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Integral and p-adic Refinements

of the Abelian Stark Conjecture

Cristian D. Popescu

Introduction

In the 1970s and early 1980s, Stark [St] developed a remarkable Galois–equi-
variant conjectural link between the values at s = 0 of the first non–vanishing
derivatives of the Artin L–functions LK/k(ρ, s) associated to a Galois extension
K/k of number fields and a certain Q[Gal(K/k)]–module invariant associated to
the group of global units of K. Stark’s Main Conjecture should be viewed as a vast
Galois–equivariant generalization of the unrefined, rational version of Dirichlet’s
class–number formula

lim
s→0

1

sr
ζk(s) ∈ Q× ·Rk ,

in which the zeta function ζk is replaced by a Galois–equivariant L–function

ΘK/k,S(s) =
∑

ρ∈ bG

LK/k,S(ρ, s) · eρ̌ ,

with values in the center of the group–ring Z(C[Gal(K/k)]), the regulator Rk is
replaced by a Galois–equivariant regulator with values in Z(C[Gal(K/k)]), and the
rank r of the group of units in k is replaced by the local rank function of the
(projective) Q[Gal(K/k)]–module QUS of S–units in K.

In the 1970s and early 1980s, work of Stark, Tate, Gross, and Chinburg among
others revealed not only the depth and importance of Stark’s Main Conjecture for
number theory (e.g. Chinburg’s theory of multiplicative Galois Module Structure
emerged from this context), but also the fact that an integral refinement of this
statement, in the spirit of the integral Dirichlet class–number formula

lim
s→0

1

sr
ζk(s) = − hk

wk
·Rk ,

would have very far reaching applications to major unsolved problems in the field.
In [St IV], Stark himself formulated such an integral refinement for abelian ex-
tensions K/k and their associated imprimitive L–functions LK/k,S(χ, s) of order of
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vanishing at most 1 at s = 0. Roughly speaking, this integral statement predicts the
existence of a special S–unit εK in K, which has remarkable arithmetic properties
and, if evaluated against the Galois–equivariant regulator, it produces the value
at s = 0 of the first derivative of the Galois–equivariant L–function ΘK/k,S(s).
Moreover, εK is unique and computable in terms of these special L–values.

In all the major instances in which this conjecture has been proved, the Stark
units εK have turned out to be truly remarkable arithmetic objects. They are
cyclotomic S–units or Gauss sums if k = Q (see [St IV] and [Ta4]), elliptic units
if k = Q(

√
−d), with d ∈ Z≥1 (see [St IV] and [Ta4]), and norms of torsion points

of sign–normalized rank 1 Drinfeld modules if k is a function field (see [H1]). In
each of these instances the construction of Stark’s units εK is closely related to the
solution of Hilbert’s 12th problem for the respective base field k (i.e. the explicit
generation of the abelian class–fields of the field k.) Tate [Ta4] showed that this is
not at all coincidental – it turns out that, when non–trivial, the solution to Stark’s
Integral Conjecture would lead to an explicit generation of the abelian class–fields
of the base field k by exponentials of special values of L–functions.

In the late 1980s and early 1990s, the emergence of Kolyvagin’s theory of Euler
Systems revealed a new interpretation of the known Stark units εK – they provide
us with the only known non–trivial examples of Euler Systems of units: the Euler
Systems of cyclotomic units, Gauss sums, elliptic units, and torsion points of rank
1 Drinfeld modules, leading to enlightening solutions of major problems in number
theory – the Iwasawa Main Conjecture over Q and over quadratic imaginary fields,
particular cases of the Birch–Swinnerton Dyer conjecture etc. Rubin [Ru2] showed
that this is not a coincidence either – it turns out that, when non–trivial, the Stark
units εK for various extensions K/k give rise to Euler Systems over a fixed field k.

Unfortunately, since in most cases the order of vanishing at s = 0 of the non–
primitive L–functions LK/k,S(χ, s) is strictly larger than 1, Stark’s integral refine-
ment of his Main Conjecture has a non–trivial output εK for a very limited class of
abelian extensions K/k. This is why an integral refinement of Stark’s Main Con-
jecture in its full generality is needed. Such a refinement is also expected to have
the type of applications described in the previous paragraph for general extensions
K/k. In 1994, Rubin [Ru3] formulated an integral refinement of the Main Con-
jecture for abelian extensions K/k and their associated imprimitive L–functions
LK/k,S(χ, s) of arbitrary order of vanishing at s = 0.

The main objectives of this paper are as follows: after introducing the neces-
sary notations and definitions (see §1), we state Rubin’s Conjecture and a related
refinement of Stark’s Main Conjecture due to the present author and discuss their
links to the classical Integral Stark Conjecture (see §2); in §3 we discuss a series
of applications of Rubin’s Conjecture to the theory of Euler Systems, the con-
struction of groups of special units and refined class-number formulas (Gras–type
conjectures); in §4 we discuss a refinement of Rubin’s Conjecture essentially due to
Gross [Gro1–3] and interpret it in terms of special values of p–adic L–functions;
in §5 [TO BE WRITTEN], we provide evidence in support of the Rubin-Stark and
Gross Conjectures.

This introduction would be incomplete without mentioning the recent remark-
able work of Burns, Flach, and their students and collaborators on the Equivariant
Tamagawa Number Conjecture (ETNC), which has brought a wide variety of new
and exciting ideas, techniques and interpretations to the subject of Stark’s Conjec-
tures. Building upon earlier work of Bloch–Kato and Fontaine–Perrin-Riou, Burns
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and Flach [BF1–3] have formulated the ETNC for L–functions associated to mo-
tives with (not necessarily abelian) coefficients. If restricted to Artin motives, this
statement can also be viewed as an integral refinement of Stark’s Main Conjecture
for general (not necessarily abelian) extensions K/k. In the more restrictive case of
Dirichlet motives, the ETNC implies (refinements of) the Rubin-Stark and Gross
Conjectures discussed in this paper, as shown by Burns in [Bu5].

1. Notations and definitions

1.1. Notations. Let K/k be a finite, abelian extension of global fields of

arbitrary characteristic and of Galois group G := Gal(K/k). We denote by Ĝ the
group of irreducible complex valued characters of G. Let µK be the group of roots
of unity in K, wK := card(µK), and S and T two finite, nonempty sets of primes
in k. For a finite extension K ′/k, SK′ and TK′ will denote the sets of primes in
K ′ dividing primes in S and T , respectively . For the moment, we require that the
sets S and T satisfy the following set of hypotheses.

Hypotheses (H0)
1. S contains all the primes which ramify in K/k, and all the infinite primes

of k in the case where k is a number field.
2. T ∩ S = ∅.
3. There are no nontrivial elements in µK which are congruent to 1 modulo all

the primes w in TK .
The reader will note that the last hypothesis above is automatically satisfied in
the function field case. In the number field case, it is satisfied if, for example, T
contains either at least two primes of different residual characteristic or a prime
whose corresponding residue field is large compared to the size of µK .

For a finite extension K ′/k, OK′,S will denote its ring of SK′–integers, UK′,S :=

O×
K′,S is the group of SK′–units in K ′, and AK′,S the ideal–class group of OK′,S .

For any such K ′, we also define the (S, T )–modified group of units and respectively
ideal class–group as follows.

UK′,S,T := {x ∈ UK′,S |x ≡ 1 mod w, ∀w ∈ TK′} .

AK′,S,T :=
{fractional ideals of OK′,S coprime to TK′}
{x ·OK′,S |x ≡ 1 mod w, ∀w ∈ TK′} .

For simplicity, we will set US := UK,S, AS := AK,S , US,T := UK,S,T , and AS,T :=
AK,S,T . Since SK and TK are G–invariant, these groups are endowed with natural
Z[G]–module structures.

1.2. The G–equivariant L–function. For K/k, S, and T as above, and any

χ in Ĝ, let LS(χ, s) denote, as usual, the L–function associated to χ with Euler
factors at primes in S removed, of the complex variable s. This is a complex valued
function, holomorphic everywhere if χ is non–trivial, and holomorphic outside s = 1,
with a pole of order 1 at s = 1 if χ is the trivial character. With the help of these
L–functions, one can define

ΘS , ΘS,T : C −→ C[G] ,

ΘS(s) :=
∑

χ∈ bG

LS(χ, s) · eχ−1 , ΘS,T :=
∏

v∈T

(1− σ−1
v · (Nv)1−s) ·ΘS(s) ,
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where σv and Nv denote the Frobenius morphism in G and the cardinality of the
residue field associated to v, and

eχ−1 := 1/|G|
∑

σ∈G

χ(σ) · σ

is the idempotent element associated to χ−1 in C[G]. The functions ΘS and ΘS,T are
the so–called S–modified respectively (S, T )–modified G–equivariant L–function.
If the group–ring C[G] is viewed in the obvious manner as a direct product of |G|
copies of C, then the projections of ΘS and ΘS,T onto the various components of
C[G] with respect to this product decomposition are holomorphic away from s = 1
(holomorphic everywhere, respectively) as functions of the complex variable s. The
values of ΘS,T at non-positive integers satisfy the following remarkable integrality
property.

