript σ(i) and

τi ∈ H are uniquely determined by σσi = σσ(i)τi.
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If χ is the character of V , we denote by f∗χ the character of f∗V . Clearly,
f∗χ(σ) = χ(f(σ)). If psi is the character of W , we denote by f∗ψ the character of
f∗W . It is not hard to see that

(1.3.4) (f∗ψ)(σ) =
1
|H|

∑

ρ∈G

∑

τ∈H;f(τ)=ρσρ−1

ψ(τ).

Equating the dimensions of the spaces on each side of the isomorphism HomG(f∗W, V )
∼→ HomH(W, f∗V ) characterizing f∗ gives the relation

(1.3.5) 〈f∗ψ, χ〉G = 〈ψ, f∗χ〉H .

This is known as Frobenius reciprocity.

(vii) Abelian characters; duality for finite abelian groups. The characters χ
of 1-dimensional representations are the same thing as the group homomorphisms
G → C∗. We will call them abelian characters. They form an abelian group
Hom(G, C) under multiplication. If G is abelian, they are the only irreducible
characters. The group they form is called the character group of G and is denoted
in these notes by Ĝ. We have a perfect duality: the natural maps G → Ĝˆ, and
Hom(Ĝ′, Ĝ) → Hom(G, G′) are isomorphisms.

1.4. Decomposition, inertia, Frobenius.
Let K/k be a finite Galois extension and G = GK/k its Galois group. Recall that
for each place v of k, G acts transitively on the set of places w of K which lie above
(i.e., extend) v. The stabilizer of one of these w’s is a subgroup of G called the
decomposition group of w and denoted by Gw. It can be identified with the Galois
group of the corresponding extension of the completions Kw/kv.

For finite v, an element σ of Gw induces an automorphism σ̃ of the residue
field Fw of w. The map σ .→ σ̃ is a homomorphism of Gw onto the Galois group of
the w/v residue field extension. The kernel is called the inertia group of w and is
denoted by Iw. The order of Iw is the ramification index ew/v and is 1 for all but
a finite number of places v, those dividing the relative discriminant ideal dK/k. As
Galois group of the finite field extension Fw/Fv, the quotient group Gw/Iw is cyclic
with a canonical generator, the Frobenius automorphism σ̃w which raises elements
of Fw to the qv-th power, where qv = NPv is the number of elements in Fv.

1.5. Artin L-functions.
Let K/k be a finite Galois extension and G = GK/k its group. Let V be a rep-
resentation of G. For a finite place v of k let Fv,V (T ) = det(1 − σwT | V Iw) be
the characteristic polynomial of the action on V Iw of a Frobenius automorphism
σw attached to a place w of K above v. Although σw is determined only up to
multiplication by an element of Iw, its action on V Iw is independent of which we
chose. The polynomial Fv(T, V ) obviously depends only on the isomorphism class
of V , and it also depends only on v, not on the choice of w above v, because the
places w above v are all conjugate. Note that for v unramified in K, hence for
all but a finite number of v we have Iw = {1}, hence V Iw = V , and Fv(T, V ) is
of degree dimV . Note also that Fv(T, V ) depends only on V as Gw-module, not
as G-module. Artin defined his L-function as an “Euler product” over the finite
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places v of k “local L-functions” Lv(s, V ) := Fv(NP−s
v , V )−1.

(1.5.1) L(s, V ) =
∏

v

Lv(s, V ) =
∏

v

1
det(1− σwq−s

v | V Iw)
.

Exercise: Show that this product converges absolutely and defines an analytic
function in the half plane ))s) > 1.

In fact, it has a meromorphic continuation to the whole plane, and a deep
conjecture of Artin is that it is an entire function if the trivial representation does
not occur in V — more about this soon. It is really enough to consider irreducible
representations, because

(1.5.2) L(s, V ⊕W ) = L(s, V )L(s, W )

Exercise: Since L(s, V ) depends only on the isomorphism class of the repre-
sentation V , we can also denote it by L(s, χV , where χV : G → C is the character
of V . Show for each finite place v that for χ = χV ,

log Lv(s, χ) =
∞∑

n=1

Tr(σn
w | V Iw)
nqns

v

=
∞∑

n=1

χ(σn
w)

nqn
v s

,

where χ(σn
w) = 1

|Iw|
∑

τ∈σn
w

is the average value of χ on the coset σn
w of Iw.

