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Introduction to Elliptic Curves

Alice Silverberg

Introduction

Why study elliptic curves?
Solving equations is a classical problem with a long history. Starting with the

simplest equations, we know that linear and quadratic equations are easy to solve.
However, there are still have many interesting unanswered questions about cubic
equations.

In addition, there are important applications of elliptic curves to cryptogra-
phy. There are also important applications of elliptic curves within mathematics,
most notably to the proof of Fermat’s Last Theorem. By studying about elliptic
curves, one learns about deep connections among arithmetic, algebra, geometry,
and complex analysis.

Some suggested reading is [4, 5, 1, 3].

1. Definitions

Definition 1.1. An elliptic curve E over a field F is a smooth projective curve
with an affine equation of the form

(1) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where the ai’s are in F .

An equation of the above form (1) is called a generalized Weierstrass equation.
Recall that the points in projective space Pn(F ) correspond to the equiva-

lence classes in Fn+1 − {(0, . . . , 0)} under the equivalence relation (x0, . . . , xn) ≈
(λx0, . . . , λxn) with λ ∈ F×.

The projective equation corresponding to the affine equation (1) is the homo-
geneous equation

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3.

Smooth means that there is no point on the curve at which all partial derivatives
vanish.

If char(F ) $= 2 or 3, then a change of variables puts E in the form

y2 = x3 + ax + b

with a, b ∈ F . Such an equation is called a Weierstrass equation.
A projective curve y2z = x3+axz2+bz3 is smooth if and only if 2(4a3+27b2) $=

0.
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The points (x, y, z) on the projective curve

y2z = x3 + axz2 + bz3

are the points (x, y, 1) where (x, y) in a solution to y2 = x3 + ax + b along with the
point (0, 1, 0).

The point (0, 1, 0) is called the point at infinity. It can be viewed as the point
where all vertical lines meet. Denote it by OE or O.

Exercise 1.2. Over which fields F is y2 = x3 − x an elliptic curve?

Next we give some equivalent definitions.

Definition 1.3. An elliptic curve E over a field F is a smooth projective plane
cubic over F with a point whose coordinates are in F .

Definition 1.4. An elliptic curve E over a field F is a smooth projective curve of
genus one with a point whose coordinates are in F .

Definition 1.5. If E is y2 = x3+ax+b, then the discriminant ∆(E) and j-invariant
j(E) are defined as follows:

∆(E) = −16(4a3 + 27b2), j(E) =
(−48a)3

∆
.

2. Group Law

Figure 2 illustrates the group law on an elliptic curve.

Figure 1. Group Law
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P + Q

−(P + Q)

This can be expressed algebraically, as follows.
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If E is y2 = x3+ax+b, and P = (x1, y1) and Q = (x2, y2), then P +Q = (x3, y3)
where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

λ =

{
(y2 − y1)/(x2 − x1) if P $= Q,
(3x2

1 + a)/2y1 if P = Q.

The point OE = (0, 1, 0) is the identity element for the group law.
With this group law, the points on E with coordinates in F , along with the

point at ∞, form an abelian group. This group is denoted E(F ). When F is a
number field, E(F ) is called the Mordell-Weil group of E over F .

Figure 2. y2 = x3 − x

(0, 0) (1, 0)(−1, 0)

E(Q) = {(0, 0), (1, 0), (−1, 0), O} ∼= Z/2Z× Z/2Z

3. N-torsion

Let (F denote an algebraic closure of the field F .

Definition 3.1. If E is an elliptic curve over F , then

E[N ] := {P ∈ E(F ) : NP = OE}.
Fact 3.2. E[N ] ∼= Z/NZ× Z/NZ if char(F ) ! N .

Example 3.3. If E is the elliptic curve y2 = x3 − x over Q, then

E[2] = {(0, 0), (1, 0), (−1, 0), O} ∼= Z/2Z× Z/2Z,

E[4] = 〈(i, i− 1), (1−
√

2, 2−
√

2)〉 ∼= Z/4Z× Z/4Z.
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4. Elliptic Curves over C

If E is an elliptic curve over C, then E(C) is isomorphic to C/L for a lattice
L = Zτ + Z for some τ in the complex upper half plane.

Figure 3. Elliptic curves over C
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It easily follows that

E[N ] ∼= 1
N L/L ∼= Z/NZ× Z/NZ,

which agrees with Fact 3.2.

5. Elliptic Curves over Number Fields

Mordell-Weil Theorem. If E is an elliptic curve over a number field F , then
the abelian group E(F ) is finitely generated.

