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Introduction

Starting with Riemann’s derivation of an “explicit formula” for the number of
primes below a given bound, the functional equation of an L-function has been
an indispensable tool in analytic number theory, and in more recent years it has
become a fundamental tool in automorphic forms as well via the method of converse
theorems pioneered by Hamburger and Hecke. The present lectures are concerned
with a third direction, näıve by comparison and more limited in scope, namely the
use of the functional equation to determine the parity of the order of vanishing of
an L-function at the center of the critical strip. While the insights gained from this
type of information are often only conditional (“... granting the conjecture of Birch
and Swinnerton-Dyer, we conclude that ...”), they are sometimes the first hint of
interesting new phenomena in arithmetic geometry.

Given our focus in these lectures, the key invariant is the root number, and the
first four lectures are devoted to issues that arise in computing it. The four lectures
correspond respectively to four possibilities for the underlying Galois representa-
tion: global of dimension one, local of dimension one, global of arbitrary dimension,
and local of arbitrary dimension. The fifth lecture addresses a question which is
hinted at from the outset: To what extent, or under what circumstances, should
one expect the order of vanishing of an L-function at the center of its critical strip
to be the smallest value permitted by its functional equation? Very little is known
about this question, and our remarks are largely speculative.

The main prerequisites for the lectures are basic algebraic number theory and
a familiarity with Dirichlet L-functions. Some prior encounters with L-functions
of elliptic curves are also desirable. More general classes of L-functions (Hecke
L-functions, Artin L-functions, motivic L-functions) will be introduced from first
principles as the lectures progress, but since references to “L-functions” in general
appear right from the beginning, it is essential to have some notion of what is being
talked about, namely an absolutely convergent Dirichlet series represented by an
Euler product in some right half-plane (thus holomorphic and nonvanishing there)
which is known or conjectured to extend to a meromorphic function on C and to
satisfy a functional equation modeled on the functional equation of the Riemann
zeta function. An acquaintance with Dirichlet L-functions and perhaps even with L-
functions of elliptic curves provides an adequate intuition for absorbing the concept
in general.

Department of Mathematics and Statistics, Boston University, Boston, MA 02215
E-mail address: rohrlich@math.bu.edu

c©2009 American Mathematical Society
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4 DAVID E. ROHRLICH, PCMI LECTURE NOTES

Some vocabulary from group representation theory is also a prerequisite. Our
conventions are as follows. A representation ρ of a group G is always understood
to be finite-dimensional, and if G is a topological group then ρ is understood to
be continuous as well. Continuity is meaningful because the field of scalars of ρ
will be either C (the default) or else, where explicitly indicated, a λ-adic field. A
character is either a one-dimensional representation or the trace of a represen-
tation of dimension greater than one, usually the former. Possible ambiguities,
when they arise, will be resolved by referring to a one-dimensional character.
A one-dimensional character is unitary if it takes values in the group of complex
numbers of absolute value 1. Note that elsewhere in the literature, particularly in
older treatments, the term quasicharacter is used for our “one-dimensional char-
acter” and the term character is reserved for our “unitary character.” Also the
“contragredient” of a representation ρ will be referred to as the dual of ρ and de-
noted ρ∨. To illustrate the definitions just made, note that if χ is a one-dimensional
character then χ∨ = χ−1, but if χ is unitary then also χ∨ = χ. The trivial charcter
of a group G will often be denoted by 1, or if G = Gal(K/K) then by 1K .

There is one simple fact about representations which comes up so frequently
that it deserves to be emphasized at the outset: A complex representation of a
profinite group is trivial on an open subgroup. To see why, observe first of all that
GLn(C) “has no small subgroups”: in other words, there is an open neighborhood U
of the identity in GLn(C) such that the only subgroup of GLn(C) which is contained
in U is the trivial subgroup. This property is easily verified using the exponential
map, and it actually characterizes real Lie groups among all locally compact groups
(Hilbert’s fifth problem). In any case, suppose we are given a profinite group G
and a representation ρ of G on a complex vector space V . Choose U ⊂ GL(V ) as
above. Since the open subgroups of G form a neighborhood basis at the identity,
there is an open subgroup H contained in ρ−1(U). Then ρ(H) is a subgroup of U ,
hence trivial.



LECTURE 1

Trivial central zeros

Like many things in mathematics, the subject of root numbers begins with a
theorem of Gauss, who proved in 1805 that if p is an odd prime then

p−1∑
j=1

λ(j)e2πij/p =

{√
p if p ≡ 1 (mod 4)

i
√
p if p ≡ 3 (mod 4),

(1.1)

where λ is the Legendre symbol at p:

λ(j) =
(
j

p

)
.

A crude restatement of (1.1), and one that is much easier to prove, is that the
left-hand side is a square root of λ(−1)p. But by summarizing the result in this
way we lose the information that the square root at issue is the one with positive
real or imaginary part. In other words, the delicate point in (1.1) is precisely the
determination of the sign in front of the square root – the “root number.”

More generally, suppose that χ is any primitive Dirichlet character, say with
conductor N . The Gauss sum attached to χ is the quantity

τ(χ) =
N−1∑
j=0

χ(j)e2πij/N(1.2)

and the associated root number is given by

W (χ) =
τ(χ)

im(χ)
√
N
,(1.3)

where

m(χ) =

{
0 if χ(−1) = 1
1 if χ(−1) = −1.

(1.4)

If χ is quadratic then τ(χ) is once again equal to
√
N or i

√
N according as χ is

even or odd. Equivalently, we can formulate the preceding statement as an assertion
about root numbers:

Theorem 1.1. If χ is a primitive quadratic Dirichlet character then W (χ) = 1.

A proof of Theorem 1.1 will be given later, and in fact we will eventually prove
a more general statement. But to begin with let us examine the implications of the
theorem for Dirichlet L-functions.
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6 LECTURE 1. TRIVIAL CENTRAL ZEROS

1. Nonexistence of trivial central zeros for Dirichlet L-functions

A trivial zero of an L-function is a zero which is immediately apparent from the
functional equation. Any L-function worthy of the name has infinitely many trivial
zeros, as one sees by playing off the holomorphy of the L-function in some right
half-plane against the poles of Γ(s) at nonpositive integers. For example, consider
the functional equation of the Riemann zeta function:

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s).(1.5)

At s = −2,−4,−6, . . . the factor Γ(s/2) on the left-hand side has a simple pole,
whereas the right-hand side is holomorphic and nonvanishing. It follows that ζ(s)
has a zero (in fact a simple zero) at the negative even integers, whence these points
are trivial zeros of ζ(s).

On the other hand, ζ(s) does not have a trivial central zero. The latter term
refers to a trivial zero of an L-function at s = k/2, where the functional equation of
the L-function in question is a transformation law relative to s 7→ k−s. In the case
of ζ(s) we have k = 1; indeed if we write Z(s) for the left-hand side of (1.5), then
(1.5) becomes Z(s) = Z(1− s). Thus a trivial central zero of ζ(s) would be a zero
at s = 1/2 inherent in the equation Z(s) = Z(1 − s); but the latter equation says
merely that the function f(s) = Z(s+ 1/2) is even, and even functions, unlike odd
functions, need not vanish at s = 0. Thus there is no trivial reason why Z(s) must
vanish at s = 1/2 and hence none why ζ(s) itself must vanish there. The expansion

ζ(s) = (1− 21−s)−1(1− 2−s + 3−s − 4−s + . . . ) (<(s) > 0)

shows that in fact ζ(1/2) 6= 0.
More generally, no Dirichlet L-function has a trivial central zero. To verify

this statement, consider a primitive Dirichlet character χ of conductor N . The
functional equation of L(s, χ) is

Λ(s, χ) = W (χ)Λ(1− s, χ)(1.6)

with Λ(s, χ) = Ns/2 ΓR(s+m(χ))L(s, χ). Here W (χ) and m(χ) are as in (1.3) and
(1.4) respectively, and

ΓR(s) = π−s/2Γ(s/2).(1.7)

We mention in passing that in addition to this “real gamma factor” there is also a
“complex gamma factor”

ΓC(s) = 2 · (2π)−sΓ(s),(1.8)

and with this notation the duplication formula takes the attractive form

ΓR(s)ΓR(s+ 1) = ΓC(s).(1.9)

Returning to the matter at hand, we consider three cases, namely (i) χ has order
> 3, (ii) χ = 1, and (iii) χ has order 2. In case (i), L(s, χ) 6= L(s, χ), whence
Λ(s, χ) 6= Λ(s, χ) and (1.6) has no direct bearing on the possible vanishing of
L(s, χ) at s = 1/2. In case (ii), L(s, χ) = ζ(s), and we have already seen that ζ(s)
does not have a trivial central zero. Finally, suppose that χ is quadratic. Then
(1.6) becomes Λ(s, χ) = W (χ)Λ(1− s, χ), and since W (χ) is 1 rather than −1 the
function f(s) = Λ(s + 1/2, χ) is even rather than odd. Hence in case (iii) there is
again no trivial central zero.
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Of course it is one thing to say that there is no trivial reason for L(s, χ) to
vanish at s = 1/2 and quite another to prove that L(1/2, χ) is not in fact zero. The
latter problem is the subject of an extensive literature (see for example [4], [33],
[34], and [60]), and while the state of the art does not yet permit us to assert that
L(1/2, χ) 6= 0 for every Dirichlet character χ, that is certainly the conjecture to
which the evidence points.

2. Hecke characters and Hecke L-functions

While they do not occur for Dirichlet L-functions, trivial central zeros of L-functions
do exist. The first examples were found in 1966 by Birch and Stephens [6] and
arose in connection with elliptic curves over Q with complex multiplication by an
imaginary quadratic field. The L-function of such an elliptic curve is a Hecke L-
function, and Hecke’s functional equation allows one to exhibit cases in which an
analogue of (1.6) holds but with L(s, χ) = L(s, χ) and W (χ) = −1, so that the
L-function vanishes at the center of its critical strip. Here this phenomenon will
be illustrated not using elliptic curves with complex multiplication by Q(i) as in
Birch and Stephens but rather with the “Q-curves” of Gross [26], for which the
field of complex multiplication varies. But first of all we review some background
on Hecke characters and Hecke L-functions. Throughout, K denotes a number field
and O its ring of integers. We also write I for the multiplicative group of nonzero
fractional ideals of K and P for the subgroup of principal fractional ideals. As
usual, a “prime ideal of K” is a nonzero prime ideal of O, and an “integral ideal of
K” is any nonzero ideal of O.

2.1. Hecke characters
Given an integral ideal f of K, we say that a fractional ideal a ∈ I is relatively
prime to f if no prime ideal dividing f occurs in the factorization of a as a product
of prime ideals to nonzero integral powers. The multiplicative group of such a will
be denoted I(f), and we also put P (f) = P ∩ I(f). Note that if f = O then I(f) = I
and P (f) = P . We say that an element α ∈ K× is relatively prime to f if the
principal ideal (α) is – in other words, if (α) ∈ P (f) – and we write K(f) for the
subgroup of K× consisting of such α. Equivalently, K(f) = O×T , where OT is the
localization of O at the multiplicative set T = ∩p|f(Or p). Finally, we write Kf for
the subgroup of K(f) consisting of elements α ≡ 1 mod∗f: recall that a congruence
mod∗f means a congruence mod fOT . Alternatively, we can say that an element
α ∈ K× satisfies the congruence α ≡ 1 mod∗f if for every prime ideal p dividing
f we have vp(α − 1) > ordpf, where vp denotes the valuation associated to p and
ordpf the multiplicity of p in f. Note that with the latter definition it still follows
that Kf is a subgroup of K(f). To complete our suite of parallel notations, let Pf

be the subgroup of P (f) consisting of principal ideals (α) with α ∈ Kf.
By a Hecke character of K to the modulus f we mean a group homomor-

phism χ : I(f) → C
× satisfying the following condition: There exists a continuous

homomorphism χ∞ : (R⊗QK)× → C
× such that if α ∈ Kf then χ((α)) = 1/χ∞(α).

Here α ∈ K× is identified with 1⊗α ∈ (R⊗QK)×, so an equivalent formulation is

χ(αO) = χ−1
∞ (1⊗ α) (α ∈ Kf).(1.10)

We call χ∞ the infinity type of χ. Thus a Hecke character to the modulus f is a
character of I(f) which is completely determined on Pf by its infinity type.
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Two points should be noted. First of all, χ∞ is a continuous homomorphism
if and only its reciprocal is, so the content of the definition would not change if
we omitted the exponent −1 on the right-hand side of (1.10). Nonetheless we
retain it for the sake of the correspondence between Hecke characters and idele
class characters to be discussed later. The second point is that the continuity of
χ∞ is an unambiguous concept, because all norms on the finite-dimensional real
vector space

R⊗Q K ∼= R
r1 ⊗ Cr2(1.11)

are equivalent. Here r1 and r2 have the usual meanings; in fact we may specify the
isomorphism in (1.11) – call it ι – by requiring that for α ∈ K we have

ι(1⊗ α) = (σ1(α), σ2(α), . . . , σr1+r2(α)),(1.12)

where σ1, . . . , σr1 are the distinct real embeddings of K and σr1+1, . . . , σr1+r2 are
chosen from the distinct pairs of conjugate complex embeddings. Using (1.11) and
(1.12), we may view χ∞ as a continuous homomorphism R

×r1 ⊗C×r2 → C
×. Since

ι(Kf) is dense in R×r1 ⊗ C×r2 we see that χ∞ is uniquely determined by (1.10).
As with Dirichlet characters, there is a notion of primitivity: A Hecke character

χ to the modulus f is primitive if there does not exist an integral ideal f′ properly
dividing f such that χ extends to a Hecke character to the modulus f′. Note that
I(f) ⊂ I(f′), so that the definition is meaningful. Given a Hecke character χ to the
modulus f, there exists a unique pair (χ′, f′) such that f′ is an integral ideal dividing
f and χ′ is a primitive Hecke character to the modulus f′ extending χ. We call f′

and χ′ the conductor of χ and the primitive Hecke character determined by
χ respectively. Thus a Hecke character is primitive if and only its modulus equals
its conductor. If χ is primitive, as we shall usually assume, then its conductor will
be denoted f(χ).

2.2. Examples
The simplest examples are primitive Hecke characters χ with f(χ) = O, for then the
requirement in (1.10) is simply that χ(αO) = χ−1(1⊗α) for all α ∈ K×. Consider
for instance the power-of-the-norm map χ : I → C

× given by χ(a) = (Na)c,
where c ∈ C is fixed and Na is the absolute norm of a. Viewing χ∞ as a character
R
×r1 ⊗ C×r2 → C

×, we see that (1.10) holds with

χ∞(u1, u2, . . . , ur1+r2) = |u1u2 · · ·ur1 |−c · |ur1+1ur1+2 · · ·ur1+r2 |−2c.(1.13)

Note that apart from the trivial Hecke character (i. e. the case s0 = 0), the power-
of-the-norm map has infinite order.

Another example with f(χ) = O, this time of finite order, is an ideal class
character, in other words a character χ of the ideal class group I/P of K: if we
view χ as a character of I trivial on P then (1.10) holds with χ∞ equal to the
trivial character. Now if f is a nonzero integral ideal of K then the natural map
I(f)/P (f)→ I/P is an isomorphism, and therefore an ideal class character becomes
a Hecke character to the modulus f by restriction to I(f). In particular, if χ is any
Hecke character to the modulus f then so is χϕ, where ϕ is an ideal class character
of K. Note that (χϕ)∞ = χ∞ and that χϕ is primitive if and only if χ is. The
upshot is that whenever we have an example of a primitive Hecke character of a
given infinity type then we automatically have h such examples, where h is the class
number of K.
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2.3. A nonexample
It may also be instructive to see a character of I which is not a Hecke character.
Since I is the free abelian group on the nonzero prime ideals of O, we can define
a homomorphism I → C

× simply by specifying its values on prime ideals. Thus
we get a character χ : I → {±} (the “Liouville function” of K) by specifying that
χ(p) = −1 for every prime ideal p. Equivalently, χ(a) = (−1)τ(a), where τ(a) is
the total number of prime ideals (taking account of multiplicities) occurring in a
factorization of a into prime ideals. But the set of α ∈ K× such that τ(αO) is
even and the set of α such that τ(αO) is odd are both dense in (R⊗QK)×. Hence
there does not exist a continuous homomorphism χ∞ : (R⊗QK)× → C

× such that
χ(αO) = χ−1

∞ (1⊗ α) for α ∈ K×, and consequently χ is not a Hecke character.

2.4. Unitary Hecke characters
The L-function associated to a Hecke character is defined by a Dirichlet series, and
in preparation for writing down this Dirichlet series explicitly we prove a result
which will assure us that the series does converge in some right half-plane. If χ is
a one-dimensional character of a group then the associated unitary character χ/|χ|
will be denoted χu, so that χ = χu · |χ|.

Proposition 1.1. If χ is a Hecke character of K then there exists c ∈ R such that
|χ| = Nc on I(f), where f is the modulus of χ. Thus

χ = χu ·Nc.

In particular, every Hecke character is a unitary Hecke character times a real power
of the norm.

Proof. Let R+ denote the multiplicative group of positive real numbers. The
point requiring proof is that a Hecke character with values in R+ coincides on its
domain with a real power of the norm. So after changing notation we may suppose
that we are given a Hecke character χ : I(f) → R+. It suffices to see that χ∞ has
the form (1.13) with c ∈ R, for then χ ·N−c is a character with values in R+ which
factors through the finite group I(f)/Pf, and consequently χ ·N−c is trivial.

Now the absolute value function and the polar coordinate map give topological
group isomorphisms R× ∼= {±1} × R+ and C× ∼= T × R+ respectively, where
T = {eiθ : θ ∈ R}. Furthermore any continuous homomorphism R

+ → R
+ raises

the elements of R+ to some fixed real exponent, which we choose to write as twice
another exponent in the case of the complex places. Thus χ∞ has the form

χ∞(u1, u2, . . . , ur1+r2) =
r1∏
j=1

|uj |cj ·
r1+r2∏
j=r1+1

|uj |2cj(1.14)

with cj ∈ R for 1 6 j 6 r1+r2. Now if ε ∈ O×∩Kf then χ(O) = χ(εO) = χ−1
∞ (1⊗ε),

so
r1∏
j=1

|σj(ε)|cj ·
r1+r2∏
j=r1+1

|σj(ε)|2cj = 1.(1.15)

But O×∩Kf has finite index in O×. Hence on taking the log of both sides of (1.15)
and applying the Dirichlet unit theorem, we deduce that the linear form on Rr1+r2
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given by

(t1, t2, . . . , tr1+r2) 7→
r1∑
j=1

cjtj +
r1+r2∑
j=r1+1

2cjtj

vanishes identically on the hyperplane
∑r1
j=1 tj +

∑r1+r2
j=r1+1

2tj = 0, whence cj is
independent of j. So (1.14) is indeed of the form (1.13) with c ∈ R, as indeed. �

2.5. Hecke L-functions
If χ is a Dirichlet character to the modulus N then χ(n) = 0 whenever gcd(n,N) >
1, and by virtue of this convention the Dirichlet series for L(s, χ) can be written
either as a sum over integers prime to N or as a sum over all positive integers.
In the same way, given a Hecke character χ to the modulus f, one sets χ(a) = 0
whenever a + f 6= O, and one defines the associated L-series L(s, χ) by

L(s, χ) =
∑

a

χ(a)(Na)−s,(1.16)

where a runs over all nonzero integral ideals of K or alternatively over the subset
of ideals relatively prime to f. For example, if χ is the trivial Hecke character to
the modulus O then L(s, χ) is the Dedekind zeta function

ζK(s) =
∑

a

(Na)−s(1.17)

of K, while if χ is more generally the power-of-the-norm character a 7→ (Na)c then
L(s, χ) = ζK(s− c). For any χ, the definition (1.16) is meaningful in the sense that
the given Dirichlet series converges in some right half-plane. Indeed by writing χ
as in Proposition 1.1 we see that the Dirichlet series is absolutely convergent for
<(s) > c+ 1.

The basic analytic fact about L(s, χ), proved by Hecke, is that L(s, χ) extends
to a meromorphic function on C which is either entire (if χ is not a power of the
norm) or holomorphic except for a simple pole at s = c + 1 (if χ = Nc) satisfying
a functional equation relative to the transformation s 7→ 2c + 1. More about the
functional equation later: For the moment we return to the right half-plane of
absolute convergence and observet that L(s, χ) can be written there as an Euler
product,

L(s, χ) =
∏
p

(1− χ(p)N(p)−s)−1(1.18)

where p runs over the prime ideals of K or over the subset of prime ideals not
dividing f. The fact that the Dirichlet series in (1.16) is equal to the Euler product
in (1.18) is proved in much the same way as the corresponding equality for Dirichlet
L-functions. In the latter case, the key fact needed is the unique factorization of
positive integers into primes; in the case of Hecke L-functions one uses instead the
fact that every nonzero ideal of O has a unique factorization into prime ideals.

2.6. Dirichlet characters as Hecke characters
The analogy between Dirichlet L-functions and Hecke L-functions is no coincidence,
for in the case K = Q there is a bijection χ 7→ χHec from the set of Dirichlet
characters to the set of Hecke characters of Q of finite order. The map χ 7→ χHec is
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defined as follows: Given a Dirichlet character χ to the modulus N , take f = (N)
and set

χHec(a) = χ(a)(1.19)

for a ∈ I(f), where a is the unique positive generator of a. Contemplating (1.19),
we recognize that the subscript on χHec is superfluous, because the left-hand side of
(1.19) is a function of ideals whereas the right-hand side is a function of numbers.
Hence without risk of confusion we can write (1.19) in the form χ(a) = χ(a).
Furthemore, on making the identification (R⊗QK)× = R

× one readily verifies that
(1.10) holds with χ∞ equal to the trivial character or the sign character x 7→ x/|x|
according as χ is even or odd as a Dirichlet character. Thus χHec is indeed a Hecke
character. One can also check that L(s, χ) = L(s, χHec) and that χ is primitive if
and only if χHec is. Henceforth we drop the subscript on χHec.

2.7. Hecke characters on principal ideals
While the defining property (1.10) of a Hecke χ refers only to χ|Pf, the following
proposition shows that one can also deduce something about χ|P (f). For an integer
n > 1 let µµµn ⊂ C× be the subgroup of nth roots of unity.

Proposition 1.2. Let χ : I(f)→ C
× be a homomorphism and χ∞ : (R⊗QK)× →

C
× a continuous homomorphism. Then χ is a Hecke character with infinity type

χ∞ if and only if there is an integer n > 1 and a homomorphism ε : (O/f)× → µµµn
such that

χ(αO) = ε(α)χ−1
∞ (1⊗ α)

for α ∈ K(f). Here ε is viewed as a character of K(f) by composition with

K(f) −→ K(f)/Kf −→ (O/f)×,

the first arrow being the quotient map and the second the natural isomorphism.

Proof. Sufficiency is immediate, because ε is trivial on Kf. To prove necessity
let n be the order of K(f)/Kf. If χ is a Hecke character with infinity type χ∞
and α ∈ K(f) then αn ∈ Kf, whence χ(αnO) = χ−1

∞ (1 ⊗ αn) or in other words
χ((αO)n) = χ−1

∞ ((1⊗α)n). As both χ and χ∞ are homomorphisms it follows that
χ(αO) = ε(α)χ−1

∞ (1 ⊗ α) with an nth root of unity ε(α). It follows immediately
that ε : K → C

× is a homomorphism trivial on Kf and may therefore be viewed as
a character of K(f)/Kf

∼= (O/f)× �

Proposition 1.2 completes our discussion of Hecke characters in general. Next
we specialize to the case of imaginary quadratic fields.

3. A family of Hecke L-functions with trivial central zeros

Let K be an imaginary quadratic field. Then R ⊗Q K ∼= C, and after fixing an
embedding of K in C we may use the preceding isomorphism to identify R ⊗Q K
with C and hence (R ⊗Q K)× with C×. The map χ∞ of (1.10) then becomes a
continuous homomorphism from C

× to itself, whence it is in particular meaningful
to ask for Hecke characters χ of K such that χ∞(z) = z−1. When χ∞ has this
form we say that χ is of type (1, 0). To demystify this terminology we add that if
χ∞(z) = z−pz−q with p, q ∈ Z then χ is said to be of type (p, q).
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Write D for the absolute value of the discriminant of K, and let κ be the
primitive quadratic Dirichlet character of conductor D defined by

κ(n) =
(
−D
n

)
.(1.20)

Here we follow the convention that the Kronecker symbol on the right has the value
−1 when n = −1 (in other words, the Kronecker symbol is viewed as a Dirichlet
character rather than as a norm residue symbol). We would like to exhibit a
canonical choice of a Hecke character of K of type (1,0) as in Gross [26]. Thus we
consider the set X(D) of primitive Hecke characters χ of K of type (1,0) satisfying
the following conditions:

(a) f(χ)|D∞.
(b) χ(nO) = κ(n)n for n ∈ Z prime to D.
(c) The values of χ on P (f(χ)) lie in K.

Let Φ be the set of ideal class characters of K. If χ ∈ X(D) then χϕ ∈ X(D) for
every ϕ ∈ Φ, so the cardinality of X(D) is a multiple of h(D), the class number of
K. Henceforth we assume that D 6= 3, 4.

Proposition 1.3.

|X(D)| =


h(D) if D is odd,
0 if 4||D,
2h(D) if 8|D.

Proof. Writing f to denote an ideal dividing D∞, let E be the set of all
characters of the form ε : (O/f)× → {±1} which satisfy two conditions: First,
ε(n) = κ(n) for n ∈ Z relatively prime to D, and second, ε is primitive, in other
words ε does not factor through (O/f′)× for any ideal f′ properly dividing f. We
claim that the proposition is equivalent to the assertion

|E| =


1 if D is odd,
0 if 4||D,
2 if 8|D.

(1.21)

In other words, we claim that |X(D)| = |E|h(D).
To verify the claim, we use Proposition 1.2: The restriction to P (f(χ)) of any

χ ∈ X(D) has the form χ(αO) = ε(α)α for some character ε of (O/f(χ))× with
values in the nth roots of unity. As the values of χ on P (f(χ)) lie in K and
K 6= Q(

√
−3),Q(

√
−4) it follows that n can be taken to be 2. Thus we may view ε

as a character (O/f(χ))× → {±1}, necessarily primitive since χ is primitive. Since
χ(nO) = κ(n)n for n ∈ Z prime to D we deduce that ε ∈ E, and thus we obtain a
map X(D) → E. The fibers of the map have cardinality h(D), because there are
h(D) ways to extend a character of P (f(χ)) to a character of I(f(χ)). To see that
the map χ 7→ ε is surjective, let ε : (O/f)× → {±1} be a a given element of E. We
would like to define a character χ of P (f) by setting

χ(αO) = ε(α)α(1.22)

for α ∈ K(f), but we must check that the right-hand side of (1.22) depends only
on the principal ideal αO and not on the choice of generator α. Since K 6=
Q(
√
−3),Q(

√
−4), the only other generator is−α; but ε(−α) = κ(−1)ε(α) = −ε(α)
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by (1.20). Hence if α is replaced by −α then the right-hand side of (1.22) is un-
changed, so we obtain a well-defined character χ of P (f). Extending it arbitarily
to I(f) we obtain an element of X(D).

Having established the claim, we must now prove (1.21). Given ε ∈ E, let
us write f(ε) for the ideal f such that ε is a primitive character of (O/f)×. (Thus
f(ε) = f(χ).) If D||4 write T for the prime ideal of O lying over 2. It is helpful to
note at the outset that if ε ∈ E then

f(ε) is divisible by


√
−DO if D is odd,√
−DT if 4||D,

2
√
−DO if 8|D.

(1.23)

To verify (1.23) use the fact ε(n) = κ(n) for n ∈ Z prime to D. Since κ is primitive
of conductor D, it follows that D divides Z ∩ f(ε), but one readily checks that an
ideal a of O with the property that D divides Z ∩ a is divisible by the right-hand
side of (1.23).

We now consider the three cases in (1.21) one by one. Suppose first that D
is odd. If ε ∈ E then

√
−DO|f(ε) by (1.23), but also f(ε)|D∞ by assumption.

Thus if f(ε) is properly divisible by
√
−DO then (O/f(ε))× is a nontrivial extension

of O/
√
−DO)× by a group of odd order, contradicting the fact that ε is both

quadratic and primitive. It follows that f(ε) =
√
−DO. But the natural map

(Z/DZ)× → (O/
√
−DO)× is an isomorphism, and ε(n) = κ(n) for n ∈ (Z/DZ)×.

