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Introduction

This series of lectures has the modest goal to introduce the novice to the equivariant
Tamagawa number conjecture (ETNC) by explicitly working out the exarnple of the
L-value of an elliptic curve at s = 1. It turns out (which is of course well-known to
all experts) that the ETNC here is equivalent to the Birch-Swinnerton-Dyer (BSD)
conjecture. In fact, the BSD conjecture was one of the guiding principles in the
original formulation of the Tamagawa number conjecture by Bloch and Kato in
[BlKa].

Although the extra generality of working equivariantly is completely superflu-
ous for this result, it adds in fact not too much technicalities. It was the aim to
show how BSD is part of much more general conjecture.

For a complete account of the conjecture it is indispensable to consult [BuF1],
although more genteel introductions are [Ka] or {Fo], which both consider only
commutative coefficients.

The beginner will find the working with determinant functors difficult and
confusing. It should be very helpful to go through the exercises and to consider
first only commutative rings to get a better feeling for this technical notion.

It was surprising for the author of these lectures that, although well-known,
this equivalence between the ETNC and the BSD conjecture seems to never have
been worked out explicitly in the literature. A notable exception is [Ve], which
treats the general case of abelian varieties, but omits many details and p = 2. We

therefore hope that these notes can provide a ready reference also for the expert in
this field.
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LECTURE 1

Motives, cohomology and determinants

1. Motives

In this lecture we consider only a primitive version of motives. The whole ETNC
can (and should) be set up for much more advanced theories of {mixed) motives.
We follow here the exposition in [Ja] except that we use homological motives and
use only equi-dimensional varieties for simplicity.

Let K be a field. Our main interest is K = Q. Let Vg be the calegory of
smooth, projective, equi-dimensional schemes over K. If X,Y € Vg, let forr € Z

(1) AdimX+r(X X Y) = CHdimX—{»r(X X K Y)Q,
the Chow group of Q-linear codimension dimm X + r cycles. Define a composition
(2) o AdimX1+r(X1 % X?,) x AdimX;+s()(2 x X;;) N AdimX1+r+s(X1 % XB)

by fx g gofi=pry;.(pris(f) - pras(g)), where - is the intersection product and
pr;; is the projection onto the 4,j component. '

Definition 1. The category of Chow motives Mg over K has objects
(3) M = (X,q,r),

where X/K is a smooth, projective and equi-dimensional variety, go ¢ = ¢ an
idempotent in A1 X(X x X) and r € Z. Here the morphisms are

() Hompg, (M, N) := ¢’ 0 A X'+7=1" (X« XY oq,
where N = (X', ¢, ).
We use the following notation:
MX) = (X,A,0), A the diagonal
(5) Q(n) := (SpecK, A,n), the Tate motive
M(n) = (X,p,r +n), the n-fold Tate twist.

Note that the functor, which sends X to h(X) and f to its graph Ty is covariant
{this means that our motives are homological, other conventions are possible). In
particular, for a morphism f : X — Y one gets maps

Ty h(X)— W(Y)
L% h(Y) - A(X)(dimY — dim X).
Definition 2. For M = (X,p,r), N = (X',¢',7') € M lct

(6)

M@k N:={(Xxg X',gxgq,r+7') the product

7
@) MY = (X,¢",dim X —r) the dual,

5



6 LECTURE 1. MOTIVES, COHOMOLOGY AND DETERMINANTS

where ¢! is the image of ¢ under the map, which interchanges the two factors in

XXKX.

Remark 1. Note that the product is not the good one as it is not compatible with
the product of the realizations of M and N. The problem is that the cup-product
in cohomology is graded commutative, whereas the above product is commutative.

Definition 3. Let A/Q be finite dimensional and semi-simple. If Endaq, (M)
admits a ring homomorphism

(8) ¢ : A — Endag, (M)

we say that M has coefficients in A.

Example 1. Let L/K be a Galois extension, G := Gal(L/K) and Q[G] the group
ring of G, then letting G act on SpecL from the left, we have

9) Q[G] — End(h(SpecL)(n)).
One has
(10) h(SpecL)¥ = h(SpecL).

Example 2. Consider an elliptic curve E/K with unit section e : SpecK — E and
the idempotents gy := E x ¢ and ¢ := e x E and let q; := A — pg — p3. Then

(11) h(E) = ho(E) @ h1(E) ® ha(E),

where hi(E) := (E, ¢;,0). Note that

(12) (R (EYD))Y (1) = ha(E)(D).

Remark 2. If L/K is a finite field extension, one can define two functors
(13) Respjp : Mp — Mg resp. XL : Mg — My,

which are called restriction and eztension of scalars, respectively. Here Resy /M =
(X, q,7) now considered over K and M x;, L = (X xg L,q xx L, 7).

2. Realizations

Let M = (X,q,7) € Mg and fiz i € Z>p. We are going to define the ¢-th realiza-
tions of M but we suppress i from the notations.

Remark 3. The ETNC can be formulated for motives over number fields K/Q
but it is compatible with restriction of scalars as defined in Remark 2, so that it is
enough to consider motives in Mg.

We need to define an action of correspondences ¢ € AMMX(X x X) on a
cohomology theory.

Definition 4. Let H" be a cohomology theory for Vi, which admits cycle classes
and has a product U compatible with cycle classes. Let X € Vi and g € A%™ X (X x
X), then define

(14) ¢ H(X) = H'(X)
by ¢*(€) := pry (U cl(q)), where cl(g) € H24™X(X x X) is the cycle class.
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Definition 5. The (i-th)Betti realization of M is
AdB = q*Hsiing(X(C)a Q(T)),

with its (pure) Q-Hodge structure of weight w = 4 — 2r and Fy, € Gal{C/R)-action
induced from the one on X(C) and on Q(r) := (2m¢)"Q c C.

‘We denote by
(15) M} = Mf==1
the subspace, which is fixed by Fi.
Definition 6. The (i-th) de RRham realization of M is

Mgr = ¢" Hip(X/Q) = ¢H (U /)
together with the shifted Hodge filtration, i.e.,
Fil"Mag := ¢*Fil"* " Hig (X/Q) = q*Illl(Hi(Q§7g’) — H'(Qx/0))-
The tangent space. of M is
t(M) = Myr/Fil’ Myg.

Fix an algebraic closure @ of Q and let Gg := Gal{(Q/Q) be the absolute Galois
group of Q.
Definition 7. Let p be a prime number. The (i-th) p-adic realization of M is

My = ¢*Hy (X xQQ,Qu(r))

with its continuous Gg-action. Here Q(r) is the one dimensional Q vector space on
which Gg acts via the r-th power of the cyclotomic character.

Note that if M has coefficients in A, the realizations Mg, Mag, My and t(M)
are A-modules.

Remark 4. For the dual motive M"Y we use the following convention. If we consider
the i-th realization of M, then we consider the (2dim X — 7)-th realization of MY.
Note that if M has coefficients in A, then MY has coefficients in A°PP.