Another property of these L-functions concerns the situation in which K is
contained in a larger Galois extension K ′ of k, so k ⊂ K ⊂ K ′. Then G = GK/k

is a quotient group of G′ := GK′/k. Let V ′ denote the G′-module with the same
underlying vector space as V , with G′ acting through G. Then

(1.5.3) L(s, V ′) = L(s, V )

This is true because if we let w′ be a place of K ′ above w, then Iw = I ′w′GK′/K ,
hence (V ′)Iw′ = V I , and σw = σw′GK′/K . Property (1.5.3) shows that L(s, V )
really depends only on V viewed as module V̄ for “the” absolute Galois group
Gk = Gal(k̄/k) of k. Note that the isomorphism class of V̄ as Gk-module is
independent of how we view K/k as subextension of k̄/k. The representations of
the form V̄ for some K/k and V are, up to isomorphism, simply the C[Gk]–modules
X of finite dimension over C for which the action map Gk ×X → X is continuous
for the profinite (Krull) topology in Gk and the discrete topology in X (or the usual
complex vector space topology in X – it’s the same, because GLn(C) has “no small
subgroups”).

The really key property of Artin’s L-functions relates L-functions of different
fields. Suppose k′ is an intermediate field, k ⊂ k′ ⊂ K, the fixed field of a subgroup
H of G. Let W be a representation of H and Let V = IndG

H W be the representation
of G induced by W . Then

(1.5.4) L(s, W ) = L(s, V ) (V = Indk
k′ W ).

Example: If k′ = K, and W = C is the trivial representation of the identity
subgroup of G, then V = C[G] is the regular representation of of G, and since
C[G] ∼→ ⊕iV

dim Vi
i , where the Vi are (representatives of the isomorphism classes of)

the irreducible representations of G, we have, by (1.5.2) and (1.5.4)

(1.5.5) ζK(s) =
∏

i

L(s, Vi)dim Vi = ζk(s)
∏

i +=1

(L(s, Vi)dim Vi ,
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if we number the Vi so that V1 is the trivial representation of G, for by (1.5.3) we
have then L(s, V1) = ζk(s). More generally, if k′ is any intermediate field, and W the
trivial representation of H, then V = C[G/H] is the permutation representation of
G acting on the set G/H of cosets of H, and by Frobenius reciprocity, V

∼→ ⊕iV
mi
i ,

where mi = dim V H
i . In particular, m1 = 1 and we have

(1.5.6) ζk′(s) = ζk(s) ·
∏

i +=1

L(s, Vi)m
i ,

Thus, if the L(s, Vi) are entire funtions for i ,= 1 as Artin conjectured, then the
zeta function of k divides the zeta function of every extension field k′/k, and the
Riemann hypothesis for all zeta functions would imply it for all L-functions. It
was Artin’s investigation of the interrelations among the zeta functions of different
fields, in particular the intermediate fields of a non-abelian Galois extension K/k
which led him to define his new kind of L-functions.

Exercise: Fill in the details of the following proof of (1.5.4). Let v be a finite
place of k and w be a place of K above v. Let G =

∐r
i=1 GwρiH be the expression

of G as disjoint union of double cosets of Gw and H. Let wi = ρ−1
i w and let v′i

be the place of k′ below wi. Then v′1, v
′
2, ..., v

′
r are the places of k′ above v, so it

suffices to show that

(1.5.7) Lv(s, V ) =
r∏

i=1

Lv′i
(s, W ).

For each i, let Gw =
∐mi

j=1 τij(Gw ∩ Hρi). (Notation: For ρ ∈ G and X ⊂ G we
write Xρ := ρXρ−1.) Then

G =
r∐

i=1

mi∐

j=1

τijρiH.