Theorem 1.2.1. Under hypotheses (H0), one has

ΘS,T (1− n) ∈ Z[G] ,

for all integers n ≥ 1.

In the number field case, Theorem 1.2.1 was independently proved by Deligne–Ribet
[DR], P. Cassou-Nogues [CN], and D. Barski [Bar1]. In fact, in [DR] it is proved
that one has

AnnZ[G](µK,n) ·ΘS(1− n) ⊆ Z[G] , for all n ∈ Z≥1.

Here, µK,n denotes the group of roots of unity in the maximal abelian extension

K(n) of K of exponent dividing n, on which G acts via ”lifts and n–powers” (This
means that σ ∗ ζ = σ̃n(ζ), for all ζ ∈ µK,n and σ ∈ G, where σ̃ is an arbitrary lift

of σ to G(K(n)/k). Note that µK,1 = µK . A more familiar notation for µK,n might

be (Q/Z(n))GK .) The reader will notice that hypothesis (H0)3 is equivalent to
∏

v∈T

(1− σ−1
v · (Nv)n) ∈ AnnZ[G](µK,n) , for all n ∈ Z≥1 .

In fact, the following lemma, whose proof in characteristic 0 can be found in [Co],
holds true in both characteristics 0 and p.

Lemma 1.2.2. Assume that the set of data (K/k, S0) satisfies hypothesis (H0)–
1. Then, for all n ∈ Z≥1, AnnZ[G](µK,n) is generated as a Z[G]–module by the
elements

δT (1− n) :=
∏

v∈T

(1 − σ−1
v · (Nv)n) ,

where T runs through all the finite sets of primes in k, such that (K/k, S, T ) satisfies
hypotheses (H0).

In the function field case, Theorem 1.2.1 is a direct consequence of Weil’s theorem
expressing the L–functions as alternating products of characteristic polynomials of
the action of a geometric Frobenius morphism on various G–eigenspaces of ℓ–adic
étale cohomology groups of the smooth projective curve associated to the top field
K. By using this interpretation, one can show that, if q is the cardinality of the
field of constants for the base field k, then there exists a polynomial PS,T (X) in
Z[G][X ], such that

ΘS,T (s) = PS,T (q−s)
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(see [Ta4] and §3.1 below.) Theorem 1.2.1 follows immediately from this equality.
In what follows, in order to simplify notations we will set

δT := δT (0) ,

for any set T as in Lemma 1.2.2.

In the context described above, Stark’s Conjecture provides a link between the
lead term in the Taylor expansion at s = 0 of the G–equivariant L–function ΘS,T (s)
and certain arithmetic invariants of the abelian extension K/k. In order to make
this link precise, we will need to impose additional conditions on the sets of primes
S and T . Let us fix an integer r ≥ 0. We associate to r the following (extended)
set of hypotheses to be satisfied by the set of data (K/k, S, T, r).

Hypotheses (Hr)
1. S contains all the primes which ramify in K/k, and all the infinite primes

of k in the case where k is a number field.
2. card(S) ≥ r + 1.
3. S contains at least r distinct primes which split completely in K/k.
4. T ∩ S = ∅.
5. There are no nontrivial elements in µK which are congruent to 1 modulo all

the primes w in TK .

The following Lemma shows how hypotheses (Hr) control the order of vanishing
ords=0 at s = 0 of the associated G–equivariant L–functions.

Lemma 1.2.3. If (K/k, S, T ) satisfies hypotheses (Hr), then ords=0LS(χ, s) ≥
r, ∀χ ∈ Ĝ and, consequently,

ords=0ΘS(s) = ords=0ΘS,T (s) ≥ r .

Proof. This is a direct consequence of the following equality proved in [Ta4].

(1) ords=0LS(χ, s) =

{
card{v ∈ S |χ|Gv = 1Gv}, for χ 6= 1G

card(S)− 1, for χ = 1G

,

where Gv is the decomposition group of v in K/k and 1H denotes the trivial char-
acter of a group H . �

If the set of data (K/k, S, T ) satisfies hypotheses (Hr), we let

Θ
(r)
S,T (0) := lim

s→0

1

sr
ΘS,T (s)

denote the coefficient of sr in the Taylor expansion of ΘS,T (s) at s = 0.

1.3. The G–equivariant regulator maps. The link between the analytic
aspects of the picture (represented by the G–equivariant L–function described in
the previous section) and its arithmetic aspects (represented by the Z[G]–modules
of units US,T and ideal classes AS,T ) predicted by Stark’s Conjecture is achieved via
certain G–equivariant regulator maps. These will be defined in the present section.

Throughout this section we assume that the data (K/k, S, T, r) satisfies hy-
potheses (Hr), for a fixed r ∈ Z≥0. We fix an r–tuple V := (v1, . . . , vr) of r distinct
primes in S which split completely in K/k, and primes wi in K, with wi dividing vi,
for all i = 1, . . . , r. Let W := (w1, . . . , wr). For all primes w in K, let | · |w denote
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their associated metrics, canonically normalized so that the product formula holds.
This means that for all x ∈ K×, we let

|x|w :=

{
(Nw)−ordw(x), if w is finite

|σw(x)|, if w is infinite
,

where σw denotes the unique embedding of K into C associated to w and | · | is
the usual complex absolute value.

Throughout this paper, if M is a Z[G]–module and R is a commutative ring
with 1, then RM denotes the tensor product R ⊗Z M endowed with the usual

R[G]–module structure, M̃ denotes the image of M via the canonical morphism

M −→ QM ,

and M∗ := HomZ[G](M,Z[G]) is the dual of M in the category of Z[G]–modules.

Definition 1.3.1. The G–equivariant regulator map associated to W is the
unique Q[G]–linear morphism

RW : Q
r∧

Z[G]
US,T −→ C[G] ,

such that, for all u1, . . . , ur in US,T , we have

RW (u1 ∧ · · · ∧ ur) := det(−
∑

σ∈G

log |uσ−1

i |wj · σ) ,

where the determinant is taken over C[G], and i, j = 1, . . . , r.

Remark 1. If extended by C–linearity the regulatorRW defined above induces
a C[G]–isomorphism (see [Ru3] for a proof)

RW : C
r∧

Z[G]
US,T

∼−→ C[G] ,

also denoted by RW in what follows. By definition, the special value Θ
(r)
S,T (0)

belongs to the C[G]–submodule of C[G], consisting of all elements x ∈ C[G] which
satisfy

eχ · x = 0 ,

for all χ in Ĝ, such that ords=0LS(χ, s) > r. Since RW is a C[G]–isomorphism,
this implies that there exists a unique element

εS,T ∈ C
r∧

Z[G]
US,T ,

such that the following equalities hold.

1. RW (εS,T ) = Θ
(r)
S,T (0).

2. eχ · εS,T = 0 in C
r∧

Z[G]
US,T , for all χ in Ĝ, such that ords=0LS(χ, s) > r.

The above remark prompts us to give the following definition.

Definition 1.3.2. Assume that the set of data (K/k, S, T, r) satisfies hypothe-
ses (Hr). Let M be a Z[G]–module. We define

M̃r,S := {x ∈ M̃ | eχ · x = 0 in CM , for all χ ∈ Ĝ such that ords=0LS(χ, s) > r} .
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2. The Conjectures

In this section, we state Stark’s Conjecture (“over Q”) in the abelian situation
outlined in §1, as well as its integral refinements (“over Z”) due to Rubin and the
present author.

2.1. Stark’s Conjecture “over Q”.

CONJECTURE A(K/k, S, T, r) (Stark). If the set of data (K/k, S, T, r)
satisfies hypotheses (Hr), then there exists a unique element

εS,T ∈ Q
r∧

Z[G]
US,T ,

such that the following equalities hold.

1. RW (εS,T ) = Θ
(r)
S,T (0).

2. eχ · εS,T = 0 in C
r∧

Z[G]
US,T , for all χ in Ĝ, such that ords=0LS(χ, s) > r.

A few remarks concerning this statement are in order.

Remark 1. The uniqueness part of the statement above is a direct consequence
of Remark 1, §1.3. The (highly non–trivial) conjectural part is the statement that

the unique element εS,T ∈ (C
r∧

Z[G]
US,T )r,S satisfying the regulator condition (1)

and the vanishing condition (2) in Remark 1, §1.3, belongs in fact to the Q[G]–

submodule (Q
r∧

Z[G]
US,T )r,S .