Hence there is a unique choice for ε, and |E| = 1. At the same time we have proved
that if D is odd then

f(χ) =
√
−DO(1.24)

for χ ∈ X(D).
Next suppose that 4||D. Then D = 4C with C ≡ 1 mod 4. If there exists an

ε ∈ E, then
√
−CT4|f(ε) by (1.23); we claim that in fact

f(ε) =
√
−CT4.(1.25)

To see this, we first argue as in the case D odd: Since ε is quadratic and primitive,
the kernel of the reduction map (O/f(ε))× → (O/

√
−CT4)× has 2-power order.

As f(ε)|D∞ this already implies that f(ε) =
√
−CTk with k > 4. But it is easily

verified by induction that if k > 5 then every element of the kernel of (O/Tk)× →
(O/T5)× is a square in (O/Tk)×, so again, the fact that ε is quadratic and primitive
ensures that k = 4 or 5. Now choose a rational integer n such that n ≡ 5 mod
8 and n ≡ 1 mod C. Then n represents the nontrivial element of the kernel of
(O/T5)× → (O/T4)×; but ε(n) = κ(n) = 1. Since ε is primitive, (1.25) follows.

To obtain a contradiction from (1.25), write

(O/
√
−CT4)× ∼= (O/4O)× × (O/

√
−CO)×

and ε = ε′ε′′ with quadratic characters ε′ and ε′′ of (O/4O)× and (O/
√
−CO)×

respectively. Then ε(−1) = κ(−1) = −1, but ε′′(−1) = 1 because C ≡ 1 mod 4, so
ε′(−1) = −1. This is a contradiction, because −1 is a square in (O/4O)×: indeed
(2 +

√
−C)2 ≡ −1 mod 4O.

Finally, suppose that 8|D. Write T for the prime ideal of O lying over 2. As in
the case 4||D, if k > 5, then every element of the kernel of (O/Tk)× → (O/T5)×

is a square in (O/Tk)×. Appealing to (1.23) and arguing as before, we deduce
that (ε) = 2

√
−DO. Now write D = 8C, and as in the case 4||D, consider the
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decompositions (O/2
√
−DO)× ∼= (O/4T)× × (O/

√
−CO)× and ε = ε′ε′′. Also

write (Z/DZ)× ∼= (Z/8Z)××(Z/CZ)× and κ = κ′κ′′. Using the natural embedding
of (Z/CZ)× in (O/

√
−CO)× to identify these two groups, we have ε′′ = κ′′, so ε′′

is uniquely determined and |E| is equal to the number of possibilities for ε′. Now
the natural embedding of (Z/8Z)× in (O/4T)× realizes (Z/8Z)× as one summand
in a direct sum decomposition of (O/4T)×, the complementary summand being the
cyclic group of order 4 generated by the coset of 1+

√
−2C. On the factor (Z/8Z)×

the character ε′ coincides with κ′, and since ε is quadratic there are exactly two
possibilites for the value of ε′ on the coset of 1 +

√
−2C, namely ±1. Thus |E| = 2.

In the process we have proved that if 8|D then

f(χ) = 2
√
−DO(1.26)

for χ ∈ X(D). �

3.1. The functional equation
While we have not yet discussed the functional equation of Hecke L-functions over
arbitrary number fields, if K is imaginary quadratic and χ a Hecke character of K
of type (1, 0) then the functional equation is easily stated:

Λ(s, χ) = W (χ)Λ(2− s, χ)(1.27)

with |W (χ)| = 1 and

Λ(s, χ) = (DNf(χ))s/2ΓC(s)L(s, χ).(1.28)

Since χ is of type (0, 1), the definition of Λ(s, χ) is technically not covered by (1.28),
but it offers no surprises:

Λ(s, χ) = (DNf(χ))s/2ΓC(s)L(s, χ).(1.29)

The appearance of f(χ) in place of f(χ) on the right-hand side of (1.29) is not a
misprint; one readily checks that f(χ) = f(χ). Now take χ ∈ X(D) with D either
odd or divisible by 8. We shall give explicit formulas for the factors that go into
the functional equation. One factor has already been made explicit (cf. (1.24) and
(1.26)):

Proposition 1.4. If χ ∈ X(D) then

f(χ) =

{√
−DO if D is odd,

2
√
−DO if 8|D.

The root number W (χ) can also be computed. First consider the case D odd.
The proof of the following proposition is as in Gross ([26], pp. 60 – 63) and will be
reproduced in Lecture 2.

Proposition 1.5. If D is odd and χ ∈ X(D) then

W (χ) =
(

2
D

)
.

Next recall that if 8|D then |X(D)| = 2h(D). The following statement is proved
in [48], pp. 538, and a proof will also be outlined in Exercise 2.3.
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Proposition 1.6. Suppose that 8|D, and put

X±(D) = {χ ∈ X(D) : W (χ) = ±1}.
Then |X±(D)| = h(D). In fact if χ ∈ X±(D) then X±(D) = {χϕ : ϕ ∈ Φ}, where
Φ is the set of ideal class characters of K.

In spite of Propositions (1.5) and (1.6), we cannot conclude that our “canonical”
family of Hecke L-functions exhibits trivial central zeros until we have verified that
Λ(s, χ) = Λ(s, χ). But if we think of L(s, χ) as the Dirichlet series

∑
χ(a)(Na)−s

then the desired identity L(s, χ) = L(s, χ) is an immediate consequence of the
equivariance of χ with respect to complex conjugation:

Proposition 1.7. If χ ∈ X(D) then

χ(a) = χ(a)

for a ∈ I(f(χ)).

Proof. Put n = Na, so that aa = nO. Then

χ(a)χ(a) = χ(nO) = κ(n)n = n,

because the Kronecker symbol κ is trivial on norms from K. Thus χ(a)χ(a) = Na,

and it suffices to see that χ(a)χ(a) = Na or in other words that

|χ(a)| =
√

Na.(1.30)

Now in contrast to the identity χ(a)χ(a) = Na, which depended on the relation
ε(n) = κ(n), (1.30) is a general property of Hecke characters of type (1,0). In fact
since both sides of (1.30) are postive, it suffices to verify that equality holds after
both sides are raised to the power h(D)|K(f)/Kf|, where f = f(χ). Thus we may
assume that a = αO with α ∈ Kf. But then χ(a) = α and (1.30) is immediate. �

Thus if χ ∈ X(D) then the functional equation (1.27) becomes

Λ(s, χ) = W (χ)Λ(2− s, χ)(1.31)

and we can talk about trivial central zeros. (Note by the way that quite apart from
Propositions (1.5) and (1.6), the fact that W (χ) = ±1 is clear a priori from (1.31).)
Now −D is a discriminant, so if D is odd then D is 3 mod 4 and in particular either 3
or 7 mod 8. Hence Propositions Propositions (1.5) and (1.6) imply that L(s, χ) has
a trivial central zero if and only if either D ≡ 3 mod 8 or else 8|D and χ ∈ X−(D).
In the remaining cases, when D ≡ 7 mod 4 or 8|D and χ ∈ X+(D), there is no
trivial reason for L(s, χ) to vanish at s = 1, and we can ask the same question as
with Dirichlet L-functions: Is L(1, χ) in fact nonzero? Actually, even if W (χ) = −1
we can ask the analogous question about L′(1, χ), for while L(s, χ) vanishes to odd
order at s = 1, there is no trivial reason for the order of vanishing to be > 1.

Theorem 1.2.

ords=1L(s, χ) =

{
0 if W (χ) = 1
1 if W (χ) = −1.

Proof. For the case W (χ) = 1 see Montgomery and Rohrlich [45], and for
the case W (χ) = −1 see Miller and Yang [44]. We mention just one aspect of these
proofs and of others like them, namely the key role played by the fact that

{χσ : σ ∈ Aut(C/K)} = {χϕ : ϕ ∈ Φ}(1.32)
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for χ ∈ X(D). Here χσ is the character defined by χσ(a) = χ(a)σ for a ∈ I(f)
with f = f(χ). As the values of χ on principal ideals takes lie in K, it follows
that χ and χσ coincide on principal ideals, and consequently the left-hand side of
(1.32) is contained in the right-hand side. Thus to prove that equality holds it
suffices to see that the cardinality of the left-hand side of (1.32) is > h(D). Given
a ∈ I(f), let n be its order in the ideal class group I(f)/P (f); then an = αO for some
α ∈ K(f), and consequently χ(a)n = ±α. One readily deduces that χ(a) generates
an extension of K of degree n. Now choose ideals a1, a2, . . . , at ∈ I(f) such that
I/P is the direct sum of the cyclic subgroups generated by the classes of the ideals
ai. Then h(D) = n1n2 · · ·nt, where ni is the order of the class of ai. Given these
observations, it is not hard to believe or to prove that the extension of K generated
by χ(a1), χ(a2), . . . , χ(at) has degree h(D) over K. It follows that the left-hand
side of (1.32) has cardinality > h(D), whence equality holds and (1.32) follows.

The significance of (1.32) is that it meshes well with algebraicity results for
special values of L-functions. In the case case W (χ) = 1, results of Shimura [57],
[58] imply that if L(1, χ) = 0 then L(1, χσ) = 0 for all σ ∈ Aut(C), whence
h(D)−1

∑
ϕ∈Φ L(1, χϕ) = 0 by (1.32). Similarly, in the case W (χ) = −1 the Gross-

Zagier formula [27] implies that if L′(1, χ) = 0 then h(D)−1
∑
ϕ∈Φ L

′(1, χϕ) = 0.
Thus to prove the theorem it suffices to show that h(D)−1

∑
ϕ∈Φ L(1, χϕ) 6= 0

if W (χ) = 1 and h(D)−1
∑
ϕ∈Φ L

′(1, χϕ) 6= 0 if W (χ) = −1. The point of this
reduction is that part of the analytic complexity of L(s, χ) is that as a Dirichlet
series it is the sum

∑
χ(a)(Na)−s over all nonzero ideals of O, and in particular

over ideals belonging to all ideal classes. By contrast, h(D)−1
∑
ϕ∈Φ L(s, χϕ) is the

sum
∑
χ(a)(Na)−s taken over the principal ideals, which analytically is a much

more tractable object. �

3.2. Gross’s Q-curves
The significance of Hecke characters of type (1, 0) is that they correspond to elliptic
curves with complex multiplication, and the significance of the Hecke characters
χ ∈ X(D) is that the corresponding elliptic curves are the canonical examples
of Gross’s “Q-curves.” To make this precise, recall that the modular invariant j
can be evaluated not only on elliptic curves but also on lattices in C: in fact if
A is an elliptic curve over C and L its period lattice relative to a nonzero regular
differential then j(A) = j(L). In particular, since we are viewing K as a subfield
of C we may take L to be O, and then an elliptic curve with invariant j(O) has
complex multiplication by O. Putting F = Q(j(O)) and H = K(j(O)), we see that
F is the minimal field of definition for an elliptic curve with invariant j(O) and H
the minimal field of defintion for its complex multiplication.

Now if D is odd then the set X(D) picks out a canonical isogeny class of
elliptic curves over F with invariant j(O), any member of which will be denoted
A(D). Similarly, if 8|D then the sets X+(D) and X−(D) each pick out such isogeny
classes, say with members A+(D) and A−(D) respectively. We then have

L(s,A(D)) =
∏

χ∈X(D)

L(s, χ) (D odd)(1.33)

and

L(s,A±(D)) =
∏

χ∈X±(D)

L(s, χ) (8|D).(1.34)
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We emphasize that the isogeny classes at issue all contain more than one isomor-
phism class over F , so that A(D), A+(D), and A−(D) have not been specified up to
isomorphism. It is possible to do so, at least in the case of A(p) with a prime p ≡ 3
mod 4 (p > 3), by a consideration of minimal discriminants (cf. [26], p. 35), but
for the validity of (1.33) and (1.34) this refinement is unnecessary: the L-function
of an elliptic curve depends only on its isogeny class. Incidentally, if A is any one
of A(D), A+(D), and A−(D) then the isogeny class of A over H is defined over Q
in the sense that A is isogenous over H to all of its Galois conjugates. This is the
reason for the term “Q-curve.”

Combining Proposition 1.7 and Theorem 1.2 with (1.33) and (1.34), and apply-
ing either Rubin’s generalization [50] of the Coates-Wiles theorem (if W (χ) = 1)
or the Gross-Zagier formula [27] and the theorem of Kolyvagin and Logachev [36]
(if W (χ) = −1), we obtain:

Theorem 1.3. If D is odd then the rank of A(D)(F ) is 0 or h(D) according as D
is 7 or 3 modulo 8. If D is divisible by 8 the the rank of A+(D) over F is 0 and
the rank of A−(D) over F is h(D).

In the case of a prime p ≡ 7 mod 8, the fact that A(p)(F ) has rank 0 was
proved by Gross [26] several years before Theorem 1.2 using descent.

3.3. Yang’s simplest abelian varieties
While we have seen that X(D) = ∅ if 4||D, the exclusion of this case was nonetheless
a peculiar anomaly for several years. However Yang [66] has shown that the case
4||D can be incorporated into the theory if on the geometric side elliptic curves
are replaced by abelian varieties and on the arithmetic side the requirement that
the values of χ on principal ideals lie in K – condition (c) in the original definition
of X(D) – is replaced by conditions (c) and (d) below. Let K be an imaginary
quadratic field and D the absolute value of its discriminant. We consider the set
Y (D) of primitive Hecke characters υ of K of type (1,0) satisfying the following
conditions:

(a) f(υ)|D∞.
(b) υ(nO) = κ(n)n for n ∈ Z prime to D.
(c) Let T be the extension of K generated by the values of υ. Then [T : K]

is minimal subject to (a) and (b).
(d) Also Nf(υ) is minimal subject to (a) and (b).

Suppose once again that D 6= 3, 4. Yang associates an isogeny class of abelian
varieties over K with complex multiplication by T to the Galois orbit of an element
υ ∈ Y (D), and he shows that these abelian varieties are in a natural sense the
“simplest” among all abelian varieties over K with complex multiplication by T .
If D is odd or divisible by 8 then Y (D) = X(D), and if we fix a Galois orbit of
elements of this set then Yang’s abelian variety B is related to Gross’s Q-curve A
via Weil’s restriction-of-scalars functor: B = resH/KA. (In the case where D is a
prime congruent to 3 mod 4 this restriction of scalars figured prominently already
in [26].) But if 4||D then B need not be the restriction of scalars of any elliptic
curve over H. Nonetheless, Yang proves analogues for of all of the results already
mentioned for X(D). The proof of Yang’s analogue of Theorem 1.2 is particularly
daunting, because one no longer has (1.32): the Galois conjugates of χ are not all
of the form χϕ with ϕ ∈ Φ.
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4. An open problem

In a nutshell, the problem is to prove an analogue of Theorem 1.2 with χ replaced
by a power of χ. Let w be a positive integer and take χ in X(D). If w is odd then
χw is still primitive of conductor f(χ), but if w is even then χw extends to a Hecke
character to the modulus O and so is no longer primitive. To handle the two cases
simultaneously, write χw to mean χw if w is odd and the primitive Hecke character
determined by χw if w is even. Then Hecke’s functional equation for L(s, χw) is

Λ(s, χw) = W (χw)Λ(w + 1− s, χw)(1.35)

with

Λ(s, χw) =

{
(DNf(χ))s/2ΓC(s)L(s, χw) if w is odd
Ds/2ΓC(s)L(s, χw) if w is even.

(1.36)

and

W (χw) =

{
(−1)(w−1)/2W (χ) if w is odd
1 if w is even.

(1.37)

In particular, the center of the critical strip is (w+1)/2 and the functional equation
relates L(s, χw) to itself. Here is a precise formulation of the problem:

Suppose that w is odd and relatively prime to h(D). Show that

ords=(w+1)/2L(s, χw) =

{
0 if W (χ) = 1,
1 if W (χ) = −1.

(1.38)

One reason for drawing attention to this problem is that it seems quite accessible.
In fact from one point of view the problem is nearly solved: Liu and Xu [39] have
shown that if one fixes w then (1.38) holds for all but finitely many D. Their result
is actually stronger than that, because as in other papers of this sort ([40], [41],[47],
and [67], for example), the authors prove that (1.38) still holds when L(s, χw) is
replaced by L(s, χwµ) for a primitive quadratic Dirichlet character µ of sufficiently
small conductor d relative to D (the precise condition in [39] is d � D1/12−ε for
any ε > 0; of course D must be sufficiently large). Even granting this refinement,
however, the fact remains that (1.38) does not yet seem to be known for all D.

It is natural to ask why we have placed restrictions on w and h(D). One
possible response is that unless w is assumed odd, the condition on h(D) (about
which more in a moment) is satisfied only when D is a prime or D = 8. A better
response is that if w is odd then the central point (w + 1)/2 is an integer, and in
fact a critical integer in Deligne’s sense. That said, I do not know of any reason to
believe that (1.38) is false when w is even.

The condition on h(D), on the other hand, seems to be necessary, because
a calculation of Rodriguez Villegas (actually a theorem, given the precision of the
calculation and an a priori bound on the denominator of the special value) indicates
that if D = 59 and w = 3 then there exists a χ ∈ X(D) such that L(2, χ3) = 0,
despite the fact that W (χ3) = 1 (see [46], p. 437, Remark 2). Note that h(D) = 3 in
this case. Perhaps we should not be surprised, because the fact that the characters
χwϕ with ϕ ∈ Φ form a single orbit under Aut(C/K) – in other words, equation
(1.32) with χ replaced by χw – has been a critical ingredient of most work in this
area, and if gcd(w, h(D)) > 1 then the characters χwϕ simply are not all Galois-
conjugate. Even so, it would be interesting to relax the condition gcd(w, h(D)) > 1
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to the extent possible. A step in this direction has been taken by Masri [40], [41],
who uses the recent bounds of Ellenberg and Venkatesh [18] on torsion in ideal class
groups to give upper bounds on the number of Galois orbits in {χw : χ ∈ X(D)}.
As a result he is able to prove the first nontrivial upper bounds for the number of
characters χ ∈ X(D) violating (1.38).

5. Evaluation of the quadratic Gauss sum

Although we shall prove more general statements later on, we nonetheless give a
self-contained proof of Theorem 1.1. The key is to prove the special case (1.1), for
which we use an argument of Schur.

5.1. Schur’s proof
Let V be the complex vector space consisting of functions f : Fp → C. We define
a linear automorphism f 7→ f̂ of V by setting

f̂(x) =
∑
y∈Fp

f(y)e2πixy/p.

That this “Fourier transform” is actually an automorphism of V follows from the
identity ˆ̂

f(x) = pf(−x), which in turn is a consequence of the calculation

ˆ̂
f(x) =

∑
y∈Fp

f̂(y)e2πixy/p =
∑
z∈Fp

f(z)
∑
y∈Fp

e2πi(x+z)y/p

(observe that the inner sum is p or 0 according as z = −x or z 6= x). Denote the
linear automorphism f 7→ f̂ by F and put Q = detF/|detF|. We shall compute
Q in two different ways.

The first way is to use the ordered basis δ0, δ1, . . . , δp−1 for V , where δj(y) = 1
if y is j mod p and δj(y) = 0 otherwise. The matrix of F relative to this basis has
e2πijk/p as its (j, k) entry, and consequently the determinant of F is a Vandermonde
determinant:

detF =
∏

16j<k6p−1

(e2πik/p − e2πij/p).(1.39)

Now the map (j, k) 7→ (p− k, p− j) is an involution on the set of pairs (j, k) with
1 6 j < k 6 p − 1, and the fixed points are precisely the pairs (j, p − j) with
1 6 j 6 (p − 1)/2. Furthermore, if (j, k) is not a fixed point then precisely one
member of the set {(j, k), (p − k, p − j)} has the property that its first coordinate
is < (p− 1)/2. Hence we can rewrite (1.39) in the form

detF =
∏

16j<(p−1)/2

∏
j<k6p−1

|e2πik/p − e2πij/p|2 ·
∏

16j6(p−1)/2

(e−2πij/p − e2πij/p).

It follows that

Q = (−i)(p−1)/2(1.40)

because e−2πij/p − e2πij/p = −2i sin(2πj/p) and sin(2πj/p) > 0 for 1 6 j < p/2.
On the other hand, we obtain most of a second basis for V from the characters

χ : F×p → C
× of F×p . If χ is nontrivial then we extend it to a function on Fp by
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setting χ(0) = 0. We also extend the trivial character χ0 by setting χ0(0) = 1.
Now let

χ1, χ1, χ2, χ2, . . . , χ(p−3)/2, χ(p−3)/2(1.41)

be an enumeration of the conjugate pairs of nontrivial nonquadratic characters of
F
×
p . Then

λ, δ0, χ0, χ1, χ1, χ2, χ2, . . . , χ(p−3)/2, χ(p−3)/2(1.42)

is an ordered basis for V , and we shall now consider the matrix of F relative to
this basis.

To do so, we first observe that if χ is any nontrivial character of F×p then

χ̂ = τ(χ)χ,(1.43)

where τ(χ) =
∑
x∈Fp χ(x)e2πix/p is again the associated Gauss sum. To verify

(1.43), we take x ∈ Fp and compute χ̂(x) from the definition:

χ̂(x) =
∑
y∈Fp

χ(y)e2πixy/p.

If x = 0 then the right-hand side is the sum over y ∈ F×p of the values χ(y) of the
nontrivial character χ, whence χ̂(0) = 0. Thus χ̂(x) = τ(χ)χ(x) for x = 0. On the
other hand, if x 6= 0 then in the sum over y we can replace y by yx−1, and we see
that χ̂(x) = τ(χ)χ(x) also for x 6= 0. This proves (1.43). Since ˆ̂

f(x) = pf(−x) the
relation

τ(χ)τ(χ) = χ(−1)p(1.44)

is an immediate corollary. We note in passing that if χ = λ then we obtain τ(λ)2 =
λ(−1)p. Hence as already remarked, the fact that (1.1) holds up to sign is easy.

As a special case of (1.43) we have Fλ = τ(λ)λ, because λ is quadratic. Fur-

thermore Fδ0 = χ0, whence Fχ0 = pδ0 by the relation ˆ̂
f(x) = pf(−x). Thus the

matrix of F relative to the basis (1.42) is block-diagonal: The entry τ(λ) in the
upper left-hand corner is followed by the 2× 2 block

B0 =
(

0 p
1 0

)
and then by the 2× 2 blocks

Bj =
(

0 τ(χj)
τ(χj) 0

)
for 1 6 j 6 (p − 3)/2. Now detB0 = −p by inspection while detBj = −χj(−1)p
for 1 6 j 6 (p− 3)/2 by (1.44). As Q = det {/|detF| we deduce that

Q =
τ(λ)
√
p

(−1)(p−1)/2

(p−3)/2∏
j=1

χj(−1),

and comparing this result with (1.40) we obtain

τ(λ)
√
p

= i(p−1)/2

(p−3)/2∏
j=1

χj(−1).
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Equivalently,

τ(λ)
√
p

= i(p−1)/2(−1)ν ,(1.45)

where ν is the number of odd characters among the χj (1 6 j 6 (p− 3)/2). Since
χ is odd if and only if χ is odd, we can also say that ν is half the number of odd
characters among the characters listed in (1.41).

If p ≡ 1 mod 4 then all (p− 1)/2 odd characters of F×p occur in (1.41), because
neither χ0 nor λ is odd. Hence ν = (p− 1)/4 and the right-hand side of (1.45) is 1.
If p ≡ 3 mod 4 then λ is odd, and consequently only (p−3)/2 of the odd characters
of F×p occur in (1.41). Hence ν = (p − 3)/4 and the right-hand side of (1.45) is i.
This completes Schur’s proof of (1.1).

5.2. The general case
Now suppoose that χ is an arbitrary primitive quadratic Dirichlet character, and
let N be the conductor of χ. If N is an odd prime then Theorem 1.1 has just
been proved, and if N = 4 or N = 8 then the theorem is easily verified by explicit
calculation. Putting these cases aside, and keeping in mind that N is the conductor
of a primitive quadratic Dirichlet character, we can write N = N1N2 with coprime
integers N1 and N2 which are again the conductors of primitive quadratic Dirichlet
characters, say χ1 and χ2 respectively. Note that χ = χ1χ2. By the Chinese
Remainder Theorem, the numbers

j = j1N2 + j2N1 (0 6 j1 6 N1 − 1, 0 6 j2 6 N2 − 1)(1.46)

represent the distinct residue classes modulo N , and when j is written in this way
we have ej/N = ej1/N1ej2/N2 , χ1(j) = χ1(j1)χ1(N2), and χ2(j) = χ2(j2)χ2(N1)
Hence inserting (1.46) in (1.2), we obtain

τ(χ) = χ1(N2)χ2(N1) · τ(χ1)τ(χ2).(1.47)

Now divide both sides of (1.47) by
√
N im(χ). On applying the law of quadratic

reciprocity in the form

χ1(N2)χ2(N1) = im(χ1χ2)−m(χ1)−m(χ2)

we obtain W (χ) = W (χ1)W (χ2). Hence Theorem 1.1 follows by induction on the
number of distinct prime factors of N .

6. Exercises

Exercise 1.1. We have observed that the negative even integers are trivial zeros
of ζ(s). Generalize this remark in two directions:

• Determine the trivial zeros of the Dedekind zeta function ζK(s). Your
answer will depend on the number of real and complex embeddings of the
number field K. (See Theorem 2.1 for the functional equation of ζK(s).)
• Determine the trivial zeros of L(s, χ) for an arbitrary primitive Dirichlet

character χ. Your answer will depend on the parity of χ.
The assumption that χ is primitive is natural when one talks about trivial zeros of
L(s, χ), because imprimitivity perturbs the functional equation. Note however that
trivial central zeros are unaffected: If χ is an imprimitive Dirichlet character and
χ′ is the primitive Dirichlet character determined by χ then L(s, χ) differs from
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L(s, χ′) by a factor which does not vanish at s = 1/2. On the other hand, what
happens at s = 0?

Exercise 1.2. Let χ be a primitive Dirichlet character of order > 3. To see that
L(s, χ) does not have a trivial central zero, we argued that the functional equation
could have no bearing on ords=1/2L(s, χ) because χ 6= χ and hence L(s, χ) 6=
L(s, χ). Implicit in this argument is a basic analytic fact:

If two Dirichlet series
∑
n>1 a(n)n−s and

∑
n>1 b(n)n−s coincide as holo-

morphic functions in some right half-plane in which they both converge
absolutely then a(n) = b(n) for all n > 1.

Verify this assertion by proving an equivalent statement:
If a Dirichlet series

∑
n>1 a(n)n−s is identically 0 in some right half-plane

in which the series is absolutely convergent then a(n) = 0 for all n > 1.
Then explain why Proposition 1.7 does imply that L(s, χ) = L(s, χ) for χ ∈ X(D),
even though in this case χ 6= χ.

Exercise 1.3. Apart from the identities W (χ)W (χ) = 1 and |W (χ)| = 1, which
are easily deduced from the basic definitions, we have said nothing at all about
W (χ) when χ is a primitive Dirichlet character of order > 3. The present exercise
supplies a few bits of information about this case.

(a) Look up the statement of Stickelberger’s theorem (see e. g. [37]), which
gives a factorization of a Gauss sum of prime conductor as a product of prime
ideals in an appropriate cyclotomic field. Deduce that if χ has prime conductor
and order > 3 then W (χ) is not an algebraic integer, and in particular not a root
of unity, despite the fact that |W (χσ)| = 1 for every automorphism σ of C.

(b) On the other hand, suppose that χ is primitive of conductor pν with ν > 2.
Prove that in this case W (χ) is in fact a root of unity. (Hint: Let n = [(ν + 1)/2].
Then χ(1 + pn(x + y)) = χ(1 + pnx)χ(1 + pny) for x, y ∈ Z/pν−nZ. Put G =
(Z/pνZ)× and let H be the kernel of (Z/pνZ)× → (Z/pnZ)×. Write (1.2) as a sum
over j ∈ (Z/pνZ)× and then write j = gh, where h ∈ H and g runs over a set
of coset representatives for H in G. Then the sum over j becomes a double sum,
where the outer sum runs over g and the inner sum over h. Show that the inner
sum is 0 for all but one value of g.)

(c) (Literature search.) In the case where χ has order 3 or 4, Matthews [42],
[43] expresses τ(χ) in terms of values of the Weierstrass ℘-function at imaginary
quadratic arguments. Furthermore, Heath-Brown and Patterson [29] prove the
equidistribution (relative to Lebesgue measure on the unit circle) of the numbers
W (χ) as χ runs over primitive Dirichlet characters of order 3 and prime conductor.
What is known about possible generalizations of the results of Matthews and of
Heath-Brown and Patterson to Dirichlet characters of orders greater than 3 or 4?

