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THE ARITHMETIC OF ELLIPTIC CURVES—AN UPDATE

BENEDICT H. GROSS

Abstract. We survey the progress that has been made on the arithmetic of
elliptic curves in the past twenty-five years, with particular attention to the
questions highlighted in Tate’s 1974 Inventiones paper.

1. Introduction

In 1974, John Tate published “The arithmetic of elliptic curves” in Inventiones.
In this paper [9], he surveyed the work that had been done on elliptic curves over
finite fields and local fields and sketched the proof of the Mordell-Weil theorem
for elliptic curves over Q. He ended with a survey of several conjectures on ellip-
tic curves over number fields, for which a considerable amount of theoretical and
experimental evidence had already been accumulated.

Let E be an elliptic curve over a number field k, defined by a non-singular cubic
equation in the projective plane over k. The solutions to this equation form an
abelian group E(k). This group is finitely generated, by the Mordell-Weil theorem,
but it is difficult in practice to determine its rank. The first conjecture was in the
direction of making this determination effective.

1) The Tate-Shafarevitch group X(E/k), of principal homogeneous spaces for
E over k which are trivial at all completions kv, is finite.

The rest of the conjectures were all related to the L-function L(E/k, s), which is
defined by a convergent Euler product in the half-plane Re(s) > 3/2. The product
is taken over the non-zero prime ideals P of the ring of integers A of k, and the
local term at P is determined by the number of points of E over the finite residue
field A/P . The predictions related to the L-function were the following:

2) The local terms in the Euler product determine the elliptic curve E, up to
isogeny over k.

3) The function L(E/k, s) has an analytic continuation to the entire s-plane,
and satisfies a functional equation relating its value at s to its value at 2− s.

4) The order of the analytic function L(E/k, s) at s = 1 is equal to the rank
of the finitely generated abelian group E(k), and the leading term in its Taylor
expansion at s = 1 is given by certain local and global arithmetic invariants of the
curve E.

Since the publication of Tate’s paper, substantial progress has been made on all
four problems. Conjecture 2) was completely resolved in 1983 by Gerd Faltings
[4], who proved a more general result for abelian varieties. Conjecture 3) was
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established for all elliptic curves over Q in 2001 [2], generalizing work done by
Andrew Wiles and Richard Taylor in 1995 [11, 12], which settled the semi-stable
case. Conjectures 1) and 4) are now known to be true for elliptic curves over Q
whose L-function vanishes to order zero or one at the point s = 1 (except for a few
loose ends on the leading term). This is a consequence of a limit formula that Don
Zagier and I found in 1983 [6] and a cohomological method which Victor Kolyvagin
introduced in 1986 [7].

In this paper, I will survey the progress that has been made on these questions. I
will also describe the recent results of Richard Taylor on the conjecture of Sato-Tate,
as well as some problems which remain open.

2. The L-function

We begin with the definition of the L-function, for an elliptic curve E defined
over a number field k. Let A be the ring of integers of k, and let P be a non-zero
prime ideal of A. If it is possible to find a model for E:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with coefficients ai in A and discriminant ∆ = ∆(a1, a2, . . . , a6) non-zero (mod P ),
we say E has good reduction (mod P ). In this case, let NP denote the order of the
finite group E(A/P ), and write

NP = NP + 1− aP ,

where NP is the order of the finite field A/P .
It is known that

a2
P ≤ 4.NP

or equivalently, that the discriminant of the quadratic polynomial x2 − aP x + NP
is ≤ 0.

If for every model of E over A we have ∆ ≡ 0 (mod P ), we say E has bad
reduction (mod P ). In this case, we define aP = 1,−1, 0 depending on the type
of bad reduction: nodal with rational tangents, nodal with irrational tangents, or
cuspidal.

The L-function is defined by the Euler product

L(E/k, s) =
∏

bad P

(1− aP NP−s)−1
∏

good P

(1− aP NP−s + NP 1−2s)−1.

Expanded out, this gives a Dirichlet series
∑

n≥1 bn/ns with integral coefficients bn,
which converges (and is non-zero) in the half-plane Re (s) > 3/2. If one includes
the Euler factors at the infinite places of k, one gets the complete L-function

Λ(E/k, s) = (2π−sΓ(s))d · L(E/k, s)

where d ≥ 1 is the degree of k over Q. The precise form of conjecture 3) is the
statement that:

3*) Λ(E/k, s) extends to an analytic function on the entire complex plane, and
satisfies the functional equation

Λ(E/k, s) = ±N1−s · Λ(E/k, 2− s).

Informally, this states that the number of points (mod P ) is not an arbitrary
function of P . In 3*), N is a positive integer, divisible only by rational primes that
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ramify in k, or lie below primes of k where E has bad reduction. This was proved
for k = Q in [2]; in this case the integer N is the conductor of E over Q.

3. Modular forms

The key idea in the proof of 3*) for k = Q is to relate L(E/Q, s) to the L-function
L(f, s) of a holomorphic modular form. This insight goes back to Taniyama, and
was developed and refined by Shimura and Weil. The precise formulation is already
in Tate’s paper: If L(E/Q, s) =

∑
n≥1 bn/ns, then the function

f(τ) =
∑

n≥1

bne2πinτ

is the Fourier expansion of a modular form of weight 2 for the subgroup Γ0(N) of
SL2(Z), which is a new form and an eigenform for the Hecke algebra. This implies
that the Mellin transform of f :

Λ(E/Q, s) =
∫ ∞

0
f(iy)ys dy

y

has an analytic continuation, and satisfies the functional equation Λ(E/Q, s) =
±N1−sΛ(E/Q, 2− s) with sign equal to the negative of the eigenvalue of the Fricke
involution wN on f [1].

