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0 Introduction

Let x be a 1-dimensional Artin character over a number field F'. The values-
of the Artin L-function Lr(x,s) at negative integers 1 — n for n > 2 are
trivial unless F is totally real and x acts on complex conjugation as (=17,
i.e. the field Fy := Fkerx is totally real for even n and a CM-field for odd n.
In these cases the values are non-zero algebraic numbers contained in Q(x),
the field obtained by adjoining to Q the values of x.

In the lectures we will discuss the arithmetic meaning of these values. The
approach is via Iwasawa theory, p-adic L-functions and the Main Conjecture
in Iwasawa theory (proved by Wiles), which provides a p-adic interpretation
of the values for each prime p. In the case of the trivial character we will
describe the relation to the Birch-Tate Conjecture (the case where F' is real
and n = 2) as well as to the more general Lichtenbaum Conjectures. For
most of the part we will ignore the prime 2, which causes technical problems,
and yields less complete results.

The arithmetic interpretations for a fixed prime p are in terms of étale
cohomology groups attached to the ring o% = op[1/p] of p-integers of F'.
We will discuss two "global” interpretations in terms of algebraic K-groups
and in terms of motivic cohomology groups, which may differ by powers of
2. The known results for p = 2 suggest that in general motivic cohomology
contains the ”correct” number-theoretic information.

Finally, we will discuss (in the ”semi-simple” situation) a conjecture of
Coates-Sinnott — the analog of Stickelberger’s Theorem — about annihilation
of higher algebraic K-theory groups in a relative abelian extension.

These notes contain more background information than could possibly
be covered in the lectures, and many references for further reading. The aim
is to present the current state of the art in this field, and introduce some of
the key techniques involved. ‘
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1 The Classical Main Conjecture

Let F be a number field and let p be a prime number. A Galois extension
Fy/F is called a Zp-eztension, if T’ := Gal(Fy /F) = Zp. Since the closed
subgroups of Zy are of the form 0 or p"Z,, we have for each n > 0 a unique
subfield F,, of degree p™ over F and Gal(F,/F) = Z/p"Z,. Hence we obtain
a tower

F=FRCFHRCFRC: - Cky,

such that [Fy, : F] = p™ and Fiy = Up>oFn.

A typical example of a Z,-extension Fo,/F is the so-called cyclotomic
Zy-extension, which is constructed as follows: Let Loo = F(upeo). Then
Gal(Leo/F) 2 Z, x A, where A is finite. Now take Fy, = L.

Let v denote a topological generator of T', and let I', = Gal(Fy,/F). Pass-
ing to the inverse limit over the group rings Z,[I'x] we obtain the Iwasawa-
algebra Zp[[T]] := lim Z,[T'x]. The group rings Zp[I's] are generally quite
complicated, but the Iwasawa-algebra has a rather simple structure, it is
isomorphic to the power series ring A := Zy[[T]], the isomorphism being
induced by y— 1+ T.

In the following we have to allow slightly more general coeflicients: Let
O denote a finite extension of Zy, let m be a uniformizer for O, let v denote
the discrete valuation on O, normalized so that v(n) = 1, and let | |, denote
the corresponding absolute value with |al, = p~ (@) where f denotes the
residue degree. ' '

We now consider A := O[[T]] = O[[I']]. This is a two-dimensional Noethe-
rian local Krull domain, and the structure of finitely generated A-modules
is known up to pseudo-isomorphism. If M and N are finitely generated
A-modules, then we write M ~ N if there exists a pseudo—isomorphism
f:M - N, ie., a module homomorphism with finite kernel and cokernel.
The structure theorem for finitely generated A-modules now says that for
every finitely generated A-module M there is a pseudo-isomorphism

m
M~ A" e P A/p}.
i=1
Here p; are height 1 prime ideals of A, hence they are either equal to (7) or
to (F(T)), where F(T) is an irreducible Weierstrass polynomial, i.e., of the
form '
F(T)=T"+b, 1 T" 14+ b
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with 7|b; for all ¢. The prime ideals p; and the integers 7 > 0, m > 0 and n; >
1 are uniquely determined by M. The ideal [[i%, p;* is the characteristic

ideal of M, which has a unique generator of the form
f(@)=="- fX(T)

where f*(T) is a Weierstrass polynomial. f*(T') is the characteristic poly-
nomial of M. The exponent u is the p-invariant of M and A := deg f*(T)
is called the A-invariant of M.