Exercise 1.4. (Literature search.) While it is widely expected that Dirichlet L-
functions do not vanish at s = 1/2, the history of this conjecture deserves to be
elucidated. Is it correct to say that the first mention of the conjecture (at least in the
quadratic case) is in Chowla [12]? Soundarajan [60] notes that the nonvanishing
of L(1/2, χ) would follow from the conjectured Q-linear independence of the set

{γ : L(1/2 + iγ, χ) = 0, γ > 0},
but what is the history of the latter conjecture?
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Local formulas

In principle, we could derive the explicit formula for W (χ) in Proposition 1.5
by calculating directly from formula (45) of Hecke’s original paper [30]. However
Hecke’s formula is expressed in terms of “ideal numbers,” an extrinsic construction
long superseded by the intrinsically defined “ideles” of Chevalley and Weil. Rather
than rescue ideal numbers from desuetude, we prefer to emphasize the correspon-
dence between Hecke characters and idele class characters and the use of Tate’s
local formulas.

1. The idele class group

Let K be a number field. The ring of adeles of K is the restricted direct product

A =
∏
v

′ Kv,(2.1)

where v runs over the standard set of places of K and Kv is the completion of K
at v. If we wish to indicate the dependence of A on K then we write AK . The
restriction (indicated by the prime) is that an element x = (xv)v of the usual direct
product belongs to AK if and only if xv ∈ Ov for all but finitely many finite v,
where Ov is the ring of integers of Kv. Since K is naturally embedded in each of
its completions, we may view it as a subring of A via the diagonal embedding. In
other words, we identify x ∈ K with the adele (xv)v such that xv = x for all v.

If v in (2.1) runs over the finite places only then the resulting ring Afin is called
the ring of finite adeles of K. Putting A∞ =

∏
v|∞Kv, we may write the full

adele ring A as the ordinary direct product of its finite and infinite components:

A = Afin × A∞.(2.2)

Of course A∞ = R
r1 × Cr2 ∼= R⊗Q K, where r1 and r2 have their usual meaning.

Next consider the ring of adelic integers of K, defined as the direct product

Ô =
∏
v-∞

Ov(2.3)

and viewed as a subring of Afin. We topologize Afin by imposing two requirements:
• Ô is open in Afin, and the relative topology on Ô induced by Afin is the

usual product topology coming from (2.3).
• For each a ∈ Afin, the map x 7→ a + x is a homeomorphism from Afin to

itself.
One can check that there is a unique topology on Afin satisfying these conditions
and that with this topology Afin becomes a topological ring. The topology on A
is then the direct product topology afforded by (2.2), where A∞ has its standard
topology as the finite-dimensional real vector space R⊗Q K.

23
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The multiplicative group A× of A is known as the group of ideles of K. It
too is a restricted direct product:

A
× =

′∏
v

Kv,(2.4)

but this time the restriction is that an element x = (xv)v of the unrestricted direct
product belongs to A× if and only if xv ∈ O×v for all but finitely many finite v.
The topology on A× is not the relative topology from A, but it can nonetheless be
defined in a similar way. Indeed consider the multiplicative group of Ô:

Ô× =
∏
v-∞

O×v .(2.5)

The topology on Afin is characterized by two properties:
• Ô× is open in A×fin, and the relative topology on Ô× induced by A×fin is

the usual product topology coming from (2.5).
• For each a ∈ A×fin, the map x 7→ ax is a homeomorphism from A

×
fin to

itself.
Once again, there is a unique topology on A×fin satisfying these conditions, and with
this topology A×fin becomes a topological group. To topologize A× we use (2.2) to
write

A
× = A

×
fin × A

×
∞,(2.6)

and then we give A× the direct product topology corresponding to (2.6).
While A×∞ can be identified either with (R ⊗Q K)× or with

∏
v|∞K×v , it will

frequently be viewed as the subgroup of A× consisting of ideles x = (xv)v such
that xv = 1 for v - ∞. If A×fin is similarly identified with the subgroup of A×

consisting of ideles x = (xv)v such that xv = 1 for v|∞ then (2.6) expresses A×

as a direct product of two subgroups. The associated projection functions will be
written x 7→ xfin and x 7→ x∞ respectively, so that x = xfinx∞.

Since K× is naturally embedded in each of its completions, we may view it as
a subgroup of A× via the diagonal embedding, just as K was viewed as a subring
of A. Thus an element x ∈ K× is identified with the idele (xv)v such that xv = x
for all v. The quotient group A×/K× is called the idele class group of K.

2. Idele class characters

Let v be a place of K, finite or infinite, and let p 6 ∞ be the place of Q below p.
We write | ∗ |v for the absolute value on Kv which extends the standard absolute
value | ∗ |p on Qp, and we define the local norm || ∗ ||v on K×v by setting

|| ∗ ||v = | ∗ |[Kv :Qp]
v .(2.7)

For example, if Kv
∼= C then p =∞ and || ∗ ||v = | ∗ |2v.

If v is finite then a character χv : K×v → C
× is ramified or unramified

according as the restriction χv|O×v is trivial or nontrivial. Now

O×v = {x ∈ Kv : |x|v = 1},(2.8)

and while it is unconventional to do so, we can take the right-hand side of (2.8)
as the definition of the left-hand side even when v is an infinite prime. The point
of doing so is that we obtain a seamless extension of the notions ramified and
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unramified to the infinite places: In all cases, O×v is a subgroup of K×v (coinciding
with {±1} if v is real and with the circle group if v is complex), and in all cases we
call χv ramified or unramified according as χv|O×v is nontrivial or trivial.

By an idele class character of K we mean a continuous homomorphism
χ : A× → C

× which is trivial on the diagonally embedded subgroup K×. Such a
character necessarily factors as a product of local characters,

χ =
′∏
v

χv,(2.9)

and the continuity of χ ensures that χv is unramified for all but finitely many v.
It is only by virtue of this last property that (2.9) has a meaning, for we interpret
(2.9) to mean that if x = (xv)v ∈ A× then χ(x) =

∏
v χv(xv), and the product

is finite precisely because for all but finitely many finite v we have xv ∈ O×v and
χv|O×v = 1 . When χv is unramified we say that χ is unramified at v.

By definition, an idele class character of K factors through the idele class group
A
×/K×, whence the term idele class character. We shall often identify idele class

characters with characters of A×/K×.
As an example of an idele class character, consider the idelic norm, defined

as the product of the local norms:

||x|| =
∏
v

||xv||v (x = (xv)v ∈ A×K).(2.10)

This product is meaningful, because for all but finitely many finite v we have
xv ∈ O×v and hence ||xv||v = 1. It is immediately verified that the idelic norm is
a continuous character of A×, and by the so-called “Product Formula” it is trivial
on K×, hence an idele class character.

2.1. Hecke characters as idele class characters
The L-function of an idele class character χ of K is defined by the formula

L(s, χ) =
∏
v-∞

χv unram

(1− χv(πv)q−sv )−1,(2.11)

where the Euler product on the right-hand side runs over the finite places of K
at which χ is unramified, qv being the order of the residue class field of Ov and
πv ∈ Ov a uniformizer. The fact that χv is unramified means precisely that χv(πv)
is independent of the choice of πv, so the right-hand side of (2.11) is well defined at
least as a formal product. But in fact the product converges in some right half-plane
and hence defines a holomorphic function there.

This last assertion may sound familiar, because the very same claim was made
in connection with the L-function of a Hecke character. This is no coincidence: an
idele class character is essentially the same thing as a primitive Hecke character.
More precisely, there is a map χ 7→ χA from Hecke characters of K to idele class
characters of K which is a bijection when restricted to primitive Hecke characters.
The map χ 7→ χA comes about as follows.

Given a nonzero integral ideal f of O, let Af ⊂ A×fin be the subgroup consisting
of all elements x = (xv)v ∈ A×fin such that xv ∈ 1 + fOv whenever v = vp with p|f.
By the Artin-Whaples approximation theorem (or simply the Chinese remainder
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theorem), we can write

A
× = K× · Af · (R⊗Q K)×(2.12)

with

K× ∩ (Af(R⊗Q K)×) = Kf.(2.13)

Suppose now that χ is a Hecke character of K to the modulus f and with infinity
type χ∞. Given x ∈ A×, we use (2.12) to write

x = α · y · r(2.14)

with α ∈ K×, y ∈ Af, and r ∈ (R⊗Q K)×, and we set

χA(x) = χ(ay)χ∞(r),(2.15)

where

ay =
∏
v-∞

pordvyv
v(2.16)

and pv is the prime ideal of OK underlying v. The definition of A× as a restricted
direct product ensures that ordvyv = 0 for all but finitely many v, whence (2.16) is
meaningful. As y ∈ Af we have ay ∈ I(f), and therefore χ(ay) is defined.

By (2.13), the definition (2.15) is unambiguous provided the right-hand side is
trivial whenever y = αfin and r = α∞ for some α ∈ Kf. In other words if α ∈ Kf

then we must have χ(αO) = χ∞(1⊗ α)−1. This is precisely the defining property
(1.10) of a Hecke character.

By construction, χA is trivial on K×. To see that it is continuous, put

Of = Af ∩ Ô×.(2.17)

If y in (2.14) belongs to Of then ay = O, whence (2.15) becomes χA(x) = χ∞(r).
Furthermore if x belongs to the open subgroup Of × (R ⊗Q K)× of A× then nec-
essarily y = xfin and r = x∞ in (2.14), whence the restriction of χA to this open
subgroup is the function x 7→ χ∞(x∞). As χ∞ is continuous by assumption, the
continuity of χA on all of A× follows from the fact that a group homomorphism is
continuous if and only if its restriction to some open subgroup is.

Thus χA is an idele class character. A review of the construction shows that if
f had been replaced by an ideal divisible by f then χA would have been unchanged.
It follows that χA depends only on the primitive Hecke character determined by
χ. Furthermore, using the notion of “conductor” introduced below, one can verify
that every idele class character has the form χA for a unique primitive χ.

In practice, since χ and χA can be distinguished by their arguments – ideals
and ideles respectively – the subscript on χA will usually be omitted. For example,
(2.15) can be written χ(x) = χ(ay)χ∞(r).

2.2. Local components of idele class characters
For some calculations it is useful to be able to go directly from a Hecke character
χ written as in Proposition 1.2 to the local components χv in (2.9). The following
proposition helps us to do so. Let χ be a primitive Hecke character ofK of conductor
f and infinity type χ∞, and let ε be the character of (O/f)× such that

χ(αO) = ε(α)χ−1
∞ (1⊗ α)(2.18)
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for α ∈ K(f). (As in Proposition 1.2, we are viewing ε as a character of K(f) via
the identification K(f)/Kf

∼= (O/f)×.) By the Chinese remainder theorem we can
write

(O/f)× =
∏
p|f

(O/pn(p))×,(2.19)

where the product runs over the distinct prime ideals dividing f and n(p) is the
multiplicity of p in f. There is a corresponding decomposition

ε =
∏
p|f

εp,(2.20)

where εp is a character of (O/pn(p))×. If v = vp is the place of K corresponding
to p then we write εv for the character of O×v obtained by composing εp with the
natural map of O×v onto (O/pn(p))×.

Proposition 2.1. Let p be a prime ideal of K and v = vp the corresponding finite
place. Let πv ∈ Ov be a uniformizer.

• If p - f then χv is unramified and χv(πv) = χ(p).
• If p|f then χv|O×v = ε−1

v . In particular, χv is ramified.
Furthermore, if β ∈ O and βO is a power of some prime ideal p dividing f, then

χv(β) = χ−1
∞ (β) ·

∏
q|p
q 6=p

εq(β),

where q runs over prime ideals dividing f but different from p.

Proof. Throughout the proof, w denotes an arbitrary place of K. Suppose
first that p - f. Given z ∈ O×v , take x = (xw)w to be the idele with xv = z and
xw = 1 for w 6= v. Then we may take α = r = 1 and y = x in (2.14), whence
ay = O. So (2.15) and (2.9) give χv(z) = χ(x) = 1, and we conclude that χv is
unramified. On the other hand, choosing x = (xw)w to be the idele with xv = πv
and xw = 1 for w 6= v, we may again take α = r = 1 and y = x in (2.14), but this
time we get ay = p and consequently χv(πv) = χ(p).

Next suppose that p|f. Given z ∈ O×v , take x = (xw)w to be the idele with
xv = z and xw = 1 for w 6= v. Applying the Chinese remainder theorem and the
notation of (2.19), we choose α ∈ O so that α ≡ z mod pn(p)Ov and also α ≡ 1
mod qn(q), for all prime ideals q dividing f but different from p. Then α−1

fin x ∈ Af, so
we may take y = α−1

fin x and r = α−1
∞ in (2.14). Then ay = α−1O, and consequently

(2.15) gives χ(x) = χ(α−1O)χ∞(1⊗α−1). Replacing α by α−1 in (2.18), we deduce
that χ(x) = ε−1(α). In view of the choice of x and α, we obtain χv(z) = ε−1

v (z) by
(2.9) and (2.20). Thus χv|O×v = ε−1

v .
Finally, if βO is a power of p for some prime ideal p dividing f then (2.9) gives

1 =
∏
w|f∞

χw(β),(2.21)

because χ|K× is trivial and χw is unramified for w - f∞. Now if q is a prime
ideal dividing f and q 6= p then β ∈ O×w , where w is the place corresponding to
q. Hence we can apply the result of the previous paragraph with p replaced by
q, obtaining χw(β) = ε−1

q (β). Inserting this information in (2.21), we obtain the
claimed formula for χv(β). �
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To illustrate both the map χ 7→ χA and the use of Proposition 2.1, consider the
case where χ is the absolute norm, χ(a) = Na. We claim that χA is || ∗ ||−1, the
reciprocal of the idelic norm defined by (2.10). Indeed in the notation of Proposition
1.2 we have f = O and ε = 1, and by taking s0 = 1 in (1.13) we see that χ∞ is the
product of the reciprocals of the local norms at infinity:

χ∞(xv)v|∞ =
∏
v|∞

|| ∗ ||−1
v .(2.22)

On the other hand, if p is a prime ideal of K and v the corresponding finite place,
then according to Proposition 2.1, χv is the unramified character of K×v taking
the value Np on any uniforizer πv. But the local norm is also unramified, and
Np = qv = ||πv||−1

v , where qv is the order of the residue class field of K. Hence
χv = || ∗ ||−1

v . Taking the product over all finite places and then multiplying by
(2.22), we obtain (2.10), whence χA is indeed || ∗ ||−1.

2.3. The conductor
As pointed out already in the introduction, a complex representation of a profinite
group is trivial on an open subgroup. The one-dimensional case of this remark
underlies some verifications that have already been passed over without comment,
for example the fact that every idele class character is a restricted direct product
of local characters (formula (2.9)), or the fact that the map χ 7→ χA from Hecke
characters to idele class characters is surjective. The relevant profinite groups are
Ô and Ô×; instead of (2.3) and (2.5) we write

Ô = lim←− fO/f(2.23)

and

Ô× = lim←− f(O/f)×,(2.24)

where f runs over the nonzero integral ideals of K ordered by divisibility. In par-
ticular, we see from (2.24) that the restriction of an idele class character to Ô× is
trivial on Of for some f.

The same remark holds locally at every finite place v: If v = vp then

Ov = lim←− nO/pn(2.25)

and

O× = lim←− n(O/pn)×,(2.26)

and the latter equation shows that a character of K×v is trivial on 1 + πnvOv for
some n > 1.

These remarks permit us to define the conductor of a character both locally
and globally. Consider first the local case: If v is a finite place of K and χv a
character of K×v then the exponent of the conductor of χv is the integer

a(χv) =

{
0 if χv is unramified,
min{n > 1 : χv trivial on 1 + πnvOv} if χv is ramified,

(2.27)

and the conductor of χv is the ideal πa(χv)
v Ov of Ov. Turning now to the global

setting, we have two ways of defining the conductor f(χ) of an idele class character
χ of K: Either we consider nonzero integral ideals f of K such that χ is trivial on
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Of, and we define f(χ) to be the smallest such f (in terms of divisibility), or else we
set

f(χ) =
∏
v-∞

pa(χv)
v(2.28)

(recall that pv is the prime ideal determined by v). One verifies that these two
definitions are equivalent to each other and also to our original definition of the
conductor of a primitive Hecke character when χ is viewed as such.

3. The functional equation

Our goal now is to see how the idelic viewpoint facilitates the statement of the
functional equation for Hecke L-functions. The key point is that once we think
of an idele class character χ as a product of local characters using (2.9) we can
define the objects appearing in the functional equation of L(s, χ) as products of
local objects also. In the case of the conductor f(χ) we have already taken this step
in (2.27) and (2.28), although the benefit gained may not yet be apparent. The
real prize we anticipate is a factorization of the root number W (χ). But first we
consider the factorization of L(s, χ) itself as a product of local L-factors.

3.1. L-factors
It may appear appear at first that there is nothing new here. Given a finite place
v of K and a character χv of K×v , we set

L(s, χv) =

{
(1− χv(πv)q−sv )−1 if χv is unramified
1 if χv is ramified,

(2.29)

where as before, πv is a uniformizer and qv the order of the residue class field of
Ov. As we have already noted, the fact that χv is unramified means precisely that
χv is independent of the choice of πv. Now if χ is an idele class character of K then
a comparison of (2.11) and (2.29) shows that the global L-function L(s, χ) is the
product of the local L-factors:

L(s, χ) =
∏
v-∞

L(s, χv).(2.30)

Furthermore, if we think of χ as a primitive Hecke character then one can verify
that the original definition (1.18) of L(s, χ) is equivalent to (2.11) and (2.30). (The
key point is that if v is a finite place where χ is unramified and x in (2.14) is the
idele with πv at the place v and 1 at all other places then we can take α = r = 1 and
y = x, whence ay = pv.) So our definitions are compatible, but the introduction of
local L-factors appears to add nothing new.

However from the adelic point of view it is natural to associate L-factors not
only to the finite places of K but also to the infinite places, where the “L-factors”
turn out to be the gamma factors in the functional equation. In fact what we have
been calling L(s, χ) would in some contexts be regarded as merely “the finite part
of the L-function,” Lfin(s, χ), and the notation L(s, χ) would be reserved for the
“completed L-function” L∞(s, χ)Lfin(s, χ), where L∞(s, χ) is the product of the
L-factors at the infinite places:

L∞(s, χ) =
∏
v|∞

L(s, χv).(2.31)
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Hence the completed L-function L∞(s, χ)Lfin(s, χ) is the product of the L-factors
L(s, χv) over all the places of K and includes both the traditional L-function
Lfin(s, χ) and its gamma factors.

In practice we will continue to write L(s, χ) for the traditional L-function
Lfin(s, χ), but the factorization (2.31) will be used in the statement of the functional
equation of L(s, χ). Hence we need to make the local factors in (2.31) explicit.

Suppose first that v is a real place. Then Kv
∼= R, and the identification is

unique because R has no nontrivial automorphisms (even as an abstract field). Thus
a character χv of K×v can be identified with a character of R×. But a character
of R× is necessarily of the form t 7→ |t|s0(t/|t|)m with unique numbers s0 ∈ C and
m ∈ {0, 1}. We set

L(s, χv) = ΓR(s+ s0 +m),(2.32)

where we recall that the real gamma factor ΓR(s) is defined by (1.7).
Next suppose that v is complex. Then there are two possible identifications

Kv
∼= C. Choosing one of them, we may view a character χv of K×v as a character

of C×. Then χv is necessarily of the form z 7→ |z|2s0(z/|z|)m with unique numbers
s0 ∈ C and m ∈ Z. We set

L(s, χv) = ΓC(s+ s0 + |m|/2),(2.33)

If we replace our chosen identification of Kv with C with the complex-conjugate
identification then χv(z) is replaced by χv(z) and hence m by −m; but (2.33) stays
the same. Thus L(s, χv) is well defined.

3.2. Statement of the functional equation
Given an idele class character χ of K, put

Λ(s, χ) = D
s/2
K (Nf(χ))s/2L∞(s, χ)L(s, χ),(2.34)

where DK is the absolute value of the discriminant of K and L∞(s, χ) and L(s, χ)
are as in (2.31) and (2.30) respectively. Let c be as in Proposition 1.1, and put{

w = 2c
k = 2c+ 1,

(2.35)

so that k = w + 1.

Theorem 2.1. There is a constant W (χ) ∈ C with |W (χ)| = 1 such that

Λ(s, χ) = W (χ)Λ(k − s, χ).(2.36)

Furthermore, if χ is the trivial character then W (χ) = 1.

Of course if χ is the trivial character then L(s, χ) is just the Dedekind zeta
function ζK(s) of K, and we will usually write Λ(s, χ) as ZK(s) in this case. If
K = Q then we will continue to write ζQ(s) and ZQ(s) simply as ζ(s) and Z(s), as
we did in Lecture 1.

4. Quadratic root numbers

Before saying even one word about local root numbers, we can deduce from Theorem
2.1 that root numbers of quadratic idele class characters are trivial:

Theorem 2.2. Suppose that χ is an idele class character of K such that χ2 is
trivial. Then W (χ) = 1.
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When χ is the trivial character Theorem 2.2 is already contained in Theorem
2.1, so we may assume that χ is in fact quadratic. Under this assumption the
main input beyond Theorem 2.1 that is needed for the proof of Theorem 2.2 is the
identity

ζL(s) = ζK(s)L(s, signL/K),(2.37)

where L/K is a quadratic extension of number fields and signL/K is the quadratic
Hecke character associated to L/K. The meaning of this last phrase is as
follows. Let dL/K be the relative discriminant ideal of L/K. Then signL/K :
I(dL/K)→ {±1} is the unique homomorphism satisfying

signL/K(p) =

{
1 if p splits in L

−1 if p remains prime in L
(2.38)

for prime ideals p of K unramified in L. The fact that the homomomorphism
defined by (2.38) is actually a Hecke character (indeed a primitive Hecke character
of conductor dL/K) is essentially quadratic reciprocity over number fields, although
a little bit of work is required to go back and forth between this statement and the
classical version found for example in [31], p. 246. In any case, to prove Theorem
2.2 we combine (2.37) with the fact that any quadratic idele class character χ of K
has the form χ = signL/K for some quadratic extension L of K. In other words,
given a nontrivial χ as in Theorem 2.2 we use (2.37) by writing

ζL(s) = ζK(s)L(s, χ),(2.39)

where the quadratic extension L of K being determined by χ.
We claim that (2.39) remains valid when ζL(s), ζK(s), and L(s, χ) are replaced

by their normalized versions:

ZL(s) = ZK(s)Λ(s, χ).(2.40)

To verify (2.40), write r1/1(L/K) for the number of real places of K which split into
two real places of L and r2/1(L/K) for the number of real places of K which ramify
into a complex place of L. Since every real place of K either splits or ramifies, the
number of such places satisfies

r1(K) = r1/1(L/K) + r2/1(L/K).(2.41)

Also {
r1(L) = 2r1/1(L/K)
r2(Y ) = 2r2(K) + r2/1(L/K),

(2.42)

because every place of L is an extension of a unique place of K. Now ζL(s) and
ζK(s) are the L-functions of the trivial idele class character of L and K respectively.
Hence in applying (2.31) and (2.34) we take s0 = m = 0 in (2.32) and (2.33),
obtaining

ZL(s) = D
s/2
L ΓR(s)r1(L)ΓC(s)r2(L)ζL(s).(2.43)

and

ZK(s) = D
s/2
K ΓR(s)r1(K)ΓC(s)r2(K)ζK(s).(2.44)

As for Λ(s, χ), the relation χ = (signL/K)A has the following consequences: If v is
a complex place of K then (s0, ν) = (0, 0) in (2.33), while if v is a real place then
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(s0, ν) = (0, 0) or (s0, ν) = (0, 1) in (2.32) according as v splits or ramifies in K.
As f(χ) = dL/K , we see that (2.34) gives

Λ(s, χ) = (DL/KDK)s/2ΓR(s)r1/1(F )ΓR(s+ 1)r2/1(F )ΓC(s)r2(F )L(s, χ),(2.45)

where DL/K is the absolute norm of the relative different ideal of L/K and hence
also the absolute norm of dL/K . Now compare the product (2.44) and (2.45) with
(2.44). Taking account of (2.41) and (2.42) as well as the duplication formula (1.9)
and the standard relation DL = DL/KD

2
K , we obtain (2.40).

To deduce Theorem 2.2,we simply insert Theorem 2.1 in (2.40), obtaining

ZK(1− s) = ZF (1− s)W (χ)Λ(1− s, χ).(2.46)

Replacing s by 1 − s in (2.40) and comparing the result with (2.46), we conclude
that W (χ) = 1.

5. Local root numbers

Let K be a number field and χ an idele class character of K. As we have already
hinted, the root number W (χ) defined by Theorem 2.1 has a factorization

W (χ) =
∏
v

W (χv),(2.47)

where W (χv) is the local root number attached to χv and is equal to 1 for all
but finitely many places v. We shall give formulas for W (χv) and then illustrate
their use by verifying Proposition 1.5. Initially our approach is that of a cookbook
rather than a mathematical treatise. Afterwards we shall fill in a number of points:
the implicit dependence of the local root number on a choice of additive character,
the connection with epsilon factors, and so on.

5.1. Formulas for local root numbers
We change notation, writing Kv and χv simply as K and χ respectively. Thus K
is a finite extension of Qp for some fixed p 6 ∞ and χ is a character of K×. An
important point about root numbers is that they see only the unitary part of a
character. In other words, if we put χu = χ/|χ| as before then

W (χ) = W (χu).(2.48)

Hence when it is convenient to do so we may assume that χ is unitary.
If K is archimedean then there is no need to do so. Indeed if K = R and χ is

the map t 7→ |t|s0(t/|t|)m with s0 ∈ C and m ∈ {0, 1} then

W (χ) = i−m.(2.49)

If χ is unitary then s0 ∈ iR, but formula (2.49) is valid for any s0. Similarly, if
K ∼= C and χ is the map z 7→ |z|2s0(z/|z|)m with s0 ∈ C and m ∈ Z then

W (χ) = i−|m|.(2.50)

As with (2.33), this formula is independent of the identification K ∼= C, and while
s0 ∈ iR if χ is unitary, formula (2.50) is valid for any s0.

We turn now to the nonarchimedean case. Here it would be a slight convenience
to assume that χ is unitary, but instead we shall replace χ by χu in the formulas
themselves, so that the formulas are universally valid. As before, we write a(χ) for
the exponent of the conductor of χ. Furthermore, we write n for the exponent of



DAVID E. ROHRLICH, PCMI LECTURE NOTES 33

the different ideal of K over Qp. Thus if π is a uniformizer of K then πnO is
the different ideal of K over Qp.

When χ is unramified we have

W (χ) = χu(πn).(2.51)

In particular, if K is unramified over Qp and χ is an unramified character then
(2.51) gives

W (χ) = 1.(2.52)

To appreciate (2.52), let us return for a moment to the global setting and write K
for a number field and Kv for its completion at the finite place v corresponding to
a prime ideal p of K. In this notation (2.52) asserts that if D is the different ideal
of K and p - Df(χ) then

W (χv) = 1.(2.53)

Since the condition p - Df(χ) is satisfied by all but finitely many p, we conclude that
the product in (2.47) has only finitely many factors different from 1, as claimed.

Finally, if χ is ramified choose β ∈ K× so that

v(β) = a(χ) + n,(2.54)

where v is the valuation on K. Then

W (χ) = q−a(χ)/2
∑

x∈(O/f(χ))×

χ−1
u (x/β)e2πi trK/Qp (x/β),(2.55)

with f(χ) = πa(χ)O and q the order of the residue class field of K. Although the
appearance of the expression x/β inside both χ−1

u and the exponential is a good
mnemonic device, it is sometimes more practical to separate these two terms:

W (χ) = χu(β) · q−a(χ)/2
∑

x∈(O/f(χ))×

χ−1(x)e2πi trK/Qp (x/β),(2.56)

Note that we have not bothered to write χ−1(x) as χ−1
u (x), because the restriction

of any character of K×v to O×v has finite order and is therefore automatically unitary.