Remark 2. No doubt, the reader has noticed that the notation used for εS,T

does not capture its dependence of our choice of r–tuples V := (v1, . . . , vr) and
W = (w1, . . . , wr) of primes in S and SK , as in §1.3. It is indeed true that εS,T

depends on these choices. However, it turns out that this dependence is simple
and, most importantly, if Conjecture A is true for one choice of V and W , then
it is true for any other choice. To show this, let us first assume that V ′ and W ′

differ from V and W by a permutation τ ∈ Symr and respectively an r–tuple
σ := (σ1, . . . , σr) ∈ Gr, i.e. V ′ = (vτ(1), . . . , vτ(r)) and W ′ = (vσ1

τ(1), . . . , v
σr

τ(r)).

Then one can define a unique Z[G]–linear isomorphism

Φτ,σ :
r∧

Z[G]
US,T

∼−→ r∧
Z[G]

US,T ,

by setting Φτ,σ(u1∧· · ·∧ur) := u
σ−1

1

τ(1)∧· · ·∧u
σ−1

r

τ(r), for all u1, . . . , ur in US,T . Let Φτ,σ

denote the unique C-linear extension of the above map to C
r∧

Z[G]
US,T . If εS,T and

ε′S,T are the unique elements in C
r∧

Z[G]
US,T satisfying (1) and (2) in Remark 1, §1.3,

for RW and RW ′ respectively, then one can easily show that ε′S,T = Φτ,σ(εS,T ).

This shows that if εS,T ∈ Q
r∧

Z[G]
US,T , then ε′S,T ∈ Q

r∧
Z[G]

US,T and vice versa.

Secondly, let us assume that S contains more than r primes which split completely,
i.e. there are at least two choices V and V ′ which do not differ from one another via
a permutation τ ∈ Symr. If card(S) > r+ 1, then Lemma 1.2.3 above implies that

Θ
(r)
S,T (0) = 0 and therefore Conjecture A is trivially true for εS,T = 0, for any choice



8 CRISTIAN D. POPESCU

of V and W . Now, let us assume that S = {v1, . . . , vr+1}, and vi splits completely
for all i = 1, . . . , r+ 1. Then Lemma 1.2.3 combined with the (S, T )–class–number
formula of [Ru3] implies that

Θ
(r)
S,T (0) = −card(Ak,S,T ) ·Rk,S,T · e1G ,

where 1G denotes the trivial character of G and Rk,S,T is the Dirichlet regulator
associated to the group of (S, T )–units Uk,S,T . The equalities above imply right
away that in this case Conjecture A is true with

εS,T := ±card(Ak,S,T )

|G|r u1 ∧ · · · ∧ ur ,

where u1, . . . , ur is a Z–basis for Uk,S,T and the sign is uniquely determined by
the choice of V and W . Based on these considerations and in order to simplify
notations, we have dropped the dependence of εS,T on the choice of V and W from
the notation in the statement of Conjecture A and throughout this paper.

Remark 3. The reader familiar with [St] will notice that Stark’s original for-
mulation of his conjecture “over Q” is quite different from ours. The main difference
stems from the fact that while the statement above is given in a Galois–equivariant
form, Stark’s original conjecture was formulated in a character–by–character man-
ner (i.e. for one L–function at a time). Yet another difference is marked by the fact

that Stark deals with all the characters χ ∈ Ĝ, while Conjecture A only deals with
those characters χ whose associated L–functions have minimal order of vanishing
r at s = 0. The statement presented here is essentially due to Tate [Ta4] and Ru-
bin [Ru3] and, under the present hypotheses (Hr), is equivalent to Stark’s original
conjecture for L–functions of minimal order of vanishing r at s = 0 (see [Ru3] for
a proof).

2.2. Rubin’s integral refinement of Conjecture A. In this section, we
state Rubin’s integral refinement of Conjecture A. The main idea behind any inte-
gral refinement of Conjecture A is to construct an arithmetically meaningful Z[G]–
submodule (i.e. a G–equivariant lattice of rank which is not necessarily maximal)

of the Q[G]–module Q
r∧

Z[G]
US,T , which contains the element εS,T . We will first de-

scribe Rubin’s construction of such a lattice. We are still working under hypotheses
(Hr) for the set of data (K/k, S, T, r). For any (r − 1)–tuple

Φ := (φ1, . . . , φr−1) ∈ (U∗
S,T )r−1 ,

there exists a unique Q[G]–linear morphism

Φ̃ : Q
r∧

Z[G]
US,T −→ QUS,T ,

such that, for all u1, . . . , ur in US,T , we have

Φ̃(u1 ∧ · · · ∧ ur) =

r∑

k=1

(−1)k det(φi(uj))j 6=k · uj .

In the last equality, the determinant in the k–th term of the sum is taken with
respect to all i = 1, . . . , r−1 and all j = 1, . . . , r, such that j 6= k. Please note that
since US,T has no Z–torsion (see hypothesis (Hr)5), US,T can be naturally viewed as
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a Z[G]–submodule of QUS,T . Consequently, the k–term sum above can be viewed
without any ambiguity inside QUS,T .

Definition 2.2.1. Rubin’s lattice ΛS,T consists of all elements ǫ in Q
r∧

Z[G]
US,T ,

which satisfy the following properties.
1. Φ̃(ǫ) ∈ US,T , for all Φ := (φ1, . . . , φr−1) ∈ (U∗

S,T )r−1.

2. eχ · ǫ = 0 in C[G], for all χ ∈ Ĝ, such that ords=0LS(χ, s) > r .

Remark 1. It is immediate from Definition 2.2.1 that for r = 0, 1, we have

ΛS,T =

{
(ŨS,T )1,S , if r = 1

Z[G]0,S , if r = 0 .

For a general r ≥ 1, we have inclusions

|G|n · ΛS,T ⊆ (
r̃∧

Z[G]
US,T )r,S ⊆ ΛS,T ,

for sufficiently large positive integers n. It is not difficult to show that if US,T has
finite projective dimension over Z[G], then the second inclusion above is an equality.
However, as Rubin shows in [Ru3], the second inclusion above is in general strict.
After tensoring with Z[1/|G|], we have an equality

Z[1/|G|]ΛS,T = (Z[1/|G|] r̃∧
Z[G]

US,T )r,S ,

which follows directly from the sequence of inclusions above. Also, since US,T sits
inside US with a finite index, we have equalities

QΛS,T = (Q
r∧

Z[G]
US,T )r,S = (Q

r∧
Z[G]

US)r,S .

CONJECTURE B(K/k, S, T, r) (Rubin). If the set of data (K/k, S, T, r)
satisfies hypotheses (Hr), then there exists a unique element εS,T ∈ ΛS,T , such that

RW (εS,T ) = Θ
(r)
S,T (0) .

Remark 2. In the case r = 0 Rubin’s conjecture states that ΘS,T (0) ∈
Z[G]0,S . This statement is true and follows immediately if one sets n = 1 in Theo-
rem 1.2.1 and applies equalities (1) above.

Remark 3. In the case r = 1, Conjecture B is equivalent to Stark’s integral
refinement of Conjecture A for L–functions of order of vanishing 1 at s = 0, formu-
lated in [St IV]. A proof of this equivalence can be found in [Ta4] and [Ru3] and
it is a direct consequence of Remark 1 for r = 1 and Lemma 2.2.3 below.

At times, it is convenient to drop dependence on the auxiliary set T in conjec-
ture B formulated above. This is why we will sometimes work with the following
statement instead.



10 CRISTIAN D. POPESCU

CONJECTURE B(K/k, S, r). If the set of data (K/k, S, r) satisfies hypothe-
ses (Hr)1–3, then for all sets T such that the set of data (K/k, S, T, r) satisfies
hypotheses (Hr), there exists a unique element εS,T ∈ ΛS,T , such that

RW (εS,T ) = Θ
(r)
S,T (0) .

The following result proved in [P4] (see Proposition 5.3.1) shows that in the
above conjecture it is sufficient to work with minimal sets T .

Theorem 2.2.2. Let (K/k, S, T, r) and (K/k, S, T ′, r) be two sets of data sat-
isfying hypotheses (Hr), such that T ⊆ T ′. Then

B(K/k, S, T, r) =⇒ B(K/k, S, T ′, r) .

In particular, this theorem shows that, in the case where char(k) = p > 0, it
suffices to prove conjecture B(K/k, S, T, r) for sets T of cardinality 1.

Remark 4. In what follows, we will give a somewhat detailed description of
the connection between Rubin’s Conjecture and the classical conjectures of Brumer
and Brumer–Stark. In the 1970s, Brumer stated the following conjecture, as a
natural extension of the classical Theorem of Stickelberger for abelian extensions
of Q (see [Co]) to abelian extensions of general number fields. The conjecture was
later extended to global fields of arbitrary characteristic by Mazur and Tate (see
[Ta4]).

CONJECTURE Br(K/k, S0) (BRUMER). Let us assume that (K/k, S0)
satisfies hypothesis (H0)1. Then

AnnZ[G](µK) ·ΘS0
(0) ⊆

{
AnnZ[G](AK) , if char(k) = 0

AnnZ[G](Pic0(K)) , if char(k) > 0

where AK is the usual ideal–class group of the number field K and Pic0(K) is the
Picard group of equivalence classes of divisors of degree 0 of the function field K.