Therefore:
E(F ) ∼= Zr × finite group.

The finite group is called the torsion subgroup of E(F ) and is denoted E(F )tors.
The non-negative integer r is called the rank of E(F ).

5.1. The Torsion Subgroup
Nagell-Lutz Theorem (1930’s). If E : y2 = x3 + ax + b is an elliptic curve with
a, b ∈ Z, and OE $= (x, y) ∈ E(Q)tors, then x and y are integers, and either y = 0
or y2 is a divisor of 4a3 + 27b2.
Exercise 5.1. Show that for E : y2 = x3 + 4x,

E(Q)tors = {O, (0, 0), (2, 4), (2,−4)} ∼= Z/4Z.

Exercise 5.2. Show that for E : y2 = x3 + 1,

E(Q)tors = {O, (−1, 0), (0, 1), (0,−1), (2, 3), (2,−3)} ∼= Z/6Z.

Mazur Theorem (1977). If E is an elliptic curve over Q, then E(Q)tors is iso-
morphic to one of the following 15 groups:

Z/NZ for N = 1, . . . , 10 or 12,
Z/2Z× Z/2NZ for N = 1, 2, 3, or 4.

Each of these groups occurs infinitely often.
Theorem 5.3 (Merel-Oesterlé-Parent, 1990’s). Suppose E is an elliptic curve de-
fined over a number field F , and m = [F : Q]. Then #E(F )tors is bounded above
by a constant depending only on m. More precisely, if E(F ) has a point of order
pn where p is a prime number, then

pn ≤ 129(5m − 1)(3m)6.
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5.2. Ranks
In 1901, Henri Poincaré stated that the rank is obviously very important in the
classification of rational cubics. In 1922, Mordell stated, “Mathematicians have
been familiar with very few questions for so long a period with so little accomplished
in the way of general results, as that of finding the rational [points on elliptic
curves].”

Most major open questions about elliptic curves today have something to do
with the rank.

Example 5.4. If E is the elliptic curve y2 = x3 − x over Q, then

E(Q) = 〈(1, 0), (0, 0)〉 ∼= Z/2Z× Z/2Z
so the rank is 0.

Example 5.5. If E is the elliptic curve y2 = x3 − 2x over Q, then

E(Q) = 〈(−1, 1), (0, 0)〉 ∼= Z× Z/2Z
so the rank is 1.

Example 5.6. If E is the elliptic curve y2 = x3 − 17x over Q, then

E(Q) = 〈(−1, 4), (9, 24), (0, 0)〉 ∼= Z× Z× Z/2Z
so the rank is 2.

Some open questions about ranks are:
• We still do not know an algorithm that is guaranteed to find the rational

points on elliptic curves over Q.
• In particular, there is no known algorithm guaranteed to determine the

rank.
• It is not known which integers can occur as ranks.
• It is not known if ranks are unbounded.

Figure 5.2 gives the year that an elliptic curve was first written down with rank
≥ n for various values of n up to 28.

The Parity Conjecture, which is a consequence of the Conjecture of Birch and
Swinnerton-Dyer, says that half of the elliptic curves over Q have even rank and
half have odd rank.

Some people believe the stronger statement that density 1
2 (in a suitable sense)

of the elliptic curves over Q have rank 0, density 1
2 have rank 1, and the density of

elliptic curves over Q with rank ≥ 2 is zero.
Many people believe that ranks of elliptic curves over Q are unbounded.
There are similar questions about elliptic curves over other number fields.

6. Elliptic Curves over Finite Fields

Fact 6.1. If E is an elliptic curve over a finite field Fq, then

E(Fq) ∼= Z/mZ× Z/nZ
where m is a divisor of n.

Hasse Bound. If E is an elliptic curve over Fq, then

(
√

q − 1)2 ≤ #E(Fq) ≤ (
√

q + 1)2.
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Figure 4. Rank Records

Rank ≥ Year Discoverers
3 1945 Billing
4 1945 Wiman
6 1974 Penney & Pomerance
7 1975 Penney & Pomerance
8 1977 Grunewald & Zimmert
9 1977 Brumer & Kramer
12 1982 Mestre
14 1986 Mestre
15 1992 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao-Kouya
22 1997 Fermigier
23 1998 Martin-McMillen
24 2000 Martin-McMillen
28 2006 Elkies

Elliptic Curves over finite fields are used in elliptic curve cryptography and
pairing-based cryptography. The security of elliptic curve and pairing-based cryp-
tosystems depends on the difficulty of certain problems about elliptic curves and
their Weil and Tate pairings. An important open problem in cryptography is to
understand how difficult these “hard problems” are.