The following example is crucial for this lecture:

Example 3. We will use the following notations throughout these lectures. Let
E/Q be an elliptic curve and fix £(C) = C/I'. Denote by

(16) T,E = lim E[p"](Q) resp. VoE =Tg ®z, Qp

n

its Tate-module and its Tate-module tensor Q. Consider M = hi(E){(1) and i =1
(all other realizations are trivial). Then we identify

(17) Mp =Hom(I', Z(1))g =Tg

via the intersection pairing I' x T' — Z(1). Note that the connected component
E(R)" of the Lie group E(R) defines a generator

(18) cpEp € Hi(E(C),Z)" = rt.
The de Rham realization has a filtration
(19) 0— HO(E’Q}Z/Q) — Hig(E/Q) — H'(E,0p) — 0,
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with Fil' H1, (E/Q) = HY(E, Q). We identify

E/Q
(20) t(M)= HY(E,Og) = LieE.
Tor later use, we fix a basis w € (B, QL /@) and the dual wV in LieE as follows:

Suppose that E/Q is written in global minimal Weierstrafl equation
(21) E:y* +a1zy + azy = 2% + a2% + agx + ag,
then we let

dz

(22) wi=———
2y + a1+ a3

and let w¥ € LieE be its dual. The p-adic realization of M we identify

(23) M, =Hom(V,E,Q,) 2 V,E

via the Weil pairing T,F x T,F — Z,(1). Note that T,E C V,E is a Gg-stable
Zyp-lattice.

The period map for M generalizes the periods for Riemann surfaces.

Definition 8. The comparison isomorphism (Mp®gC)* = (Myr®¢C)" = Mur g
induees via the inclusion Mg,m C (Mp ®yC)* and the projection Mg g — t(M)g
the period map

(24) oM Mg,la — t{(M)g.
Here we have written Mgr g := Mdr ®g R etc.

Example 4. Let M = hi(E)(1) and clggp € M}, w" € LieE be the elements
fixed in Example 3. Then the period Qo of E is the real number defined by

(25) am (CIE(R)U) = Q. w”.

Remark 5. Note that aps behaves well under duality. One has a perfect pairing
(26) cokeroyr x kerapgviyy — R,

which induces isomorphisms

(27 cokeray; 2 kerapv(y and  keray, & cokeransv (.

3. Motivic cohomology

Let M = (X,q,7) € Mg and fix i € Z»p.

Definition 9. The motivic cohomology Hﬂmt(Q,Al ) of the pair (M, 1) is defined
for j =0,1 by

0 if 4 £ 2r
CH™(X)g/CH™(X)}, ifi=or.
Koria (X)) ifi#2r—1
CH™(X)} ifi=2r—1.

Hgmt(Q-, AJ) = {
(28)

Hlilot(Q: 1\4) = {

Here CH™(X)g C CH"(X)q are the cycles homologically equivalent to zero. and
Ko i (X )g ) is the r-th Adams eigenspace of the algebraic K-theory of X.
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Simple examples show that H}  (Q, M) has not the right dimension in gen-
eral: For M = h(SpecL)(1) one gets H. .(Q, M) = L* ®z Q, which is infinite
dimensional. To remedy this defect, one possibility is to use the integral motivic
cohomology:

Definition 10. Suppose that X has a proper, flat, regular model X/Z (i.e. X xg
Q = X). Then the integral molivic cohomology H}i,.(Z,M) is defined as

]13mt (Z1 ]\/1) = Hr?u)t(@’ M)

hn(l(‘ZT—i—l(X)g) — Kzr—i—l(X)g)) ifi#2r—1
CH"(X)% ifi=2r-1.

29
( ) Hll;l()t(ZT ]\/[) = {
This is independent of the choice of X (see {Schn] page 13).

Conjecture 1. Suppose that M has coefficients in A. Then the groups HE ., (Z, M)
fori=20,1 are A-modules of finite rank.

Remark 6. If one does not want to assume the existence of a proper, flat, regular
model one can use also use the construction using alterations by Scholl [Scho2].

Example 5. Let L/Q be a finite extension with ring of integers @,. Then SpecOy,
is a proper, flat, regular model and for M = h(SpecL)(1) one gets

(30) Hy(Z,M) = OF @2Q.
Example 6. Let E/Q be an elliptic curve, M = hy(E)(1) and i = 1, then _N__@_t!;_
(31) Hyo(Q,M) =0
Hpot(Q, M) = CH'(E)g = Pic"(E/Q)q = E(Q)o-
By definition, we have B These enorples &%
(32) H: (Z,M)=H}_ (Q,M) fori=0,1.

4. L-functions

Let M = (X.q,7) € Mg with coeflicients in A4 and fiz ¢ € Z»¢. From now on, 4
will always denote a finite dimensional, semi-simple Q-algebra.

For simplicity of the exposition, we define the equivariant L-function in the
case where A/Q is finite dimensional, semi-simple and commutative (i.e. a product
of field extensions of Q). This covers the case of Q|G] for G abelian, but not more
general group rings. In Remark 7 we explain how to proceed in the general case.

Recall that Deys(Mp) := (Beris ®q, AJP)GQ:: is a finite dimensional Qp-vector
space with a Frobenius endomorphism ¢.

Definition 11. Let A be commutative. For each finite place v of Q let
detaq, (1 — Frob, 'T, M) ifv#p
deLAQP (1=~ @T, Deis(Mp)) i v=p.

be the local Euler factor at v. Here I, is the inertia group and Frob, is the Frobenius
endomorphism.

Note that L,(M,,T) € Ag,[T).

(33) Lo(M,, T) := {

Conjecture 2. The polynomial L,(My,T) lies in AT} and is independent of p.
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Definition 12. The L-function of M is the formal Euler product for s € C
(34) L(M,s) := [ | Lo(Mp,v™*) 7"
v

If we assume Conjecture 2, then L(M,s) actually converges for Res > 0 (by
the Weil conjectures) and defines an element in A ®g C. Conjecture 2 also implies
that for real s
(35) L(M,s) e AggR
(see [BuF1] Lemma 8).

Remark 7. If A/Q is a finite dimnensional, semi-simple algebra one can give the
same definition of local Euler factors but with detag, replaced by the reduced de-
terminant detredag, (see Example 13 for a definition). The resulting polynomials
are in Z(Ag,)[T], where Z(Ag,) is the center of Ag,. Conjecture 2 should then be
formulated as L, (M, T) lies in Z(A)[T] and is independent of p. The L-function

L{M, s) has then values in Z(4) ®¢ C. Note that Z(A) is a product of field exten-
sions of Q.

Note that
(36) L(M(n),s) = L(M,s +n).