The Z[G]–ideal AnnZ[G](µK) ·ΘS0
(0) is called the Stickelberger ideal associated

to (K/k, S0) and it generalizes the classical Stickelberger ideal defined for k = Q
to the case of arbitrary base fields k. Stark (in the number field case) and Tate (in
the function field case) formulated the following refinement of Brumer’s conjecture,
now commonly known as the Brumer–Stark Conjecture.

CONJECTURE BrSt(K/k, S0) (BRUMER–STARK). Let us assume that
the set of data (K/k, S0) satisfies hypothesis (H0)1. Then,

1. If char(k) = 0 and I is a fractional ideal of K, there exists a unique element
αI ∈ (K×)0,S0

, such that

wKΘS0
(0) · I = (αI)

and K(α
1/wK

I )/k is an abelian extension.
2. If char(k) > 0 and D is a nonzero divisor of K, there exist unique αD ∈

(K×)0,S0
and mD ∈ Z, such that

wKΘS0
(0) ·D = div(αD) +mD ·

∑

w∈(S0)K

w

and K(α
1/wK

D )/k is an abelian extension.
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Showing that BrSt(K/k, S0) implies Br(K/k, S0) is an easy exercise based on
Lemma 1.2.2 and on the following characterization of those elements α ∈ K×, such
that K(α1/wK )/k is an abelian extension (see [Ta4] or [P4]. )

Lemma 2.2.3. Let (K/k, S0) be as above, let α ∈ K×, and set

supp(α) := {v finite prime in k | ordv(NK/k(α)) > 0} .

Then, the following are equivalent.
1. K(α1/wK )/k is an abelian extension.
2. For all finite sets of primes T in k, such that T ∩ (S0 ∪ supp(α)) = ∅ and

(K/k, S0, T ) satisfies hypotheses (H0), there exists αT ∈ K× such that

αδT = αwK

T ; αT ≡ 1 mod×w , for all w ∈ TK .

This lemma leads us to the following (S0, T )–version of the Brumer–Stark Con-
jecture, which will be useful in our future considerations.

CONJECTURE BrSt(K/k, S0, T ). Let us assume that (K/k, S0, T ) satisfies
hypothesis (H0). Then,

1. If char(k) = 0 and I is a fractional ideal of K coprime to T , there exists a
unique element αI,T ∈ (K×)0,S0

, such that αI,T ≡ 1 mod×w , for all w ∈
TK , and

ΘS0,T (0) · I = (αI,T ) .

2. If char(k) > 0 and D is a nonzero divisor of K coprime to T , there exist
unique αD,T ∈ (K×)0,S0

and mD ∈ Z, such that αD,T ≡ 1 mod×w, for all
w ∈ TK, and

ΘS0,T (0) ·D = div(αD,T ) +mD ·
∑

w∈(S0)K

w .

Lemma 2.2.3 implies that proving conjecture BrSt(K/k, S0) is equivalent to
proving conjectures BrSt(K/k, S0, T ), for all T such that (K/k, S0, T ) satisfies
hypotheses (H0).

Remark. The reader will notice right away that, if char(k) > 0 and card(S0) >
1, then BrSt(K/k, S0) implies that the Stickelberger ideal associated to (K/k, S0)
annihilates in fact the group Pic(K) of classes of K–divisors of arbitrary degree,
which is much larger than Pic0(K). Indeed this can be proved by taking divi-
sor degrees in the equality displayed in Part 2. of the Brumer-Stark Conjecture
BrSt(K/k, S0) stated above, and by noticing that, if card(S0) > 1, then

deg(wKΘS0
(0) ·D) = 1G(wKΘS0

) · deg(D) = 0

(see Lemma 1.2.3), for all K–divisors D. This implies that mD = 0 and the desired
result ensues by applying once again Lemma 1.2.3. If card(S0) = 1, then the
Stickelberger ideal does not annihilate Pic(K), in general.

Rubin’s Conjecture fully captures the annihilation phenomenon described in
the Brumer–Stark Conjecture, as shown in the following theorem.
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Theorem 2.2.4. Let us assume that the set of data (K/k, S0) satisfies hypoth-
esis (H0)1. Then we have an equivalence

BrSt(K/k, S0)⇐⇒
{
B(K/k, S0 ∪ {v}, 1) , for all primes v in k,
v split in K/k, v 6∈ S0.

}

Proof (sketch). In the case char(k) = 0 this is a consequence of Lemma 2.2.3
above and the fact that each ideal–class in AK has infinitely many representatives
w, where w is a (finite) prime in K, dividing a prime v in k which splits completely
in K/k (a consequence of Tchebotarev’s density theorem).

In the case char(k) > 0 the necessary ingredients for the proof are Lemma 2.2.3
and the fact that the group of K–divisor classes Pic(K) is generated by classes of
prime divisors Π in K sitting above prime divisors π in k which are completely split
in K/k. (A class–field theoretic proof of this fact can be found in [H1], p. 8.) �

2.3. A weaker integral refinement for Conjecture A. In our study of a
base–change–type functoriality property for Conjecture B, we arrived at a slightly
weaker integral refinement for Conjecture A (see [P4]). From a functorial point
of view, this new statement seems to be more natural than Conjecture B. In this
section, we state this refinement and describe its links to Conjecture B.

Let us fix (K/k, S, T, r), satisfying hypotheses (Hr). As in [P4], we have an
exact sequence of Z[G]–modules

(2) 0 −→ US,T −→ US
resT−−→ ⊕w∈TKF (w)× −→ AS,T −→ AS −→ 0 ,

where AS denotes the ideal class group of the ring of S–integers OK,S in K, F (w)
is the residue field of w, and resT is the direct sum of the residual morphisms into
F (w)× for all w ∈ TK . If we denote by I the image of resT , and take duals in the
category of Z[G]–modules, we obtain the following exact sequence of abelian groups

0 −→ U∗
S −→ U∗

S,T −→ Ext1Z[G](I,Z[G]) .

Since I is finite, Ext1
Z[G](I,Z[G]) is finite and consequently U∗

S can be viewed (via

the usual restriction map) as a subgroup of finite (in general non–trivial) index
in U∗

S,T . With this observation in mind, one can define a new lattice Λ′
S,T inside

Q
r∧

Z[G]
US,T as follows.

Definition 2.3.1. The lattice Λ′
S,T is the set of all elements ǫ in Q

r∧
Z[G]

US,T ,

which satisfy the following properties.
1. Φ̃(ǫ) ∈ US,T , for all Φ := (φ1, . . . , φr−1) ∈ (U∗

S)r−1.

2. eχ · ǫ = 0 in C[G], for all χ ∈ Ĝ, such that ords=0LS(χ, s) > r .

Obviously, since U∗
S sits inside U∗

S,T with a finite, in general non–trivial) index,

Rubin’s lattice ΛS,T sits inside the new lattice Λ′
S,T with a finite (in general non–

trivial) index. We are now ready to formulate the new integral refinement for
Conjecture A mentioned in the introduction.
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CONJECTURE C(K/k, S, r). Assume that the set of data (K/k, S, r) satis-
fies hypotheses (Hr)1–3. Then, for all sets T such that the set of data (K/k, S, T, r)
satisfies hypotheses (Hr), there exists a unique εS,T ∈ Λ′

S,T , such that

RW (εS,T ) = Θ
(r)
S,T (0) .

Conjecture C satisfies the following remarkable base–change property. Let us
assume that (K/k, S, 1) satisfies hypotheses (H1)1–3, and let k′ be an intermediate
field, k ⊆ k′ ⊆ K, and let r := [k′ : k]. Then, it is obvious that (K/k′, Sk′ , r)
satisfies hypotheses (Hr)1–3. In [P4] we prove the following.

Theorem 2.3.2 (base–change for Conjecture C). If conjecture C(K/k, S, 1) is
true, then conjecture C(K/k′, Sk′ , r) is also true.

It would be highly desirable to prove a similar base–change property for Con-
jecture B(K/k, S, r). At this time, the techniques developed in [P4] have only led
us to showing that, if (K/k, S, T, 1) satisfies hypotheses (H1), then

B(K/k, S, T, 1) =⇒ B(K/k, Sk′ , Tk′ , r) .

This is obviously a much weaker result than the implication

B(K/k, S, r) =⇒ B(K/k′, Sk′ , r) ,

as the Gal(k′/k)–equivariant sets Tk′ are not minimal in general. However, in [P4]
we also proved a comparison theorem which links Conjectures B and C and conse-
quently leads to a base–change result for Conjecture B, if additional requirements
are met. In what follows, we briefly describe this result.