5.2. An example
We illustrate these formulas by proving Proposition 1.5, or in other words by com-
puting W (χ) for χ ∈ X(D) with D odd. Thus K is now Q(

√
−D). By Proposition

1.4, the different ideal D =
√
−DO coincides with the conductor f(χ), whence

(2.53) gives W (χv) = 1 for all finite places v - D. And since χ∞(z) = z−1 we have
W (χ∞) = i−1 (take s0 = −1/2 and m = −1 in (2.50)). Thus (2.47) gives

W (χ) = i−1
∏
v|D

W (χv),(2.57)

and it remains to evaluate W (χv) for v|D.
Suppose then that v = vp for a prime ideal p dividing D. Then χv is ramified,

so the appropriate local formula is (2.55). Since nv = a(χv) = 1 we may take the
quantity β in (2.55) to be the rational prime p below p. Note also that since the nat-
ural map (Z/DZ)× → (O/

√
−DO)× is an isomorphism, the coset representatives
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x in (2.55) may be taken to be rational integers. So (2.55) becomes

W (χv) = (χv)u(p) · p−1/2
∑

n∈(Z/pZ)×

χ−1
v (n)e2πi(2n/p).(2.58)

Now recall condition (b) in the original definition of X(D): χ(nO) = κ(n)n for
n ∈ Z prime to D. Here κ is the Kronecker symbol with numerator −D, as before.
It follows that if χ|P (f(χ)) is written as in Proposition 1.2 then ε(n) = κ(n).
Thus in the notation of Proposition 2.1, we have εv(n) = λ(n) for n prime to p,
where λ is the Legendre symbol at p. Consequently the proposition just cited gives
χ−1
v (n) = λ(n) for such n. Making this substitution in (2.58), and replacing the

summation over n by a summation over 2n, where 2 is a representative for the
multiplicative inverse of 2 in (Z/pZ)×, we find

W (χv) = λ(2)(χv)u(p) · p−1/2
∑

n∈(Z/pZ)×

λ(n)e2πi(2n/p).(2.59)

Of course λ(2) = λ(2) since λ is quadratic. Furthermore, by taking β = p in
Proposition 2.1 we obtain

χv(p) = p
∏
q|D
q 6=p

(
p

q

)
,(2.60)

and the factor of p on the right-hand side disappears when χv is replaced by (χv)u

on the left-hand side. Finally, the sum in (2.59) is evaluated by Gauss’s formula
(1.1). Thus (2.59) becomes

W (χv) = iδ
(

2
p

)∏
q|D
q 6=p

(
p

q

)
(2.61)

with δ equal to 0 or 1 according as p is 1 mod 4 or 3 mod 4.
The rest is bookkeeping. Let t be the number of prime divisors of D which are

congruent to 3 mod 4. Substituting (2.61) in (2.57), we get

W (χ) = it−1

(
2
D

)∏
p6=q

(
p

q

)
,(2.62)

where the product on the right-hand side of (2.62) runs over pairs (p, q) of distinct
prime divisors of D. By quadratic reciprocity, this product is (−1)t(t−1)/2. On the
other hand, the odd integer −D is a discriminant, hence congruent to 1 mod 4.
Therefore t is odd, and we can write it−1 = (−1)(t−1)/2. Multiplying this factor by
the factor (−1)t(t−1)/2 coming from quadratic reciprocity, we obtain (−1)(t2−1)/2,
which is 1. Thus (2.62) gives the result stated in Proposition 1.5.

6. An open problem

The preceding example illustrates a simple point: Armed with the formulas (2.47)
through (2.55), we can in principle detect trivial central zeros of Hecke L-functions
whenever they exist. But do we always care? Does the vanishing at the center of a
Hecke L-function, or indeed of any L-function, always have arithmetic significance?
Certainly the conjecture of Birch and Swinnerton-Dyer attaches a meaning to ex-
amples like the one just considered, but consider instead the L-functions associated
to Maass forms for SL(2,Z). A theorem of Venkov [64] implies that half of these



DAVID E. ROHRLICH, PCMI LECTURE NOTES 35

L-functions have a trivial central zero. What is the arithmetic significance of this
fact, if any?

The L-functions associated to Maass forms for SL(2,Z) lie outside the scope of
these lectures, but a satisfactory substitute is available, namely Hecke L-functions
which are of “Maass type” in the sense that they coincide with the L-functions
associated to certain Maass forms for congruence subgroups of SL(2,Z). Let K
be a real quadratic field, viewed as a subfield of R, and write α 7→ α′ for the
nonidentity embedding of K in R. We will call a primitive Hecke character χ of K
equivariant if χ(a′) = χ(a) for a ∈ I(f(χ)). The Hecke characters of Maass type
to be considered here have the form χ = ηχ0, where η is an equivariant primitive
Hecke character of K of finite order and χ0 : I → C

× is a fixed Hecke character of
K constructed as follows: Writing ε0 for the fundamental unit of K, we define χ0

on P by the formula

χ0(αO) = |α/α′|πi/ log ε0 (α ∈ K×),(2.63)

and then we extend χ0 arbitrarily to I. It is not hard to verify that (2.63) gives
a well-defined function of principal ideals, that any extension of (2.63) to I is an
equivariant Hecke character, and finally (using Theorem 2.1) that the L-function of
the resulting equivariant Hecke character χ = ηχ0 satisfies the functional equation

Λ(s, χ) = W (η)Λ(1− s, χ)(2.64)

with

Λ(s, χ) = (DNf(η))s/2ΓR(s+ πi/ log ε0)ΓR(s− πi/ log ε0)L(s, χ),(2.65)

where D is the discriminant of K. The appearance of W (η) in place of W (χ) in
(2.64) is not a misprint: one can show that W (χ) = W (η). In view of (2.64), we
can ask the following question:

Suppose that W (η) = −1. Does the resulting trivial central zero of L(s, χ)
have any arithmetic significance?

An example where the hypothesis W (η) = −1 is satisfied will be given below.
Historically, the first examples over any number field of a Hecke character η for
which L(s, η) = L(s, η) and W (η) = −1 were given by Armitage [2] and Serre
(unpublished) around 1972. At the time there was no arithmetic interpretation for
such trivial central zeros, but in the case of certain quartic Hecke characters of real
quadratic fields, Fröhlich [21] found a connection with Galois module structure:
The quartic charcters η considered by Fröhlich correspond to Galois extensions N
of Q with Galois group the quaternion group of order 8, and Fröhlich proved that
W (η) is 1 or −1 according as ON is or is not a free Z[Gal(N/Q)]-module. Since then
a vast literature has developed relating root numbers to Galois module structure;
see for example [9], [10], [11], and [63]. This snippet of history should caution us
against dismissing the above question too cavalierly.

Returning to the matter at hand, we need an example of a real quadratic
field K and an equivariant Hecke character η of K with W (η) = −1. Take K =
Q(
√
p(p+ 4)) with a prime p > 5 satisfying p ≡ 1 mod 4, and let D be the

discriminant of K. Then D = pr, where p+4 = rm2 with r square-free and m ∈ Z.
Let κ be the primitive quadratic Dirichlet character of conductor D given by

κ(n) =
( n
D

)
,(2.66)
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and define ε : (O/
√
DO)× → {±1} by composing κ (viewed as a character of

(Z/DZ)×) with the canonical identification (O/
√
DO)× ∼= (Z/DZ)×. We claim

that ε is trivial on the image of O× in (O/
√
DO)×. In view of (2.66) we have at

least ε(−1) = κ(−1) = 1, because D = p(p + 4)/m2 and so D ≡ 1 mod 4. On the
other hand, put u = ((p + 2) +

√
p(p+ 4))/2. According to Katayama [35], u is

the fundamental unit of K, so we must verify that ε(u) = 1 also.
To see this, write (Z/DZ)× ∼= (Z/pZ)× × (Z/rZ)×, and let κ = κ′κ′′ be the

corresponding decomposition of κ into primitive quadratic characters of conductors
p and r respectively. Also put f =

√
DO and let p and r be respectively the prime

ideal of K over p and the product of the prime ideals dividing r. Then (O/f)× ∼=
(O/p)××(O/r)× and we have a corresponding decomposition of characters ε = ε′ε′′.
Recalling that u = ((p + 2) +

√
p(p+ 4))/2 and p + 4 = rm2, we see that u ≡ 1

mod p and u ≡ −1 mod r, whence ε(u) = ε′(1)ε′′(−1) = κ′′(−1). But κ′′(−1) = 1
because r ≡ 1 mod 4, so ε is trivial on O×, as claimed.

It follows that we obtain a well-defined character η of P (f) by setting

η(αO) = ε(α) (α ∈ K(f)),(2.67)

where α is viewed as a character of K(f) as in Proposition 1.2. Extending η arbi-
trarily to I(f) we obtain a primitive Hecke character which we also denote η and
which is readily verified to be equivariant. A calculation shows that

W (η) =
(

2
D

)
.(2.68)

But D = p(p+ 4)/m2 and in particular D ≡ 5 mod 8, so W (η) = −1.

7. Epsilon factors

Even a brief perusal of the literature on root numbers will reveal that our discussion
has so far neglected two basic issues: the dependence of the local root number on an
“additive character” and the relation between root numbers and “epsilon factors.”
Rectifying these omissions is a first step toward proving Theorem 2.1 with W (χ)
given by formulas (2.47) through (2.55).

7.1. Additive characters
Let K be a finite extension of Qp with p 6 ∞. By an additive character of K
we mean a nontrivial unitary character ψ : K → C

×. A canonical choice, call it
ψcan, is possible here. If p =∞ then

ψcan(x) = e−2πi trK/R(x).(2.69)

If p <∞ then

ψcan(x) = e2πi{ trK/Qp (x)}p ,(2.70)

where {z}p is the p-adic principal part of a number z ∈ Qp (in other words, if
z =

∑
n∈Z anp

n with an ∈ {0, 1, . . . , p − 1} for all n and an = 0 for n � 0 then
{z}p =

∑
n<0 anp

n). Note that (2.69) can also be written

ψcan(x) = e−2πi{ trK/R(x)}∞ ,(2.71)

where {t}∞ is the fractional part of a real number t (thus 0 6 {t}∞ < 1 and t ≡ {t}
mod Z).
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Next let χ be a chharacter of K×. Our W (χ) coincides with the W (χ, ψcan)
found in the literature. In general, for any additive character ψ of K there is an
intrinsically defined local root number W (χ, ψ), but it is also easily expressed in
terms of W (χ). In fact any such ψ has the form ψ(x) = ψ(ax) for some a ∈ K×,
and then W (χ, ψ) = χ(a)W (ψ). It follows that

W (χ, ψb) =
χ(b)
|χ(b)|

W (χ, ψ)(2.72)

for any b ∈ K×, where the additive character ψb is defined by ψb(x) = ψ(bx).
Now we change notation. Let K be a number field and A its ring of adeles. A

global additive character of K is a nontrivial unitary character ψ of A which is
trivial on K. Such a character has the form

ψ(x) =
∏
v

ψv(xv) (x = (xv)v ∈ A),(2.73)

where v runs over the places of K and ψv is an additive character of Kv. Of course
to make sense of (2.73) one needs to know that ψv(xv) = 1 for all but finitely
v. This condition is satisfied if we take ψv = ψcan

v for all v, because for all but
finitely many finite v we have both xv ∈ Ov and Ov = Dv, where Dv is the local
different of Kv over Qp and v|p. Thus for all but finitely many finite v we have
trKv/Qp(xv) ∈ Zp, as required.

Going a step further, we claim that if we take ψv = ψcan
v on the right-hand

side of (2.73) then the left-hand side becomes a global additive character ψcan of
K. The point to be checked is that ψcan is trivial on K. So suppose that α ∈ K.
Referring to (2.70) and (2.71), we see that the identity to be verified is∑

p<∞

∑
v|p

{ trKv/Qp(α)}p ≡
∑
v|∞

{ trKv/R(α)}∞ (mod Z).

Now the sum of the local traces at the places lying over a given place of Q is equal
to the global trace, so putting β = trK/Q(α), we must show that∑

p<∞
{β}p ≡

∑
v|∞

{β}∞ (mod Z).

But this is a familiar fact: The principal part of a rational number differs from its
fractional part by an integer.

Now let χ be an idele class character of K and ψ a global additive character of
K. The global root number is the product of the local root numbers:

W (χ, ψ) =
∏
v

W (χv, ψv).(2.74)

But the left-hand side of (2.74) can simply be denoted W (χ), because the depen-
dence on ψ is illusory: For any global additive character ψ of K there exists α ∈ K×
such that ψ(x) = ψcan(αx), and thus the right-hand side of (2.74) becomes∏

v

W (χv, (ψv)α) =
∏
v

(χv(α)/|χv(α)|)W (χv, ψcan
v )(2.75)

by virtue of (2.72). Since χ is an idele class character and α ∈ K, the right-hand
side of (2.75) is simply

∏
vW (χv, ψcan

v ) or in other words our previous
∏
vW (χv),

and we recover the definition (2.47) of the global root number that we had before
the introduction of additive characters.
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If we are back where we started, then what was the point of introducing additive
characters in the first place? One answer is that additive characters provide a
flexibility which is useful theoretically, but a more compelling answer is that one
wants a theory which is applicable to function fields in one variable over finite
fields, not just to number fields. Usually the difference between number fields and
function fields is thought to be the presence or absence of archimedean places, but
another important difference is that the prime field of a number field is another
number field, whereas the prime field of a function field is not a global field at all.
It is the latter difference that makes it necessary to introduce additive characters.
Sure, any function field K contains a subfield of the form Fq(t), and perhaps one
can make a canonical choice of an additive character of Fq(t) and its completions
and then compose with trace. But the problem is that K contains infinitely many
subfields of the form Fq(t), and in general one is no more canonical than the others.

7.2. The local epsilon factor and local functional equation
Roughly speaking, epsilon factors are Gauss sums, or factors of Gauss sums, or a
generalization of Gauss sums. For example the Gauss sum τ(χ) (1.2) introduced
at the beginning of Lecture 1 is the product over the finite primes of Q of the local
epsilon factors associated to χA, and τ(χ)/ia∞(∞) is the global epsilon factor of
χA. As this example illustrates, the epsilon factor binds the root number to the
square root of the conductor – in fact to the square root of the product of the
conductor and the absolute value of the discriminant, although the latter factor is
of course 1 in the case of Q. Actually the discriminant will have to be replaced by
some quantity dependent on the choice of an additive character, for we would like
to define the epsilon factor in a way that makes sense for function fields as well
as number fields. Given the broader framework, we should revisit the definitions
already made – adeles, ideles, idele class characters, and so on – so as to include
the function field case, but the necessary adjustments are minimal and will be left
as an exercise.

Suppose then that K is a local field, χ a character of K×, ψ an additive
character of K, and dx a Haar measure on K. Let s denote a complex variable.
The epsilon factor ε(χ, ψ, dx) is the value at s = 0 of an entire function denoted
ε(χ, ψ, dx, s):

ε(χ, ψ, dx) = ε(χ, ψ, dx, s)|s=0.(2.76)

If this looks circuitous, the point us that the definition of ε(χ, ψ, dx, s) involves
integrals which may converge only for <(s) � 0, but (2.76) defines ε(χ, ψ, dx) by
analytic continuation.

The integrals just mentioned appear together with ε(χ, ψ, dx, s) in Tate’s lo-
cal functional equation. Quite apart from the fact that Tate’s method applies to
function fields as well as number fields, the local functional equation is a major
innovation in its own right. To state it, let S(K) denote the Schwartz space
of K. Thus if K is nonarchimedean then S(K) consists of locally constant func-
tions on K of compact support, while if K is R or C then S(K) consists of C∞

functions f on K such that the derivatives of f of all orders (mixed partial deriva-
tives of all orders if K ∼= C) have rapid decay. To spell out the archimedean case
in more detail, if K = R then given n,N > 0 there exists C = C(n,N, f) such
that |f (n)(x)| 6 C/(1 + |x|)N , and if K ∼= C then given m,n,N > 0 there exists
C = C(m,n,N, f) such that |∂m+nf/∂mx∂ny| 6 C/((1 + |x|)(1 + |y|))N . In all
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cases, archimedean or not, we define the Fourier transform f̂ of a function f ∈ S(K)
by

f̂(y) =
∫
K

f(x)ψ(xy) dx.(2.77)

Then f̂ is again in S(K).
Now given f ∈ S(K), set

I(χ, dx, s, f) =
∫
K×

f(x)χ(x)||x||s dx

||x||
,(2.78)

where || ∗ || is the local norm (2.7). (The reason for writing the integrand as
f(x)χ(x)||x||s dx/||x|| rather than simply as f(x)χ(x)||x||s−1 dx is that dx/||x|| is a
Haar measure on K×, a fact that will be used in a moment.) Tate’s local functional
equation states that

I(χ−1, dx, 1− s, f̂)
L(1− s, χ−1)

= ε(χ, ψ, dx, s)
I(χ, dx, s, f)
L(s, χ)

,(2.79)

where the local L-factors are as in (2.29), (2.32), and (2.33). Formula (2.79) is the
definition of ε(χ, ψ, dx, s).

It is not be hard to verify that the integral defining I(χ, dx, f, s) converges for
<(s) � 0 and extends to a meromorphic function of s, and it is immediate from
the definitions (2.29), (2.32), and (2.33) that L(s, χ) is a meromorphic function on
C. Thus the main content of (2.79) is that the function

ε(χ, ψ, dx, s, f) =
L(s, χ)I(χ−1, dx, 1− s, f̂)
L(1− s, χ−1)I(χ, dx, s, f)

(2.80)

is entire and independent of f .
Granting (2.79), let us examine the dependence of ε(χ, ψ, dx, s) on ψ. Write

the integrand of (2.78) as f̂(x)χ(x)||x||s dµ(x), where dµ(x) is the Haar measure
dx/||x|| on K×, and take a ∈ K×. If ψ is replaced by ψa in (2.77) then f̂(y)
is replaced by f̂(ay), and consequently the integrand f̂(x)χ−1(x)||x||1−s dµ(x) of
I(χ−1, dx, 1− s, f̂) is replaced by f̂(ax)χ−1(x)||x||1−s dµ(x). Using the invariance
of dµ under x 7→ a−1x, we see that the new I(χ−1, dx, 1− s, f̂) is χ(a)||a||s−1 times
the old one. Since the L-factors and I(χ, dx, s, f) are unaffected by the switch from
ψ to ψa, we conclude from (2.79) that

ε(χ, ψa, dx, s) = χ(a)||a||s−1ε(χ, ψ, dx, s).(2.81)

In particular, we have

ε(χ, ψa, dx) = χ(a)||a||−1ε(χ, ψ, dx)(2.82)

by taking s = 0 in (2.81).
The dependence of ε(χ, ψ, dx, s) on dx is also easy to determine. Any other

Haar measure on K has the form c dx with a real number c > 0, and (2.78) gives
I(χ, c dx, s, f) = c I(χ, dx, s, f) while (2.78) and (2.77) together give I(χ−1, c dx, 1−
s, f̂) = c2 I(χ−1, dx, 1− s, f̂). From (2.79) we conclude that

ε(χ, ψ, c dx, s) = c ε(χ, ψ, dx, s).(2.83)

In particular,

ε(χ, ψ, c dx) = c ε(χ, ψ, dx)(2.84)
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on taking s = 0.
Given f ∈ S(K), define f− ∈ S(K) by f−(x) = f(−x). To make one further

deduction from (2.79) , we apply (2.79) a second time and use the fact that ˆ̂
f = f−

if dx is equal to dxsd, the self-dual Haar measure relative to ψ. (The identity
ˆ̂
f = f− can be taken as the defining property of a self-dual Haar measure.) Making
the substitution x 7→ −x in I(χ, dxsd,f

−, s), we find that

ε(χ, ψ, dxsd, s)ε(χ−1, ψ, dxsd, 1− s) = χ(−1).(2.85)

There is also a version of (2.85) for ε(χ, ψ, dxsd), but it is not obvious from the
formulas that have been mentioned so far, and we state only the case where K is
nonarchimedean:

ε(χ, ψ, dxsd)ε(χ−1, ψ, dxsd) = χ(−1)qn(ψ)+a(χ),(2.86)

where a(χ) is the exponent of the conductor of χ as before and n(ψ) is the largest
integer ν such that ψ is trivial on π−νO.

7.3. Epsilon factors and root numbers
It should be apparent that our point of view has changed: The primary object is
now the local epsilon factor, not the local root number. However the latter can be
defined in terms of the former by setting

W (χ, ψ) =
ε(χ, ψ, dx)
|ε(χ, ψ, dx)|

.(2.87)

It follows from (2.84) that the left-hand side of (2.87) is indeed independent of the
choice of dx. Furthermore (2.72) is now a consequence of (2.82), and (2.86) gives
the new relation

W (χ, ψ)W (χ−1, ψ) = χ(−1),(2.88)

which in this form is actually valid for all K, archimedean or nonarchimedean.
The explicit formulas (2.48) through (2.56) follow from (2.87) and the explicit
calculation of ε(χ, ψ, dx) which are part of Tate’s proof of the local and global
functional equations.

8. Exercises

Exercise 2.1. We have characterized the topology on AK by two properties. Verify
that there does in fact exist a unique topology T on AK with these properties and
that the sets

∏
v Uv with Uv open in Kv for all v and Uv = Ov for all but finitely

many finite v form a basis for T . Similarly, verify that there is a unique topology on
A
×
K with the two properties claimed for it, and show that a basis for this topology

is given by the sets
∏
v Uv with Uv open in K×v for all v and Uv = O×v for all but

finitely many finite v.

Exercise 2.2. Let K be a number field, let C be its ideal class group, and let
c(D) ∈ C be the class of the different ideal D of K. Prove that c(D) ∈ C2. (Hint:
If this is not the case then there is a quadratic ideal class character χ of K such
that χ(D) = −1. Compute W (χ) and obtain a contradiction to Theorem 2.2.)
Although the theorem that c(D) ∈ C2 is due to Hecke, the proof given by Hecke
([31], p. 261) is quite different. The proof outlined in the hint follows an argument
of Armitage [1] suggested by Serre.
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Exercise 2.3. The purpose of this exercise is to complete the proof of Proposition
1.7 in the case D|8 by showing that a decomposition X(D) = X+(D) ∪ X−(D)
with the stated properties exists.

(a) Show that that W (χϕ) = W (χ) for χ ∈ X(D) and ϕ ∈ Φ. (Hint: If p is a
prime ideal dividing f(χ) and v is the corresponding place of K then pa(χv)+nv is
principal.)

(b) Let T be the prime ideal of O above 2, let E be as in the proof of Proposition
1.3, and write E = {ε, δ}. Also let ε′ and δ′ be the corresponding quadratic
characters of

(O/T5)× ∼= (Z/8Z)× × 〈(1 +
√
−2C) + T5〉,(2.89)

where the second factor on the right-hand side is the cyclic group of order 4 gen-
erated by the coset of 1 +

√
−2C. Replacing this second factor by its subgroup of

order 2, we obtain a subgroup H of index 2 in (O/T5)× such that ε′ = −δ′ on the
complement of H and ε′ = δ′ on H. By direct calculation, show that∑

h∈H

ε′(h)e2πi trK/Q(h/16) = 0.

(To interpret e2πi trK/Q(h/16), replace h by any of its coset representatives in O:
The value of the exponential is independent of the coset representative because the
different ideal of K is T3.)

(c) Deduce that
∑
χ∈X(D)W (χ) = 0, and thus complete the proof of Proposi-

tion 1.7

Exercise 2.4. Using the local formulas and Theorem 2.1, verify that (1.35) holds
with Λ(s, χw) as in (1.36) and W (χ) as in (1.37).

Exercise 2.5. The purpose of this exercise is to fill in some details pertaining to
(2.63), (2.67), and (2.68).

(a) Let K be any real quadratic field. Show that (2.63) gives a well-defined
equivariant character χ0 of P and that any extension of this character to I is a
primitive Hecke character and still equivariant.

(b) With K and χ0 as in (a), let η be any equivariant primitive Hecke character
of K of finite order. Show that (2.64) holds with χ = ηχ0 and Λ(s, χ) as in (2.65).
In particular, show that W (χ) = W (η).

(c) Now take K = Q(
√
p(p+ 4)) with a prime p > 5 such that p ≡ 1 mod 4,

and let η be as in (2.67). Explain why η is equivariant, and verify (2.68).





LECTURE 3

Motivic L-functions

The discussion now moves to L-functions associated to Galois representations.
Within this large framework Artin L-functions form a natural point of departure
for one simple reason: All known methods of obtaining an L-function from a Galois
representation are variants of Artin’s original construction.

1. Artin L-functions

Let K be a number field. A representation of Gal(K/K) over C is called an Artin
representation of K. Thus an Artin representation is a continuous homomor-
phism Gal(K/K)→ GL(V ), where V is a finite-dimensional vector space over C.

The continuity condition is very restrictive here, because the topologies on
GL(V ) and Gal(K/K) are utterly disparate. On the one hand, GLn(C) has no small
subgroups, as previously noted; on the other hand, Gal(K/K) is the profinite group
lim←− LGal(L/K), where L runs over finite Galois extensions of K inside K. Since a
complex representation of a profinite group is trivial on an open subgroup, we see
that an Artin representation of K can be regarded simply as a finite-dimensional
complex representation of Gal(L/K) for some finite Galois extension L of K, and
this is the point of view that we shall usually adopt.

Consider then a finite Galois extension L of K, a finite-dimensional complex
vector space V , and an Artin representation ρ : Gal(L/K) → GL(V ). The associ-
ated Artin L-function L(s, ρ) is an Euler product over the nonzero prime ideals p
of K,

L(s, ρ) =
∏
p

Bp((Np)−s)−1,(3.1)

where Bp(x) ∈ C[x] is a polynomial with constant term 1. It will be clear from
the definition of Bp(x) that the roots of Bp(x) are roots of unity, and from this it
follows that the right-hand side of (3.1) converges for <(s) > 1.

To define Bp(x) for a given p, we fix a prime ideal P of L over p and let D and
I be the corresponding decomposition and inertia subgroups of Gal(L/K). Also
write l and k for the residue class fields of P and p respectively. The natural action
of D(P) on l induces an isomorphism of D/I onto Gal(l/k), and the latter group
has a canonical generator, the Frobenius automorphism x 7→ x|k|. By a Frobenius
element at P we mean an element σ ∈ D such that the coset σI is mapped to
the Frobenius element of Gal(l/k). While it is only σI and not σ which is uniquely
determined by P, if we restrict attention to the subspace

V I = {v ∈ V : ρ(i)(v) = v for all i ∈ I}(3.2)

of inertial invariants then we obtain a well-defined linear automorphism ρ(σ)|V I of
V I . We set Bp(x) = xdimV P (x−1), where P (x) is the characteristic polynomial of

43
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ρ(σ)|V I . In other words,

Bp(x) = det(1− xρ(σ)|V I).(3.3)

Of course I is trivial unless p is ramified in L, and if I is trivial then V I = V . It
follows that the degree of Bp(x) is 6 dimV for all p and is equal to dimV for all
but finitely many p.

All of this appears to depend on our choice of P over p, but if we make a different
choice, say P′, then there is an element g ∈ Gal(L/K) such that P′ = g(P), and
then D, I, σ, and V I are replace by gDg−1, gIg−1, gσg−1 and gV Ig−1 respectively.
Since characteristic polynomials are similarity invariants, (3.3) is unchanged.

For the same reason, it is meaningful to define ρ to be unramified at p if ρ is
trivial on I, for then it is trivial on gIg−1 for all g ∈ Gal(L/K). If ρ is nontrivial
on I then ρ is ramified at p.

So far the discussion has been confined to the finite places ofK. We shall discuss
the L-factors of ρ at the infinite places in a more general context later on, but the
notion of ramification at the infinite places fits well here, because I has a natural
analogue, namely the group of order two generated by complex conjugation. More
precisely, given a real place v of K such that the places of L over v are complex,
we say that ρ is ramified at v if ρ is nontrivial on one (hence on any) of the
complex conjugations in Gal(L/K) corresponding to v. If v remains real in L, or if
v becomes complex in L but ρ is trivial on the resulting complex conjugations, or
if v is a complex place of K to begin with, then ρ is unramified at v.

If S is any set of places of K then we say that ρ is unramified outside S if
ρ is unramified at every place v /∈ S. For example, if S contains all of the places
of K which ramify in L then ρ is unramified outside S. In particular, an Artin
representation is always unramified outside a finite set of places.