We are interested in a conjecture concerning the special value of L(M,s) at s = 0.
For this we need: :

Conjecture 3. The function s +— L(M,s) has a meromorphic continuation to (a
neighborhood of ) s = 0.

Conjecturally the order of vanishing of L(M,s) at s = 0 should be determined
by the rank of the motivic cohomology. More precisely:
Conjecture 4. Let A be commutative and assume Conjecture 1, then
(37) rar o= ordg—oL{M, 8) = tk s H} , (Z, MV (1)) — tkp HY o1 (Z, M (1))
(equality of locally constant functions on SpecA).

Remark 8. If A is not commutative, one has to replace the rank by the reduced
rank rkred, : Ko(A4) — 2#5P°cZ(4)  defined in Example 13.

The ETNC addresses the leading coefficient of Laurent series of L{A,s) at
s=0:

Definition 13. Assume Conjectures 2, 3 and 4. Let rps := ords—oL(M, s) and
define the leading coefficient at s = 0 by

(38) L(M,0)" = lim s~ L(M,5) € (A®q R)™.

Example 7. Let E/Q be an elliptic curve and consider M = hy(E)(1) and i = 1.
Then Conjecture 2 is known for v # p. Conjecture 3 follows from the work of
Wiles et al., which identifies L(M, s) with the L-function of a cusp form. Note that
forv # p

(39) LMy, = FEEE)

)

where Eﬁs are the non-singular points in the reduction at v of a global minimal
Weiertrafl equation of E.
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5. Determinants

We review the theory of determinants for arbitrary rings following the excellent
exposition in [FuKa] to which we also refer for further details.

Let A be a ring and Py, (A) the category of finitely generated, projective A-
modules. We will use Ky(A) and K;(A) (whose definition is recalled in Remark
9).

Definition 14. The category of wirlual objects V (A) has as objects pairs (P, @),
where P,Q € P (A). Let
(40)
8 if [P] - [Q] # [P] - [Q'] € Ko(A)

M P.Q),(P,Q)) =

OYV(A)(( ,Q) (P,Q") {Kl(A) “torsor  if [P] - [Q] = [P'] - [@'] € Ko(A)
More precisely, choose R € Py(A) such that P& Q' @ R~ P’ & Q @ R and let
In =Isom(P®Q &R, P @Q& R) be the Gg = AutA(P' & Q & R)-torsor of
isomorphisms. Then define

(41) Mory 4y (P, Q), (P', Q")) = K1(A) x°" I

as the push-out of the torsor I under the canonical map Gr — K5(A). If R is
a different module with this property, let R” := R & R’. Then the canonical maps
Gr — Gg» and Grr — Gr~ define isomorphisms

(42) K (A) X9 Ip = K1 (A) xOr" Ipn = K1(A) xOF I,
which we use to identify the corresponding torsors.
One introduces the following notation
(P,Q)-(P,Q)=(PeQ,P &Q), the product
(43) (P,Q)~!:=(Q,P), the inverse
Det 4(P) = (P,0), the determinant.

One has
(44) (P,Q) = Deta(P) - Deta(Q) ™.
Note that Det4(0) = (0,0) is the unit object for the above product and that
(45) Mory(4)(Deta(0),Det 4(0)) = K1(A).

For a bounded complex C of modules in P, (A), define Det4(C") € V(A) by
(46) Det4(C") = (C™°", C°M),

where OV = (B, C% and Cv9 ;= D; cH+L,
One checks that for acyclic complexes C™ one has a canonical isomorphism

(47) Det 4(0) 2 Det 4(C").
Let f: A — B be a ring homomorphism. Then we have a functor
(48) B®a:V(A) — V(B)

defined by B®@a (P, Q) := (B®4 P, B®4 Q). For each isomorphism 9 € V(A4) we
denote by ¥ the corresponding isomorphism in V(B).
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Example 8. Let A/Q be finite dimensional, commutative and semi-simple (i.e. a
product of field extensions). Then Ko(A) = Z#50e°4 and the determinant induces
an isomorphism K;(A) & A*. )

Example 9. Let C' be an acyclic complex of modules in Py(A), then there
is a canonical isomorphism Det4(0) & Det4(C'). This implies that any quasi-
isomorphism C° = C" induces Det4(C7) = DetA(a') (as the cone is acyclic). Sim-
ilarly, if f,g : C" — C' are homotopic quasi-isomorphisms, the induced maps on
determinants agree. This shows that the functor C — Dets(C") factors though
the image of C in the derived category.

This last example allows to define determinants for more general complexes.

Definition 15. For each complex C°, which is quasi-isomorphic to a bounded
complex C" of modules in Pz (A), we define

(49) Det4(C") := Det4(C").

Example 10. One can check that for a bounded complex C" of modules in Py, (A)
with H7(C") € Pg(A) for all i € Z, one has ‘

(50) DetA(C") 2 [ [ Deta(H7(C)).
3

Example 11. Let A be commutative. Suppose that B := (by,...,b,) is a basis of
P, then B induces an isomorphism

(51) B : Det4(A") = Dety(P).

Let B’ = ¢B be a different choice of basis with ¢ € End(A"), then the isomorphism
B’ : Det 4(A™) % Det 4(P) equals B’ = det(¢)B.

Example 12. Let us consider the case A = Zj in more detail. In this case all
modules in Pg(Zy) are free. As rkg, : Ko{Zp) = Z, two modules in Pyg(Z;) have
isomorphic determinants, if and only if they have the same rank. In particular, let
H be a finite group and a Z,-module. Then there is a resolution

(52) 0-PYLQ—H—0,

with P,Q € Pg(Zp). As P and Q have the same rank, say 7, one can choose bases
P1,...,pr and qi,...,q- of P and Q respectively, and an isomorphism p : P = @,

which maps p(p;) = ¢; for i = 1,...,r. Thus, one gets a map (again called p by
abuse of notation)
(53) p : Detg, (0) = Detg, (Q) - Deth:(P)

induced by Detg, {P) 2 Detz, (Q). On the other hand, the map idg, ® ¥ is an

isomorphism, so that one has a canonical isomorphism
(54) idg, ® 9 : Detg, (0) = Detq, (Qq,) - Detg, (Pa,)-

Then one has pg, = (#H) 'idg, ® ¥, where #H is considered as an element in
K (Qp) = Q;; .

Example 13. We recall here some results about finite dimensional, central simple
algebras A/F over a field F': Choose a splitting field F'/F such that A @p F'
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Mat,(F') and an indecomposable idempotent e € A ®p F'. For each V ¢ P (A)
define the reduced rank of V' to be

(55) rkred 4 (V) := dimp (e(V @F F')).

This induces a map

(56) rkred 4 : Ko(A) — Z.

For an endomorphism ¢ € End4(V') define the reduced determinant by
(57) detreds(¢) :=det (9 ®id | e(V @F F')).