The characteristic polynomial is in fact a characteristic polynomial in
the sense of linear algebra: Let QT,, denote an algebraic closure of Qyp, and
let V=M ®p Qp. This is a Qp-vectorspace of rank A and f*(T) is the
characteristic polynomial of the endomorphism v — 1 acting on V.

The following result is extremely useful: Assume that M is a finitely
generated A-torsion module with characteristic polynomial f*(T"). Let u
denote the p-invariant of M and let f(T) = n# . f*(T). We denote by MT

the invariants of M under I' and by Mt = M/(y — 1)M the coinvariants of
M. '

Lemma 1.1 ((cf. [26]). The following statements are equivalent :
(a) MT is finite
(b) Mr is finite
(c) f(0) #0.
If these conditions are satisfied, then

T
S = O

Let us assume now that F,/F is the cyclotomic Zy-extension. Let Lo =
F(up=) and let G, = Gal(Loo/F) = T'x A, where A = Gal(F({2p)/F. Since
Lo, contains all p-power roots of unity, the Galois group G, acts on fipeo
and this action gives rise to the cyclotomic character

p:Goo — Iy

defined by
¢ = gp(ﬂ)

for all 0 € G and all { € pye. We denote by & the restriction of p to I'
and by w the restriction of p to A. w is the Teichmiiller character.
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Let M be a Zp,-module with a G-action, denoted by m + m?. For
n € Z the n-th Tate twist M(n) of M is defined as the Z,-module M with
the new G-action

m— p(o)"-m?.

In particular, Zp(1) = lim ppn =: 7, which is the so-called Tate-module, and
Qp/Zy(1) = pyo. In general: M(n) = M ®z,Zy(n). If M and N are two Z,-
modules with a G-action, then we turn Homg, (M, N) into a Go-module
in the following way: For f € Homg,(M,N) and 0 € G, we define f° via

fo(m) = (f(m®™))°.

It is easy to see that with this definition of the G-action on H Oom-groups
we obtain canonical isomorphisms for all n € Z:

Homg,, (M (n),Qp/Zy) = Homg, (M, Qp/Zy(—n)) = Homz, (M, Qp/Zp)(—n).
We note the following:

Lemma 1.2 (cf. [26]). Assume that M is a A-torsion module with char-
acteristic polynomial f*(T). Then the characteristic polynomial of M(n) is
given by

FFleMn™1+T)-1.

The most interesting A-modules arise as Galois groups of certain abelian
pro-p extensions of F,, where F,/F is an arbitrary Z,-extension of a num-
ber field F. Assume then that K, is an abelian pro-p extension of F,
let X = Gal(Ky/Fx), and assume that K, /F is again a Galois extension
(although not necessarily abelian). Let G = Gal(Kw/F). We obtain an
extension of Z,-modules

0 X->G-T->0.

Since X is abelian, I' acts on X by inner automorphisms, and this action
turns X into a compact A-module. As examples we can take for K, the
maximal abelian unramified pro-p extension of F, usually denoted by L,
or the maximal subextension of L, in which all p-adic primes of F, split
completely, usually denoted by L. The corresponding Galois groups X :=
Gal(Lyo/Fso) and XL, = Gal(Ll,/Fs) are examples of finitely generated
A - torsion modules. :
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The main example in the current framework is the following: Let S be
a finite set of primes in F' containing the primes above p and the infinite
primes. S, will denote the minimal such set, i.e. the set consisting exactly
of the primes above p and the infinite primes. Let MOSo denote the maximal
abelian pro-p-extension of Fy,, which is unramified outside primes in S, and
let X5 = Gal (M2 /F,.). This is a finitely generated A-module, which we
will call the standard Iwasawa module over F, for the set S. Let us again
specialize to the case of the cyclotomic Zy-extension. Iwasawa has shown
that in this case ¥5 has no non-trivial finite A-submodules and that the A-
rank of X% is equal to the number 75 of different pairs of complex conjugate
embeddings of F. In particular, X5 is a A-torsion module if and only if F is
totally real. :

From now on F will be a totally real number field and Fi, will denote
the cyclotomic Z,-extension with p being an odd prime number. As before,
we let L = F((p) and Loo = F(pupe).