Hence, by definition of induced representation, V contains W as an H-submodule
isomorphic to, and

(1.5.8) V = ⊕r
i=1 ⊕

mi
j=1 τijρiW = ⊕r

i=1 Vi,

where Vi = ⊕mi
j=1τijρiW is a Gw-module for each i, and is in fact isomorphic to the

Gw-module induced from the Gw ∩Hρi-module ρiW . Applying the automorphism
ρi to our situation, (H .→ Hρi , k′ .→ ρik′, W .→ ρiW , etc.), we have by transport
of structure, Lv′(s, ρiW ) = Lv′i

(s, ρiW ), where v′ is the place of ρik below w.
Comparing with (1.5.7) and (1.5.8) and using (1.5.2) shows that we are now reduced
to the local case, in which G = Gw.

Next we reduce to the local unramified case by showing that V I ∼→ IndG/I
H/J(W J),

where I = Iw,and J = H ∩ I are the inertia subgroups of G and H, and where we
view H/I as subgroup of G/J by identifying H/J with HI/I in the obvious way.
One way to do this is to factor the homomorphism f : H → G/I in two ways

H ↪→ G → G/I and H → H/J ↪→ G/I.

Calculating f∗W in two ways accordingly we find

f∗W
∼→ (IndG

H W )I ∼→ V I and f∗W
∼→ IndG/I

H/J(W J).

Finally, in the local unramified case, G is cyclic, generated by the v-Frobenius
σv and H the subgroup generated by the v′-Frobenius σv′ = σf

v , where f = (G : H).
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Then V = ⊕f−1
i=0 σi

vW and we can assume W is 1 dimensional, with basis x. Let
σ′vx = ηx. For each solution ζ to ζf = η the element

∑f−1
i=0 ζ−iσix ∈ V is an

eigenvector for σv with eigenvalue ζ. Hence

Lv(s, V ) = det(1− σvq−s
v |V ) =

∏

ζf=η

(1− ζq−s) = (1− ηq−fs)

= det((1− ηq−s
v |W ) = Lv′(s, W ).

1.6. Reciprocity and the relation between the two kinds of L-functions.
Artin had quickly mastered1 Takagi’s recent work proving that “class fields” are
just abelian extensions. Takagi had shown that for each level m (see §1.1) there
is an abelian extension Km of k with group GKm/k having the same invariants as,
hence isomorphic to, the generalized ideal class group Cm and such that the way in
which a prime ideal P of k decomposes in K is determined by the class of P mod
m. From Takagi’s decomposition law it follows that

(1.6.1) ζK(s) =
∏

χ

L(s, χ) = ζk(s) ·
∏

χ+=1

L(s.χ),

where the first product is over all characters χ of Cm. Artin realized that in the
abelian case Km/k the simplest explanation for the existence of the two factoriza-
tions (1.5.5) and (1.6.1) of ζk(s) was that they be the same, and the simplest expla-
nation for that would be the existence of a canonical isomorphism Cm

∼→ GKm/k

which, for each finite place v of k unramified in K, associated to the class of the
prime Pv the Frobenius substitution σv. To prove this he had to show, for every
element a ∈ Ok, such that a ≡ 1 mod×m

(1.6.2) (a) =
∏

v

Pmv
v ⇒

∏

v

σmv
v = 1.

It took him 4 years. Artin called (1.6.2) the reciprocity law, because every known
explicit reciprocity law could be interpreted as (1.6.2) for some special Kummer
extension K/k. For example, if q is a prime ≡ 1 mod 4, then for the extension
Q(√q)/Q), (1.6.2) implies that there is a non-trivial character χ of order 2 mod q
such that χ(p) = ( q

p ) for primes p ,= q. The only such character is p .→ (p
q ). Hence,

( q
p ) = (p

q ).

1.7. Brauer’s theorem, meromorphicity.
A representation V of G and its character χV are called monomial if V is induced
from a 1-dimensional representation of some subgroup of G, or in other words, V
is a direct sum of 1-dimensional subspaces which are permuted transitively by G.

1.7.1. Theorem (R. Brauer). Every character of a finite group G is a linear
combination with integral coefficients of monomial characters [10].