1.1. Idele class characters of finite order as one-dimensional Artin rep-
resentations

The phrase finite order is crucial here. Idele class characters (or primitive Hecke
characters) of infinite order do not give rise to Artin representations. However there
is a canonical bijection χ 7→ χArt from idele class characters of K of finite order to
one-dimensional Artin representations. It arises from the Artin isomorphism (or
reciprocity law isomorphism)

(∗,Kab/K)A : C/D −→ Gal(Kab/K),(3.4)

where C is the idele class group of K and D is the closure of the image in C of
the subgroup Rr1+ × (C×)r2 of (R⊗Q K)×. A character of R+ or C× of finite order
is trivial, and consequently an idele class character of finite order is trivial on D.
Conversely, every character of Gal(Kab/K) has finite order, so it follows from (3.4)
that the idele class characters of K of finite order are precisely the characters of
C/D. Hence we can define χ 7→ χArt by the requirement

χArt((x,Kab/K)A) = χ(x) (x ∈ A×).(3.5)

Actually the convention adopted in the more recent literature is to precompose
with x 7→ x−1:

χArt((x,Kab/K)A) = χ(x−1) (x ∈ A×);(3.6)

cf. [14], [62]. We shall refer to (3.5) and (3.6) as the arithmetic convention and
the geometric convention respectively. As we shall explain later, there are good
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reasons for preferring one convention or the other, depending on the context. By
defining Bp(x) as in (3.3) we have implicitly chosen the more traditional arithmetic
convention, for otherwise we would have replaced σ by σ−1 in (3.3). In other words,
the geometric convention for Bp(x) is

Bp(x) = det(1− xρ(Φ)|V I),(3.7)

where Φ is an inverse Frobenius element at p, the inverse of a Frobenius element.
While we are still on the topic of Artin L-functions we will continue to follow the
arithmetic convention, but once we start to look at more general motivic L-functions
we will make a permanent switch to the geometric convention, for reasons to be
discussed later.

Returning to the theme of idele class characters of finite order as Artin rep-
resentations, we must confess that what is useful to us right now is not the map
χ 7→ χArt but rather its inverse. Given a one-dimensional Artin representation ρ,
let us write χρ for the idele class χ such that ρ = χArt. We would like to describe
χρ as a primitive Hecke character. To do so, we first recall how (3.4) is defined on
the level of ideals.

Let L be the fixed field of the kernel of ρ, and view ρ as a faithful character of
Gal(L/K). We consider integral ideals f of K with the property that a prime ideal of
K divides f if and only it ramifies in L. In other words, DL/K |f∞ and fD∞L/K , where
DL/K is the relative different ideal of L/K. Given a prime ideal p ∈ I(f) and a
prime ideal P of L above p, we can speak of the Frobenius element σP ∈ Gal(L/K)
determined by P, because the inertia subgroup I ⊂ Gal(L/K) corresponding to P
is trivial. In fact we can speak of the Frobenius element σp ∈ Gal(L/K) determined
by p, because Gal(L/K) is by assumption abelian, and consequently gσPg

−1 = σP

for all g ∈ Gal(L/K). We can now define the Artin symbol (∗, L/K) on prime
ideals by setting

(p, L/K) = σp.(3.8)

Since I(f) is the free abelian group on the prime ideals it contains, the map p 7→ σp

extends uniquely to a homomorphism (∗, L/K) : I(f) → Gal(L/K), the adelized
version of which is (3.4).

Coming back to our one-dimensional representation ρ of Gal(L/K), we set

χρ(a) = ρ((a, L/K)) (a ∈ I(f)).(3.9)

The basic theorems of class field theory imply that if f is chosen correctly then
χρ is a primitive Hecke character of conductor f and that the map ρ 7→ χρ is a
bijection from the set of one-dimensional Artin representations of K to the set of
Hecke characters of K of finite order. Furthermore, on comparing the definitions
(1.18) and (3.1) of the respective L-functions we see that

L(s, ρ) = L(s, χρ)(3.10)

Here we are following the arithmetic convention, but in fact (3.10) holds with the
geometric convention as well, because of the double inversion: not only is (3.3)
replaced by (3.7) but also (3.9) is replaced by

χρ(a) = ρ((a, L/K)−1) (a ∈ I(f)),(3.11)

this being the analogue of (3.6) on the level of ideals.
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1.2. Basic properties
Almost anything one does with Artin L-functions depends on three basic properties.
The first is additivity: If ρ and ρ′ are representations of Gal(L/K) then

L(s, ρ⊕ ρ′) = L(s, ρ)L(s, ρ′).(3.12)

This is immediate from the additivity of the characteristic polynomial and the
additivity of the map V 7→ V I .

The second property, which is trickier to prove, is inductivity. If M is an in-
termediate field of the Galois extension L/K and ϕ is a representation of Gal(L/M),
let indM/Kϕ denote the representation of Gal(L/K) induced by ϕ. Then

L(s, indM/Kϕ) = L(s, ϕ).(3.13)

Note that the left-hand side is an Artin L-function of K while the right-hand side
is an Artin L-function of M .

The third property is compatibility in dimension one: If dimρ = 1 and χρ
is the corresponding Hecke character of finite order then

L(s, ρ) = L(s, χρ).(3.14)

This property has already been noted, and it depends on choosing the arithmetic
convention (3.9). If instead we choose the geometric convention (3.11) then the
right-hand side of (3.14) would be replaced by L(s, χρ).

There is actually a fourth property of Artin L-functions which fits here, their
invariance under inflation, even though it is more a property of the Artin symbol
itself than of the L-function. Suppose that M is an intermediate field of the finite
Galois extension L/K, and let ρ be a representation of Gal(M/K). Then ρ can be
inflated to a representation of Gal(L/K) by composition with the canonical map
Gal(L/K)→ Gal(M/K), and we write inflL/Mρ for the representation of Gal(L/K)
so obtained. Then

L(s, inflL/Mρ) = L(s, ρ).(3.15)

This follows from the fact that if σ ∈ Gal(L/K) is a Frobenius element at a prime
ideal P of L then σ|M is a Frobenius element at the prime ideal of M lying below
P. One consequence of (3.15) is that if ρ is presented to us as a representation of
Gal(K/K), then L(s, ρ) is independent of the choice of a finite Galois extension L
of K such that ρ factors through Gal(L/K).

This concludes our recitation of basic properties. The first nontrivial illustra-
tion of them arises from a quadratic extension of number fields L/K. Let 1L denote
the one-dimensional character of the trivial subgroup Gal(L/L) of Gal(L/K), and
let 1K and λ denote respectively the trivial and the nontrivial one-dimensional
characters of Gal(L/K). Then indL/K1L = 1K ⊕ λ, so (3.13) and (3.12) give

L(s, 1L) = L(s, 1K)L(s, λ).(3.16)

Now it is immediate from the definitions that if ρ = 1L then χρ is the trivial Hecke
character of L to the modulus OL, so that L(s, 1L) = ζL(s) by (3.14). Similarly
L(s, 1K) = ζK(s). Furthermore, on combining (3.8) with (3.9) we find that χλ is
the quadratic Hecke character signL/K defined in (2.38). It follows that (3.16) is
simply the relation (2.37).
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2. The functional equation

The preceding example was a warm-up exercise for the task now at hand, which
is to deduce a functional equation for Artin L-functions from the properties listed
above and the known functional equation of Hecke L-functions. The key ingredient
here is Brauer’s induction theorem.

2.1. Derivation of the functional equation from Brauer’s theorem
Given a finite group G, let Groth(G) denote the Grothendieck group of virtual
representations of G over C, and given a genuine representation ρ of G over C,
write [ρ] for its class in Groth(G). Maschke’s theorem implies that the classes [ρ]
with ρ irreducible form a basis for Groth(G) over Z, and Brauer’s theorem tells us
that the classes [ρ] with ρ monomial form at least a spanning set. In fact Brauer’s
theorem asserts that we can restrict our attention to monomial representations
which are induced by one-dimensional characters of elementary subgroups of G,
but this more precise assertion will not be needed in the sequel.

Now take G = Gal(L/K), where L/K is a Galois extension of number fields.
If ρ is any representation of G then by Brauer’s theorem we can write

[ρ] =
∑

(M,ξ)

nM,ξ[indM/Kξ](3.17)

with nM,ξ ∈ Z, where (M, ξ) runs over pairs consisting of an intermediate field
M and a one-dimensional character ξ of Gal(L/M). On the other hand, by virtue
of the additivity property (3.12) we can view L(s, ∗) as defining a homomorphism
from Groth(G) to the multiplicative group of nonzero meromorphic functions on
the right half-plane <(s) > 1. Applying this homomorphism to both sides of (3.17),
we obtain

L(s, ρ) =
∏

(M,ξ)

L(s, indM/Kξ)nM,ξ ,(3.18)

and then the inductivity and compatibility properties (3.13) and (3.14) give

L(s, ρ) =
∏

(M,ξ)

L(s, χξ)nM,ξ .(3.19)

Each L(s, χξ) is a Hecke L-function and so extends to a meromorphic function on
C. Thus (3.19) gives the continuation of L(s, ρ) to a meromorphic function on C.

But we want more: a functional equation. For each pair (M, ξ) in (3.17), put

AM,ξ = DMNf(χξ),(3.20)

and set

A(ρ) =
∏

(M,ξ)

A
nM,ξ
M,ξ .(3.21)

Also set

L∞(s, ρ) =
∏

(M,ξ)

L∞(s, χξ)nM,ξ ,(3.22)

W (ρ) =
∏

(M,ξ)

W (χξ)nM,ξ ,(3.23)
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and

Λ(s, ρ) = As/2L∞(s, ρ)L(s, ρ).(3.24)

We claim that

Λ(s, ρ) = W (ρ)Λ(1− s, ρ∨).(3.25)

This is the desired functional equation of L(s, ρ).
To verify (3.25), one additional remark is needed. Of course to define Λ(s, ρ∨)

we simply apply the same procedure to ρvee as we applied to ρ, starting with the
decomposition (3.17) in Groth(G). The remark is that dualization is a well-defined
operation on Groth(G) and commutes with induction, so that taking duals of both
sides of (3.17) gives

[ρ∨] =
∑

(M,ξ)

nM,ξ[indM/Kξ](3.26)

Also χξ = χξ. Hence formulas (3.18) through (3.24) give not only

Λ(s, ρ) =
∏

(M,ξ)

Λ(s, χξ)nM,ξ ,(3.27)

but also, after the appropriate substitutions,

Λ(s, ρ∨) =
∏

(M,ξ)

Λ(s, χξ)nM,ξ .(3.28)

In view of (3.27), (3.28), and (3.23), we obtain the functional equation (3.25) by ap-
plying Hecke’s functional equation (Theorem 2.1) to the individual factors Λ(s, χξ).

2.2. Dependence on Brauer’s theorem
The functional equation (3.25) is a relation between the four quantities L(s, ρ),
L∞(s, ρ), A(ρ), and W (ρ). It is time to look more closely at the definitions of these
quantities and to distinguish between those that are “Brauer-dependent” – in other
words, dependent on an expression for [ρ] like (3.17) – and those that are not. The
definition of L(s, ρ) itself is of the latter type: It is both Brauer-independent and
local in the sense that (3.1) makes no reference to Brauer’s theorem and expresses
L(s, ρ) as a product of local factors (3.3) defined in an intrinsic way. The same is
true of A(ρ) and L∞(ρ), although so far we have given only the Brauer-dependent
global definitions (3.21) and (3.22) . However in the case of W (ρ) no Brauer-
independent definition is known. At first this may not appear to be problematic.
After all, even though the decomposition (3.17) of [ρ] is not unique, the resulting
expression (3.23) for W (ρ) has to be independent of the decomposition because
the functional equation (3.25) can’t hold with two different values of W (ρ). But
the problem is that the Brauer-dependent definition is not local. Sure, each factor
W (χξ) in (3.23) can be written as a product of local root numbers, but in dimension
> 1 there is no known analogue of Tate’s local functional equation (at least none
on the Galois as opposed to automorphic side), so even if one decomposes each
W (χξ) in (3.23) into local factors and reassembles the local factors corresponding
to a given place v it is not a priori clear that the resulting local root number
W (ρv) is independent of the decomposition of [ρ]. That it is in fact possible to
define root numbers purely locally is a theorem of Langlands and Deligne [14], a
full appreciation of which depends on passing to a more general framework.
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3. Compatible families

The L-function of an elliptic curve without complex multiplication is neither a
Hecke L-function nor an Artin L-function, and for this reason alone we need to
broaden the discussion. The L-functions associated to the “compatible families” to
be discussed next include all L-functions of elliptic curves, all Artin L-functions,
and much else. In particular, since they include all L-functions of elliptic curves
and all Artin L-functions they also include the Hecke L-functions attached to Hecke
characters of type (1,0) of imaginary quadratic fields as well as all Hecke characters
of finite order. However they do not include all Hecke L-functions: the L-functions
of “nonalgebraic” Hecke characters like (2.63) will now fall by the wayside.

3.1. `-adic representations
Until now, all representations have been representations over C. Now we consider
representations with field of scalars Q`, where ` is a prime number. Such a repre-
sentation is called an `-adic representation.

Let K be a number field. A key difference between a complex representation
of Gal(K/K) and an `-adic representation of Gal(K/K) is that the latter need
no longer factor through the Galois group of a finite Galois extension of K. In
particular, if ρ` is an `-adic representation of Gal(K/K) then it is a priori possible
that infinitely many prime ideals of K ramify in the fixed field of the kernel of
ρ`. Nonetheless, given a prime ideal p of K we can choose a prime ideal P of K
over p and speak of the associated the inertia subgroup I ⊂ Gal(K/K) and the
associated set σI of Frobenius elements, where σ ∈ Gal(K/K) is any individual
Frobenius element. If P′ is another prime ideal of K over p and I ′ and σ′ are the
analogues of I and σ then there is an element of Gal(K/K) which conjugates P to
P′, I to I ′, and σ to σ′. Thus a number of definitions previously made for Artin
representations go through without change: The representation ρ` is unramified
at p, or at the corresponding finite place, if ρ`(I) = {1}, and if S is a finite set of
places of K then χ is unramified outside S if it is unramified at each finite place
of K not in S. One slight divergence from the analogy with Artin representations
is that one does not usually refer to an `-adic representation as being ramified or
unramifed at an infinite place. However if p is any prime ideal of K not dividing `
then by analogy with (3.7) we set

Bp(x) = det(1− xρ`(Φ)|V I` ) (p - `),(3.29)

where Φ is an inverse Frobenius element at p, V` is the space of ρ`, and V I` is the
subspace of inertial invariants (defined as in (3.2) but with V and ρ replaced by V`
and ρ`). Note that we are following the geometric convention here, as we shall do
consistently from now on. If we were to follow the arithmetic convention then the
formula would be

Bp(x) = det(1− xρ`(σ)|(V`)I) (p - `),(3.30)

where (V`)I is the space of inertial coinvariants, the quotient of V by the subspace
spanned by all expressions of the form v − ρ`(i)v with v ∈ V and i ∈ I. The point
here is that the arithmetic and geometric conventions are in some sense dual to
each other, so that V I` in (3.29) must be replaced by its dual. The reason that
the distinction between V I and VI did not show up already in (3.3) and (3.7) is
that Artin representations are complex representations of a compact group, hence
semisimple, so that V I and VI are isomorphic. In any case the real issue for us is
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that regardless of the convention followed, the coefficients of Bp(x) lie in Q` rather
than C, so that the substitution x = (Np)−s is not a priori meaningful.

Now consider a map which assigns to each rational prime ` an `-adic repre-
sentation ρ` of Gal(K/K). The resulting collection {ρ`}` will usually be denoted
simply {ρ`} and called a family of `-adic representations of Gal(K/K). We
say that the family is fully compatible if the following conditions are satisfied:

(i) There is a finite set S of places of K, independent of `, such that ρ` is
unramified outside the set S ∪ {l : l|`} consisting of the places in S and
the places of K dividing `.

(ii) The polynomial Bp(x) in (3.30), which a priori has coefficients in Q` and
thus depends on the prime ` used to define it, actually has coefficients in
Q and is independent of ` in the sense that Bp(x) is unchanged if ` in
(3.30) is replaced by some other rational prime `′ with p - `′.

Although we have not made it part of the definition, it follows from (i) and (ii) that
the dimension of ρ` is independent of `. Indeed, given a second rational prime `′,
we can choose a prime ideal p of K such that p /∈ S and p - ``′. Then V I` = V` and
V I`′ = V`′ , whence the degree of Bp(x) coincides both with dim(V`) and dim(V`′).

A warning is in order here: The term fully compatible is not a standard term,
and no standard term for the concept just defined seems to exist in the literature.
The usual term is strictly compatible, but this is a slightly weaker notion: For
strict compatibility the Bp(x) is required to be independent of ` only for p not in
S. There is also mere compatiblity, an even weaker concept; see Serre [54], pp. I-10
– I-11. While the concept that we have dubbed full compatibility may lack a widely
accepted name, the concept itself is all over the literature; see for example [17],
[52], and [53]. Fortunately, standard terms do exist for two other concepts needed
here: The representation ρ` is integral if the coefficients of Bp(x) are rational
integers, and the minimal set S satisfying (i) is the exceptional set of the family.

The simplest example of a fully compatible family of `-adic representations of
Gal(K/K) is the one-dimensional family {ω`} of `-adic cyclotomic characters. Here
ω` : Gal(K/K)→ Z

×
` is defined by the condition

σ(ζ) = ζω`(σ),(3.31)

where σ denotes an arbitrary element of Gal(K/K) and ζ an arbitrary root of unity
of `-power order. The exceptional set S is the empty set.

Another example is afforded by the Tate modules of any elliptic curve E over
K. The natural action of Gal(K/K) on T`(E) extends to a representation ρE,` of
Gal(K/K) on the space V` = Q`⊗Z` T`(E), and the resulting family {ρE,`} is fully
compatible. In this case S consists of the places of K where E has bad reduction.

We remark that because we are following the geometric convention (3.29), nei-
ther the family {ω`} nor the family {ρE,`} is integral. In general, the main source
of strictly compatible families of integral `-adic representations of Gal(K/K) is the
`-adic cohomology of smooth projective varieties over K, but while it is conjectured
that these families are always fully compatible, this is not known.

3.2. λ-adic representations
If χ is a Dirchlet character of order > 3 then there are infinitely many ` such
that the values of χ do not lie in Q`, but we would nonetheless like to associate a
compatible family to χ and indeed to any Artin representation. A similar comment
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applies to Hecke characters of imaginary quadratic fields. Thus we need to expand
our notion of a compatible family slightly.

Let E be a number field and λ a finite place of E. A representation with
field of scalars Eλ is called a λ-adic representation. Thus a family of λ-adic
representations of Gal(K/K) is a collection {ρλ}λ indexed by the finite places of
E, where ρλ is a λ-adic representation of Gal(K/K). We usually drop the external
index and write simply {ρλ}. If p is a prime ideal of K which does not divide the
residue characteristic of Eλ then by analogy with formula (3.29) we set

Bp(x) = det(1− xρλ(Φ)|V Iλ ) (p - `),(3.32)

where Vλ is the space of ρλ. Of course if we were following the arithmetic convention
then we would put

Bp(x) = det(1− xρλ(σ)|(Vλ)I) (p - `).(3.33)

We say that the family {ρλ} is fully compatible if two conditions hold:
(i) There is a finite set S of places of K, independent of λ, such that ρλ is

unramified outside the set S∪{l : l|`}, where ` is the residue characteristic
of Eλ.

(ii) The polynomial Bp(x) in (3.33) has coefficients in E and is unchanged if λ
in (3.33) is replaced by λ′, where λ′ is another finite place of E of residue
characteristic not divisible by p.

The representation ρλ is integral if the coefficients of Bp(x) lie in OE, and the
exceptional set of a fully compatible family is the minimal set S satisfying (i).
We refer to the field E as the coefficient field of the compatible family.

Now suppose that ρ is an Artin representation of Gal(K/K). Then ρ is realiz-
able over a number field E. (In fact by a theorem of Brauer ρ is realizable over the
field generated by the mth roots of unity, where m is any exponent for the image
of ρ.) Hence we may take the space of ρ to be a vector space V over E, and by
extension of scalars we get a representation ρλ on Eλ⊗E V for each finite place λ of
E. The resulting family {ρλ} is fully compatible and integral, and its exceptional
set is the set of places where ρ is ramified.

Finally, let K be an imaginary quadratic field, and χ a primitive Hecke char-
acter of K of type (1,0). Let E be the finite extension of K generated by the values
of χ. To obtain a fully compatible family {χλ} of integral λ-adic representations of
Gal(K/K), think of χ as an idele class character. It follows from (2.15) that the
character of A× sending x = (xv)v to χ(x)χ−1

∞ (x∞) takes values in E. Indeed write
x = α ·y · r as in (2.14); then χ(x)χ−1

∞ (x∞) = χ(ay)α−1. Now let λ be a finite place
of E. The place of K below λ will be denoted λ also. Then the formula

χλ(x) = χ(x)χ−1
∞ (x∞)x−1

λ(3.34)

defines a character of A× with values in Eλ. Furthermore, if α ∈ K× then χ(α) = 1
and χ−1

∞ (α∞) = α = αλ, so that the character defined by (3.34) is trivial on
K×. Thus we may view χλ as a continuous homomorphism C → E

×
λ , where C is

the idele class group of K. Since Eλ is totally disconnected, χλ is trivial on D,
the closure of the image in C of Rr1+ × C×r2 , and consequently we may view χλ
as a λ-adic character of C/D. Composing with the inverse of the reciprocity law
isomorphism (3.4) and identifying Gal(Kab/K) with Gal(K/K)ab, we obtain finally
a one-dimensional λ-adic representation χλ : Gal(K/K) → E

×
λ . The exceptional

set of the fully compatible family {χλ} consists of the places dividing f(χ).



52 LECTURE 3. MOTIVIC L-FUNCTIONS

3.3. The L-function of a fully compatible family
Henceforth it will be convenient to view all coefficient fields as subfields of C.
Notationally it is more convenient to associate an L-function to the isomorphism
class of a fully compatible family rather than to the family itself, so a definition
is in order. Let {ρλ} and {ρ′λ′} be fully compatible families of representations of
Gal(K/K) with coefficient fields E and E′ respectively. We say that these two
families are isomorphic if there exists a number field E′′ containing E and E′ such
that for every finite place λ′′ of E′′, the representations ρλ′′ and ρ′λ′′ are isomorphic
over E′′λ′′ . Here ρλ′′ and ρ′λ′′ are the representations over E′′λ′′ obtained by extension
of scalars from ρλ and ρ′λ′ respectively, where λ and λ′ lie below λ′′.

Now let M be the isomorphism class of a fully compatible family of λ-adic
representations of Gal(K/K) with coefficient field E. Since we are viewing E as a
subfield of C, it is clear how to define the L-function of M : By analogy with (3.1),
we put

L(s,M) =
∏
p

Bp((Np)−s)−1,(3.35)

where p runs over the prime ideals of K and Bp(x) is as in (3.33).
The analogy with Artin L-functions extends beyond the definition to include

also the properties of additivity and inductivity. Let M and M ′ be the isomorphism
classes of two fully compatible families {ρλ} and {ρ′λ}, which by extension of scalars
may be assumed to have the same coefficient field. Then M ⊕ M ′ denotes the
isomorphism class of the family {ρλ ⊕ ρ′λ}, and

L(s,M ⊕M ′) = L(s,M)L(s,M ′).(3.36)

On the other hand, let L be a finite extension of K and let M be the isomorphism
class of a fully compatible family {ρλ} of λ-adic representations of Gal(K/L). One
can show that the family {indL/Kρλ} is also fully compatible and that its isomor-
phism class, which we will denote indL/KM , satisfies

L(s, indL/KM) = L(s,M).(3.37)

As in the case of Artin L-functions, (3.36) is immediate from the definitions while
the proof of (3.37) is a bit trickier.

3.4. Examples
We see at once that if M is the isomorphism class of the family {ρλ} coming
from an Artin representation ρ then L(s,M) = L(s, ρ∨), because we followed the
arithmetic convention when defining Artin L-functions. On the other hand, if K
is an imaginary quadratic field and M is the isomorphism class of {χλ} for some
Hecke character χ of K of type (1, 0) then L(s,M) = L(s, χ), because now (3.6)
comes into play as well as the appearance of Φ in place of σ in (3.29).

Now if we start with an elliptic curve E, then there are two families of fully
compatible `-adic representations to consider: the family {ρE,`} afforded by the
Tate modules of E and the family {ρ∨E,`} afforded by the `-adic cohomology groups
H1
` (E), which are dual to the modules V`(E). Denoting the isomorphism classes

of these two families by M and M∨ respectively, we have L(s,M) = L(s,E) if
we follow the arithmetic convention (3.30) and L(s,M∨) = L(s,E) if we follow
the geometric convention (3.29). The point is that ρ∨(Φ)|V Iλ is the transpose of
ρ(σ)|(Vλ)I and so has the same characteristic polynomial. But if we follow the
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arithmetic convention then L(s,M∨) = L(s+ 1, E). The upshot is that if an `-adic
representation comes from `-adic cohomology then the geometric convention is the
natural one. Since `-adic cohomology appears to be the primary source of `-adic
representations, and since the geometric convention predominates in the current
literature anyway, we follow it here.

3.5. Semisimplicity
Let M be the isomorphism class of a fully compatible family {ρλ}. Since character-
istic polynomials are insensitive to semisimplification, L(s,M) is unchanged if the
representations ρλ are replaced by their semisimiplifications. So from this point of
view there is no loss in assuming that the ρλ are semisimple to being with, and in
fact there is something to be gained:

Proposition 3.1. Let {ρλ} be a fully compatible family of semisimple λ-adic repre-
sentations of Gal(K/K), and let M be its isomorphism class. Then M is uniquely
determined by the isomorphism class of any one of the representations ρλ.

Proof. This is a simple consequence of the fact that a semisimple representa-
tion over a field of characteristic 0 is determined up to isomorphism by its character.
Indeed fix places λ and λ′ of the coefficient field E of the family, and given a prime
ideal p of K let Φp ∈ Gal(K/K) be an inverse Frobenius element at p. For all but
finitely many p we have

tr ρλ(Φp) = tr ρλ′(Φp),(3.38)

because both sides coincide with the coefficient of −x in Bp(x). By (3.38), tr ρλ
and tr ρλ′ coincide on a dense subset of Gal(K/K). Since both are continuous each
determines the other. �

Without the semisimplicity assumption the assertion is false. For example, fix
a finite place λ0 of E, and for λ 6= λ0 set ρλ = 1K⊕1K . We can complete {ρλ}λ6=λ0

to a fully compatible family {ρλ} by setting ρλ0 = 1K ⊕ 1K but also by setting

ρλ0(g) =
(

1 logω`0(g)
0 1

)
(g ∈ Gal(K/K)),

where `0 is the residue characteristic of λ0 and log is the `0-adic logarithm on Z`0 .
Of course the associated L-function is ζK(s)2 in both cases.

3.6. Analytic desiderata
Let M be the isomorphism class of a fully compatible family of λ-adic representa-
tions of Gal(K/K) with coefficient field E and exceptional set S. It is not at all
clear that the Euler product defining L(s,M) converges in some right half-plane,
and without this property L(s,M) is of no use to us. Hence we consider a condi-
tion on the reciprocal roots of Bp(x), in other words the numbers α ∈ C such
that Bp(α−1) = 0 (recall that Bp(x) has constant term 1, so that 0 is not a root).
Actually we consider two conditions: one for p not belonging to the exceptional set
S of M , and an auxiliary condition for p ∈ S. Fix w ∈ Z. The respective conditions
are

|ι(α)| = (Np)w/2 (p /∈ S)(3.39)

for all field automorphisms ι of C, and

|ι(α)| = |ι′(α′)| 6 (Np)w/2 (p ∈ S)(3.40)
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for any two reciprocal roots α and α′ of Bp(x) and any two field automorphisms ι
and ι′ of C. Thus if p ∈ S then we specify only an upper bound for |ι(α)|, not the
exact value, but we require that the exact value be the same for all reciprocal roots
and all field automorphisms. If M satisfies both (3.39)and (3.40) then we say that
M has weight w.

If M has weight w then the Euler product defining L(s,M) converges for <(s) >
w/2+1. Of course this would be true even if we required (3.39) and (3.40) only for ι
equal to the identity automorphism, but by allowing ι ∈ Aut(C) to be arbitrary, we
compensate for the fact that we have fixed an embedding of E in C. It is convenient
to do so, but we do not want our definition of “weight” to depend on the choice of
embedding.

To recapitulate, if M has a weight then the Euler product for L(s,M) does
converge in some right half-plane. But we also want an analytic continuation and
functional equation, and to formulate the latter we need some terminology for
gamma factors. By a gamma factor of weight w over K we mean a product

γ(s) =
∏
v|∞

γv(s),(3.41)

where γv(s) is a gamma factor of weight w over Kv. The latter concept is defined
as follows.

If w is odd, or if w is even and Kv
∼= C, then a gamma factor of weight w over

Kv is a product of the form

γv(s) =
∏

p+q=w
q>p>0

ΓC(s− p)h
pq

,(3.42)

where p and q are nonnegative integers satisfying the stated conditions and the
exponents hpq are nonnegative integers. Of course if w is odd then the condition
q > p > 0 can be replaced by q > p > 0.