We consider now a 1-dimensional p-adic valued Artin character ¢ over
F of finite order: v
¥: Gal(@,/F) = Q'
and we denote by Fy the fixed field of the kernel of ¥, so that ¢ is a faithful
character on Gal(Fy/F). We assume that 1 is even, i.e. that Fy is again a

totally real number field. We also recall Greenberg’s terminology (cf. [16])
about the different types of the characters ¥: 1 is of type S, if

FynNFy =F,
and v is of type W, if
F¢ C F.
We note that the only character of both types is the trivial character.

Deligne-Ribet ({13]) have shown that there exists a p-adic L-function
Ly(s,%), which interpolates the special values of Artin L-functions in the
following way: For alln > 1

Ly(1—n,9)=L(1-n,yw™™) - H(1 _ 'le_n(p)N(p)n_l).

plp

These values determine the p-adic L-function uniquely.



6 M. Kolster

- Now let S be again a finite set of primes in F' containing Sp. Removing
Euler factors at primes in S\ S, from Ly (s, ) one also obtains an ”imprim-
itive” p-adic L-function Lg (s,7) with the property that for alln > 1

L5 —n9) =Ll —npw™) - JI @ - ™@E)NE)™™).
pES\Sp

The same truncation can be done to the Artin L-functions to obtain the
L-functions L° and the relation between the truncated L-functions at.1—n
is then exactly the same as above (cf. [15]):

Ly —n9) = L5 —n,gw™) - [JQ =y ()N ()™ ).

plp
‘We define
[ (A +T)-1 ifyisof type W
Hy(T) = { 1 otherwise !

and we denote the extension of Z, obtained by adjoining the values ¥(g),
g € Gal(Fy/F) by Oy = Z,[4]. It was shown by Deligne-Ribet that there
exists a power series Gy, s(T') € Oy[[T]], so that

- - S

The power series Gy s(T') can be written unitjuely as
Cy,s(T) = mG0s) . g o(T) - uy,s(T),

where g}, 5(T) is a distinguished polynomial, uy,s(T’) is a unit power series
and 7 is a uniformizer in Oy.

The classical Main Conjecture in Iwasawa Theory, proven by Wiles in
[37] for odd p (and also for p = 2, if F' = Q) relates the polynomial gj, (T)
to the following characteristic polynomial: Let Fy o, denote the cyclotomic
Z,-extension of Fy, and let X5 denote the standard Iwasawa module over
Fy oo for the set S. The Galois group G = Gal(Fy/F) acts on the finite-
dimensional vectorspace

V= xs ®Zp @pv

and we denote by V¥ the eigenspace of V corresponding to the action of G
via . Now let f} o(T') denote the characteristic polynomial of v — 1 acting
on VY.
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Iwasawa’s Main Conjecture 1.3 (Wiles). Let F' be a totally real number
field, let p be an odd prime, and let ¢ be a 1-dimensional p-adic Artin char-
acter over F of type S. Then for any finite set of primes S of F' containing
Sp: '

99.5(T) = f3,5(T).

It is important to note that the characteristic polynomial fg s(T') does
not change if we replace Fy, by a finite extension £ with £ /F again abelian
and E N Fy, = F and then consider the standard Iwasawa module over Eoo
instead. (cf. [16], Proposition 1).

2 Cohomology

We are going to use the Main Conjecture to relate special values of L-
functions at negative integers to orders of étale cohomology groups. For
our purposes it suffices to use a description of étale cohomology in terms of
Galois cohomology: Fix an arbitrary prime p and an arbitrary number field
F. Let Q(p) denote the maximal algebraic extension of F', which is unrami-
fied outside primes above p and infinite pnmes and let G®) = Gal(2/F).