Both notions are independent of the splitting field chosen. The reduced determinant
induces the reduced norm

(58) normred4 : K1(A4) —» Z(A4)* = F*,

where Z(A) denoted the center of A. It is shown in [CuRe] §45 A, that in the case
where F is either a local or a global field, the map normred 4 is injective. If Fis a
local field different from R, normred 4 is even an isomorphism. For F' = Q one has

(59) Im(normreda) = {f € Q* | foo > 0, if A®gR = Mat,(H)},
where H is the division algebra of real quaternions.

Remark 9. We recall the definition of Ky(A) and K1(A). The abelian group
Ko{A) is generated by [P], where P is a finitely generated projective A-module.
The relations are 1) [P] = [Q} if P & Q and 2) [P9Q] = [P]+[Q]. The abelian group
K1(A) is generated by [P, a], where P is a finitely generated projective A-module
and a € Aut4(P). The relations are 1) [P, a] = [@, ] if thereis a v : P = Q such
that f =yoaoy™1, 2) [P,a][P,f] = [P,acf] and 3) [P& Q,a & f) = [P,a][Q, 8.
Note that one has a map Aut4(P) — K;(A), which maps a + [P, o]. In particular,
one has Gl,,(A) — K;(A), which are compatible for different n, and induce in the
limit an isomorphism

(60) GI(A)/[G1(A4), GI(A)] = K1 (4),
where [G1(A), GI(A)] is the commutator subgroup.

6. Exercises

Exercise 1.1 (Motives). Let E/Q be an elliptic curve and ho(E), hi (E) and he(F)
as in Example 2.

(1) Show that the go,¢: and g, in Example 2 are idempotents and that h(E) =
ho(E) @ hi(E) ® ha(E).

(2) Show that hg(E) = Q(0) and he(E) = Q(1).

(3) Show that for M = hy(F) the i-th realizations Mg, Mgr, and M, are zero
for i # 1. :

(4) Consider P!/Q: Show that h(P?) = Q(0) @ Q(1).

Exercise 1.2 (Determinants). Let 4 be a ring, C", C" bounded complexes of mod-
ules in Prg(A).
(1) Show that if C is acyclic, then there exists a canonical isomorphism
Det4(0) = Det4(C").
(2) Use (1) to show that if¢: C" — Cisa quasi-isomorphism, then one has

a canonical isomorphism ¥ : Det 4(C") = Det4(C") (consider the cone).
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(3) Suppose that the cohomology groups of C" are all in Pyy(A). Show that
Det(C") = [1,cz Det a(HY(C")).
(4) Let A = Z, and consider the category L, {A4) of graded line bundles. Its

objects are pairs (L, r), where L is a free Z,-module of rank 1 and r € Z.
Let

) ifr#7r

Isom(L,L') ifr=r'
Show that V(Z,) is equivalent to this category.

(5) Consider the inclusion Z, C Q, and define a functor Q,@z, : Ly (Z,) —
Ly (Qp) by Qp @z, (L,1) == (Qp ®z, L,r). Show that this is compatible
with Q,®z, : V(Z,) — V(Q,) under the above equivalence of categories.

(6) Let A = Z, and H be a Z,-module, which is also a finite group. Show
that there exists p : Detz,(0) & Detz, (H), such that pg, : Detg,(0) =
Detg, (H ®z, Q) = Detq, (0) equals (#H)™! € Q.

Mor((L,r), (L',7")) = {



LECTURE 2
Formulation of the ETNC

1. Rationality conjecture

For the rest of these lectures we let M = (X,q,r) € Mg with coefficients in
A/Q finite dimensional and semi-simple. Fix i € Z»¢. We will from now on use
systematically notations like Vg := V ®q R for Q-vector spaces V, if no confusion
is possible. Similarly, we use Vg, =V ®¢ Q, and Vg, := V 8z, Q,, if V is a
Zy,-module.

In this section we formulate the rationality conjecture, which states essentially
that L(M,0)* divided by a certain period is "rational”,

Recall from Definition 8 the period map
(61) am Mg g — (M)

Conjecture 5. There ezists an ezact sequence (the fundamental exact sequence)
of Ag-modules {of finite rank)

Gy O TR ® MR Keran T HL (@MY (D)
<.>

S22, (B, Mg == cokerany <o HS,,(Z, MY (1))¥ — 0,

where ro, is the Beilinson-Deligne regulator, c is the Chern-class map and <,> the
height pairing, ( )V denotes the dual vector space.

Example 14. Let M = hy(E)(1) and ¢ = 1, then Conjecture 5 holds for M.
Indeed, apr is an isomorphism, so that keray, = 0 = cokerays. By definition
H® (Z,M) = 0 = HO (Z,MY(1)). Finally, the Neron-Tate height h defines a
pairing < P, Q@ >:= L(A(P + Q) — h(P) — h(Q)), which induces an isomorphism

(63) <> Hypo (2, MY (1))g = E(Q)R & Hyor(Z, M)z = E(Q)r.

Definition 16. The fundamental line is the object in V{A) defined by

(64) A (M) :=Deta(Hy o (Z, M)) - Dety' (Hrou(Z, M)) - Det a(t(M))

Dety ' (Hpot (Z, MY (1))") - Deta(Hpo (Z, M (1))") - Det ! (M)

Taking Det 4, of the fundamental exact sequence in Conjecture 5 and of the

tautological exact sequence

(65) 0 — kerapr — ME’R — t(M)r — cokerapy — 0

induces a canonical isomorphism

(G6) O : A(M)g = Det 4,(0).

The first part of the ETNC (the rationality conjecture) can now be formulated. We
stick here to the case where A is finite dimensional, semi-simple and commutative
and explain the general case in Remark 10.

15
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Conjecture 6 (Rationality conjecture). Let M be as above with coefficients in
A and assume that A is commulative. Then Ki(A) & A* and we can consider
L(M,0) € K1(Ar) = Ag. There exist a zeta isomorphism

(67) Ca(M) : Deta(0) = A(M)
such that
(68) oo 0 Ca(M)r = (L(M,0)")"" € K1(Ar) = Ag.

Remark 10. Here we explain the formulation of Conjecture 6 for arbitrary A/Q
finite dimensional and semi-simple. The problem with this case is that L(M,0)* €
Z(Ag)™ and that the map K;(Ag) — Z(A4g)> induced by the reduced determinant
is injective but not surjective in general. It is shown in [BuFl} Lemma 9 that there
exists a A € Z(A4)* such that (A\L(M,0)*)~! € K(Agp). The conjecture now reads
as follows: There exists a zeta isomorphism

(69) Ca(M,271) : Det 4(0) = A(M)

(depending on A) such that 0, 0 R ®g (a(M,A71) = (AL(M,0)*)"! € Ki(A4g).
If one chooses a different N € Z(A)*, then MA™! € Ky(A) as follows from the
description of the image of the reduced norm in Example 13.