If w is even and Kv = R then a gamma factor of weight w over Kv is a product
of the form

γv(s) = ΓR(s− w/2)h
w/2+

· ΓR(s− w/2 + 1)h
w/2−

·
∏

p+q=w
q>p>0

ΓC(s− p)h
pq

,(3.43)

where as before, p and q are nonnegative integers satisfying the stated conditions
and the exponents hw/2+, hw/2−, and hpq are all nonnegative integers.

3.7. Duality
To state a functional equation we need not only gamma factors but also a notion
of duality. This is straightforward: If M is the isomorphism class of {ρλ} then
the dual M∨ of M is the isomorphism class of {ρ∨λ}. Given r ∈ Z, we define the
r-fold Tate twist M(r) of M to be the isomorphism class of {ρλ⊗ωr`}, where the
tensor product of ρλ with the `-adic cyclotomic character ω` is formed by viewing
the latter as a representation over Eλ. Now if M has weight w then we put

M = M∨(−w)(3.44)

and call M essentially self-dual if M ∼= M . The notation M seems reasonable,
because if α1, α2, . . . , αn are the reciprocal roots of Bp(x) in C, listed with their
multiplicities, then the reciprocal roots of the counterpart of Bp(x) for M∨(−w)
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are the numbers α−1
j · (Np)w with 1 6 j 6 n. But α−1

j = αj/|αj |2 = αj/(Np)w by
(3.39), at least if p /∈ S, so

α−1
j · (Np)w = αj (p /∈ S).(3.45)

The notation for the left-hand side of (3.44) is meant to remind us of (3.45).
To illustrate the definitions, let K be an imaginary quadratic field and consider

a primitive Hecke character χ of K of type (1,0). Let M ′(χ) be the isomorphism
class of the associated one-dimensional family {χλ}. Then M ′(χ) is of weight one
by (1.30), but χ 6= χ and consequently M ′(χ) is not essentially self-dual. But put

M(χ) = indK/QM ′(χ).(3.46)

If χ is equivariant in the sense that it satisfies the identity χ(a) = χ(a) then one
readily verifies that M(χ) is essentially self-dual of weight 1. In particular this is
the case if χ ∈ X(D), by Proposition 1.7. And since L(s,M(χ)) coincides by (3.37)
with L(s,M ′(χ)) and hence with L(s, χ), Theorem 1.2 remains valid with L(s, χ)
replaced by L(s,M(χ)).

3.8. An algebraic desideratum
The property that we have called “full compatibility” makes it possible to define
L(s,M) but not to give a purely algebraic definition of the associated root number
W (M). To rectify this shortcoming, let {ρλ} be any representative of M and E
its coefficient field. We will say that M satisfies Condition C8 if the following
property holds. Let p be a prime ideal of K, and D and I the decomposition and
inertia subgroups of Gal(K/K) associated to a prime ideal P of K over p. Suppose
that g ∈ D is an element such that the coset of g in D/I coincides with the coset
of σn for some Frobenius element σ at P and some n ∈ Z. Then we require that
the characteristic polynomial of ρλ(g) have coefficients in E and be independent of
λ for all finite places λ of E such that p - `, where ` is the residue characteristic
of λ. The reason for referring to this property as “Condition C8” is that it is so
labeled in Serre [53]. We could also have referred to Problem 2 on p. 514 of Serre
and Tate [55]. Note that Condition C8 neither supersedes nor is superseded by
full compatibility, because if p belongs to the exceptional set S then Condition C8

pertains to ρλ(g) itself whereas full compatibility pertains to the restriction of ρλ(g)
to the space of inertial invariants.

4. Premotives

We come now to the main point. Let M be the isomorphism class of a fully
compatible family of semisimple integral λ-adic representations of Gal(K/K). We
call M a premotive of weight w over K if three conditions are satisfied:

(i) M has weight w and satisfies condition C8.
(ii) L(s,M) extends to a meromorphic function on C which is entire if w is

odd and holomorphic everywhere except possibly at s 6= w/2 + 1 if w is
even.

(iii) There is a positive integer A(M), a constant W (M) ∈ C of absolute value
1, and a gamma factor γ(s) of weight w over K such that

Λ(s,M) = W (M)Λ(k − s,M)

with Λ(s,M) = A(M)s/2γ(s)L(s,M), Λ(s,M) = A(M)s/2γ(s)L(s,M),
and k = w + 1.
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If M is a premotive of weight w then the integrality of the underlying represen-
tations ρλ implies that w > 0. We could broaden the definition to allow premotives
of negative weight by declaring that M((r − w)/2) has weight w < 0 if M is a
premotive of weight r > 0 with r ≡ w mod 2. However premotives of negative
weight will play no role in what follows.

The definition of “premotive” given above does not make the quantities A(M),
W (M), and γ(s) explicit. Nonetheless, they are uniquely determined by the defi-
nition in the following sense:

Proposition 3.2. If ˜A(M) is a positive integer, W̃ (M) ∈ C a constant of absolute
value 1, and γ̃(s) a gamma factor of weight w over K such that

Λ̃(s,M) = W̃ (M)Λ̃(k − s,M)

with Λ̃(s,M) = Ã(M)s/2 ·γ̃(s)·L(s,M) and Λ̃(s,M) = Ã(M)s/2 ·γ̃(s)·L(s,M),
then Ã(M) = A(M), W̃ (M) = W (M), and γ̃(s) = γ(s).

Proof. Taking the ratio of the two functional equations, we obtain

(A(M)/Ã(M))s/2
γ(s)
γ̃(s)

= (W (M)/W̃ (M))(A(M)/Ã(M))(k−s)/2 γ(k − s)
γ̃(k − s)

.(3.47)

Now it follows from the formulas (3.42) and (3.43) that the left-hand side of (3.47)
is holomorphic and nonvanishing for <(s) > [w/2] and the right-hand side for
<(s) < k − [w/2]. Since k = w + 1 we have [w/2] < k − [w/2] and consequently
both sides of (3.47) are entire and nonvanishing. Thus γ(s)/γ̃(s) is entire and
nonvanishing. If w is odd then γ(s)/γ̃(s) has the form

∏(w−1)/2
p=0 ΓC(s − p)np with

np ∈ Z, and the fact that γ(s)/γ̃(s) is holomorphic and nonzero at s = (w − 1)/2
shows that np = 0 for p = (w − 1)/2. Applying this argument inductively we find
that np = 0 for 0 6 p 6 (w − 1)/2, whence γ̃(s) = γ(s). If n is even we use
the duplication formula to write γ(s)/γ̃(s) in the form

∏w/2
p=−1 ΓR(s − p)np , and a

similar argument again gives γ̃(s) = γ(s). Thus in both cases we conclude that
(A(M)/Ã(M))s = (W (M)/W̃ (M))(A(M)/Ã(M))k/2 for all s, whence Ã(M) =
A(M) and W̃ (M) = W (M). �

5. An open problem

The term premotive was just an expository device enabling us to talk about mo-
tivic L-functions without first talking about motives, but the choice of terminology
suggests a question:

Does every premotive come from a motive?
This is not a new question. In fact a stronger version of it appears as Question 2 on
p. I-12 of Serre [54], and the Fontaine-Mazur conjecture [20], while concerned with
different issues, also implies a statement about the provenance of fully compatible
families which is in most respects much stronger than what we are asking for (see
the discussion on pp. 196 – 197 of [20]). Furthermore, the converse of the open
problem is also a well-known open problem. In other words, if we start with a pure
motive M of weight w then it is not known in general that M is a premotive of
weight w in our sense, because the analytic continuation and functional equation
of L(s,M) are not known. For that matter the full compatibility (as opposed to



DAVID E. ROHRLICH, PCMI LECTURE NOTES 57

the strict compatibility) of the family of λ-adic representations attached to M is
not known in general either, nor is the semisimplicity of the representations ρλ.

Thus the purpose of raising the above question is not so much to draw attention
to a problem that is already well known, but rather to justify the coinage “premo-
tive” and the use of the term motivic L-function for the L-function associated to a
premotive. By postulating a connection with motives we also justify the notations
hpq and hp± in (3.42) and (3.43), because if M does come from a motive then the
gamma factor L∞(s,M) of L(s,M) is given by (3.41) with hpq and hp± equal to
the usual Hodge numbers; cf. [16], p. 329. More precisely, hpq is the usual Hodge
number and hp± is the multiplicity of the eigenvalue (−1)p(±1) of the “Frobenius
at infinity” – in other words, of complex conjugation – on Hpp.

That said, we will continue to try to get as much information as possible from
the family of λ-adic representations itself without reference to a possible underlying
motive. In particular, we would like to write A(M) and W (M) as products of local
factors. The first step is to introduce the local Weil and Weil-Deligne groups and
show how a premotive M gives rise to a local representation over C at every finite
place.

6. The local Weil and Weil-Deligne groups

We switch temporarily from a global setting to a local nonarchimedean setting.
Thus K is now a finite extension of Qp with p < ∞. We write O for the ring
of integers of K and π for a uniformizer of O, and we put q = |O/pO|. The
maximal unramified extension of K inside K will be denoted Kunr, and any element
σ ∈ Gal(K/K) which reduces to the map x 7→ xq on O/πO will be called a
Frobenius element of Gal(K/K). The symbol Φ denotes the inverse of a Frobenius
element, and I is the inertia group Gal(K/Kunr).

6.1. The Weil group
As an abstract group, the Weil group W(K/K) of K is the union of the cosets of
I represented by powers of a Frobenius element:

W(K/K) =
⋃
n∈Z

σnI.(3.48)

Since I is normal in Gal(K/K), the union is a subgroup of Gal(K/K), and since any
two Frobenius elements differ by an element of I the definition (3.48) is independent
of the choice of σ. We topologize W(K/K) by imposing two requirements:

• I is open in W(K/K), and the relative topology on I from W(K/K)
coincides with its relative topology from Gal(K/K).
• For every g ∈ W(K/K), the map x 7→ gx is a homeomorphism from

W(K/K) to itself.

These conditions determine a unique topology on W(K/K) making W(K/K) into
a topological group. The most important property of this topology, immediate from
its definition, is that an abstract group homomorphism from W(K/K) into another
topological group is continuous if and only its restriction to I is continuous. We
also note that if L is a finite extension of K inside K then W(K/L) is an open
subgroup of W(K/K) just as Gal(K/L) is an open subgroup of Gal(K/K), and if
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L is Galois over K then there are identifications

W(K/K)/W(K/L) ∼= Gal(K/K)/Gal(K/L) ∼= Gal(L/K).(3.49)

However the open subgroups of Gal(K/K) are precisely the subgroups Gal(K/L)
with L finite over K, whereas the subgroups W(K/L) of W(K/K) are merely the
open subgroups of finite index.

A character of W(K/K) is unramified if its restriction to I is trivial. Of
particular importance is the unramified character ω of W(K/K) such that ω(σ) =
q. The similarity to the notation ω` for the `-adic cyclotomic character is not
coincidental. We introduced ω` as a character of a global Galois group, but if we
restrict to a decomposition group then we obtain a character of our local Galois
group Gal(K/K). Restricting further to W(K/K), and making the assumption
` 6= p, we get our present ω, because both ω and ω`|W(K/K) are unramified
characters taking the value q on Frobenius elements. We may think of ω as the
prime-to-p cyclotomic character.

We write W(K/K)ab for the quotient of W(K/K) by the closure of its com-
mutator subgroup, or equivalently for the quotient of W(K/K) by Gal(K/Kab) ∩
W(K/K). The latter description realizes W(K/K)ab as a subgroup of Gal(Kab/K),
and we shall denote this subgroup W(Kab/K). One pleasant feature of W(K/K)
that distinguishes it from Gal(K/K) is that the local reciprocity law homo-
morphism x 7→ (x,Kab/K) from K× to W(Kab/K) is an isomorphism rather
than merely an injective homomorphism with dense image. This means in par-
ticular that the one-dimensional characters of K× can be identified with those of
W(K/K). Since we are now following the ”geometric convention,” the identification
takes the form

χ((x,Kab/K)) = χ(x−1) (x ∈ K×).(3.50)

For example, when the prime-to-p cyclotomic character ω of W(K/K) is viewed as
a character of K× it coincides with || ∗ ||, the local norm on K×.

6.2. The Weil-Deligne group
Our point of view with regard to the Weil-Deligne group WD(K/K) of K will
in the first instance be tannakian: Instead of defining WD(K/K) itself we define
its representations. By definition, a representation of WD(K/K) is a pair ρρρ =
(ρ,N), where ρ is a representation of W(K/K) and N is a nilpotent endomorphism
of the space of ρ satisfying the relation

ρ(g)Nρ(g)−1 = ω(g)N(3.51)

for g ∈ W(K/K). Henceforth representations of W(K/K) are to be viewed as
a special case of representations of WD(K/K), namely the case N = 0. In other
words, we identify a representation ρ of W(K/K) with the representation ρρρ = (ρ, 0)
of WD(K/K).

The L-factor of a representation of WD(K/K) over C is defined as follows. Let
ρρρ = (ρ,N) be the representation, V its space,and VN the kernel of N , and put

V IN = V I ∩ VN .(3.52)
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The relation ρ(g)N = ω(g)Nρ(g) for g ∈ W(K/K) shows that V IN is stable under
ρ, and the L-factor associated to ρρρ is the meromorphic function

L(s,ρρρ) = det(1− q−sρ(Φ)|V IN ),(3.53)

where Φ ∈ W(K/K) is an inverse Frobenius element. Since V IN is a subspace of
the space of inertial invariants of ρ, the definition of L(s,ρρρ) is independent of the
choice of Φ.

The following simple remark will be needed later and for the moment can serve
to illustrate the definitions. We say that two endomorphisms of a finite-dimensional
vector space V are simultaneously triangularizable if there is a basis for V
relative to which both endomorphisms are represented by upper triangular matrices.

Proposition 3.3. Let ρρρ = (ρ,N) be a representation of WD(K/K) over C and g
any element of W(K/K). Then ρ(g) and N are simultaneously triangularizable.

Proof. This is a straightforward generalization of the standard proof that
commuting matrices are simultaneously triangularizable. In fact let V be a finite-
dimensional vector space over an algebraically closed field, and let A and N be
endomorphisms of V satisfying AN = cNA with a nonzero scalar c. Suppose N is
nilpotent and let VN denote its kernel. We prove that A and N are simultaneously
triangularizable by induction on the dimension of V . If dimV = 1 there is nothing
to prove. If dimV = n > 2 then we use the identity AN = cNA, which shows
that VN is stable under A. Furthermore VN 6= {0} because N is nilpotent. Let
v1 ∈ VN be a nonzero eigenvector of A and W its span. Applying the inductive
hypothesis to the endomorphisms of V/W determined by A and N , we obtain a
basis v2+W, v3+W, . . . , vn+W for V/W relative to which the latter endomorphisms
are upper-triangular, and then v1, v2, . . . , vn do the same for A and N . �

6.3. The Weil-Deligne group and the standard operations of representa-
tion theory

Since a representation of WD(K/K) as defined above is not quite a group repre-
sentation in the usual sense, we should be clear on how the standard operations of
representation theory work for representations of WD(K/K).

If ρρρ′ = (ρ′, N ′) is another representation of WD(K/K) then we define the
direct sum of ρρρ and ρρρ′ by

ρρρ⊕ ρρρ′ = (ρ⊕ ρ′, N ⊕N ′)(3.54)

and their tensor product by

ρρρ⊗ ρρρ′ = (ρ⊗ ρ′, N ⊗ 1′ + 1⊗N ′),(3.55)

where 1 and 1′ denote the identity automorphism of the space of ρρρ and ρρρ′ respec-
tively.

In particular, if ρ is a representation over C then for c ∈ C we have

ρρρ⊗ ωc = (ρ⊗ ωc, N).(3.56)

This follows from (3.55) in view of our identification of ω with ωωω = (ω, 0).
Let ρρρ and ρρρ′ be arbitrary representations of WD(K/K) again. We define an

intertwining map or homomorphism of representations from ρρρ to ρρρ′ to be a
linear map T from the space of ρρρ to the space of ρρρ′ which intertwines ρ with ρ′ and
N with N ′: In other words, T ◦ ρ = ρ′ ◦ T and TN = NT ′. An intertwining map
which is a linear isomorphism is an isomorphism of representations.
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Next we consider operations on a single representation ρρρ. The dual ρρρ∨ of ρρρ is
defined by

ρρρ∨ = (ρ∨,−N∨),(3.57)

where N∨ is the transpose of N : If V is the space of ρρρ and V ∨ the space of linear
forms on V then N∨(f) = f ◦N for f ∈ V ∨.

If L is a finite extension of K inside K then we define the restriction of ρρρ to
WD(K/L) by

resL/Kρρρ = (resL/Kρ,N),(3.58)

where resL/Kρ = ρ|WD(K/L).
Finally, let us change notation slightly and take ρρρ to be a represe ntation of

WD(K/L), where L is a finite extension of K as before. We would like to define
the induced representation indL/Kρρρ of WD(K/K). To do so, let V be the space
of ρρρ and put G = WD(K/K) and H = WD(K/L). Then ρ makes V into an H-
module, and the space C[G] ⊗C[H] V (or the analogous space with C replaced by
the appropriate field of scalars) is a standard model for the space of indL/Kρ. We
set

indL/Kρρρ = (indL/Kρ, ω−1 · (1⊗N)),(3.59)

where the endomorphism ω−1 · (1⊗N) of C[G]⊗C[H] V is defined by its effect on
pure tensors:

ω−1 · (1⊗N)(g ⊗ v) = ω−1(g)(g ⊗Nv)(3.60)

for g ∈ G and v ∈ V .
To carry out the verifications associated with (3.59) and (3.60), it is helpful

to put a subscript on ω: Our current ω is ωK , and the prime-to-p cyclotomic
character of W(K/L) will be denoted ωL. The relationship between them is that
ωK |W(K/L) = ωL. To see that ω−1 · (1 ⊗ N) is well defined, we must examine
(3.60) when g ⊗ v is rewritten as gh ⊗ ρ(h)−1g with h ∈ H. According to (3.60),
we get

ω−1 · (1⊗N)(gh⊗ ρ(h)−1g) = ω−1
K (gh)(gh⊗Nρ(h)−1).(3.61)

Since gh⊗Nρ(h)−1 = g ⊗ ωL(h)N we see that (3.61) does give the same result as
(3.60).

Now put ϕϕϕ = indL/Kρρρ, ϕ = indL/Kρ, and M = ω−1 · (1⊗N). To verify that ϕϕϕ
satisfies the required identity ϕ(g)Mϕ(g)−1 = ωK(g)M for g ∈ G, we compare the
effect of both sides on pure tensors. Since ϕ(g)−1(g′⊗v) = (g−1g′⊗v), (3.60) gives
Mϕ(g)−1(g′ ⊗ v) = ωK(g′)−1ωK(g)(g−1g′ ⊗Nv), whence ϕ(g)Mϕ(g)−1(g′ ⊗ v) is
indeed ωK(g)M(g′ ⊗ v).

This completes our discussion of the standard operations. We’ll let the cat out
of the bag now and define WD(K/K) itself: WD(K/K) = C oW(K/K), where
gzg−1 = ω(g)z for g ∈ W(K/K) and z ∈ C. However one is supposed to think of
the factor C of CoW(K/K) as the set of points over C of the algebraic group Ga,
the additive group. Hence a representation of CoW(K/K) should be algebraic and
in particular holomorphic when restricted to the factor C. Using this fact, one can
show that a representation ρρρ of WD(K/K) has the form zg 7→ exp(zN)ρ(g), where
ρ is a representation of W(K/K) and N a nilpotent endomorphism of the space of
ρ. This not only explains the identification of ρρρ with the pair (ρ,N) but also shows
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(after some calculation) that the definitions given above for ⊕, ⊗, and so on are
just the standard operations of representation theory applied to representations of
CoW(K/K).

6.4. Tame inertia
Two remarks about profinite groups and homomorphisms between profinite groups
are useful at this juncture. As always with topological groups, a homomorphism of
profinite groups is understood to be continuous.

The first remark is that if q and ` are distinct prime numbers then every
homomorphism from a pro-q-group to a pro-`-group is trivial. Given the definition
of the profinite topology, this is a straightforward consequence of the fact that a
homomorphism from a finite q-group to a finite `-group is trivial.

The second remark is that if g is an element of a pro-`-group G and z is any
element of Z` then gz is a well-defined element of G: the obvious element if z ∈ Z,
and the limit of a convergent sequence in general. In particular, suppose that G is
a procyclic pro-`-group, so that there is an isomorphism t : G→ Z`. If G is written
multiplicatively and g0 = t−1(1) then g = g

t(g)
0 for all g ∈ G. One consequence is

that if Γ is an arbitrary pro-`-group written multiplicatively then a homomorphism
f : G → Γ is necessarily of the form f(g) = γt(g), where γ = f(g0). This last
consequence is of particular use to us when combined with the observation that the
vector space of homomorphisms G → Q` has dimension one over Q`. Thus any
nonzero homomorphism t′ : G → Q` is a scalar multiple of t, and therefore f also
has the form f(g) = γct

′(g) with c ∈ Q`.
Let us now return to K, a finite extension of Qp with p < ∞. We write

Ktame for the maximal tamely ramified extension of K inside K, and we put P =
Gal(K/Ktame). If we fix a uniformizer $ of Kunr then Ktame can be described as the
compositum of all extensions of Kunr of the form Kunr($1/n) with positive integers
n prime to p. Kummer theory then an identification of Gal(Kunr($1/n)/Kunr) with
Z/nZ and hence an identification

I/P ∼=
∏
` 6=p

Z`(3.62)

after taking inverse limits. Since P is a pro-p-group it follows that if ` 6= p then
the space of homomorphisms I → Q` has dimension one over Q`. In fact this
conclusion holds with I replaced by an arbitrary open subgroup J of I, because
any open subgroup of the right-hand side of (3.62) is again isomorphic to the right-
hand side of (3.62).

The theorem below combines results of Grothendieck and Deligne. To state it,
we fix a nonzero homomorphism t` : I → Q` and a Frobenius element σ ∈W(K/K).
Since t` is unique only up to a scalar multiple and σ only up to multiplication
by an element of I, it is important to remark that the isomorphism class of the
representation ρρρ of W(K/K) in the theorem is independent of the choice of t`
and σ. However we shall not prove this remark, because we will prove a much
stronger type of independence assertion when we return to the global setting later
on. However, by way of motivation we point out that a connection between t` and
WD(K/K) is suggested already by the identity

t`(gig−1) = ω(g)t`(i),(3.63)



62 LECTURE 3. MOTIVIC L-FUNCTIONS

where g and i denote arbitrary elements of W(K/K) and I respectively (use the
Kummer pairing for the extension Kunr($1/n)/Kunr and take inverse limits). The
precise connection is as follows:

Theorem 3.1. Let Eλ be a finite extension of Q` with ` 6= p, and let ρλ be a
representation of Gal(K/K) over Eλ.

(a) There is a unique nilpotent endomorphism N of the space of ρλ such that

ρλ(i) = exp(t`(i)N)

for all i in some open subgroup of I. Furthermore, consider the function ρ on
W(K/K) defined by setting

ρ(g) = exp(−t`(i)N)ρλ(g)

for g = iσn with i ∈ I and n ∈ Z. This function is a representation of W(K/K)
on the space of ρλ, and the pair ρρρ = (ρ,N) is a representation of WD(K/K).

(b) Let ρ and N be as in (a), and for each g ∈ W(K/K) let ρss(g) be the
semisimple component of ρ(g) in a multiplicative Jordan decomposition of ρ(g).
Then the map g 7→ ρss(g) is a semisimple representation of W(K/K) trivial on an
open subgroup of I, and the pair ρρρss = (ρss, N) is a representation of WD(K/K).

Proof. (a) Let Oλ be the ring of integers of Eλ. By Exercise 3.3, we may
think of ρλ as a map Gal(K/K) → GLd(Oλ). Let Γ ⊂ GLd(Oλ) be the subgroup
consisting of matrices congruent to 1 mod `2. Then Γ is a pro-`-group and an open
normal subgroup of GLd(Oλ). Consequently the subgroup J = I ∩ ρ−1

λ (Γ) is an
open normal subgroup of I and ρλ|J is a homomorphism of J into a pro-`-group.
Choose c ∈ Q` such that ct`|J is a surjection of J onto Z`. Then there exists
γ ∈ Γ and such that ρλ(j) = γct`(j) for j ∈ J . As γ is congruent to 1 mod `2, it
is in the image of the `-adic exponential map on d × d matrices with coefficients
in `2Oλ. In fact on this domain the exponential is a bijection onto Γ. Thus we
can write ρλ(j) = exp(t`(j)N) for a unique d× d matrix N over Eλ, and it follows
from (3.63) that if g ∈ W(K/K) then ρλ(gjg−1) = exp(ω(g)t`(j)N). But if we
simply conjugate the equation ρλ(j) = exp(t`(j)N) by ρλ(g) then we get a second
expression for ρλ(gjg−1), namely exp(t`(j)ρλ(g)Nρλ(g)−1), so the uniqueness of
N implies that ρλ(g)Nρλ(g)−1 = ω(g)N . This identity immediately carries over
to the identity ρ(g)Nρ(g)−1 = ω(g)N if we define ρ as in the statement of the
theorem. And by taking g = σν with ν ∈ Z we deduce that N is nilpotent, for if
N has a nonzero eigenvalue r then N has infinitely many eigenvalues, namely the
numbers rqν .

To complete the proof of (a) we must check that ρ is a homomorphism. So
suppose that g = iσn and g′ = hσm with m,n ∈ Z and h, i ∈ I. Then

ρ(gg′) = exp(−t`(i)− qnt`(h))ρλ(gg′)(3.64)

while

ρ(g)ρ(g′) = exp(−t`(i)N)ρλ(g) exp(−t`(h)N)ρλ(g′).(3.65)

The identity ρλ(g)Nρλ(g−1
) = ω(g)N shows that the right-hand sides of (3.64) and

(3.65) are equal, whence ρ(gg′) = ρ(g)ρ(g′).
(b) Let J be the kernel of ρ|I. Since I is normal in W(K/K) so is J . Fur-

thermore J is open in I, because it is the subgroup of I on which ρλ coincides
with the map i 7→ exp(t`(i)N). It follows that I/J is a finite normal subgroup of
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W(K/K)/J , and consequently the action of W(K/K)/J on I/J by conjugation
gives a map from W(K/K) to the finite group Aut(I/J). Hence the kernel of
this map has finite index in W(K/K), and there is an integer d > 1 such that σd

acts trivially on I/J . Since ρ factors through W(K/K)/J , we deduce that ρ(σd)
centralizes ρ(I). But ρ(σd) certainly commutes with ρ(σ), so ρ(σd) centralizes the
image of ρ.

Now let u be the unipotent Jordan component of ρ(σ). Then ud is the unipotent
Jordan component of ρ(σd). Thus ud = ρ(σd)ρss(σd)−1; but ρss(σd) is a polynomial
in ρ(σd), and since ρ(σd) centralizes the image of ρ it follows that ρss(σd) does too,
hence also ud. Using the binomial series for (1 +x)1/d, we see that u is a polyomial
in ud, so we conclude that u centralizes the image of ρ.

Next consider an arbitrary element g ∈W(K/K), and write g = iσn with i ∈ I
and n ∈ Z. Let ρu(g) denote the unipotent Jordan component of ρ(g); we claim
that ρu(g) = un. Since ρu(gd) = ρu(g)d and unipotent automorphisms have unique
unipotent dth roots, it suffices to see that ρu(gd) = und. But ρ(gd) = ρ(i′)ρ(σnd)
for some i′ ∈ I and ρ(σnd) = ρss(σnd)und, so

ρ(gd) = (ρ(i′)ρss(σnd)) · und.(3.66)

We contend that (3.66) is the multiplicative Jordan decomposition of ρ(gd), whence
ρu(gd) = und, as desired. As und is unipotent and commutes with ρ(i′)ρss(σnd) it
suffices to see that ρ(i′)ρss(σnd) is semisimple. But ρ(i′) is semisimple because ρ|I
factors through the finite group I/J , and ρss(σnd) is semisimple and commutes with
ρ(i′). Hence ρ(i′)ρss(σnd) is indeed semisimple, and we conclude that ρu(g) = un.

We can now show that ρss is a representation (necessarily trivial on J because
ρ is). Given g, h ∈ W(K/K), write g = iσn and g′ = hσm with m,n ∈ Z and
h, i ∈ I. Then ρss(g)ρss(g′) = ρ(g)u−nρ(g′)u−m = ρ(gg′)u−(n+m) = ρss(gg′), where
the last equality follows from the fact that gg′ = i′σn+m for some i′ ∈ I, whence
un+m = ρu(gg′).