The étale cohomology groups H; (spec oF[ |7 ") of the scheme spec oF[p]
with values in the étale sheaf u;?n’,‘as deﬁned by Grothendieck (cf. e.g. [28])
can be identified with the Galois cohomology groups H*(G} () 8. To sim-
plify notations we will write HZ,(or, Z/p™(n)), where ofp = oF[f] Similarly,
if S is a finite set of primes of F' containing Sp, then we obtam the étale
cohomology groups H}, (0%, Z/p™(n)) as Galois cohomology groups, where
we replace the extension QS;’-J) by the maximal algebraic S-ramified extension
Q3 of F.

We will mainly be interested in the p-adic cohomology groups

H3,(0lp Zp(n)) == lim HE (0, pg),

which for n > 2 play a role, similar to the (p-parts of) class groups in classical
class number formulas.

We also define

Hgt(OIF’QP/ZP(n)) - hmH t(ol"1 Hp )
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We note the following: For each n € Z the exact sequence

0 — Zp(n) — Qp(n) — Qp(n)/Zy(n) = 0.

gives rise to a long exact sequence in étale cohomology and the kernels and
cokernels of the boundary maps

L Hi (0, Qp/Zp(n)) — HE(0ps Zp(n)) (i21)

can be described as follows (cf. [34]): The kernel of 4; is the maximal divisible
subgroup of H i- 1(o s Qp/Zp(n)) and the image of §; is the torsion subgroup
of H, ’t(oF,Zp(n)) In particular this implies that the torsion subgroup of

H}. (g, Zp(n)) is isomorphic to Het(oF,Qp/Zp(n))
H{ (0, Zp(1) )sors = HE, (o, Qp/Zp(n)).

In the following proposition we summarize some known results about the
finitely generated p-adic étale cohomology groups for rings of integers. We
only list the results for odd primes p and integers n > 2

Proposition 2.1. Let p be an odd prime and let n > 2. Then
HY(d%, Zp(n)) = 0.
HE (0%, Zp(n)) = 0 for k> 3.

3. There are isomorphisms
H},(op, Zp(n)) = Hy(F, Zo(n).

4. The groups H%(0%,Zp(n)) are finite and trivial for almost all primes
S\YF

ifnisodd >1
rhg, HY(F, Zp(n ))_{r1+r2 ifniso

T if n is even.

One of the problems in dealing with the prime 2 is that property 2 is not
true for p = 2 if F' has real places.

Property 5. implies that for n. > 2 the étale cohomology group H, & (F, Zp(n))
is finite precisely, when F is totally real and n is even. If this is the case,
then the boundary map 4, is an isomorphism:

Hélt(O’Fa Qp/Zp(n)) = Hgt(o'p, Zp(n)).



L-values 9

Now let us assume that n > 1 is odd and that E is a CM-field with
maximal real subfield Et. Then H}(E,Z,y(n)) has the same Zp-rank as
H} (E*,Zy(n)). Under complex conjugation H, +.(E, Z,(n)) splits into eigenspaces

Hé}t(E’ Zp(n)) = Hélt(E,Zp("'))+ © Hélt(E, Zp(n))~

with H} (E, Zp(n))" = H(E™",Zy(n)). Therefore for odd n > 1 HL(E,Zy(n))~
is finite and therefore

H (o, @/ Zo(m) ™ = HA (0, Zp(m)) ™
‘We obtain:
Corollary 2.2. a) If F is totally real and n > 2 is even, then
Y0, Qp/ Zp()) = HE(0lp, Zy(m)

b) If E is CM, and n > 1 is odd, then

Hf}t(o,E’ Qp/Zp(n))— = Hgt(olE’ Zyp(n))~.