2. Review of some results on elliptic curves

Here we collect some results on elliptic curves £/Q, which we will need in the rest
of the lectures.

We assume that F is given by a global minimal Weierstrafl equation. ‘We denote
by E, the reduction of E at a finite place v and by Ef,‘s‘the set of non-singular points
in E,. Note that this a group scheme over F,. \

Theorem 1 ([Sil] VII 2.1, 2.2, 6.1 and IV 6.4). Let K = Q, or K = Q4™ ), then
there are subgroups

(70) Ei(K) C Ey(K) C E(K)
such that E(I)/Eo(K) is finile and one has an ezact sequence
(71) 0 — Ey(K) - Eo(K) — E™(k) — 0,

where k = F, or k = Fy is the residue field of K. Moreover, Eo(K) = E(K) if E
has good reduction and E1(K) are the points of the formal group associated to E.
In particular, if the valuation w of K is normalized (i.e., w(K*) = Z), then the
logarithm induces an isomorphism Ei(m™) 2 m” for all v > w(p)/(p — 1), where m
is the mazimal ideal of K.

Lemma 1. For v # p one has
(72) T,Bl = T, BN
and an exact sequence

—Frob ! ~_
(73) 0 T,EN 220, Bl BYS(R,) @ Z, — 0.

Proor. Exercise! ]
Finally, we need to recall Tate’s local duality theorem:

Theorem 2 (see [Mi] I 3.4). For any place v of Q one has o perfect pairing

(74) E(Q.)/p"E@.) x H(Qu, E)p"] - Q,/Z,.
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3. Local unramified cohomology

We review here the definition of local unramified cohomology, for more details one
should counsult [BuF1] 3.2.

_ Fixfor each place v of  an algebraic closure @, of @, and and an embedding
Q C Q,. Denote by Gg, := Gal(Q,/Q,) the absolute Galois group of Q. For cach
continuous Gg,-module V we let

(75) RT(Q,,V) =C(Gg,,V)

the complex of continuous cochaines of Gg, with values in V. Recall that Deris(Myp) =
(Beris ®g, MP)GQP is equipped with a Frobenius morphisin ¢ and that Dgr (M) =
(Bar @q, MI,)G% has a filtration inherited from Bgg.

Definition 17. The p-adic tangent space is

(76) t(Mp) := Dar(M,)/Fil’ Dar (M, ).

The comparison isomorphism between M, and Mgy over Q, induces an iso-
morphism

(77) HMy) = t(M)q,.
Definition 18. The complex of local unramified cohomology is defined as
RI(R, M) if v=o00

—Frob; !
(18)  RT;(Qu, Mp) = { (M 200, pT) if v # p, 00

(Dexis(Mp) L2222, Do (M) @ H(M,))  if v = p.
Here I, C Gg, is the inertia subgroup and the complexes are placed in degree 0,1.

The complex RT;(Q,, M) is quasi-isonorphic to a sub-complex RT';(Q,, M) C
RT(Qy, M,) (see [BuF1] 3.2) and one defines RT/;(Qy, M;) to be the cokernel, so
that one has

(79) 0 — RT;(Qy, My) — RT(Qy, M) — RT/;(Qy, Mp) — Q.
Definition 19. The map induced by the inclusion (M) — Deys{Mp) @ (M)
together with the isomorphism ¢(M,) 2 t{M)q,
(80) exppy : t(M)g, — H}{Qy, M)
is called the Bloch-Kato exponential map.
We need the following fact on the exponential map expgy : t(M)g, — H }(Qp, Vo E)

Theorem 3 ( [BlKa] Example 3.10.1 and 3.11). One has H?(QP,V,,E) =0 and
the diagram

P

(81) Ey(Qy)o, — " H'(Qy, V,E)

-] |

Lie(E)q, — 25— H}(Qy, V,E)

where exp is the exponential of the formal group E; commutes. In particular, the
Kummer map induces an isomorphism

(82) E@Q)Y = HHQp, V).
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For computation it is decisive to have a version of unramified cohomology with
integral coefficients.

Definition 20. Let T}, C M, be a Gg,-stable Z,-lattice and let u: H(Q,,T,) —
H(Qy, Mp) be the natural map. Then define

H?(Quan) = H(Qy, T})
(83) HHQy, Tp) = {€ € H'(Qy, T}) | u(€) € H}HQy, My)}
H}(Q.,T,) = 0.
For H}f let
(84) H} 1 (Qy, Tp) i= H (Qu, Tp)/ H (Qu, T).
Note that the torsion subgroups of H}(Qy, ;) and H'(Q,,T;,) coincide.

Theorem 4. Consider an clliptic curve E/Q and T,E and V,E as defined in
Ezample 3. The Kummer segquence induces for any place v of Q

(85) 0— E(QV)AP - Hl(@vaTﬂE) i Tle(QvaE) — 0,

where E(Q,)"P = lim E(Qy)/p"E(Qy) 1s the p-adic completion and T,( ) =
Hom(Q,/Z,, ). Then for-allv

(86) E(Q,)" = H}Qy, T,E)
and T,H'(Q,, E) & H/lf(Qv,TpE). For all v # oo one has
(87) HY(Q., T,E) = 0.

We first prove a lemma.

Lemma 2. For v # p,oc the map 1 — Frob, ! induces an isomorphism

_ -1
(88) VI,EI" 1-Frob,

so that

V,En,

(59) H}l’(@v, V,E) = H%(Q,,V,E) =0
H(Qu, VpE) =0.
For v = p we have
(90) HY(Q,, V,B) = 0.
Proor. This follows from Lemma 1 and Theorem 3. O
ProoOF OF THEOREM 4. We claim that for all places v # oo
(91) B(Qu)g! = H}(Qu, Vo E).

For v = p this is contained in Theorem 3. For v # p,co0 both sides are zero: the
left hand side by the structure of E(Q,) recalled in Theorem 1 and the right hand
side by Lemma 2. Consider the commutative diagram:

0 ——— E(Qy)"? ———3 HY(Qy, T, E) ——— T, HYQy, E) ————30

| l l

00— E(Qy)"? ®z, Qp — HYQy, W) —— TI)Hl (Qu, E) ®z, Qp — 0.
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Here the lower sequence is exact, as T, H* (Qy, E) is torsion free and hence flat. This
also implies that the right vertical arrow is injective. Using our claim, a diagram
chase shows that E(Q,)"? is identified with the elements in H'(Q,, T,E), which

map to E(Qv)a? = H}(Q,,,V,,E). This proves the statement of the theorem for
v # 00. For v = oo Exercise! 0

4. Global unramified cohomology

We need more notation: Fix a prime number p. Denote by S a finite set of places
of @, which contains p, co and the places, for which M, is ramified. Let G be the
Galois group of the maximal extension of @@, which is unramified outside of S. For
any continuous Gg-module V we let

(92) RT(Zs,V) :=C{(Gs,V)
be the complex of continuous cochaines of G5 with values in V.
Definition 21. The complex of cohomology with compact support is

(93) RI.(Zs,V) := Cone (RI‘(ZS, VY- @ RT(Q,, V)> [-1],

veS

where V is any continuous Gs-module. The complex of global unramified colomol-
ogy is

(94)  RI';(Q,M,) := Cone (RF(ZS, M,) — @ RT)4(Q, M,,)) [~1].
vES

The cohomology groups of RT';(Zg, V) and RI'({Q, M,) are denoted by Hi(Zg, V)
and H}(Q, M) respectively.