To see that ρss is semisimple we quote a general fact: A representation of a
group over a field of characteristic 0 is semisimple if and only if its restriction to a
subgroup of finite index is semisimple. In the case at hand, the infinite cyclic group
〈σ〉 generated by σ is of finite index in W(K/K)/J , and ρss|〈σ〉 is semisimple by
the very definition of ρss.

Finally, we must check the identity ρss(g)Nρss(g)−1 = ω(g)N . Since we already
know that ρ(g)Nρ(g)−1 = ω(g)N , it will suffice to see that u commutes with N .
Denote the adjoint representation of GL(U) on End(U) by Ad, so that Ad(x)(y) =
xyx−1 for x ∈ GL(U) and y ∈ End(U). It is readily verified that Ad(x)ss = Ad(xss)
and Ad(x)u = Ad(xu). In particular, since Ad(x)u is a polynomial in Ad(x), we see
that any eigenvector of Ad(x) is also an eigenvector of Ad(xu). Apply the preceding
remark with x = ρ(σ) and xu = u. The relation ρ(σ)Nρ(σ)−1 = qN shows that
N is an eigenvector of Ad(ρ(σ)) and hence of Ad(u). But Ad(u) is Ad(ρ(σ))u and
therefore unipotent; its eigenvalues equal 1. Thus N is an eigenvector of Ad(u)
with eigenvalue 1; in other words, u commutes with N . �

7. From compatible families to local representations

We return to the global setting. Thus K is a number field again and M a premotive
over K. Fix a finite place v of K. Our goal is to see how M determines the
isomorphism class of a representation ρρρM,v of WD(Kv/Kv) over C.
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Write p for the residue characteristic of v. We fix a place ofK over v and identify
the corresponding decomposition subgroup of Gal(K/K) with Gal(Kv/Kv). By
restriction to the decomposition subgroup, any representation of Gal(K/K) gives
rise to a representation of Gal(Kv/Kv), and the isomorphism class of the latter
representation is independent of the choice of place of K over v.

We apply the preceding remark to the members of a fully compatible family
{ρλ} ∈ M . Write E for the coefficient field of this family. If the residue char-
acteristic of λ is a prime ` 6= p then the restriction ρλ,v = ρλ|Gal(Kv/Kv) is a
representation to which we may apply Theorem 3.1. The result is a representation
ρρρss = (ρss, N) of WD(Kv/Kv). over Eλ. To obtain a representation over C, fix an
abstract field embedding ι of Eλ in C. Since we regard E as a subfield both of Eλ
and of C, we can require ι to be the identity on E. Extending scalars from Eλ to C
via ι, we obtain a representation ((ρss)ι, N ι) of WD(Kv/Kv) over C. At first glance
this seems like the obvious candidate for ρρρM,v. However when ρρρM,v is defined in
this way then I do not know how to show that its isomorphism class is independent
of the choice of λ and ι. I also do not know of any place in the literature where
it is claimed that the desired independence holds. Fortunately, there is a way of
modifying N so that we do get a representation ρρρM,v of WD(Kv/Kv) over C which
up to isomorphism is independent of the choice of λ and ι. Furthermore, the mod-
ification is innocuous in the sense that it does not affect the local conductor and
local root number which we ultimately wish to extract from ρρρM,v.

To describe the modification, let V be the space of ρss and observe that since ρss

is semisimple, the sum of any collection of its isotypic components has a unique in-
variant complement. In particular, since V I is the sum of the isotypic components of
the unramified irreducible representations of W(Kv/Kv) over Eλ, there is a unique
invariant subspace W of V such that V = V I ⊕W . Of course W is just the sum
of the isotypic components of the ramified irreducible representations. In any case,
the desired modification of N is the nilpotent endomorphism N∗ of V which coin-
cides with N on V I and with 0 on W . The pair (ρss, N∗) is still a representation
of WD(Kv/Kv) over Eλ, because on V I the relation ρss(g)N∗ρss(g)−1 = ω(g)N
for g ∈ W(Kv/Kv) is satisfied as before, and on W the relation is trivial. Let
ρρρM,v = ((ρss)ι, (N∗)ι) be the representation of WD(Kv/Kv) over C obtained by
applying ι to the matrix coefficients of ρss and N∗.

Theorem 3.2. Up to isomorphism, ρρρM,v is independent of the choice of λ and ι.

Proof. Let ρρρ = (ρ,N) be the representation of WD(K/K) resulting from ρλ,v
as in part (a) of Theorem 3.1, and let g denote an arbitrary element of W(Kv/Kv),
written as in the theorem. By Proposition 3.3 , there is a basis for the space of
ρ relative to which the matrices of ρ(g) and N are both upper triangular. Then
exp(t`(i)N) is also upper triangular and has all diagonal entries equal to 1. Thus it
follows from the relation ρλ,v(g) = exp(t`(i)N)ρ(g) that the characteristic polyno-
mials of ρλ,v(g) and ρ(g) are equal. On the other hand, the characteristic polynomi-
als of ρ(g) and ρss(g) are equal because ρss(g) is the semisimple Jordan component
of ρ(g). Now as M satisfies condition C8, the characteristic polynomial of ρλ,v(g)
has coefficients in E and is independent of λ, and consequently the same is true for
the characteristic polynomial of ρss(g). Furthermore this characteristic polynomial
is unchanged when ι is used to extend the field of scalars of ρ(g) from Eλ to C,
because ι is the identity on E. We conclude that the characteristic polynomial of
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(ρss)ι(g) is independent of the choice of λ and ι. In particular tr (ρss)ι is indepen-
dent of the choice of λ and ι, and since (ρss)ι is semisimple we conclude that the
isomorphism class of (ρss)ι is independent of the choices as well.

To complete the proof of the theorem we will show that (N∗)ι can be described
without reference to λ or ι. In fact we shall reconstruct (N∗)ι from (ρss)ι and the
polynomial Bp(x) (3.32), where p is the prime ideal corresponding to v. It suffices
to reconstruct (N∗)ι on V I , because on the unique complement of V I in V we have
defined N∗ to be 0.

To avoid confusion, let us denote the space of ρλ,v by Vλ and the space of
ρρρ = (ρ,N) by V . Then Vλ and V are equal as abstract vector spaces, but by
making the distinction notationally we can distinguish between V Iλ and V I , which
are not equal. Indeed V Iλ is the subspace of Vλ consisting of vectors fixed by ρλ,v(I),
whereas V I is the subspace of V consisting of vectors fixed by ρ(I). We claim that
the relation between them is

V Iλ = V IN ,(3.67)

where as before, VN is the kernel of N and V IN = VN ∩ V I .
To verify (3.67), we return to part (a) of Theorem 3.1, according to which

ρλ,v(i) = exp(t`(i)N)ρ(i) for i ∈ I. The inclusion V IN ⊂ V Iλ is an immediate
consequence. For the opposite inclusion, recall from Theorem 3.1 that ρλ,v(i) =
exp(t`(i)N) for all i in some open subgroup of I. Consequently V Iλ ⊂ VN , whence
the inclusion V Iλ ⊂ V IN follows again from the relation ρλ,v(i) = exp(t`(i)N)ρ(i).

The significance of (3.67) is that by assumption, the coefficients of the char-
acteristic polynomial of ρλ(Φ)|V Iλ lie in E and are independent of λ, because this
characteristic polynomial is just xnBp(x−1), where n = dimV Iλ . Thus (3.67) tells
us that the coefficients of the characteristic polynomial of ρ(Φ)|V IN likewise lie in E
and are independent of λ. Furthermore, this assertion remains true when ρ(Φ)|V IN
is replaced by ρss(Φ)|V IN∗ , because ρss(Φ) and ρ(Φ) have the same characteristic
polynomial and N∗ and N coincide on V I .

Put U = (C ⊗Eλ V )I , A = (ρss)ι(Φ)|U and J = (N∗)ι|U . We have just seen
that the eigenvalues of A on ker J are independent of the choice of λ and ι. It
is also the case that the eigenvalues of A on all of U are independent of λ and ι,
because the isomorphism class of (ρss)ι is independent of these choices and U is an
intrinsically defined subspace of the space of (ρss)ι.

Let d > 1 be the size of a Jordan block of maximal size in the Jordan normal
form of J , so that Jd = 0 and d is minimal with this property. The content of
the preceding paragraph is that the eigenvalues of A on ker J i are independent
of the choice of λ and ι for i = 1 and i = d. Now by using the relation AJ =
q−1JA and induction, we see that ker J i is stable under A for any i > 1. As A
is semisimple it follows that there is an A-stable complement Ui to ker J i−1 inside
ker J i. Furthermore, for 2 6 i 6 d the map u 7→ Ju is an isomorphism of Ui onto
its image in ker J i−1, and the image J(Ui) is again stable under A. Since A is
semisimple it follows that there is a basis for J(Ui) consisting of eigenvectors of A.
Now suppose that u ∈ J(Ui) is a nonzero eigenvector of A with eigenvalue c, and
let u′ be its preimage under J |Ui. Then the relation AJ = q−1JA shows that u′ is
also an eigenvector of A, but with eigenvalue qc. By induction, we see in particular
that the eigenvalues of A|Ui all have absolute value qi−1r, where r is the absolute
value of the eigenvalues of A| ker J : these eigenvalues all have the same absolute



66 LECTURE 3. MOTIVIC L-FUNCTIONS

value by (3.39) and (3.40). Since

U = (ker J)⊕ U2 ⊕ U3 ⊕ · · · ⊕ Ud(3.68)

and the eigenvalues (listed with their multiplicities) of A on ker J and on all of U
are known to be independent of λ and ι, we deduce from (3.68) that the eigenvalues
of A on Ui are independent of λ and ι as well, because they are characterized as
precisely the eigenvalues of A which are of absolute value qi−1r. In particular we
have determined the Jordan normal form of J , because the number of Jordan blocks
of J of size i is precisely dimUi, which is also the number of eigenvalues of A of
absolute value qi−1r. At the same time we have obtained a basis for U relative to
which J is in Jordan normal form and A is diagonal. �

8. Exercises

Exercise 3.1. Let L be a finite Galois extension of Q.
(a) Show that ζL(s) =

∏
ρ L(s, ρ)dimρ, where ρ runs over the distinct isomor-

phism classes of irreducible complex representations of Gal(L/Q). (Hint: Let 1L
be the trivial character of Gal(L/L). Then indL/Q1L is the regular representation
of Gal(L/Q).)

(b) Let K be a real quadratic field and η a primitive equivariant Hecke character
of K of finite order such that W (η) = −1. For example, η could be the character
in (2.67). Put ρ = ηArt and let L be the fixed field of the kernel of ρ. Show that
ζL(s) has a zero of order at least 2 at s = 1/2.

Remark. The zero of ζL(s) at s = 1/2 is not a trivial zero as we have defined
the term, because it is not apparent from the functional equation of ζL(s). However
the zero at s = 1/2 is a trivial zero of L(s, η). In light of this example one might
want to redefine the term trivial zero to take account not only of the functional
equation of the given L-function but also of the functional equations of factors of
the given L-function.

Exercise 3.2. The fact (Theorem 2.2) that W (ρ) = 1 if ρ is one-dimensional and
either trivial or quadratic is a special case of a theorem of Fröhlich and Queyrut
[22] asserting that if ρ is any orthogonal Artin representation then W (ρ) = 1.

(a) Take ρ = indK/Qη, where K is a real quadratic field and η a primitive equi-
variant Hecke character of K of finite order > 3 (η is viewed as a one-dimensional
Artin representation of K using (3.5)). Show that ρ is irreducible and self-dual, and
deduce from the Fröhlich-Queyrut theorem that if W (η) = −1 then ρ is symplectic.

(b) (Pure group theory.) Show that if G is a group, H a subgroup of index 2,
and η a one-dimensional character of H then the determinant of the representation
ρ = indGHη is given by

det ρ(g) = signGH(g)η(transGH(g)) (g ∈ G),

where signGH is the nontrivial one-dimensional character of G with kernel H and
trans : Gab → Hab is the transfer (note that η factors throug Hab). For a slightly
more general identity see [14], p. 508, or [23].

(c) With notation as in (a), take η to be the character constructed in (2.67).
Show directly – i. e. without applying the Fröhlich-Queyrut theorem – that ρ is
symplectic. (Hint: Combine (b) with the fact that a two-dimensional representation
is symplectic if and only its determinant is trivial. You will also need to use the fact
that under the identification (3.4), the transfer from Gal(Q/Q)ab to Gal(K/K)ab
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corresponds to the natural embedding of A×
Q

into A×K , or rather to the associated
map from CQ/DQ to CK/DK .)

Exercise 3.3. Let E be a number field, λ a finite place of E, and ρλ a λ-adic
representation of a compact group G, viewed as a continuous homomorphism G→
GLn(Eλ). Prove that ρλ is equivalent to a representation into GLn(Oλ), where Oλ
is the ring of integers of Eλ. In other words, show that there exists u ∈ GLn(Eλ)
such that uρλ(g)u−1 ∈ GLn(Oλ for all g ∈ G. (Hint: Let H be the inverse image
under ρλ of GLn(Oλ). Then H is an open subgroup of G and hence of finite
index. Viewing GLn(Eλ) as the group of linear automorphisms of Enλ, let L be
the sum of the Oλ-submodules ρλ(g)(Onλ) of Qn` , where g runs over a set of coset
representatives for H in G. Show that L is a G-stable Oλ-lattice in Enλ.)

Exercise 3.4. Let K be a number field, and consider the map ρ 7→ {ρλ}λ which
sends an Artin representation ρ of Gal(K/K) to a fully compatible family of integral
λ-adic representations of Gal(K/K). Show that every premotive M of weight 0
over K arises from some Artin representation ρ in this way. (Hint: If M is the
isomorphism class of {ρλ}λ, then the key point is to show that the image of ρλ is
finite. By the previous problem, ρλ may be viewed as a continuous homomorphism
Gal(K/K) → GLn(Oλ). Let Fλ be the residue class field of Oλ and ` the residue
characteristic. Show that the reduction map GLn(Oλ) → GLn(Fλ) is injective on
elements of order prime to `.)

Exercise 3.5. Let K be a finite extension of Qp with p <∞. Show that the open
subgroups of infinite index in W(K/K) are precisely the subgroups of the form
Gal(K/R) with R a finite extension of Kunr inside K.





LECTURE 4

Local formulas in arbitrary dimension

Let M be a premotive over a number field K. Now that we have defined a
representation ρρρM,v of WD(Kv/Kv) at every finite place v of K, we can hope to
make the factors A(M) and W (M) more explicit by defining them as products over
the places of K of local factors associated to representations of WD(Kv/K). In
fact this process has already begun: In (3.53) we associated an L-factor L(s,ρρρ) to
a representation ρρρ of WD(Kv/K), and we should now check that

L(s,M) =
∏
v

L(s,ρρρM,v).(4.1)

Admittedly, in the case of L(s,M) there is no need for the local representations
ρρρM,v in the sense that the original definition of L(s,M) is as explicit as one might
wish. But we certainly wouldn’t want to proceed with the program just proposed
if (4.1) did not hold! Fortunately, a proof of (4.1) is provided by (3.53), (3.67), and
the two paragraphs immediately following (3.67).

Our ”premotivic” approach to motivic L-functions runs into problems when we
attempt to associate an L-factor at infinity to M . If M actually came from a motive
then we would could derive L∞(s,M) directly from the Hodge realization of M ,
but as matters stand, we can do no better than the implicit definition of L∞(s,M)
implicit in Proposition 3.2. For the same reason we cannot give a complete formula
for W (M).

1. Local epsilon factors

Let K be a finite extension of Qp with p < ∞, ψ an additive character of K, dx
a Haar measure on K, and ρρρ = (ρ,N) a representation of WD(K/K). The theory
of Langlands and Deligne assigns a nonzero constant ε(ρρρ, ψ, dx) to these data.
In some treatments ε(ρρρ, ψ, dx) is replaced in the first instance by ε(ρρρ, ψ, dx, s), a
holomorphic function of a complex variable s, and one recovers ε(ρρρ, ψ, dx) as in
(2.76):

ε(ρρρ, ψ, dx) = ε(ρρρ, ψ, dx, s)|s=0.(4.2)

To go in the other direction, one twists by the unramified character g 7→ ω(g)s:

ε(ρρρ, ψ, dx, s) = ε(ρρρ⊗ ωs, ψ, dx).(4.3)

In view of (4.3), there will be no loss of information if we confine our attention to
ε(ρρρ, ψ, dx). Besides, the current setting is really not analogous to Tate’s: In the
latter case s was essential, because ε(χ, ψ, dx, s) was defined by the local functional
equation (2.79), which depends on analytic continuation. In the present context
there is no local functional equation.

69
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The first point about ε(ρρρ, ψ, dx) is that it is a product of two factors, the first
of which depends only on the representation ρ of W(K/K):

ε(ρρρ, ψ, dx) = ε(ρ, ψ, dx)δ(ρρρ).(4.4)

The definition of δ(ρρρ) is straightforward, so we will mention it first:

δ(ρρρ) = det(−ρ(Φ)|V I/V IN ).(4.5)

We see that δ(ρρρ) is indeed independent of ψ and dx, as the notation indicates. If
N = 0 then δ(ρρρ) = 1 and therefore ε(ρρρ, ψ, dx) = ε(ρ, ψ, dx).

The definition of ε(ρ, ψ, dx) is not so straightforward. Before delving into it let
us address two points: What will be the dependence of ε(ρ, ψ, dx) on ψ and dx?
And what information does ε(ρρρ, ψ, dx) contain?

The dependence of ε(ρ, ψ, dx) on ψ and dx is summarized in the following
formulas, where for b ∈ K× we put ψb(x) = ψ(bx) as before:

ε(ρ, ψb, dx) = det ρ(b)||b||−dimρε(ψ, dx)(4.6)

and

ε(ρ, ψ, c dx) = cdimρε(ρ, ψ, dx).(4.7)

Note that these formulas generalize the case of dimension one (cf. (2.82), (2.84)).
As for the information that ε(ρρρ, ψ, dx) contains, we have first of all

ε(ρρρ, ψ, dxsd)ε(ρρρ∨, ψ, dxsd) = det ρ(−1)qn(ψ)dimρ+a(ρρρ),(4.8)

where the notation on the right is as follows: First of all, dxsd is the self-dual Haar
measure relative to ψ and det ρ is viewed as a character of W(K/K)ab and hence
of K×. The integer a(ρρρ) can be taken as the definition of the exponent of the
conductor or ρ, and n(ψ) is the largest integer ν such that ψ is trivial on π−νO.
In particular, if we take ψ = ψcan, the canonical choice made in (2.70), then n(ψ)
is the exponent of the different ideal of K over Qp.

The other bit of information contained in the epsilon factor is the root number:

W (ρρρ, ψ) =
ε(ρρρ, ψ, dx)
|ε(ρρρ, ψ, dx)|

.(4.9)

The omission of dx from the argument on the left-hand side is justified by (4.7).
Furthermore, (4.6) gives

W (ρρρ, ψb) = det ρ(b)W (ρρρ, ψ),(4.10)

so that if det ρ is trivial then W (ρρρ, ψ) is independent of ψ as well. In any case, we
can set

W (ρρρ) = W (ρρρ, ψcan),(4.11)

taking advantage of the canonical choice.
Let us temporarily return to the global setting: K is a number field and M is

a premotive over K. Using (4.8), we can define the conductor f(M) of M :

f(M) =
∏
v-∞

pa(ρρρM,v)
v ,(4.12)

And thus we can also define the exponential factor in the functional equation of
L(s,M):

A(M) = DdimMNf(M),(4.13)
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this being the global version of (4.8) when we take the canonical additive character
at every finite place.

For the root number W (M) we cannot give a complete formula without some
implicit assumption that M comes from a motive and therefore has a Hodge realiza-
tion. Then in principle one could use Deligne’s formulas ([16], p. 329) to augment
(4.11) and set

W (M)=

∏
v-∞

W (ρρρM,ι) · (∗),(4.14)

where (∗) denotes the local root numbers at infinity associated to the Hodge struc-
ture.

2. The theorem of Langlands and Deligne

We return to the local setting; K is again a finite extension of Qp with p <∞. The
definition of ε(ρ, ψ, dx) should satisfy certain requirements. Certainly we want a
definition which is compatible in degree one in the sense that it agrees with
Tate’s definition of ε(ρ, ψ, dx) when dimρ = 1. In addition, like the L-factor
L(ρ, s), it should be additive in the sense that ε(∗, ψ, dx) extends to a function
on the Grothendieck group of virtual representations of W(K/K). In other words,
ε(ρ, ψ, dx) should depend only on the semisimplification of ρ and should satisfy
ε(ρ ⊕ ρ′, ψ, dx) = ε(ρ, psi, dx)ε(ρ′, psi, dx). Ideally one might wish for ε) to share
another property of L(s, ρ), namely invariance under induction, but this turns out
to be impossible, and instead one requires the epsilon factor to be inductive in
degree zero. This means that if L is a finite extension of K and ϕ is a virtual
representation of W(K/K) of dimension zero then for any additive character ψ of
K and any choice of Haar measures dx and dxL on K and L respectively we have

ε(indL/Kϕ,ψ, dx) = ε(ϕ,ψ ◦ tr L/K , dxL).(4.15)

The theorem of Langlands and Deligne is that such a definition is possible [14], p.
535:

Theorem 4.1. Consider the set S with elements (K, ρ, ψ, dx), where K is a finite
extension of Qp inside Qp, ρ an isomorphism class of complex representations of
W(Qp/K), ψ an additive character of K, and dx a Haar measure on K. There ex-
ists a unique function (K, ρ, ψ, dx) 7→ ε(ρ, psi, dx) from S to C× which is compatible
in degree one, additive, and inductive in degree zero.

To see that Theorem 4.1 gives a practical method of computing ε(ρ, ψ, dx) we
need two more results from [14]. A representation ρ of W(K/K) over C is said
to be of Galois type if there exists s ∈ C such that ρ ⊗ ωs is trivial on an open
subgroup of finite index in W(K/K), hence on an open normal subgroup of finite
index. Since the open normal subgroups of finite index are precisely the subgroups
of the form W(K/L) with L a finite Galois extension of K we see that ρ⊗ωs factors
through a finite group of the form Gal(L/K) (cf. (3.49)).

Proposition 4.1. Let ρ be a representation of W(K/K) over C. If ρ is irreducible
then ρ is of Galois type.

Proof. Let J be the kernel of ρ|I. Then J is normal in W(K/K), and the
action of W(K/K) on I by conjugation defines a map W(K/K)→ Aut(I/J). But
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I/J is a finite group, so we deduce that if σ ∈W(K/K) is a given Frobenius element
then there is a positive integer n such that σn acts trivially on I/J . It follows by
(3.48) that the coset of σn is in the center of W(K/K)/J , and since ρ can be viewed
as an irreducible representation of W(K/K)/J we conclude that ρ(σn) is scalar.
Choose s ∈ C such that ρ(σn) is multiplication by qs, where q = ω(σ) as usual.
Then (ρ ⊗ ωs/n)(σn) is trivial. Hence ρ ⊗ ωs/n is trivial on the open subgroup of
W(K/K) generated by J and σn, which is of finite index. �

The significance of Proposition (4.1) is that it enables us to apply Brauer’s
theorem. More precisely, what is needed here is a variant of Brauer’s theorem proved
by Deligne ([14], p. 510, Proposition 1.5). Let us say that a virtual representation
of a finite group G is monomial of degree zero if it is induced by the difference
of two one-dimensional representations of a subgroup of G. Then Deligne’s version
of Brauer’s theorem states that a virtual representation of G of degree zero is an
integral linear combination of monomial representations of degree zero.

Proposition 4.2. Let ρ be an irreducible representation of W(K/K) over C. Then
for some s ∈ C we can write

[ρ] = (dimρ)[ωs] +
∑

(M,ξ,ξ′)

nM,ξ,ξ′ indM/K([ξ]− [ξ′])

in the Grothendieck group of virtual representations of W(K/K), where the nM,ξ,ξ′

are integers, M runs over finite extensions of K inside K, and ξ and ξ′ denote
one-dimensional repesentations of W(K/M).

Proof. By Proposition 4.1, we can choose s ∈ C so that ρ⊗ωs is trivial on an
open subgroup of finite index in W(K/K). Then ρ⊗ ωs becomes a representation
of Gal(L/K) for some finite Galois extension of K, and consequently we can write

[ρ⊗ ωs]− (dimρ)[1K ] =
∑

(M,ξ,ξ′)

nM,ξ,ξ′ indM/K([ξ]− [ξ′])(4.16)

with integers nM,ξ,xi′ , subfields M of L containing K, and one-dimensional char-
acters ξ and ξ′ of W(K/M). Tensoring both sides of (4.16) with [ω−s] and writing
(indM/Kξ)⊗ (ω−s) = indM/K(ξ ⊗ (resM/Kω

−s)), we obtain the stated decomposi-
tion with ξ and ξ′ replaced by ξ ⊗ (resM/Kω

−s) and ξ′ ⊗ (resM/Kω
−s). �

Let us now explain why Theorem 4.1 does reduce the evaluation of epsilon
factors to the case of dimension one. Since the epsilon factor is additive, it suffices
to consider irreducible ρ. Write ρ as in Proposition 4.2. By the additivity and
inductivity in degree zero,

ε(ρ, ψ, dx) = ε(ωs, ψ, dx)dimρ
∏

(M,ξ,ξ′)

(
ε(ξ, ψ◦ trM/K , dxM )
ε(ξ′, ψ ◦ trM/K , dxM )

)nM,ξ,ξ′
(4.17)

for any choice of additive character ψ and Haar measure dx for K and any choice
of Haar measures dxM on the fields M . All of the epsilon factors on the right-hand
side of (4.2) are for representations of dimension one.



DAVID E. ROHRLICH, PCMI LECTURE NOTES 73

3. The archimedean local Weil group and gamma factors

For the record, let us also say a word about the cases K = R or K = C. The
first point is that in the archimedean case there is no distinction between W(K/K)
and WD(K/K). We have W(K/K) = WD(K/K) and ρρρ = (ρ, 0) = ρ. Thus the
notations W(K/K) and ρ can be used interchangeably with WD(K/K) and ρρρ.

The definition of W(K/K) is as follows. If K = R then W(K/K) = W(C/R) =
C
× ∪ JC×, where J2 = −1 and JzJ−1 = z for z ∈ C×. If K ∼= C then W(K/K) =

W(C/C) = C
×. We regard W(C/C) as a subgroup of index 2 in W(C/R), the

nontrivial coset being represented by J .
In the nonarchimedean case we assigned an L-factor to a representation ρρρ of

WD(K/K), and we want to do the same in the archimedean case. In other words,
we want an archimedean analogue of (3.53). To define one, we declare first of all
that the L-factor L(s, ρ) assigned to a representation ρ of W(C/R) or W(C/C)
depends only on the semisimplification of ρ and is multiplicative across direct sums
in the sense that L(s, ρ ⊕ ρ′) = L(s, ρ)L(s, ρ′). Thus it suffices to define L(s, ρ)
when ρ is irreducible.

The easier case is K = C. Any irreducible representation of W(C/C) is one-
dimensional, of the form ρ(z) = |z|2s0(z/|z|)m with s0 ∈ C and m ∈ Z. We define
L(s, ρ) to be the right-hand side of (2.33).

When K = R there are two cases: An irreducible representation of W(C/R)
is either one-dimensional or two-dimensional. That these are the only two pos-
sibilities follows from the fact that W(C/R) has an abelian normal subgroup of
index 2, namely W(C/C). For the same reason, any irreducible two-dimensional
representation of W(C/R) is induced by a one-dimensional character of W(C/C).

Let us identify the one-dimensional characters of W(C/R). It is clear that the
commutator subgroup of W(C/R) consists of all elements of the form JzJ−1z−1

with z ∈ C, and since JzJ−1z−1 = z/z we see that the commutator subgroup is
the group T of complex numbers of absolute value 1. The map π : W(C/R)→ R

×

sending J to −1 and z to |z|2 is readily verified to be a surjective homomorphism
with kernel T, so we conclude that the one-dimensional representations of W(C/R)
are precisely the representations ρ = χ ◦ π with χ a character of R×. If χ(t) =
|t|s0(t/|t|)m with s0 ∈ C and m ∈ {0, 1} then L(s, ρ) is defined to be the right-hand
side of (2.32).

Finally, write indC/Rχ for the two-dimensional representation ρ of W(C/R)
induced by a character χ of W(C/C). Then χ(z) = |z|2s0(z/|z|)m for some s0 ∈ C
and some m ∈ Z, and ρ is irreducible if and only if m 6= 0. If the latter condition
is satisfied then we define L(s, ρ) to be the right-hand side of (2.33).