If R is a subring of Q (e.g. R = Q, R = Z[1/|G|], R = Z(ℓ) – the localization
of Z at ℓ, for ℓ prime), then RB(K/k, S, T, r) denotes the statement in Conjecture

B(K/k, S, T, r) with the lattice ΛS,T replaced by RΛS,T ⊆ Q
r∧

Z[G]
US,T . We give a

similar meaning to RB(K/k, S, r), RC(K/k, S, r), etc. In particular, we have the
following equivalences.
(3)
A(K/k, S, T, r)⇐⇒ QB(K/k, S, T, r)⇐⇒ QB(K/k, S, r)⇐⇒ QC(K/k, S, r)

B(K/k, S, T, r)⇐⇒ Z(ℓ)B(K/k, S, T, r) , for all ℓ prime.

The first equivalence in the top row is a consequence of the last equality in Remark
1, §2.2. The second equivalence in the top row is a consequence of the fact that,
for all T as above, the product

δT :=
∏

v∈T

(1− σ−1
v ·Nv)

is invertible in Q[G]. This implies that, for any T and T ′ such that (K/k, S, T, r)
and (K/k, S, T ′, r) satisfy hypotheses (Hr), the unique elements

εS,T , εS,T ′ ∈ (C
r∧

Z[G]
US)r,S

satisfying RW (εS,T ) = Θ
(r)
S,T (0) and RW (εS,T ′) = Θ

(r)
S,T ′(0), also satisfy the equality

εS,T = δT · δ−1
T ′ · εS,T ′ .
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Therefore, εS,T ∈ (Q
r∧

Z[G]
US)r,S if and only if εS,T ′ ∈ (Q

r∧
Z[G]

US)r,S . Finally, the

last equivalence in the top row is a direct consequence of the equality QU∗
S = QU∗

S,T .

Let µK be the group of roots of unity in K, endowed with the usual Z[G]–

module structure. For every prime number ℓ, let µ
(ℓ)
K be the ℓ–Sylow subgroup

of µK . We remind the reader that a Z[G]–module M is called G–cohomologically
trivial if

Ĥ
i
(H,M) = 0 ,

for all i ∈ Z and all subgroups H ⊆ G. Here Ĥ
i
(H,M) denotes the i–th Tate

cohomology group of H with coefficients in M . The following comparison theorem
was proved in [P4].

Theorem 2.3.3. Assume that the set of data (K/k, S, r) satisfies hypotheses
(Hr)1–3. Then, for all prime numbers ℓ, the following hold true.

1. Z(ℓ)B(K/k, S, r) =⇒ Z(ℓ)C(K/k, S, r).

2. If µ
(ℓ)
K is G–cohomologically trivial or r = 1, then

Z(ℓ)B(K/k, S, r)⇐⇒ Z(ℓ)C(K/k, S, r) .

Since µK is G–cohomologically trivial if and only if µ
(ℓ)
K is cohomologically

trivial, for all prime numbers ℓ, and G–cohomological triviality is automatic at
prime numbers ℓ which do not divide |G| , Theorem 2.3.3 implies the following.

Corollary 2.3.4. If the set of data (K/k, S, r) satisfies hypotheses (Hr)1–3,
then the following hold true.

1. Z[1/|G|]B(K/k, S, r)⇐⇒ Z[1/|G|]C(K/k, S, r) .
2. If µK is G–cohomologically trivial or r = 1, then

B(K/k, S, r)⇐⇒ C(K/k, S, r) .

In particular, Corollary 2.3.4 combined with Theorem 2.3.2 implies the desired
base–change property for conjecture B(K/k, S, r), under the additional hypothesis
that µK is G–cohomologically trivial. The following criterion (see Lemma 5.4.4 in
[P4]) shows that while in the case char(k) = 0 cohomological triviality for µK is
a very rare event, in the case char(k) > 0 it is satisfied for very large classes of
abelian extensions K/k of a given base field k.

Lemma 2.3.5.
1. If ℓ is odd or char(k) 6= 0, then µ

(ℓ)
K is G–cohom. trivial if and only if

ℓ ∤ wK or ℓ ∤ [K : k(µ
(ℓ)
K )] .

2. If char(k) = 0, then µ
(2)
K is G–cohom. trivial if and only if

2 ∤ [K : k(µ
(2)
K )] and

{
k ∩Q(µ

(2)
K ) is not a (totally) real field

in the case µ
(2)
K 6= µ

(2)
k

}
.

In particular, Lemma 2.3.5 implies that, for any odd prime p and n ≥ 1,

Q(µpn)/Q satisfies G–cohomological triviality for µ
(ℓ)
K for all odd primes ℓ but not

for ℓ = 2. On the other hand, if char(k) = p > 0 and K is the compositum of an
abelian p–power degree extension and an arbitrary finite constant field extension of
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k, then the lemma implies that µK is G–cohomologically trivial (see §3.1 below). As
it turns out, for a given global field k of characteristic p > 0, the compositum of all
the finite abelian extensions K/k obtained this way sits inside the maximal abelian
extension kab with a “quasi–finite index” (in a sense to be made more precise in §3.1
below.) Consequently, in characteristic p > 0, conjectures B and C are equivalent
for a large class of extensions K/k.

3. Applications of Rubin’s Conjecture

In this section we will give applications of Rubin’s Conjecture to the theory of
Euler Systems (following [Ru2], [Ru3] and [Ru4]) and the theory of special units
and Gras–type conjectures (following [Ru3] and [P3]) in quite general contexts.

3.1. Euler Systems. In order to simplify matters, in what follows, k will
denote a fixed totally real number field or characteristic p function field. Let T be
a fixed, finite, nonempty set of non–archimedean (finite) primes in k, containing
at least two primes of different residual characteristics, if char(k) = 0. We let S∞

denote the set of all archimedean (infinite) primes in k, if char(k) = 0, and a fixed,
finite, non–empty set of primes in k, with T ∩ S∞ = ∅, if char(k) = p. We fix once
and for all k, S∞, and T as above, and fix a separable closure ksep of k.

Definition 3.1.1. Let K be the set of all fields K, with k ⊆ K ⊆ ksep, such
that K/k is a finite abelian extension unramified at primes in T , totally split at
primes in S∞, and of nontrivial conductor fK/k.

Definition 3.1.2. An Euler System of S∞–units for K is a collection (κL)L∈K,
with κL ∈ UL,S∞

, such that, for all L′ ⊆ L in K, we have

NormL/L′(κL) =


 ∏

v|fL/k , v 6 | fL′/k

(1− σ−1
v )


 · κL′ ,

where σv is the Frobenius morphism associated to v in G(L′/k).

In this section, we follow [Ru3] to show how one can construct non–trivial
Euler Systems of S∞–units for K, assuming that Rubin’s Conjecture holds true. For
every K ∈ K, let SK := S∞∪{p | p prime in k , p|fK/k}. We also let r := card(S∞).
Then, the choices we have made force the sets of data (K/k, SK , T, r), for allK ∈ K,
to satisfy hypotheses (Hr). Throughout this section, we work under the assumption
that Rubin’s Conjecture B(K/k, SK , T, r) is true, for all K ∈ K. For every K ∈ K,
we let εK := εK/k,SK ,T be the (unique) element in Rubin’s lattice ΛK associated to
(K/k, SK , T, r), verifying conjecture B(K/k, SK , T, r). Also, let UK := UK,S,T and

U∗
K := HomZ[G(K/k)](UK ,Z[G(K/k)]) ,

for all K ∈ K.

Let K,K ′ ∈ K, such that K ′ ⊆ K. Then, we have norm maps

UK

NK/K′−−−−→ UK′ , U∗
K

N∗

K/K′−−−−→ U∗
K′ ,

where NK/K′ is the usual norm from K× down to (K ′)× restricted to UK , and
N∗

K/K′ is defined as follows. For every φ ∈ U∗
K , we let

N∗
K/K′(φ) :=

1

[K : K ′]
· πK/K′ ◦ φ ◦ iK/K′ ,
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where πK/K′ : Z[G(K/k)] −→ Z[G(K ′/k)] is the canonical projection map induced
by restriction at the level of Galois groups and iK/K′ : UK′ −→ UK is the inclusion
map. The factor 1/[K : K ′] in the above definition is justified by the fact that for
all φ ∈ U∗

K and all u ∈ UK′ , one has

φ(u) ∈ Z[G(K/k)]G(K/K′) = NG(K/K′) · Z[G(K/k)] ,

where NG(K/K′) :=
∑

σ∈G(K/K′) σ. Consequently,

πK/K′ ◦ φ ◦ iK/K′(u) ∈ [K : K ′] · Z[G(K ′/k)] ,

therefore
1

[K : K ′]
· πK/K′ ◦ φ ◦ iK/K′(u) ∈ Z[G(K ′/k)] .