Putting the resulting exact triangles together one obtains the very important
exact triangle

(95) RT(Zs, Mp) — RT;(Q, Mp) — () RT 1(Qu, Mp).
vES

The global unramified cohomology H}(Q, M,) is self-dual in the following sense:
Theorem 5 ([BuFl] Lemma 19). One has H} (Q,M,)=0fori#0,1,2,3 and
(96) H3(Q, My) = H;7H(Q, My (1)),
where )V denotes the Q, dual.

We introduce an integral structure on I } (Q,T,):
Definition 22. Let T}, C M, be a Gg-stable Z-lattice, then define

(97) H}(Q’TP) := ker (Hl((@a TTJ) - H H/lf(Qvan)) y

v#o0

where H;(Qy,Tp) is as in Definition 20.

To compule H} (Q, T, E) we need:
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Definition 23. Let E/Q be an elliptic curve, then
(98) II(E/Q) = ker(H'(Q, E) — [[ H'(Qu, E))

is called the Shafarevich-Tate group. )
Theorem 6. Suppose that IN(Q, E) is finile, then the Kummer sequence identifies
EQ)"™ = H{Q.T,E)
inside H(Q, T,E).
ProoOF. Exercise! ) 0
5. Formulation of the ETNC

The following conjecture relates the motivic cohomology to the global unramified
cohomology.

Conjecture 7. The p-adic requlators
Tyt Hooo(Z, Mo, — H}(Q, M,)
’rP : Hrlnot(Zl ]V[)Qp - H}(Q, A{p)

are isomorplisms for all p.

(99)

We are going to define an isomorphism 6 : A(M)q, = Detag (RIc(Zs, Mp)).
By definition of RI'f(Qy, Mp) (see Definition 18), we can identify
Deto My if v = oo
»
(100) by : Dct;ér RL;(Qy, Mp) := { Deta, (0)=  ifv#p,00
Dei‘,AQ"t(M)Qp ifv=np.
The triangle for RT(Zs, M) in (95) gives
(101) Detag, (RTe(Zs, My)) 2 Detag, (RT1(Q, My)) - [ | Detyy (RT1(Qu, My))-

vES
Together with the isomorphism ¢, in (100) one gets

102

( Dez Aq, (RT(Zs, Mp)) = Detag (RT4(Q, My)) - Det;;p (M) -Detay (H(M)q,)-
With Conjecture 7 and Theorem 5 the right hand side is canonically isomorphic to
A(M)q,
Definition 24. For any p let

(103) Op: DN M), = Detag, (RT.(Zg, M)
be the isomorphism defined above.

The ETNC states roughly that the zeta element {4(M) from Definition 6 gen-
crates an integral structure in Det 4y (RUe(Zs, Mp)). To formulate this, we need:
Definition 25. Let A/Q be finite dimensional, semi-simple. An order A in A is
a sub-algebra, which is a finitely generated Z-module, such that A ®z Q = A. A

projeclive A-slructure in M, is a projective A-module Ty C Mg such that for all p
the image of T}, := Tp ®yz Z, under the comparison isomorphism

(104) Mp ®q Q = M,
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is a Galois stable lattice in M,,.
Very important examples of orders are Z[G] C Q|G], where G is a finite group.

Conjecture 8 (ETNC equivariant Tamagawa number conjecture). Let M € Mg
be a motive with coefficients in A and suppose that A is commutative (see Remark
18 below for the general case). Let Tg be a projective A-structure in M and let
Ca(M) : Det a(0) = A(M) be the zeta element defined in Conjecture 6. Then there
is an isomorphism ( Az, Det Az, (0) = Det Az, (RLU:(Zs,Ty)) such that

(105) Op 0 Ca(M)g, : Detag, (0) = A(M)q, = Detag, (RT.(Zs,Mp))
coincides with (Cas, ), -

Remark 11. The ETNC is independent of the choice of the projective .A-structure
Ts. Indeed, for a different A-structure T we can consider p"T, C T, N T, and so
reduce to the case of T, C T;,. We get an exact triangle

(106) RI'(Zs,Tp) — RI’C(ZS,TI',) — RFC(ZS,TIL’,/TP),
where T} /T, is finite. By Example 12 the isomorphisms (4, for RI'.(Zs,T,) and
RT(Zs,T,) differ by I—[i:()’l)m(#;UHTZ(ZS,TI[’)/T,D))("]L)1 =1, (see [F1] Theorem 5.1).
Remark 12. The ETNC is also independent of the choice of S in the sense that
if it holds for S, then it also holds for a different set of places S’. We may assume
S < &', Then there is an exact triangle
(107) RTc(Zs,Tp) — RUe(Zg', Tp) — EB RF(]F,,,T;“).

vES\S

—Troh—1
The complex RI(F,, Tzf") can be represented by [TPI" LoFroby TPI*'] and one gets

triv : Dety,, (0) 2 Deta,, (RC(Fy,Tv)). This means that for 8,5 : A(M)q, =
Detag, (RT'c(Zs, Mp)) and bp,s' : A(M)g, = Detag, (RT(Zg', M) one has 8, s -
trivg, = 0p,s'. With a similar notation (4, s -triv = (4, . Putting this together,
gives the result.

Remark 13. To formulate the ETNC for a general finite dimensional, semi-simple
A recall the zeta isomorphism (a(M, A1) : Det 4(0) = A{M) from Remark 10. As
the reduced norm induces an isomorphism normreda, : K1(4q,) = (2 {Ag, )™ we
can consider

(108) Ma(M, A )q, : Detay (0) = A(M)g,,

which is independent of A. The ETNC says in this case, that there is an isomorphism
Az, t Deta, (0) = Det g, (RTe(Zs,Ty)) such that

(109) 85 0 Ma(M, 2"V )q, : Detag, (0) 2 Detag, (RTc(Zs, M,))
coincides with ({4, o,
6. Exercises

Exercise 2.3. Show that for any abelian group H, the group T,H := Homgz(Qp/Zp, H)
is torsion free and that T, H = 0 for finite H.

Exercise 2.4. Show Lemma 1.
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Exercise 2.5. Show Theorem 4 for v = oo, i.e., that E(R)"? = HY(R, T, E).

Exercise 2.6. Show Theorem 6.