There are two global ” cohomology theories”, cloéely related to étale coho-
mology: Algebraic K-theory and motivic cohomology. The precise relation-
ship depends on the validity of the Bloch-Kato Conjecture, which appears to
have been proven by Rost and Voevodsky — at least all the details are now
either published or submitted for publication. If we assume the Bloch-Kato
Conjecture, then the picture is the following — the 2-primary information
here is uncondtional:

For i = 1,2 there are isomorphisms
Kon-i(or) = Hj(or, Z(n))
up to (known) 2-torsion, and for all p there are isomorphisms
Hiy(or, Z(n)) ® Zp = H (0, Zp(n)).-

Here the K-groups are Quillen’s K-groups, and the motivic cohomology
groups can e.g. be defined as Bloch’s higher Chow groups:

Hi (o, Z(n)) := CH™(oF, Z(2n — i)).
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If we do not want to assume {;he Bloch-Kato Conjecture, then we can
still find global cohomological “models” H(or,Z(n)), i = 1,2, for the étale
cohomology groups. For ¢ = 2 this is easy. We simply define

H(o, Z(n)) = HHe?t(oF[%],zp(n)).
P

For i = 1 the construction is more involved (cf. [8]).

In any case it is important to note that for certain indices there is a
difference between the 2-primary parts of the K-groups and the cohomology
groups, which has an impact on some of the conjectures we are going to
discuss.

Assume now that E/F is a finite Galois extension of number fields with
Galois group G. Let p be an odd prime and let .S denote a finite set of primes
of F containing all primes above p as well as all primes which ramify in F,
so that the extension E/F is S-ramified. Using the properties of the étale
cohomology groups the following results about Galois descent and co-descent
follow from the Hochschild-Serre and the Tate spectral sequences:

Proposition 2.3. Let E/F be a Galois extension of number fields with
Galois group G. Let p be an odd prime and let S be a finite set of primes of
F containing Sp and all primes ramified in E. Then ‘

1.
Hét(E, Zp(n))G = H}t(F, Zy(n))

~ S
H,(0%, Zp(n))c = HZ(0F, Zy(n)).
8. For all k > 0 there are isomorphisms

H*(G, Hy(E, Zp(n))) = H*(G, Hi(0F Zp(n)))-

3 The Lichtenbaum Conjecture

We are now ready to apply the Main Conjecture in the case, where 9 is of
order prime to p (p odd). The character ¥ is then automatically of type
S. We now choose a finite abelian extension F of F' containing Fy and also

Lp, SO that the Galois group G of E/F is of order prime to p. Then Ey,
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contains all p-power roots of unity. For any finite set .S of primes containing
S, the standard Iwasawa module X5 over Ey is a Zp|G][[T]]-module. The
following arguments do not depend on the choice of S, and so we simply
drop the index § from the notations.

Since the order of G is prime to p, the idempotents of the group algebra
Q,[G] are contained in Zy[G] and Zy|G] is a maximal order in Qp[G], isomor-
phic to a finite product of discrete valuation rings O, for certain (absolutely

irreducible) characters p of G. Given a finitely generated Z,[G][[T]]— module
M and a character p, the p-th component M? of M is defined as ‘

M? = e)(M ®7, Op).

This is a finitely generated O,[[T]]— module.

We now take M = X and p = 9, and let A = Oy[[T]]. Since 9 is even,
the 1-component X¥ is a finitely generated A-torsion module. We also note
that Oy is unramified over Z;, and so we can take m = p as the uniformizer.
We denote the characteristic polynomial of X¥ by f3(T), and we let

FT) =p*- F (D)

Wiles has shown ([37],Theorem 1.4) that the g-invariant u of X¥ coincides
with §4(Gy), and therefore by the Main Conjecture the characteristic ideal
of X¥ is generated by Gy(T).

Let us fix now an integer n > 2 and consider the A-module X¥(—n) and
its Pontryagin dual Homgz,(X¥(-n),Qp/Z,). We let x = Yw™", and note
that

X¥(—n) = X(—n)X.

Taking duals we obtain

Homg, (X%(—n), Qp/Zp) = Homg, (X%, Qp/Zy(n)) = Homa, (X, Qp/ Z(n)X .