However, a more conceptual justification of the definition of N∗
K/K′ can be given as

follows. Since UK and UK′ have no Z–torsion (a consequence of properties satisfied
by the set T ), we have canonical abelian group isomorphisms

HomZ(UK ,Z)
∼−→ U∗

K , HomZ(UK′ ,Z)
∼−→ U∗

K′ ,

which associate to every ψ ∈ HomZ(UK ,Z) the element ψ̂ ∈ U∗
K , defined by

ψ̂(u) :=
∑

σ∈G(K/k)

ψ(uσ−1

) · σ ,

for all u ∈ UK , and similarly at the K ′–level. As the reader can easily check, N∗
K/K′

defined above is the unique map which makes the diagram

HomZ(UK ,Z)
resK/K′

//

≀

��

HomZ(UK′ ,Z)

≀

��

U∗
K

N∗

K/K′

// U∗
K′

commutative, where resK/K′ is the usual restriction of a function defined on UK to
its subgroup UK′ . Interpreting N∗

K/K′ in terms of the commutative diagram above

proves to be beneficial from yet another point of view, made explicit below.

Lemma 3.1.2. Under the assumptions and notations introduced above, the
maps

N∗
K/K′ : U∗

K −→ U∗
K′

are surjective, for all K,K ′ ∈ K.

Proof. It follows at once from Galois theory and the way T was chosen that
the quotient group UK/UK′ has no Z–torsion. This implies that the restriction map
resK/K′ is surjective. Since the diagram above is commutative, N∗

K/K′ is surjective

as well. �

We let (N∗
K/K′)(r−1) := (N∗

K/K′ , . . . , N∗
K/K′), viewed as (surjective) norm maps

(N∗
K/K′)(r−1) : (U∗

K)(r−1) −→ (U∗
K′)(r−1) ,

at the level of direct sums of duals of groups of units. The following is proved in
[Ru3].
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Proposition 3.1.3. For all Φ = (ΦL)L∈K ∈ lim←−
L∈K

(U∗
L)(r−1), and all K,K ′ ∈ K,

such that K ′ ⊆ K, one has the following equality in UK′

NK/K′(Φ̃K(εK)) =


 ∏

v∈SK\SK′

(1− σ−1
v )


 · Φ̃K′(εK′) ,

where the projective limit is taken with respect to the norm maps (N∗
·/·)

(r−1) and

σv denotes the Frobenius morphism of v ∈ SK \ SK′ inside G(K ′/k).

Proof (sketch). This is a direct consequence of the uniqueness of εK , for all
K ∈ K, and the following functoriality property of G–equivariant L–functions.

πK/K′(ΘK/k,SK ,T (s)) = ΘK′/k,SK ,T (s)

=


 ∏

v∈SK\SK′

(1− σ−1
v ·Nv−s)


 ·ΘK′/k,SK′ ,T (s) ,

for all s ∈ C, where πK/K′ : C[G(K/k)] −→ C[G(K ′/k)] is the canonical C–linear
projection induced by the restriction map at the level of Galois groups. �

For every K ∈ K, let I(G(K/k)) be the augmentation ideal in the integral
group ring Z[G(K/k)]. The projections πK/K′ induce surjective maps

πK/K′ : I(G(K/k)) −→ I(G(K ′/k))

at the level of augmentation ideals, for all K ′ ⊆ K in K.

Proposition 3.1.4. The following hold true.
1. For all K ∈ K, ηK ∈ I(G(K/k)), and ΦK ∈ (U∗

K)(r−1), we have

ηK · Φ̃K(εK) ∈ UK,S∞,T .

2. Let η = (ηL)L∈K ∈ lim←−
L∈K

I(G(L/k)) and Φ = (ΦL)L∈K ∈ lim←−
L∈K

(U∗
L)(r−1), and

let K ′ ⊆ K in K. Then

NK/K′(ηK · Φ̃K(εK)) = (
∏

v∈SK\SK′

(1− σ−1
v )) · (ηK′ · Φ̃K′(εK′)) ,

viewed as an equality in UK′,S∞,T .

Proof (sketch). Statement (2) is a direct consequence of Proposition 4.1.3.
Statement (1) follows from the fact that for all K ∈ K and all ΦK , one has

ΦK(εK) ∈ (UK)r,SK ,

combined with the observation that

I(G(K/k)) · (UK)r,SK ⊆ UK,S∞,T .

�

Definition 3.1.2 and Proposition 3.1.4 lead us to the following.
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Corollary 3.1.5. If Rubin’s Conjecture B(K/k, SK , T, r) holds true for all
K ∈ K, then for all η = (ηL)L∈K and Φ = (ΦL)L∈K as in Proposition 3.1.4(2),

(ηL · Φ̃L(εL))L∈K

is an Euler System of S∞–units for K.

Examples and Remarks. In the case k = Q, the general construction out-
lined above leads to a slightly modified version of the classical Euler Systems of
cyclotomic units (see [Ru1] and [Ru2]). Indeed, in this case S∞ consists of the

unique archimedean prime in Q, so r = 1 and therefore the maps Φ̃K are not
present. For a given T as above, the class K is dominated by (Q(ζm)+)m with
m ∈ Z≥3, m coprime to T . Therefore, for each K ∈ K, K ⊆ Q(ζm)+ for some m,
for example m = fK/Q. Proposition 3.1.3 and comments after the [??? in §5] imply
that, if we set m = fK/Q, then

εK = NQ(ζm)+/K((δT,m · ǫm)1/2) ,

where ǫm denotes the cyclotomic element (1− ζm)(1− ζ−1
m ) in Q(ζm)+ and δT,m =∏

v∈T (1−σ−1
v ·Nv) in Z[G(Q(ζm)+/Q)]. Therefore, for any η = (ηK)K∈K as above,

the Euler System given by Proposition 4.1.4 in this case is uniquely determined via
norm maps by the norm–coherent cyclotomic elements

ηQ(ζm)+ · (δT,m · ǫm)1/2 , m ∈ Z≥3 , m coprime to T .

Of course, we could have performed the same type of constructions, under
the assumption that k is a totally imaginary field, the class K consists of arbi-
trary abelian extensions K of k of non–trivial conductor and Rubin’s Conjecture
B(K/k, SK , T, r) is true for all K ∈ K. If restricted to the case where k is a
quadratic imaginary field, one arrives this way at slightly modified versions of the
classical Euler Systems of elliptic units (see [Ru4]).

The classical Euler Systems of Gauss sums (see [Ru5]) can be recovered very
much in the same way, as a particular case of the situation where k is totally real, K
consists of CM abelian extensions K of k, and appropriate choices for the sets SK

containing a fixed number r of non–archimedean primes of k which split completely
in K/k.

In the case where char(k) = p and card(S∞) = 1, the above construction
leads to slight alterations of the Euler Systems of torsion points of rank one sign–
normalized Drinfeld Modules constructed in [FX].

However, in all the classical Euler system constructions enumerated above, the
order of vanishing of the associated L–functions is 1. If proved to be true, Rubin’s
Conjecture should be viewed as the source of non–trivial Euler Systems of units in
the arbitrary order of vanishing case. It can be shown that the weaker conjecture
C (see §2.3 above) has the same consequences in this context.

3.2. Groups of Special Units. Gras–type Conjectures. We work with
the notations and under the assumptions of §4.1. We fix a field K ∈ K. Our goal is
to construct a group of special units EK,S∞,T sitting inside UK,S∞,T as a Z[G(K/k)]–
submodule of finite index and satisfying an analogue of the classical Gras Conjecture
for the group of cyclotomic units of a real cyclotomic field Q(ζm)+. We follow [P3],
where the construction of EK,S∞,T and proofs of the Gras Conjectures were given
in detail in the function field context, as consequences of the fact that Rubin’s
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Conjecture is true up to primes dividing the order of the Galois group G(K/k) (see
§5 ???). The constructions and proofs given in [P3] carry over almost word for
word to the present more general context. We remind the reader that our main
assumption is that conjecture B(L/k, SL, T, r) holds true for all L ∈ K.

Definition 3.2.1. Let hk,S∞,T := card(Ak,S∞,T ). The group of special units
EK,S∞,T is defined to be the Z[G(K/k)]–submodule of UK,S∞,T generated by

uhk,S∞,T , ηK′ · Φ̃K′(εK′) ,

for all units u ∈ Uk,S∞,T , fields K ′ ∈ K with K ′ ⊆ K, ηK′ ∈ I(G(K ′/k)), and

ΦK′ ∈ (U∗
K′)(r−1).

Proceeding as in [P3], one can eliminate T from the constructions above and
define what we call the group of Stark S∞–units of K (or plainly Stark units, if
char(K) = 0) as follows.

Definition 3.2.2. The group of Stark S∞–units EK,S∞
of K is defined to be

the Z[G(K/k)]–submodule of UK,S∞
generated by

µK , EK,S∞,T ,

for all sets T as above, such that S∞ ∩ T = ∅ .
A direct application of Kolyvagin’s Euler System techniques (see [Ru1], [Ru2]

and [Ru4]) relying on the fundamental fact that each of the generators of EK,S∞,T

which is not contained in the base field k is the starting point of an Euler System
of units (see §3.1) leads to a proof of parts (2) and (3) of the following result. The
proof of part (1) is elementary (see [P3]).