LECTURE 3

The ETNC and the Birch-Swinnerton-Dyer
conjecture

1. Relation to the Birch-Swinnerton-Dyer conjecture

In the last lecture we want to show that the ETNC for the motive hy(E)(1) is
essentially equivalent to the Birch and Swinnerton-Dyer conjecture.

In this section, we consider again an elliptic curve E/Q and let M = hy (£)(1).
We denote by r := rkz E(Q). Choose a basis z := (z1,...,z,) of the free part
E(@Q)free of E(Q) and let <,> be the Neron-Tate height pairing as defined in
Example 14.

Definition 26. The regulator of E is the real number

(110) R(E/@) = det(< Ti, Tj >)i,j=1,...,r~
Definition 27. Let

_JH#HEQp)/Es(Qy) ifv# oo
o “T {#(E(R;)/E(R)")p if v = 0o

where Ey(Qp) is the subgroup of E(Qp) defined in Theorem 1 and E(R)® is the
connected component of E(R).

Note that ¢, = 1 for almost all v. One can show that for finite v one has

cy = #(E(F,)/E(R,)) where £ is the Neron model of F and £° C £ is the connected
component of the identity.

Conjecture 9 (Birch-Swinnerton-Dyer conjecture (BSD)). Let E/Q be an elliptic
curve, v := rkz E(Q), then:
a) ords=1 L(E,s) =7
b) If UI(E/Q) is finite, then
L(E, 1) #HI(E/Q
112
( ) QooR(E/Q) Q)tnm 2 H

where S, s the period of B from Ezample 4.

We can now formulate the main theorem of these lectures:
Theorem 7 (Main theorem). Let E/Q be an elliptic curve, M = hy(E)(1) (i =1)
and A = Q.

(1) The conjecture of the order of vanishing of L(E,s) at s = 1 is equivalent
to part a) of the BSD conjecture.
(2) If 1) holds, Conjecture 6 is equivalent to
LE, 1) x
[ S U A— e .
ar@E/@ <

23
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(3) If HI(E/Q) is finite and Conjecture 2 on local L-factors holds even for
v = p, then the ETNC for M and all p is equivalent to part b) of the BSD
conjecture.

‘We prove here (1) and (2). Part (3) will be proven in Section 4.

Proor or (1) aND (2). Obviously, using Example 6, Conjecture 4 says for
M = h(E)(1) that
(113) r =1kz E(Q) = ords=0 L(M, ),
if we observe that L(M,s) = L(E,s + 1). This proves (1).

We show that Conjecture 6 is equivalent to

L(M,0)*

Q. R(E/Q)
Indeed, the fundamental line of M is
(115) A(M) = Detg' (E(Q)q) - Detg(E(Q)q)" - Detg' M7 - Detg (LieE).

Let ¥ := (zy,...,x)) be the basis of (E(Q)"*)" dual to z := (1,...,%,) and
let clggy and w" be the basis clements of M; and LieF respectively, defined in
Example 3. We have isomorphisms z : Detg(Q™) & Detg(E(Q)™*) ete. induced
by these bases and we define 3 to be the composite isomorphism

(116)  f:Detg(0) & Detg'(Q") - Detg(Q") - Detg' (Q) - Deto(Q) = A(M)

induced by these bases. As a possible zeta isomorphism (o(M) is of the form
Co(M) = ¢B, with ¢ € Q*, Conjecture 6 is now equivalent to the fact that

(114) €Q*.

(117) 90 0 fr = (L(M,0)") ™" € Ki(R) = R*.
By definition of 8., we get that
(118) O 0 Br = (o R(E/Q)) ! € K1 (R) = R*.
Thus
L(A'[v O)* -1 X
119 —— e = € .
(1) T REQ 1 O

2. Selmer group and RI.(Zs,T,E)
In this section, E/Q is an elliptic curve and T, E is the Tate-module of E.

Definition 28. Fix a prime number p. The Selmer group of E/Q is defined as

(120) Sely (E/Q) = ker <H1(Q, Ep=]) - [T &' (Qu, E)[p°°])> .

Note that one has an exact sequence
(121) 0 — E(Q) ®z Qp/Z, — Selp= (E/Q) — HI(E/Q)[p™] - 0.

Definition 29. For any topologically abelian H, we let H* := Homcont (H, Qp/Zp),
where Q,,/Z, has the discrete topology.
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Note that by (95) and Lemma 2, we can write
(122)
Detg, (RTo(Zs, VpE)) = Detg, (RU;(Q, V,E)) - DetQp(H}(Qp, VpE)) -Detéj:VpEf

Theorem 8. There is a canonical isomorphism
(123) Dety, (RT(Zs, T, E)) = Det; ! (H}(Q, T, E)) - Dety, (Sely~ (E/Q)*)-
-Dety ! (H"(Zs, E[p™])*) - | [ Detz, (E(Qy)"?) - Detz (T, EY),
veS
which induces after Q,®gz, the isomorphism in (122).

PRroOF. The Poitou-Tate sequence (see [NSW] (8.6.10}) gives for each integer
n > 1 a long exact sequence of finite groups

HY(Zs, Elp")) — D H (Qu, Elp"]) — T (Zs, E[p"])* —
vES
H(Zs, E[p"]) - P H*(Qu, E[p"]) — H(Zs, E[p"])* — 0.
veS
Here we have identified E[p"] & Hom(E[p"], upn) via the Weil pairing. As the
groups in this sequence are finite, taking liﬁ‘n is exact. We get
H'(Zs,T,E) » P H'(Qu, T,E) — H'(Zs, E[p™])*
vES
H*(Zs,T,E) » P H*(Qy, T, E) — H(Zs, E[p™])" — 0
veS

By Definition 22, the kernel of the first map is H}(Q, T,F). Taking the inverse limit
of the Tate duality pairing in Theorem 2 one gets E(Qy)"? & HY(Q,, E)[p>]* and
a commutative diagram

(124) Boes BQ)"Y —Z5 @5 HHQu, B)p™]*

Does H'(Qu, TpE) —— H'(Zs, Ep>))*

4 3
Doecs Ty HYQy, E) ————— Selp (E/Q)*

0 0.
Thus, if we factor out the isomorphism E(Q,)"? & HY(Qy, E)[p>]* we get a long
exacl sequence
0—HNQ, T,E) — H (Zs, T,E) — (D T, H (Qu, B) —
vES
(125) —Sely=(E/Q)* — HXZs,T,E) — (P H*(Qu, [,E
vES

—~H%(Zs, Elp™])* — 0.
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On the other hand we have by Definition 21 a long exact sequence for RT'.(Zg, T, E)
(note that HY(Zs, IpE) = H(Zg,T,E) = 0 and H°(Q,,T,E) = 0 for v finite)

0— H'R,T,E) »H}(Zs, T,E) » H'(Zs,T,E) = (D H(Qu. T,E) —

yES
(126) —~HXZs, T, E) —» H*(Zs, T, E) — (P H*(Q,, T, E) —
vES
—H¥Zs,T,E) — 0.
Taking Detg, of these two exact sequences gives the desired result. ]

3. Local Tamagawa numbers

In this section we study how the integral structure E(Q,)"? behaves under the
identification 100

if ,
(127) byt DetéjRI“f(Qv, VpE) = {]]3222:823(5')% ifz ii 00
Recall that by Theorem 4
(128) Detz (RT1(Qu, TpE)) 2 Dety, (E(Qu)"").
Let
(129) py : Detz, (0) 2 Detz, (E(Q,)"?)

for v # p the isomorphism defined in Example 12. For the group E(Qp)"? we get
(130) Detz, (E(Q,)"?) = Detg, (E1(Qp)"?) - Detz, (E(Qp)"?/ E1(Qp)"?).