Because E,o contains all p-power roots of unity, the Galois group Gal(§¥%,/ Eoo)
acts trivially on the abelian group Qp/Zy(n), and therefore

Homg, (%, Qp/Zp(n)) = Hi(d5,, Qp/Zp(n)),

where

Hét(o'E-m,Qp/Zp(n)) = li_r)n Hét(O/E‘m: Qp/Zy(n)).
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It is now easy to see that

Hé}t (OIE,,O1 Qp/Zp(n))r = Hét (0%, Qp/Zp(n)).

The parity of x is equal to (—1)™ and therefore by Corollary 2.2 the x~!-
eigenspace of H}, (0%, Q@p/Zy(n)) is finite, and isomorphic to HZ (o'z, Zy(n))X".

‘We have shown:

Proposition 3.1. The Pontryagin dual of X¥(—n)r is isomorphic to the
finite group H(0g, Zp(n))X ™.

We now apply Lemma 1.1. Since X¥¥(-n) has no non-trivial finite A-
submodules, the T-invariants of X¥(—n) are trivial, and therefore we can
compute the order of £¥(—n)r in terms of the valuation of the characteristic
polynomial at 0. By Lemma 1.2 the characteristic polynomial of x¥(—n) is
given by f*(s(y)™(1 + T) — 1). Hence by the Main Conjecture:

Proposition 3.2.

124 (~n)r] = | (s(1)" = Dl ™" = ILp(1 = n, )" = [LL =1, )7,
provided that ¥ # 1.

We can slightly reformulate the result: Let us write a ~, b if the two
rational numbers a,b have the same p-adic valuation. Let d, denote the
degree of Oy over Zy. Then

1

L(1—n, X)dx ~p |Hé2t(OIE:Zp(n))x_ l,
provided that x # w™.

If ¢ = 1, then we have to take care of the polynomial H,(7') as well, and
we can do a similar, but easier calculation for the Iwasawa module X = Z,
over E.,, whose characteristic polynomial equals T. The result is that

IX(~n)r|™ = k()" -1,
that the dual of X (—n) is equal to Q,/Z,(n)*", and hence
|HO(E, Qp/Zp(n)“" | = 5()" - 1.

Since HY(E,Q,/Z,(n) is cyclic, there is only one eigenspace, hence we have
HY(E,Q,/Zy(n)X # 1 & x # w™. This finally leads to the main result in

the semi-simple case:
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Theorem 3.3. Let x be a I-dimensional Artin character of order prime to
p over a real field F. Then for any finite set S of primes of F' containing
Sp, and any n > 2, so that x(—1) = (=1)", we have

|H2, (05, Zp(m)* |

L5(1 - dx
(1—n,x)™ ~p |HO(E, Qp/Zp(n)X |’

where E is any finite abelian extension of F' of degree prime to p, containing
E.

Let us consider the special case that x = 1 and n > 2 is even. Recall
that

H*(op, Z(n)) = [ | HE (0> Zp(n)-
r

Let us denote the order of H2(or,Z(n)) simply by h,(F) in analogy with
the class number, and let us denote the order of H°(F,Q/Z(n)) simply by
wn(F). Then we obtain the following (for details at the prime 2 cf. [23]):

Theorem 3.4. Let F be a totally real number field and let n > 2 be an even
integer. Then
ha(F)

wn(F)’

(r(l—n)==%
up to multiples of 2

We remark that the 2-primary part of the Theorem is also true if F is
abelian over Q. '

In the special case n = 2 this is the Birch-Tate Conjecture:
Birch-Tate Conjecture 3.5. Let F be a totally real number field. Then

|K>(oF)])

Cr(-1) = im

(up to possible multiples of 2 if F' is not abelian over Q).

Theorem 3.4 is a special case of the (cohomological version of the) Licht-
enbaum Conjecture ([27]): Let F be an arbitrary number field, and let n > 2.
Let ¢5(1 —n), the special value of {r at 1 —n, denote the first non-vanishing
coefficient in a Taylor expansion of the zeta-function {r(s) around 1 —n.
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Lichtenbaum Conjecture 3.6. Up to powers of 2:

| Kaon—2(oF)|

AR 20F) | pB(f),
|K2n—1(0F)torsI ( )

G(1-m) =+

Here RB(F) denotes the Borel regulator. If the Bloch-Kato Conjecture
is true, then the Lichtenbaum Conjecture is true for abelian number fields
(cf. [24, 25, 1, 20, 6]).