Theorem 3.2.3. If char(k) = 0 and conjecture B(L/k, SL, T, r) is true for all
L ∈ K, then

1. The indices [UK,S∞,T : EK,S∞,T ] and [UK,S∞
: EK,S∞

] are finite.

2. For all ℓ prime, ℓ 6 | card(G(K/k)), and all χ ∈ Ĝ(K/k), we have

card((AK,S∞,T ⊗ Zℓ)
χ)r = card((UK,S∞,T /EK,S∞,T ⊗ Zℓ)

χ) .

3. For all ℓ prime, ℓ 6 | card(G(K/k)) · card(µK), and all χ ∈ Ĝ(K/k), we have

card((AK,S∞
⊗ Zℓ)

χ)r = card((UK,S∞
/EK,S∞

⊗ Zℓ)
χ) .

In the case char(k) = p, one could try to prove the theorem above by em-
ploying the Euler System technique as well. Such an attempt would be successful
with a single, but extremely important exception. In (2) and (3) one would be
forced to assume that ℓ 6= p, because in characteristic p the Euler System tech-
nique fails to give upper bounds for the p–primary part of the Selmer group in
question (which in the present setting is an ideal class–group). However, in [P3]
we construct the groups of special units EK,S∞,T and EK,S∞

in characteristic p and
prove the analogue of Theorem 4.2.3 above unconditionally and without making
use of Kolyvagin’s Euler System technique. In fact, we show that if conjecture
Z[1/|G(K ′/k)|]B(K ′/k, S′, T ′, r′) holds true, for all K ′ ⊆ K and all S′, T ′, r′,
such that (K ′/k, S′, T ′, r′) satisfies (Hr′), then the analogue of Theorem 4.2.3 fol-
lows. As conjecture Z[1/|G(K ′/k)|]B(K ′/k, S′, T ′, r′) was proved in full generality
in characteristic p in [P2] (see §5 ???), we have the following (see [P3]).
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Theorem 3.2.4. If char(k) = p, then
1. The indices [UK,S∞,T : EK,S∞,T ] and [UK,S∞

: EK,S∞
] are finite.

2. For all ℓ prime, ℓ 6 | card(G(K/k)), and all χ ∈ Ĝ(K/k), we have

card((AK,S∞,T ⊗ Zℓ)
χ)r = card((UK,S∞,T /EK,S∞,T ⊗ Zℓ)

χ) .

3. For all ℓ prime, ℓ 6 | card(G(K/k)) · card(µK), and all χ ∈ Ĝ(K/k), we have

card((AK,S∞
⊗ Zℓ)

χ)r = card((UK,S∞
/EK,S∞

⊗ Zℓ)
χ) .

In the particular case when r = 1 (i.e. when S∞ consists of a single prime), we
manage to improve (3) above slightly by proving the following (see [P3]).

Theorem 3.2.5. If char(k) = p and r := card(S∞) = 1, then

card((AK,S∞
⊗ Zℓ)

χ) = card((UK,S∞
/EK,S∞

⊗ Zℓ)
χ) ,

for all prime numbers ℓ, such that ℓ 6 | card(G(K/k)).

Theorem 3.2.5 plays a crucial role in our proof of Chinburg’s Ω3–conjecture for
prime degree Galois extensions of function fields (see [P3]), a result also obtained
by Bae earlier and with different methods (see [Bae]).

Examples and Remarks. In the case where k = Q and K = Q(ζm)+ (for
which S∞ = {∞}, and therefore r = 1), the group of Stark units EK,S∞

constructed
above contains the classical group of cyclotomic units Cm, constructed by Sinnott
in [Si], with a finite, possibly non–trivial 2–power index. The reader can prove this
statement without difficulty, as a consequence of the Remark at the end of §3.1.
Therefore, if restricted to this case, Theorem 3.2.3(3) above leads to the classical
Gras Conjecture.

Theorem (the Gras Conjecture). Let ℓ be an odd prime number with the prop-

erty that ℓ 6 | card(G(Q(ζm)+/Q)). Then, for all χ ∈ ̂G(Q(ζm)+/Q), we have

card((Am ⊗ Zℓ)
χ) = card((Um/Cm ⊗ Zℓ)

χ) ,

where Am and Um are the ideal–class group and the group of global units of Q(ζm)+.

The theorem above was proved first by Mazur and Wiles in [MW], as a con-
sequence of their proof of the Iwasawa Main Conjecture over Q, and following
Greenberg’s earlier insightful remarks [Gr1], [Gr2]. Later, Kolyvagin and Rubin
(see for example [Ru2]) gave a different proof, based on Kolyvagin’s Euler System
techniques applied to the particular case of Euler Systems of cyclotomic units.

The groups of special units EK,S∞
constructed above should be viewed as gen-

eralizations of Sinnott’s groups of cyclotomic units CK (if k = Q), elliptic units (if
k is a quadratic imaginary field), or Hayes elliptic units [H4] (if k is a function
field). Theorems 3.2.3, 3.2.4, and 3.2.5 should be regarded as generalizations of the
classical Gras Conjecture stated above.
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4. Gross’s refinement of the Rubin–Stark conjecture

With notations as in §1 above, we fix r ∈ Z≥0 and assume that the set of data
(K/k, S, T, r) satisfies hypotheses (Hr). In the case r = 1, Gross [Gro1–2] proposed
a refinement of the Rubin–Stark conjecture B(K/k, S, T, r). If the distinguished
split prime is finite, Gross’s conjecture predicts the ℘–adic expansion of the S–unit
εS,T ∈ US,T at a prime ℘ in SK sitting above the split prime in terms of values
of derivatives of p–adic L–functions. In the function field case, this statement was
proved by Hayes in [H2]. In the case where k = Q and K imaginary this statement
was proved by Gross in [Gro1] (see also [GrKo] and [FG].) In the early 1990s,
Gross and Tate [Gro3] expressed interest in formulating a Gross–type refinement
for the Rubin–Stark conjecture for arbitrary orders of vanishing r. Tan formulated
and partly proved such a refinement for function fields (see [T].) In this section,
we describe a general Gross–type refinement of the Rubin-Stark Conjecture and, in
the number field case, interpret it in terms of special values of derivatives of p–adic
L–functions.

4.1. Evaluation maps. The main point behind the conjecture we are about
to describe is a reinterpretation of Rubin’s lattice in terms of evaluation maps taking
values in group rings with graded rings of coefficients. We remind the reader that
Rubin’s lattice in this context is defined by

ΛS,T =

{
ε ∈ (Q

r∧US,T )r,S |
(φ1 ∧ . . . ∧ φr)(ε) ∈ Z [G]

∀φ1, . . . , φr ∈ U∗
S,T := HomZ[G](US,T ,Z [G])

}
,

where (φ1 ∧ . . . ∧ φr)(ε1 ∧ . . . ∧ εr) := det(φi(εj)), for all ε1, . . . , εr ∈ US,T . This
shows that every ε ∈ ΛS,T gives rise to a Z [G]–equivariant evaluation map

evε,Z :
r∧U∗

S,T −→ Z [G] , evε,Z(φ1 ∧ . . . ∧ φr) := (φ1 ∧ . . . ∧ φr)(ε) .

However, it turns out that any fixed element ε ∈ ΛS,T gives rise to much more
general evaluation maps. Indeed, let R be any commutative ring with 1. It is easy
to see that we have a canonical R [G]–isomorphism

(US,T )∗R := HomZ[G](US,T , R [G])
∼−→ U∗

S,T ⊗R .

It turns out that the isomorphism above leads to a canonical evaluation map with
values in R[G] ≃ Z[G]⊗R

evε,R :
r∧(US,T )∗R −→ Z [G]⊗R ,

such that, for all φ1, . . . , φr ∈ U∗
S,T and all a1, . . . , ar ∈ R, we have

evε,R(φ1 ⊗ a1 ∧ . . . ∧ φr ⊗ ar) := evε,Z(φ1 ∧ . . . ∧ φr)⊗
∏

ai .

Remark. It is easy to see that if R =
⊕

i≥0 R
(i) is a graded ring and we pick

elements ψ1, . . . , ψr ∈ Hom(US,T , R
(1)[G]), then

evε,R(ψ1 ∧ . . . ∧ ψr) ∈ Z[G]⊗ R(r) .
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4.2. The relevant graded rings R. In what follows, L/k will be an abelian,
not necessarily finite extension of k containing K, such that the data (L/k, S, T )
satisfies hypotheses (H0). We let Γ := Gal(L/K) and H := Gal(L/k). We let
I(Γ) ⊂ Z[[Γ]] and IΓ ⊆ Z[[H]] denote the usual augmentation and relative augmen-
tation ideal associated to Γ inside the appropriate profinite group algebras. If L/k
is not finite, then we let

ΘL/k,S,T (0) := lim←-------
L′/k

ΘL′/k,S,T (0) ∈ Z[[H]] ,

where the projective limit is taken with respect to all finite extensions L′/k, with
k ⊆ L′ ⊆ L and the Galois-restriction maps and the level of the corresponding
(finite) group–rings.