Brauer’s main motivation for proving this was the fact that if the ψi are 1-
dimensional characters of some subgroups Hi of G such that

(1.7.2) χ =
∑

i

ni IndG
Hi

ψi,

1He tells the story that, when as Post-doc in Göttingen, he asked Siegel if he could borrow Siegel’s
preprint of Takagi’s paper, Siegel said yes, he could have it for 24 hours. Artin spent the time
copying by hand the essential parts.
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then

(1.7.3) L(s, χ) =
∏

i

L(s, ψi)ni ,

By the reciprocity law, the L(s, ψi are classical abelian L-series, hence meromorphic
on C, and even entire for ψ ,= 1 ( See §1.2). Hence Brauer’s theorem implies

1.7.4. Corollary. Every Artin L-series is meromorphic in the whole complex plane.

1.7.5. Exercise. Show that if the trivial reresentation does not occur in χ, then
one can cancel on the right side of (1.7.3) all of the terms in which ψi is the trivial
character of Hi. (Write the hypothesis in the form 〈χ, 1G〉G = 0 and use Frobenius
reciprocity.)

If in (1.7.3) ni ≥ 0 for all i, and ψi ,= 1 for all i, then L(s, χ) is entire.
However for most χ such an expression does not exist. Artin’s conjecture that
L(s, χ) is holomorphic for irreducible χ ,= 1 is much deeper, implying a miraculous
cancellation of the zeros of the L(s, ψi) with ni < 0 by those of those with ni > 0
in (1.7.3).

1.8. Functional equation.
To get a neater functional equation, Artin defined local L-functions also for infinite
places v of k. For such a v the decomposition group Gw of a place w of K above
v is of order 1 or 2, hence has a unique generator, which we denote by σw, and we
put

(1.8.1) Lv(s, χ) = (Γ(
s

2
)Γ(

s + 1
2

))χ(1) = (21−s√πΓ(s))χ(1), for v complex,

and

(1.8.2) Lv(s, χ) = Γ(
s

2
)

χ(1)+χ(σw)
2 · Γ(

s + 1
2

)
χ(1)−χ(σw)

2 , for v real.

Note that these Lv’s depend only on the action of σw on V , i.e., only on V as
Gw-module, just as was the case for finite v.

1.8.3. Exercise. Show that (1.5.7) holds for infinite v as well.

Let

(1.8.4) Λ(s, V ) :=
∏

all v

Lv(s, V ) = Γ(
s

2
)a · Γ(

s + 1
2

)bL(s, V ),

where a = (r2 + r+
1 ) dimV and b = (r2 + r−1 ) dimV , where r+

1 (resp. r−1 ) is
the number of real places of k such that the places of K above v are real (resp.
complex). The three basic properties (1.5.2), (1.5.3) and (1.5.4) of L(s, V ) as
function of V hold for Λ(s, V ) as well. This is trivial, given Exercise 1.8.3. For an
abelian character ψ our definition of Λ(s, ψ) is consistent with the definition in §1.2.
Writing an arbitrary L(s, χ) in the form (1.7.2) and recalling the functional equation
(1.2.3) for abelian L-functions, one sees that there are constants Bχ =

∏
i Bni

ψi
and

Cχ =
∏

i Cni
ψi

, such that

(1.8.5) Λ(1− s, χ) = CχBs
χΛ(s, χ̄).

Note that he B and C are uniquely determined by this equation, independent of
the choice of expression (1.7.2), because CBs = 1 for all s implies B = C = 1.
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Exercise: Assuming (1.2.3) show that there exist unique constants Aχ > 0 and
Wχ ∈ C∗ such that Aχ = Aχ̄ such that the functions

(1.8.6) ξ(s.χ) := As/2
χ Λ(s, χ) = As/2

χ Γ(
s

2
)a · Γ(

s + 1
2

)bL(s, V ),

satisfy

(1.8.7) ξ(1− s, χ) = Wχ · ξ(s, χ̄).

Show also that |Wχ| = 1, and Wχ̄ = W̄χ. (Suggestion: Note that L(s̄, χ̄) = L(s, χ)
and consider the functional equation on the vertical line )(s) = 1

2 .) The constant
Wχ is called an“Artin root number”. Artin showed that

(1.8.8) Aχ =
|dk|χ(1)Nf(χ)

π[k:Q]χ(1)
,

where f(χ) is an integral ideal of Ok involving only primes ramified in K called the
conductor of χ.
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