If we want to include the 2-primary parts into this conjecture, then we

should replace the K-groups by motivic cohomology groups, i.e. we are led
to the motivic reformulation:

* Motivic Lichtenbaum Conjecture 3.7.

H2
({1 - ) = £ (B8P
IHM(OFa Z(”))tors'
Here RA(F) is closely related to the Borel regulator. This conjecture

is known to be true (assuming Bloch-Kato) if F' is totally real abelian and
n > 2 is even (cp. Theorem 3.4) and in a few other cases.

BM(P).

4 The Coates-Sinnott Conjecture

We now consider an arbitrary abelian extension E/F of number fields with
Galois group G, and let S be a finite set of primes in F' containing the primes
ramified in F and the infinite primes. It is well-known that there exists a
function 9% / #(8) with values in the complex group ring CI[G], such that

X(eg/F(s)) = L%/F(X—la s)

for all characters x of G. We simply define
og/F(S) = Z L%/F(X_l» s)ex € C[G],
X

where —as before— the sum extends over all absolutely irreducible characters
of G, and ey = %[ > ecG x~1(g)g denotes the idempotent belonging to x.
By a result of Klingen-Siegel 6%, / p(1—n) is contained in Q[G] for alln > 1,
and it was shown by Deligne-Ribet that suitable multiples of 9% / pl—n)
are actually contained in the integral group ring Z[G]. More precisely

- Annge(HO(E,Q/Z(n))) - 05,-(1 — n) C Z[G].
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The ideal Anngc(H°(E,Q/Z(n))) - o5 /F(l — n) is called the n-th higher

Stickelberger ideal and denoted by Stick?, z/r(n). The classical Stickelberger
Theorem states that

Stick, q(1) C Anngig)(Cl(oE)),

and Brumer conjectured that the same result holds for arbitrary abelian ex-
tensions F/F. For n > 2 another generalization of Stickelberger’s theorem,
involving higher Quillen K-groups, was suggested by Coates-Sinnott in the
case F = Q and extended to arbitrary base fields by Sands and V. Snaith.

Coates-Sinnott Conjecture 4.1. Let E/F be an abelian Galois extension
of number fields with Galois group G, and let n > 2. Then

Sticks, /r(n) C Anngg (Kon—2(0E)).

We note that at negative integers 1 — n, n > 2, the Artin L-function

L, S (X, s) vanishes unless F is totally real and x(—1) = (-=1)"™. Therefore

one usually restricts attention to F totally real, and either E totally real
and n even or E CM and n odd.

As before, the 2-primary information about this conjecture suggests that
the K-groups should be replaced by motivic cohomology groups, i.e. the
correct version should read

Motivic Coates-Sinnott Conjecture 4.2. Let E/F be an abelian exten-
sion of number fields with Galois group G, and let n > 2. Then

Stick%/F(n) C Anngg (H}M(OE, Z(n))))-

To approach the conjecture one considers each prime pr separately, and
shows that

Anng,ic)(HY(B, Qp/Zp(n)) - 63 p(1 — n) C Annz,c)(HE (08, Zp(n)).--

This gives the p-part of the cohomological version of the conjecture.

We want to show now that the Classical Main Conjecture implies the p-
part (p odd) of the conjecture in the semi-simple case, i.e. we are considering
an odd prime p, which does not divide the order of G. In the setting of the
previous section (we are enlarging E to contain pp) we fix n > 2 and a
character x of G with parity (-1)", so that the character i := xw™ is real.
We first recall the definition and some of the properties of Fitting ideals.
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The (first) Fitting ideal Fittp(M) of a finitely generated R-module M is
_ defined as follows: Choose a free resolution

B R Mo

of M. The Fitting ideal Fittp(M) of M is the R-ideal generated by all nxn-
minors of the n x m-matrix representing 8. This definition is independent
of the choice of the free resolution. One of the properties of the Fitting ideal
is that it is contained in the annihilator of M:

Fittg(M) C Anng(M),

and the two ideals are equal if M is a cyclic R-module. It is now rather
straightforward to compute the Fitting ideal of

%5 (—n)X = 5% (~n).