Definition. We define RΓ to be the graded ring

RΓ :=
⊕

n≥0

I(Γ)n/I(Γ)n+1 ,

with the obvious addition and multiplication.

For all n, we have the following isomorphisms of Z [G]–modules

I(Γ)n/I(Γ)n+1 ⊗ Z[G]
∼−→ In

Γ/I
n+1
Γ

x̂⊗ σ −→ x̂ · σ̃ ,

where x̂ is the class of x ∈ I(Γ)n in the quotient I(Γ)n/I(Γ)n+1 and σ̃ is an arbitrary
lift of σ ∈ G to Γ (with respect to the natural restriction map Γ ։ G.) Obviously,
we obtain the following isomorphisms of Z [G]–modules.

⊕

n≥0

In
Γ/I

n+1
Γ

∼−→ RΓ ⊗ Z[G]
∼−→ RΓ[G] .

4.3. The Conjecture. As above, we assume that (K/k, S, T, r) satisfy (Hr)
and L/k is an abelian extension (not necessarily finite), such that k ⊆ K ⊆
L and (L/k, S, T ) satisfy (H0). As in the statement of Rubin’s conjecture for
(K/k, S, T, r), we let {v1, . . . , vr} be an ordered set of r distinct primes in S which
split completely in K/k and for each i = 1, . . . , r, we fix a prime wi in K sitting
above vi. Let v := vi and w := wi, for some i. Let

ρw : K×
w −→ Gw(L/K) ⊆ Γ

be the local Artin reciprocity map associated to w. Following Gross, we define the
following Z [G]–equivariant maps, for all w as above.

φw : US,T −→ Z[G]⊗R(1)
Γ , φw(u) =

∑

σ∈G

σ−1 ⊗ ( ̂ρw(uσ)− 1) ,

where ( ̂ρw(uσ)− 1) is the class of (ρw(uσ)− 1) in I(Γ)/I(Γ)2 = R
(1)
Γ .
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Conjecture B(L/K/k, S, T, r). Assume that (L/K/k, S, T, r) satisfy all the
above hypotheses. Then the following hold.

1. ΘL/k,S,T (0) ∈ Ir
Γ .

2. Assume that the Rubin-Stark Conjecture B(K/k, S, T, r) holds. Let ε :=
εS,T denote the (unique) Rubin–Stark element for data (K/k, S, T, r). Then

ΘL/k,S,T (0) mod Ir+1
Γ = evε,RΓ

(φw1
∧ . . . ∧ φwr ) in Ir

Γ/I
r+1
Γ .

The following proposition makes the link between the statement above and the
classical global conjectures and the p–adic conjecture of Gross (Conjectures 4.1 and
7.6 in [Gro2] and Conjecture 3.13 in [Gro1], respectively.)

Proposition. Assume that (L/K/k, S, T, r) satisfy the above hypotheses. The
following hold true.

1. If K = k, then

B(L/K/k, S, T, r)⇐⇒ Gross’s Global Conjecture 4.1 [Gro2] .

2. If r = 1, then

B(L/K/k, S, T, r)⇐⇒ Gross’s Global Conjecture 7.1 [Gro2] .

3. Assume that K is CM, k is totally real and L := Kp∞ is the cyclotomic
Zp–extension of K, for some prime number p. Then

B(L/K/k, S, T, 1)⇐⇒ Gross’s p–adic Conjecture 3.13 [Gro1] .

4.4. Linking values of derivatives of p–adic and global L–functions.

One of the main features of the Conjecture stated in §4.3 above is that, under
the appropriate hypotheses, it establishes a deep connection between the values of
the r–th derivatives of (equivariant) global and p–adic L–functions at s = 0. We
describe this connection below.

Let us assume that char(k) = 0, p is a prime number and L := Kp∞ is the
cyclotomic Zp–extension of K. Note that under these assumptions we have Sp ⊆ S,
where Sp denotes the set of all primes in k sitting above p. In this case, we have
isomorphisms

Γ
∼−→ Zp , I(Γ)n/I(Γ)n+1 ∼−→ Zp , In

Γ/I
n+1
Γ

∼−→ Zp[G] ,

for all n ≥ 1. (Note that the first two maps above are group isomorphisms, while
the third is a Zp[G]–module isomorphism.) For simplicity, let us assume further

that e2πi/p ∈ K and that kp∞ and K are linearly disjoint over k. Consequently, we
have a group isomorphism

H ∼−→ Γ×G .
Also, after picking a generator γ of Γ, we have a canonical ring isomorphism

Zp[[H]]
∼−→ Zp [G] [[t]] ,
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which sends γ − 1 to t. Via this isomorphism, the equivariant L–value ΘL/k,S,T (0)
can be viewed as a power series of variable t with coefficients in the group ring
Zp[G]. Also, it is easily seen that via this isomorphism we have

In
Γ

∼−→ tnZp[G][[t]] ,

for all n. Consequently, if ΘL/k,S,T (0) ∈ Ir
Γ, we have

ΘL/k,S,T (0) mod Ir+1
Γ =

1

r!
· d

r

dtr
(ΘL/k,S,T (0)) |t=0 ∈ Zp[G] .

Now, let us assume that conjecture B(K/k, S, T, r) and B(L/K/k, S, T, r) hold
true. Let ε := εS,T denote the Rubin-Stark element. The previous observations
show that conjecture B(L/K/k, S, T, r) is equivalent to

ΘL/k,S,T (0) ∈ trZp[G][[t]] ,
1

r!

dr

dtr
(ΘL/k,S,T (0)) |t=0= Rp(ε) ,

where
Rp : ΛS,T −→ Zp[G] , Rp(η) := evη,RΓ

(φw1
∧ · · · ∧ φwr )

is Gross’s (p-adic) regulator defined in §4.3 above for all η ∈ ΛS,T .

Now, the main point is that ΘL/k,S,T (0) ∈ Zp[G][[t]] is the G–equivariant p–adic
L–function associated to the set of data (K/k, S, T, r). We clarify this connection
(essentially due to Iwasawa) below.

For this purpose, we let

ωp, χp : Gal(L/k) −→ Z×
p

denote the p–adic Teichmüller and cyclotomic characters of Gal(L/k), respectively.
Note that under our assumptions (e2πi/p ∈ K), the Teichmüler character ωp factors
through G := Gal(K/k). Let u := χpω

−1
p (γ) ∈ 1 + pZp. Due to Iwasawa, we know

that
ΘL/k,S,T (0) =

∑

χ∈ bG(Cp)

fχ(t) · eχ ,

where fχ ∈ Zp(χ)[[t]] are power series uniquely determined by the remarkable
interpolation property

fχ(u1−n − 1) = LS,T (χ−1ω1−n
p , 1− n) ,

for all χ ∈ Ĝ(Cp) and all n ∈ Z≥1 .

Definition. For χ ∈ Ĝ(Cp), the (S, T )–modified p–adic L–function Lp(χ, s)
of variable s ∈ Zp is defined by

Lp(χ, s) := fχ−1ωp
(us − 1) .

The definition above explains why we are entitled to think of ΘL/k,S,T (0) as
the G–equivariant (S, T )–modified p–adic L–function associated to the (K/k, S, T ).
The following Proposition follows immediately from the above considerations.
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Proposition. Let (L/K/k, S, T, r) as above. Then conjectures B(K/k, S, T, r)
and B(L/K/k, S, T, r) are true if and only if both statements below hold true.

1. ords=0Lp(χ, s) ≥ r, for all χ ∈ Ĝ(Cp) .

2. There exists a unique element ε := εS,T ∈ ΛS,T , such that

χ(Rgl(ε)) = 1
r! · dr

dsr  L
(r)
K/k,S,T (χ−1, s) |s=0

χ−1ωp(Rp(ε)) = 1
(logp u)r · 1

r! · dr

dsrLp(χ, s) |s=0 ,

where Rgl and Rp are the (global) Rubin and (p–adic) Gross regulators,
respectively.

Conclusion. We conclude by remarking that, under the above hypotheses, the
conjectures of Rubin-Stark and Gross imply the existence of a unique global, arith-
metically meaningful element ε, whose evaluation against the global regulator Rgl

essentially equals the r–th derivative of the G–equivariant global L–function at
s = 0 and whose evaluation against the p–adic regulator Rp essentially equals the
r–th derivative of the G–equivariant p–adic L–function at s = 0. Another remark-
able consequence of these conjectures is that if the G–equivariant global L–function
has order of vanishing at least r at s = 0 due to the presence of r distinct primes
in S which split completely in K/k, then the G–equivariant p–adic L-function has
the same property.

5. Evidence in support of the Rubin–Stark and Gross Conjectures

TO BE WRITTEN
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