4. An open problem

A survey of the formulas for local L-factors, conductors, and root numbers confirms
our remark in the previous lecture that whenever the nilpotent endomorphism N
appears in a local formula it appears by way of its restriction to V I . This was
the rationale for replacing N by N∗ in Theorem (3.2). Nonetheless, one can ask
whether this replacement is really necessary:

Let M be a premotive over a number field K and {ρλ} a representative of
M . Fix a finite place v of K and consider the representation ρρρι obtained
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from ρλ as in Theorem 3.1. Is the isomorphism class of ρρρι independent
of the choice of λ and ι?

It may be that this question is answered in the literature. I can’t find anything
precise, but perhaps I have looked in the wrong places or have misunderstood what
I read.

5. Exercises

Exercise 4.1. Let K be a finite extension of Qp, let E be an elliptic curve over K,
and let ρ` be the representation of Gal(K/K) on the dual of V`(E), with ` 6= p. Let
ρρρ = (ρ,N) be the representation of WD(K/K) obtained from ρλ by applying part
(a) of Theorem 3.1. Show that (i) if E has good reduction at v then ρ is unramified
and N = 0, (ii) if E has bad but potentially good reduction then ρ is ramified and
N = 0, and (iii) if E has potentially multiplicative reduction then N 6= 0 (and
therefore N has the only Jordan normal form possible for a 2× 2 nilpotent matrix
6= 0) while ρ ∼= χ ⊕ χω, where χ is the unique character of W(K/K) with χ2 = 1
such that the twist of E by χ is a Tate curve over K. Furthermore, show that
W (E) = 1 in case (i) and that

W (E) =


−1 if χ = 1
1 if χ is the unique unramified quadratic character of W(K/K)
χ(−1) if χ is ramified

in case (iii).

Exercise 4.2. Let K be a number field with r1 real embeddings and r2 pairs of
complex conjugate embeddings, and suppose that E is a semistable elliptic curve
over K which has split multiplicative reduction at exactly s finite places of K.
Using the previous problem, derive the classic formula W (E) = (−1)r1+r2+s.

Exercise 4.3. As we have already mentioned, the class of motivic L-functions,
while very broad, does not include even all Hecke L-functions of number fields – for
example the L-function L(s, χ) with χ as in (2.63) is not included – let alone the L-
functions of arbitrary automorphic forms. Nonetheless, the wonderful thing is that
at the local level, the Weil-Deligne group and its representations cover everything,
including (conjecturally) the parameters for the local components of arbitrary au-
tomorphic forms. To illustrate this point, let f be a Maass form for SL(2,Z). Then
the representation of WD(C/R) associated to f at the infinite place of Q is χ⊕ χ,
where χ has the form χ(t) = |t|ir(t/|t|)m with r ∈ R and m ∈ {0, 1}. Show that
the root number W (f) in the functional equation of L(s, f) is 1 or −1 according as
m = 0 or 1. You do not need to know anything about Maass forms to do this prob-
lem! Just use some common sense. (Here’s an example of common sense: Given
that f is a Maass form for SL(2,Z), what can you guess about the conductors of
the local representations associated to f at the finite places?)

Exercise 4.4. (Reading.) Let G be a finite group and ρ a representation of G.
There are theorems of Snaith [59] and others which express [ρ] in Groth(G) as an
integral linear combination of classes of monomial representations in a canonical
way. Theorems of this type are call canonical Brauer induction theorems. Can
they be used to prove the existence of local root numbers?



LECTURE 5

The minimalist dichotomy

In this final lecture we would like to reflect on the following question: To what
extent, or under what circumstances, should we expect the order of vanishing of a
motivic L-function at the center of its critical strip to be the minimum compatible
with its functional equation? To begin with we restrict our attention to essentially
self-dual premotives M , so that the functional equation of L(s,M) is Λ(s,M) =
W (M)Λ(k − s,M) with k = w + 1, where w > 0 is the weight of M . We are then
asking how likely it is that

ords=k/2L(s,M) =

{
0 if W (M) = 1,
1 if W (M) = −1.

(5.1)

In the case of elliptic curves E over Q with W (E) = 1 this question is discussed at
length in the paper of Bektemirov, Mazur, Stein, and Watkins [5], who refer to the
conjecture that L(1, E) 6= 0 with probability one as the “minimalist conjecture” for
such E. Adopting their language, we shall say that the minimalist dichotomy
holds for L(s,M) if (5.1) is satisfied.

We have seen (Theorem 1.3) that the minimalist dichotomy holds for the pre-
motives M(χ) associated by (3.46) to the characters χ ∈ X(D). On the other hand,
as a universal statement about L-functions of elliptic curves, (5.1) is simply false.
This point is perhaps so familiar as to require no comment, but for the record, if
we take the base field to be Q and order elliptic curves by their conductor then
the first counterexample to (5.1) is the curve 389A1 in Cremona’s tables ([13], p.
306). Indeed Kolyvagin’s theorem implies that if E is an elliptic curve over Q with
ords=1L(s,E) 6 1 then the rank of E is 6 1, and an inspection of Cremona’s tables
shows that the converse is valid at least for curves of conductor 6 999 (see [13],
pp. 293 – 340). As 389A1 is the first curve in the tables of rank > 1 (its rank is 2)
it is also the first for which (5.1) fails. Using results like [51] one can produce as
many other counterexamples as one likes.

Nonetheless, we can ask as in [5] whether the minimalist dichotomy holds for
a dense set of elliptic curves over Q. After briefly surveying what is known or
conjectured about this question, we shall broaden the discussion to include more
general motivic L-functions.

1. Elliptic curves

Let E be the set of isomorphism classes of elliptic curves E over Q and D the subset
of isomorphism classes for which L(s,E) satisfies the minimalist dichotomy. Write
ϑE(x) and ϑD(x) for the number of isomorphism classes in E and D respectively
which have conductor 6 x. By the minimalist conjecture for elliptic curves
over Q we mean the hypothesis that limx→∞ ϑD(x)/ϑE(x) exists and equals 1.

75
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Before committing ourselves too firmly to this formulation of the problem,
we should note that the answer could depend on the fact that we are counting
elliptic curves using the conductor rather than some other natural invariant. Quite
generally, consider a set S and a function ν : S → Z>0 such that for every x > 0
there are only finitely many s ∈ S with ν(s) 6 x. We will call ν a counting
function on S. Writing ϑS,ν(x) for the number of such s, one can consider the
limit limx→∞ ϑT ,ν(x)/ϑS,ν(x) for a given subset T of S, but even if this limit exists,
its value may depend on ν. For example, fix an integer n > 3, let P be the set
of primes, and let Q the subset of primes p ≡ −1 modulo n. If we take ν(p) = p
then limx→∞ ϑQ,ν(x)/ϑP,ν(x) = 1/ϕ(n), but if instead ν(p) = p〈p〉, where 〈p〉 is
the least positive residue of p modulo n, then limx→∞ ϑQ,ν(x)/ϑP,ν(x) = 0.

Returning to E , and writing ν(E) for the value of ν on the isomorphism class
of E, we can defend the choice ν(E) = N(E) as the only analytic possibility for ν –
analytic in the sense that N(E) appears in the functional equation of L(s,E) – but
on the arithmetic side there are many other possibilities: the Arakelov height of E,
or the height of the modular invariant j(E), or the absolute value of the minimal
discriminant ∆(E), or simply the coarse height

ν(E) = min
4a3+27b2 6=0
E∼=Ea,b

max(|a|3, |b|2)(5.2)

where the minimum is taken over all pairs of integers (a, b) such that 4a3 +27b2 6= 0
and E is isomorphic to the curve Ea,b : y2 = x3+ax+b. Now one can argue that the
arithmetic choices are less natural than N(E), for they depend on the isomorphism
class of E, whereas the validity of (5.1) depends only on the isogeny class. However
the arithmetic choices of ν are often easier to work with, so it behooves us to know
whether the choice ν(E) = |∆(E)|, say, is equivalent to the choice ν(E) = N(E) for
the purpose of evaluating the limit limx→∞ ϑD,ν(x)/ϑE,ν(x). This does not seem
like an easy question, particularly since it is not known whether |∆(E)| is bounded
by a power of N(E) – in a stronger form this is Szpiro’s conjecture.

But in fact one hopes for more: not only should limx→∞ ϑD,ν(x)/ϑE,ν(x) be
the same for ν(E) = |∆(E)| as for ν(E) = N(E), but even the shape of the error
term should be the same. To spell this out, consider the conjecture

ϑE,ν(x) ∼ c · x5/6.(5.3)

The expectation is that (5.3) holds both in the case ν(E) = |∆(E)| (Brumer and
McGuinness [8]) and in the case ν(E) = N(E) (Watkins [65]), although the con-
stant c may depend on ν. Next consider Conjecture 3.4 on p. 244 of [5] (based on
the heuristics of Watkins [65]), which in principle gives

ϑE,ν(x)− ϑD,ν(x) ∼ c′ · x19/24(log x)3/8(5.4)

both for ν(E) = N(E) and ν(E) = |∆(E)|, although the constant c′ may again
depend on the choice of ν. We say “in principle” because the focus in [5] is on the
first line of (5.1), so that the roles of E and D are actually played by the set of
isomorphism classes E+ with W (E) = 1 and the subset D+ with L(1, E) 6= 0. In any
case, since 19/24 < 5/6 we obtain from (5.3) and (5.4) that limx→∞ ϑD(x)/ϑE(x) =
1, regardless of whether the implicit counting function is |∆| or N . Henceforth the
omission of the subscript ν on ϑD(x) and ϑE(x) indicates as before that ν = N ,
but now with the implication that the choice of ν shouldn’t matter anyway.
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As the authors of [5] acknowledge, the numerical evidence for all of this is weak.
In fact one can almost say that the minimalist conjecture for elliptic curves over
Q is made in defiance of the available data. These data include the calculations
of Brumer and McGuinness [8] with elliptic curves of prime conductor < 108, the
calculations of Stein and Watkins [61] with elliptic curves of composite conductor
6 108 or prime conductor < 1010, and the calculations of the authors themselves
involving selected elliptic curves of prime conductor around 1014. None of these
works gives much support for the minimalist dichotomy, although there is some
hint that the desired numerical evidence may simply lie outside the range of com-
putation. At least the results for 1014 are a bit more supportive than those for 108

or 1010.
Turning from the numerical to the theoretical, we find that the known results

pertain less to the minimalist conjecture than to a slightly different hypothesis, the
average rank conjecture. Originally enunciated by Goldfeld [24] for quadratic
twists of a fixed elliptic curve, the average rank conjecture is here understood to
assert that the limit

rν(E) = lim
x→∞

∑
ν(E)6x ords=1L(s,E)

ϑE,ν(x)
(5.5)

exists and equals 1/2 for any of the counting functions ν : E → Z>0 mentioned
above. In principle the choice favored in the literature is the coarse height (5.2),
but even with this choice of ν, the “average rank” r that one encounters in the
literature differs from our rν in that both the summation in the numerator on the
right-hand side of (5.5) and the implicit summation in the denominator run over
all elliptic curves Ea,b such that |a|3, |b|2 6 x: in other words, redundancies arising
from isomorphisms among the curves Ea,b are not eliminated. Granting this point,
and assuming the generalized Riemann hypothesis for L-functions of elliptic curves
over Q, one can cite the successive upper bounds r 6 23/10 (Brumer [7]), r 6 2
(Heath-Brown [28]), r 6 25/14 (Young [68]), and r 6 27/14 (Baier and Zhao [3]).
The two more recent works draw on random matrix theory (cf. Iwaniec, Luo, and
Sarnak [32]), and while Young’s bound is sharper than that of Baier and Zhao,
it depends on the generalized Riemann hypothesis for Dirichlet and symmetric
square L-functions, a dependence eliminated in [3]. It should be added that the
limit defining r is not actually known to exist: the results cited above are to be
understood as upper bounds for the corresponding limit superior.

Quite apart from the large gap between the upper bounds for r cited above
and the conjectured value r = 1/2, the average rank conjecture does not seem
to imply anything about the minimalist conjecture unless one knows something
about the equidistribution of root numbers. As before, let E± ⊂ E be the subset
of isomorphism classes with root number ±1. It does not appear to be known that
limx→∞ ϑE±(x)/ϑE(x) = 1/2, let alone that

ϑE±(x) =
1
2
ϑE(x) +O(xγ)(5.6)

with a constant γ < 5/6. However if one grants (5.6) along with (5.3) then one can
show that an estimate of the form∑

N(E)6x

ords=1L(s,E) = ϑE(x) +O(xγ
′
)(5.7)
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with γ′ < 5/6 implies an estimate of the form

ϑD(x) = ϑE(x) +O(xγ
′′
)(5.8)

with γ′′ < 5/6, and conversely. Note that (5.7) is stronger than (5.5) while (5.8)
is weaker than (5.4). But (5.8) does imply the minimalist conjecture for elliptic
curves over Q.

2. The minimalist trichotomy

Let us attempt to formalize the idea that “ with probability 1, the order of vanishing
of a motivic L-function at the center of its critical strip is the minimum compatible
with its functional equation.” This notion may simply be wrong, but without a
precise formulation there can be no counterexample.

Fix number fields K and E and integers w > 0 and n > 1, and let SK,E,w,n be
the set of premotives M over K of weight w and dimension n which admit E as
coefficient field. (By the dimension of M we mean the dimension of ρλ for {ρλ}λ in
M ; and M admits E as coefficient field if we can choose {ρλ}λ to have coefficient
field E.) As usual, we put k = w + 1, so that the functional equation of L(s,M)
is Λ(s,M) = W (M)Λ(k − s,M). Since we are no longer restricting ourselves to
essentially self-dual motives, it is not necessarily the case that W (M) = ±1. Hence
the dichotomy (5.1) should now be replaced by

ords=k/2L(s,M) =


0 if M 6∼= M,

0 if M ∼= M and W (M) = 1,
1 if M ∼= M and W (M) = −1.

(5.9)

Of course an equivalent but more succinct formulation would be

ords=k/2L(s,M) =

{
1 if M ∼= M and W (M) = −1,
0 otherwise,

(5.10)

but perhaps (5.9) is more illuminating than (5.10). We shall refer to (5.9) as the
minimalist trichotomy and write TK,E,w,n for the subset of SK,E,w,n consisting of
the isomorphism classes for which the minimalist trichotomy holds. To formulate
a hypothesis about the density of TK,E,w,n in SK,E,w,n we need a counting function
on SK,E,w,n. We will use a lemma of Faltings [19]:

Proposition 5.1. Fix a number field K, a finite set of prime ideals S of K, a prime
number `, a finite extension Eλ of Q`, and an integer n > 1. Then there exists a
finite set of prime ideals T of K, disjoint from S, with the following property: If
ρλ is an n-dimensional semisimiple representation of Gal(K/K) over Eλ which is
unramified outside S then ρλ is determined up to isomorphism by the |T | values
tr ρλ(σp) for p ∈ T , where σp denotes a Frobenius element at p.

In [19] this proposition is stated with Eλ = Q`, but the proof works for any Eλ.

Proposition 5.2. The norm of the conductor ν(M) = Nf(M) is a counting func-
tion on SK,E,w,n.

Proof. Fix a prime number `0 and a place λ0 of E above `0, and let x >
0 be given. Let S be the set of prime ideals p of K such that Np 6 x. We
apply Proposition 5.1 with ` and λ replaced by `0 and λ0. Given M ∈ S with
Nf(M) 6 x, choose {ρλ}λ ∈ M with coefficient field E; then M is determined by
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the isomorphism class of ρλ0 (Proposition 3.1). Thus it suffices to see that there
are only finitely many possibilities for the numbers tr ρλ0(σp) with p ∈ T . Now
tr ρλ0(σp) is the sum of the roots of Bp(x), hence an element of OE of absolute value
6 n(Np)w/2 in every archimedean embedding of E. Since there are only finitely
many such elements of OE , the proposition follows. �

Now put S = SK,E,w,n and T = TK,E,w,n. We also set ν(M) = Nf(M) and omit
the subscript ν on ϑS,ν and ϑT ,ν . The assertion that limx→∞ ϑT (x)/ϑS(x) = 1 will
serve as our miminalist conjecture for premotives.

2.1. Connection with elliptic curves
An immediate question is whether the miminalist conjecture for premotives implies
the minimalist conjecture for elliptic curves over Q. Two issues arise.

The first is that E was defined to be the set of isomorphism classes of elliptic
curves over Q, not the set of isogeny classes. In order to use the arithmetic counting
functions we did need to deal with isomorphism classes, but for present purposes we
redefine E as the set of isogeny classes of elliptic curves over Q. Now by the isogeny
theorem [19], an isogeny class of elliptic curves over Q is essentially the same thing
as an isomorphism class of families of the form {ρE,`}` with E an elliptic curve over
Q. Let us make this identification. Then taking K = E = Q, w = 1, and n = 2, we
have E ⊂ S.

The second issue is that we do not know whether the preceding inclusion is
actually an equality. In fact this is a question of Lang and Trotter ([38], pp. 5 and
19), or at least a slight variant of it [49]. However, as explained in [49], the equality
E = S does follow from the Fontaine-Mazur conjecture [20] provided “classically
ordinary” primes are ordinary (definitions below). So under these hypotheses, the
case K = E = Q, w = 1, n = 2 of the minimalist conjecture for arbitrary premotives
is equivalent to the minimalist conjecture for elliptic curves over Q.

Here are the missing definitions. Let M be the isomorphism class of a strictly
compatible family {det ρ`}` of integral `-adic representations of Gal(Q/Q) with
coefficient field Q and exceptional set S. Suppose also that det ρ` = ω`. Then
Bp(x) has the form Bp(x) = x2 − a(p)x + p for p /∈ S, where a(p) ∈ Z. We
say that p is classically ordinary relative to M if p - a(p). On the other hand,
p is ordinary (again, relative to M) if p satisfies the definition on pp. 97–98 of
Greenberg [25]. This means the following, Let p be a prime ideal of Q over p,
and identify the corresponding decomposition group D with Gal(Qp/Qp). Then by
restriction to D we may view ρp as a representation of Gal(Qp/Qp). Let I be the
inertia subgroup of Gal(Qp/Qp) and V the space of ρp. The prime p is ordinary in
Greenberg’s sense if there is a filtration

· · · ⊃ F iV ⊃ F i+1V ⊃ · · ·
of V by subspaces F iV stable under Gal(Qp/Qp) such that F iV = {0} for i � 0,
F iV = V for i� 0, and I acts on F iVp/F

i+1Vp by the character ωip|I.

2.2. A variant of the conjecture
Alternatively, one can attempt to formulate the minimalist conjecture so that not
all of the parameters K, E, w, and n are fixed. In particular, let SK,w,n be the set of
premotives M over K of weight w and dimension n, and let TK,w,n be the subset of
elements satisfying the minimalist trichotomy. If the norm of the conductor ν(M) =
Nf(M) is a counting function on SK,w,n then one obtains a variant formulation of
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the minimalist conjecture, namely limx→∞ ϑS(x)/ϑT (x) = 1, where S = SK,w,n
and T = TK,w,n. However I do not know how to prove that the norm of the
conductor is a counting function on SK,w,n except in the case w = 0:

Proposition 5.3. Let x > 0 be given. There are only finitely many ismorphism
classes of n-dimensional Artin representations ρ of K such that Nf(ρ) 6 x.

Proof. The proof assumes a familiarity with some of the more technical as-
pects of local class field theory as in [56], Chapter IV. Let L be the fixed field of
the kernel of ρ, and view the group G = Gal(L/K) as a subgroup of GLn(C). By a
theorem of Jordan, there is a constant c depending only on n such that any finite
subgroup G of GLn(C) has an abelian normal subgroup A of index 6 c. Apply-
ing this to the group G = Gal(L/K), we see that the fixed field M of A satsifies
[M : K] 6 c. But according to a theorem of Hermite, a number field K has only
finitely many extensions of bounded degree which are unramified outside a given
finite set of places of K. It follows that there are only finitely many possibilities
for M , and from this we would like to deduce that there are only finitely many
possibilities for L.

Now L is abelian over M , and the finiteness of ray class groups implies that
if the conductor of L over M is bounded then indeed there are only finitely many
possibilities for L. So we must show that the conductor of L over M is bounded.
If we fix a prime ideal p of M then it suffices to see that the exponent of p in the
conductor of L/M is bounded.

Put H = Gal(L/M) and let Hi (i > 0) be the higher ramification subgroups of
H relative to p. Similarly write Gi for the higher ramification groups of G relative
to the prime of K below p. Then the bound for Nf(ρ) gives a bound for the largest
i such that Gi is nontrivial. And since Hi is a subgroup of Gi it follows that we
have a bound for the largest i such that Hi is nontrivial. If v = vp is the place of
M determined by p then a bound for the largest i such that Hi is nontrivial gives
a bound for the largest m such that 1 + pmOv is not in the image of the local units
from L ([56], p. 93, Corollary 4). If m0 is such a bound then m0 + 1 is a bound for
the exponent of p in the conductor of L/M . �

In the end, no matter which parameters one fixes, the minimalist conjecture
has the limitations inherent in any probabilistic statement: It cannot account for
phenomena which hold for all or for all but finitely many members of a family. For
example it cannot account for Theorem 1.2, the fact that the minimalist trichotomy
holds for L(s, χ) for every χ ∈ X(D). This example points to another limitation:
many natural families are not dense subsets of any SK,E,w,n or SK,w,n.

3. An open problem

Write Sesd
K,w,n for the subset of SK,w,n consisting of essentially self-dual motives.

For simplicity, we drop the subscripts on SK,w,n and Sesd
K,w,n in the statement of the

following problem:
Show that limx→∞ ϑSesd(x)/ϑS(x) = 0.

In principle, this problem depends on knowing that the norm of the conductor is a
counting function on SK,w,n, but it seems reasonable to agree that the limit is 0 by
default whenever the norm of the conductor is a counting function on Sesd

K,w,n but
not on SK,w,n. Be that as it may, there is already something to think about in the
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case w = 0: If K = Q and n = 1 then the problem is easy (“Quadratic primitive
Dirichlet characters have density 0 among all primitive Dirichlet characters”), but
the case of Artin representations of arbitrary dimension already seems interesting.

4. Exercises

Exercise 5.1. Let E denote an elliptic curve over Q. As pointed out by Serre, a
method of Stark gives

ords=1L(s,E)� logN(E),(5.11)

where the implied constant is absolute. Using this estimate, prove that
if one grants (5.3) and (5.6) then (5.7) and (5.8) are equivalent, as claimed.

Exercise 5.2. (Reading.) Read the proof of Proposition 5.1 in [19] and observe
that it gives the following more general statement:

Fix a number field K, a finite set of prime ideals S of K, a prime number
`, and integers m,n > 1. Then there exists a finite set of prime ideals
T of K, disjoint from S, with the following property: Let ρλ be an n-
dimensional semisimiple representation of Gal(K/K) over an extension
Eλ of Q` of residue class degree 6 m, and suppose that ρλ is unramified
outside S. Then ρλ is determined up to isomorphism by the |T | values
tr ρλ(σp) for p ∈ T .

In other words, one does not have to fix Eλ in advance, only an upper bound for
the degree of its residue class field.

Exercise 5.3. This problem presupposes some familiarity with modular forms.
(a) Fix a prime number `, a finite set of prime numbers S, and an integer

k > 1. Let N be a positive integer divisible only by primes in S, let f be a cuspidal
Hecke eigenform of weight k for Γ1(N), let E be the extension of Q generated by
the Fourier coefficients of f , and let λ be any place of E over `. Write the order
of the residue class field of Eλ as `m. Using the generalization of Proposition 5.1
contained in the previous exercise, prove that given m0 > 1 there exists N0 > 1
such that N > N0 implies m > m0.

(b) Let E be the set of isogeny classes of elliptic curves over Q, and put S =
SK,w,n with K = Q, w = 1, n = 2. Show that

lim
x→∞

ϑE(x)
ϑS(x)

= 0.(5.12)

The limit is understood to be 0 by default if ν(M) = N(f(M)) is not a counting
function on S, so in proving (5.12) you may assume that it is.

Exercise 5.4. Formulate and prove a purely group-theoretic statment to the ef-
fect that the self-dual representations of finite groups have density 0 among all
representations of finite groups.
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[22] A. Fröhlich and J. Queyrut, On the functional equation for the Artin L-function for charac-
ters of real representations, Inventiones Math. 20 (1973), 125–138.

[23] P. X. Gallagher, Determinants of representations of finite groups, Abh. Math. Sem. Univ.
Hamburg 28 (1965), 162–167.

[24] D. Goldfeld, Conjectures on elliptic curves over quadratic fields. In: Number Theory, Car-

bondale, 1979, Springer, Lecture Notes in Math. 751 (1979), 108 – 118.

83



84 BIBLIOGRAPHY

[25] R. Greenberg, Iwasawa theory for p-adic representations. In: Algebraic Number Theory – in
honor of K. Iwasawa, Advanced Studies in Pure Mathematics 17 (1989), pp. 97 – 137.

[26] B. H. Gross, Arithmetic on Elliptic Curves with Complex Multiplication, SLN 776, Springer-
Verlag (1980).

[27] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Inventiones Math.

84 (1986), 225 – 320.
[28] D. R. Heath-Brown, The average rank of elliptic curves, Duke Math. J. 122 (2004), 225 –

320.
[29] D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime argu-

ments, J. reine angew. Math. 310 (1979), 111 – 130.

[30] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der
Primzahlen. Zweite Mitteilung, Math. Z. 6 (1920), 11 – 51.

[31] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Chelsea Publishing Com-
pany, 2nd ed. (1970).

[32] H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of L-functions, Publ. Math.

Inst. Hautes Etudes Sci. 91 (2000), 55 – 131.
[33] H. Iwaniec and P. Sarnak, Dirichlet L-functions at the central point. In: Number Theory in

Progress vol. 2, de Gruyter, Berlin (1999), 941 – 952.

[34] M. Jutila, On the mean value of L(1/2, χ) for real characters, Analysis 1 (1981), 149 – 161.
[35] S. Katayama, On fundamental units of real quadratic fields with norm +1, Proc. Japan Acad.

68 Ser. A (1992), 18 – 20.
[36] V. A. Kolyvagin and D. Yu. Logachev, Finiteness of the Shafarevich-Tate group and the group

of rational points for some modular abelian varieties (Russian), Algebra i Analiz 1 (1989),

171 – 196. Translation: Leningrad Math. J. 1 (1990) 1229 – 1253.
[37] S. Lang Algebraic Number Theory, Springer-Verlag.

[38] S. Lang and H. Trotter, Frobenius Distributions in GL2-Extensions, Springer-Verlag, LNM
vol. 504 (1976).

[39] Chunlei Liu and Lanju Xu The vanishing order of certain Hecke L-functions of imaginary

quadratic fields, J. of Number Thy. 108 (2004), 76-89.
[40] R. Masri, Quantitative nonvanishing of L-series associated to canonical Hecke characters,

IMRN (2007).
[41] R. Masri, Asymptotics for sums of central values of canonical Hecke L-series, IMRN (2007).

[42] C. R. Matthews, Gauss sums and elliptic functions: I. The Kummer sum, Inventiones math.

52 (1979), 163 – 185.
[43] C. R. Matthews, Gauss sums and elliptic functions: II. The quartic sum, Inventiones math.

54 (1979), 23 – 52.
[44] S.D. Miller and T. H. Yang Non-vanishing of the central derivative of canonical Hecke L-

functions, Math. Res. Lett. 7 (2000), 263 – 277.

[45] H. Montgomery and D. E. Rohrlich On the L-functions of canonical Hecke characters of
imaginary quadratic fields. II Duke Math. J. 49 (1982), 937-942.

[46] F. Rodriguez-Villegas, Square root formulas for central values of Hecke L-series. II Duke
Math. J. 72 (1993), 431 – 440.

[47] D. E. Rohrlich, On the L-functions of canonical Hecke characters of imaginary quadratic

fields, Duke Math. J. 47 (1980), 547 – 557.
[48] D. E. Rohrlich, Root numbers of Hecke L-functions of CM fields, Am. J. Math. 104 (1982),

517 – 543.
[49] D. E. Rohrlich, Compatible families of elliptic type, to appear.

[50] K. Rubin, Elliptic curves with complex multiplication and the conjecture of Birch and

Swinnerton-Dyer, Inventiones Math. 64 (1981), 455 – 470.
[51] K. Rubin and A. Silverberg, Ranks of elliptic curves, Bull. Amer. Math. Soc. 39 (2002), 455

– 474.
[52] P. Schneider, Introduction to the Beilinson conjectures. In: Beilinson’s Conjectures on Special

Values of L-Functions, Academic Press (1988), 1 – 33.

[53] J-P. Serre, Facteurs locaux de fonctions zêta des variétés algébriques (définitions et conjec-
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