The isomorphism exp : pwVZ, = E1(Q,)"? gives a basis exp(pw") for E1(Qp)"P
and together with Example 12 we get

(131) Pp: Detz, (Zp) = Detg, (E(QP)AT’).
We define
#E2(Fp) ®z Zp _ A
132 = ——ez—————— 0, : Detg_(Z,) & Detg_(F .
( ) Op #Exl,h (]Fp) Pp Z, ( p) Zp( (Qp) )

Denote for each number ¢ € Q) by

(133) [gly == p*@ the p-part of q.
Here w is the p-adic valuation.

Theorem 9. Let forv=7p

(134) wér : Detg, (Q,) 2 Detg, (LieEg,)

induced by the basis element wV. Then

(135) b © (pu)g, = {[Cv];l €Q dv#poo

[cp];lwéln ifv=np.
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ProoOF. We treat first the case v # p. Recall from Lemma 1 the exact sequence
—Frob ! ~

(136) 0— T,El 22%0, T Bl E™(F,) @z Z, — 0.

As Ey(Q,)"P = 0, we have Fq(Q,)" = EP(F,) @z Z,. This gives

(137)

pu : Detg, (B(Q)P) & Dot (T, B™) - Dety, (T,E") - Detz, (B(Q)"?/Eo(Qu)"?).

As Q, ®z, T,E'» = V,E!v it follows from the definition of 1, and Example 12 that
Ly © (pu)Qp = [Cv];l because [C‘v]p = #(E(QW)AP/EO(Qv)AP)'

Consider now v = p and recall the exponential map exppy : LieFg, = H }(Qp, VpE)
from Definition 19. We claim that for the induced isomorphism

(138) exppy : Detq, H} (Qp, V,E) = Detg,LieEq,
we have
(139) tp = det(1 — @) expgy -

Indeed, consider the complex

(140)  RT;(Qp,Y%E) = Desa(VoE) T2 DoV, E) @ LieEq, |
We get
(141)

Detg, (LieEq,) - Det&: [Deris (Vo ) a, eris(Vp E)] = Det&: (RT4(Qp, Vo E)).
The quasi-isomorphism expgyg : LieEg,[—1] = RIf(Qp, V,E) is induced by the
embedding of the sub-complex [0 — LieEg,]. The quotient is the acyclic complex
[Deris (Vo E) -9, Deris (Vo E)]. The isomorphism ¢, is obtained by using

(142) triv : Detg [Dens(Vp B) =25 DoV, E)] =

= Detg (Deis(V5 E)) - Detg, (Duris (Vo E)) = Deta, (0)
and the isomorphism expg}( by using that

) - 1- ~
(143) acyclic : Detg? [Deris(Vy ) 829, Deis(Vy E)] 22 Detg, (0)
is an acyclic complex. As triv o acyclic™! = det(1 — ¢) the claim follows.

Now by using Theorem 3, the map exppk is given by the exponential map
from exp : LieEg, — E1(Q,) and by our choice of basis w" € LieE one gets an
isomorphism exp : pwVZ, & F;(Q,). By definition of 7, in (131) the isomorphism

(144) expik o(7,)o, : Det, (Q,) = Deto, (LieEo,)
equals
(145)  #(BQp)"/Ev(@)?) " pig, = leply " #(Ep (Fp) ®2 Zy) ™ pug,-
As det(1 — ¢) = w we have
_ #EE(F,)
(146) o (r)o, = —5—— s olPule,

and by definition of p, in (132) we get ¢, o (pp)q, = [cply 1“’%/2,,' O
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4. Proof of the Main Theorem
Here we prove part (3) of the Main Theorem 7.

Proor or (3) or TueoreM 7. Using Theorem 8, we are going to define an
isomorphisi

(147) (z, : Detg, (0) 2 Detg, (RTo(Zs, T, E)).

By Theoremn 6 we have H}(Q, T, E) = E(Q)"? = E(Q) ®z Zp. This gives
(148)  Detz, (H}(Q, T,E)) = Detz, (B(Q)™*° ®z Z,) - Dety, (B(Q)tors @z Zy)-
The basis z1,...,z, and Example 12 induce an isomorphism

(149) Detz, (Z}) = Detg, (H}(Q, T, E)).
Taking the dual of the sequence in (121), one gets
(150) 0 — LI(E/Q)[p™]" — Selp= (£/Q)* — (E(@Q)"°)Y @z Zy, — 0.

This gives

(151) Detz, (Sely (E/Q)") 2 Detz, ((E/Q)[p]") - Detz, (BQ)™)" @2.2,)
and assuming that II(E/Q) is finite, the basis zY,...,zY and Example 12 give
(152) Detg, (Z5) 2 Detg, (Selp= (E/Q)").

For T, E* we use the basis cl ggyo of H3(E(C),Z)* and the comparison isomorphism
H,(B(C),Z)" ®z Zp X T,ET to define o

(153) Dety ! (Zp) & Detz, (ToE™).

Finally, H(Zs, E[p*])* is finite and for [],c g, £(Qu)"P we use the p, defined
in (129) and (132). Combining these isomorphisms we get

(154) (z, : Detg, (0) = Detg (RL(Zs, T, E)).
Recall from (116) the definition of the zeta isomorphism
(155) Co(M) = ¢f3 : Detg(0) = A(M).

The definition of 8, : A(M)q, = Detg, (RI'«(Zs,V,E)} involves the maps rp :
Hlo(Z,M)q, = E(Q)g,, Lv and the comparison isomorphism M7 ®qQ, = V,E7.
By definition of (z, and using Theorem 9 one gets that 8, o (o(M)q, equals

1 (#E( Q) i,
156 1 (# tor 3 1 .
(156) (q e/ =D L )@
This implies that the ETNC for M = h1(E)(1) holds if and only if
_ #(UI(E/Q)[p>])

(157 0 = o | [le0]

: T #EQ) H v
for all p, that is if and only if the BSD conjecture holds. O

5. exercise

Exercise 3.7. Fill in the details in the poof of Theorem 7 (3).
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