This is a finitely generated torsion O, [[T]]- module without non-trivial finite
submodules, and therefore by a result of Greither ([15], Theorem 2.2, [30],
Lemma 2.3) has projective dimension < 1. We emphasize that the proof
does not need the module to be finitely generated as a Zy-module, hence one
does not have to assume that the p-invariant of ¥5%(—n) is trivial.

Now, if M is a f.g. torsion R-module of projective dimension < 1, then
there is a resolution of M of the form

_ O——)R"ﬂR"—%MHO,
hence
Fittp(M) = (det B)
is a principal ideal generafed by the determinant of £.

In our case we have an injection

0 — E5¥(—n) = A/(fy,s(k(")*(1+T) - 1))))

with finite cokernel, where as in section 3 fy, s(T') is a generating polynomial
of the characteristic ideal of X%¥. At all height 1 primes of A the two
principal Fitting ideals Fitt(%5(—n)X) and (fy s(s(7)™(1+T)—1)) coincide,
and it is then well known (¢f* [19],Proposition 3.2.1) that this implies the
equality of the two ideals. We obtain:
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Proposition 4.3.
Fittp (X% (-n)X) = (fus(t(M" (1 +T) - 1)).

As an immediate consequence we obtain a reformulation of the Classical
Main Conjecture:

Corollary 4.4. The Main Conjecture for ¥ is equivalent to
FittA(X5¥(—n)) = (Gys(k()"1+T) — 1))
foralln>2

We now descend to X5¥(—n)r. Its Fitting ideal over Oy is the image of
Fittp(X5¥(—n) under the map T + 0, hence

Corollary 4.5.
Fitto, (X5¥(-n)r) = (L3 (1 - n,9)),
fyp#1
To treat the case 9 = 1 we consider the Iwasawa module Zy(—n) and

obtain

Fittg, (Zy(—n)r) = (5(1)" — 1),

and therefore
Corollary 4.6.
Fittzp(XS(—n)[‘) = Fittzp(Zp(—n)) . (Lg(l —n,1)).

For a finite module M the Fitting ideals of M and its dual M*, and so
we can dualize and finally take the sum over all eigenspaces to obtain

Theorem 4.7.

F ittzp[G]‘(Hgt(O%va(n))) = Fittg,jq)(H*(E, Qp/Zp(n))) - 0% p (1 — ).

We note that this implies the p-part of the cohomological version of the
Coates-Sinnott Conjecture, because the right-hand side equals Anng,(¢)(H O(E, Qp/Zy(n)-
0% / (1 —n), which is then contained in Anng, g (H 2 (0%, Zp(n))). Since

Hézt(OIEa Zy(n)) C Hgt(o'g», Z,(n))

we obtain
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Corollary 4.8. If p { |G|, then the p-part of the cohomological version of
the Coates-Sinnott Conjecture holds:

Anng q) (HO(E’ Qp/Zp(n))) - ‘91%/17‘(1 —n) C Anng,gj (Hegt(O%aZp(n))-

To prove the cohomological version of the Coates-Sinnott Conjecture
for all primes p, the, Classical Main Conjecture has to be replaced by an
Equivariant Main Conjecture. A version of this has been formulated and
proven by Ritter-Weiss ([31]) under the hypothesis that the u-invariant of the
Iwasawa-module X is trivial and p is odd. As a consequence Nguyen Quang
Do proved the cohomological version of the Coates-Sinnott Conjecture (cp.
[29]). Independently, this was also proven by Burns-Greither ([7]) under
the same assumptions (and some additional restrictions on the primes p, if
F # Q) as a consequence of the Equivariant Tamagawa Number Conjecture.
Most recently, Greither and Popescu gave a new and much more general
approach to an Equivariant Main Conjecture, again under the assumption
that the p-invariant vanishes and that p is odd, which implies the Coates-
Sinnott Conjecture, but gives many other results as well..
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