7. Homomorphisms

Definition 7.1. A homomorphism f : E1 → E2 of elliptic curves over the same
field F is a morphism that takes OE1 to OE2 .

It follows that the induced map f : E1(F ) → E2(F ) is a group homomorphism.
Write HomF (E1, E2) for the homomorphisms defined over F and Hom(E1, E2)

for the homomorphisms defined over F .

Definition 7.2. An endomorphism is a homomorphism from E to itself.
End(E) := Hom(E,E)

Fact 7.3. End(E) is either:
(i) Z,
(ii) an order in an imaginary quadratic field, or
(iii) a maximal order in a definite quaternion algebra over Q.

The third doesn’t happen in characteristic 0. The first doesn’t happen over
finite fields.

Example 7.4. The map P .→ NP is always an endomorphism, and this gives an
injection

Z ↪→ End(E).
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Example 7.5. If E is an elliptic curve over Fq, then

φq : (x, y) .→ (xq, yq)

is an endomorphism, called the Frobenius endomorphism.

Example 7.6. Suppose E is y2 = x3 − x. Then I : (x, y) .→ (−x,
√
−1y) is an

automorphism.
Over Q or Fp with a prime p ≡ 1 (mod 4):

End(E) = Z + ZI ∼= Z[i].

Over Fp with a prime p ≡ 3 (mod 4), we have φ2
p = −p, φp ◦ I = −I ◦ φp, and

End(E) = Z + ZI + Z(
1 + φp

2
) + Z(

1 + φp

2
) ◦ I

∼= Z
(

1 0
0 1

)
+ Z

(
0 1

−1 0

)
+ Z

(
1+
√
−p

2 0
0 1−

√
−p

2

)
+ Z

(
0 1−

√
−p

2
−1−

√
−p

2 0

)
.

Definition 7.7. Isogeny can be defined using any of the following equivalent defi-
nitions:

(i) An isogeny of elliptic curves is a non-zero homomorphism.
(ii) An isogeny of elliptic curves is a surjective homomorphism.
(iii) An isogeny of elliptic curves is a homomorphism with finite kernel.

If there is an isogeny from E1 to E2 then there is an isogeny from E2 to E1.
We say that E1 and E2 are isogenous. Being isogenous is an equivalence relation.

Two elliptic curves over F are isomorphic over F if and only if they have the
same j-invariant.

A stronger statement is the following. If E is y2 = x3 + ax + b and E′ is
y2 = x3 + a′x + b′, then an isomorphism f : E → E′ is of the form

f(x, y) = (λ2x, λ3y)

where a′ = λ4a and b′ = λ6b.

8. Supersingular and Ordinary

Definition 8.1. Suppose E is an elliptic curve over Fpr with p prime. Then E is
supersingular if and only if any of the following equivalent statements holds:

(i) #E(Fpr ) ≡ 1 (mod p),
(ii) E[p] = {O},
(iii) End(E) is non-commutative,
(iv) End(E) is an order in a quaternion algebra over Q.

Otherwise, E is called ordinary.

Example 8.2. Suppose p ≡ 3 (mod 4). By Example 7.6, the curve y2 = x3 − x is

supersingular over Fpr . Further, #E(Fpr ) =

{
pr + 1 if r is odd
((−p)r/2 − 1)2 if r is even.

If E is an elliptic curve over Fpr with p prime, then E is ordinary if and only
if any of the following equivalent statements holds:

(i) #E(Fpr ) $≡ 1 (mod p),
(ii) E[p] ∼= Z/pZ,
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(iii) End(E) is commutative,
(iv) End(E) is an order in an imaginary quadratic field.

Example 8.3. By Example 7.6, the curve y2 = x3−x is ordinary over Fpr if p ≡ 1
(mod 4).

9. Mod N representations

Let F s be a separable closure of F and let GF = Gal(F s/F ). If E is defined over
F , then GF acts on E[N ], and this action induces the mod N representation

ρE,N : GF → Aut(E[N ]).

Note that Aut(E[N ]) ∼= GL2(Z/NZ) if char(F ) ! N .

Example 9.1. If E is y2 = x3 − x over Q, then

ρE,2(σ) =
(

1 0
0 1

)

for all σ ∈ GF , since E[2] ⊆ E(Q).

Exercise 9.2. Suppose E is y2 = x3 − x over Q. Since E[4] ⊂ Q(i,
√

2), the mod
4 representation

ρE,4 : GQ → Aut(E[4])
factors through Gal(Q(i,

√
2)/Q) ∼= Z/2Z × Z/2Z. This Galois group is generated

by σ and τ such that σ(i) = −i, σ(
√

2) =
√

2, τ(i) = i, and τ(
√

2) = −
√

2. Show
that:

ρE,4(σ) =
(
−1 0

2 1

)
, ρE,4(τ) =

(
1 2
0 1

)
∈ GL2(Z/4Z)

with respect to the basis {(i, i− 1), (1−
√

2, 2−
√

2)} for E[4].

10. Tate modules

For ' prime, with respect to the maps

E['n+1] → E['n], P .→ 'P

define
T!(E) := lim←−

n
E['n], V!(E) := T!(E)⊗Z! Q!.

Then T!(E) is a free Z!-module and V!(E) is a Q!-vector space.
If E is defined over F , then GF acts on V!(E), and this action induces the

'-adic representation:
ρE,!∞ : GF → Aut(V!(E)).

Note that if char(F ) $= ', then V!(E) ∼= Q2
! (as groups) and Aut(V!(E)) ∼= GL2(Q!).

Isogeny Theorem (Tate, Parshin, Faltings,. . . ). Suppose F is a finitely generated
extension of a number field or of a finite field, and E1 and E2 are elliptic curves
defined over F . Then the following are equivalent:

• E1 and E2 are isogenous over F ,
• ρE1,!∞ and ρE2,!∞ are isomorphic for every ' $= char(F ),
• ρE1,!∞ and ρE2,!∞ are isomorphic for one ' $= char(F ).

In other words, elliptic curves over F are determined (up to isogeny) by their
'-adic representations.



13. ABELIAN VARIETIES 11

11. Reduction of Elliptic Curves

If E is an elliptic curve over a number field F , then E can be reduced modulo a
prime ideal p of OF , where OF is the ring of integers of F . If p ! ∆(E), this gives
an elliptic curve Ẽ over the finite field OF /p.

Exercise 11.1. Take the elliptic curve y2 = x3−x over Q and reduce the coefficients
modulo 7. This gives an elliptic curve Ẽ over F7. Compute Ẽ(F7).

12. Conjecture of Birch and Swinnerton-Dyer

The Conjecture of Birch and Swinnerton-Dyer tells us that an analytic object,
namely the L-function of an elliptic curve over a number field, encodes certain
arithmetic information about the Mordell-Weil group.

In particular, the Birch and Swinnerton-Dyer Conjecture relates the size of the
Mordell-Weil group of an elliptic curve over a number field with the numbers of
points on the reductions of the curve.

See [2] for more.

13. Abelian varieties

Abelian varieties are higher-dimensional generalizations of elliptic curves.

Definition 13.1. An abelian variety is a connected projective group variety.

Remark 13.2. Note the the definition doesn’t say that abelian varieties are abelian
groups. The fact that abelian varieties are abelian is a theorem.

Examples 13.3. (i) The one-dimensional abelian varieties are exactly the
elliptic curves.

(ii) Products of abelian varieties are abelian varieties.
(iii) Jacobian varieties of curves of genus g are abelian varieties of dimension

g.
(iv) For example, if C is a smooth plane curve of degree n, then C has genus

(n− 1)(n− 2)/2 and its Jacobian variety has dimension (n−1)(n−2)
2 .

(v) In particular, the Jacobian variety of xn + yn = zn is an abelian variety
of dimension (n−1)(n−2)

2 .

Mordell-Weil Theorem. The group of points on an abelian variety over a number
field is a finitely generated abelian group.

Many of the facts we know about elliptic curves are open questions for higher-
dimensional abelian varieties. The Torsion Conjecture is one example:

Torsion Conjecture. If A is an abelian variety of dimension d defined over a
number field F , then #A(F )tors is bounded above by a constant depending only on
d and F .

For every dimension greater than one, the Torsion Conjecture is open even
when F = Q.

Strong Torsion Conjecture. If A is an abelian variety of dimension d defined
over a number field F of degree m, then #A(F )tors is bounded above by a constant
depending only on d and m.
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The Strong Torsion Conjecture is sometimes called the Uniform Boundedness
Conjecture.

Many open questions about elliptic curves make sense and are open (though
sometimes different) for abelian varieties.

Open Questions. Here are just a small number of examples of other open ques-
tions about abelian varieties:

(i) Distributions of ranks, including boundedness or unboundedness.
(ii) Conjecture of Birch and Swinnerton-Dyer.
(iii) Difficulty of the Discrete Log Problem (cryptography).
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