We will sketch the proof that f(τ) is modular, following Taylor and Wiles, after
introducing the #-adic homology groups T#E. Their methods have been extended
to prove the functional equation of the L-series of some elliptic curves over totally
real fields. However, for a general elliptic curve E over an imaginary quadratic
field k, the L-function L(E/k, s) is still not known to have an analytic continuation
or satisfy a functional equation. The hope is to show that this is equal to the
L-function of an automorphic form f on GL2(k), but the methods of Taylor and
Wiles, which use the arithmetic of modular curves and their Hecke algebras, do not
generalize to this case.

4. The #-adic homology group

Let E be defined over the number field k, let k̄ denote an algebraic closure of k
and let E[n] denote the n-torsion subgroup of E(k̄). Then E[n] % (Z/nZ)2 has an
action of Γ = Gal(k̄/k), preserving the group structure. Fix a prime #, and define

T#E = lim←−
k

E[#m],

where the transition map E[#m+1] → E[#m] is multiplication by #. Then T#E % Z2
#

plays the role of the first #-adic homology group of E, and has a Z#-linear action of
Γ.

It is known that the Galois action on T#E is unramified at all good primes P ⊂ A
which are not of residual characteristic #. At such a prime, a Frobenius element FP

in Γ, which on the residue field acts by α (→ αNP , has characteristic polynomial

x2 − αP x + NP on T#E.

These Frobenius classes are dense in Γ, so the knowledge of the L-function L(E/k, s)
as an Euler product determines the characteristic polynomials of all γ ∈ Γ on T#E.
This information turns out to determine the Z#[Γ] module T#E, up to isogeny.
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A more precise version of conjecture 2) is Tate’s isogeny conjecture - that the
map of Z#-modules:

Homk(E,E′)⊗ Z# → HomΓ(T#E, T#E
′)

is an isomorphism, for any two elliptic curves E and E′ over k. This was proved
(for abelian varieties) over finite fields by Tate [8], and for abelian varieties over
number fields by by Faltings [4]. A key idea introduced in the proof was the notion
of the height of an elliptic curve (or a principally polarized abelian variety) with
respect to the Hodge line bundle on the moduli space.

5. Modular Galois representations

We can read the Euler product defining the L-function L(E/Q, s) =
∑

an/ns

from the #-adic homology T#E. Indeed, the local term at the prime p is given by
the characteristic polynomial x2 − apx + p of the Frobenius element Fp. Hence,
to show Λ(E/Q, s) is the Mellin transform of a modular form, it suffices to show
that the Galois representation T#E is modular. By this we mean that there is a
modular form f of weight 2 on Γ0(N), which is an eigenform for the Hecke algebra,
whose integral eigenvalues ap for the Hecke operators Tp give the characteristic
polynomials of the Frobenius elements Fp on T#E as above, for all primes p not
dividing N#.

The reduction of T#E (mod #) is the Galois representation on E[#], which is
a vector space of dimension 2 over Z/#Z. We say E[#] is modular if there is an
eigenform f , with integral eigenvalues ap, such that the characteristic polynomial
of Fp is congruent (mod #) to x2 − apx + p.

If T#E is modular, then E[#] is clearly modular. Wiles and Taylor established
the converse, for primes # ≥ 3, using techniques Mazur had developed for the study
of deformations of Galois representations. At the time, little was known about the
modularity of the representations E[#]. But when # = 3, so Aut(E[3]) = GL2(3)
is a solvable group, the modularity had been established by Langlands, using class
field theory and the theory of cyclic base change. From this, Wiles and Taylor were
able to conclude that T3E was modular and hence prove the analytic continuation
and functional equation of L(E/Q, s).

6. The Mordell-Weil theorem

Let E be an elliptic curve over the number field k. The theorem in the title of this
section states that the abelian group E(k) is finitely generated. The proof has two
parts. The first is cohomological, and shows that the quotient group E(k)/mE(k)
is finite for any m ≥ 1. In fact, one has an exact sequence

0 → E(k)/mE(k) → Sel(E/k, m) →X(E/k)[m] → 0

where Sel(E/k, m) is a finite subgroup of the Galois cohomology group
H1(Γ, E[m](k̄)) defined by local conditions. The proof that the Selmer group
Sel(E/k, m) is finite requires all the classical results of number theory: that the
class group Pic(A) of the ring of integers A of k is finite and that the unit group
A∗ is finitely generated.

In the second part of the proof, one uses the positive definite symmetric bilinear
form

〈, 〉 E(k)× E(k) → R
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associated to the canonical height. The canonical height

h(P ) = 〈P, P 〉

is the unique, real-valued, quadratic function on E(k) such that the difference
h(P ) − log (

∏
v max(|x(P )|v, 1)) remains bounded as P runs through E(k). Then

h(P ) ≥ 0, with equality if and only if P is a torsion point in E(k). If {P1, ..., PN}
represent the cosets of mE(k) for m ≥ 2 and H = max{h(Pi)}, then E(k) is shown
to be generated by the finite number of points P with h(P ) ≤ H.

The non-effectivity of this proof in determining the rank of E(k) is that we have
no control over the cokernel of the map E(k) → Sel(E/k, m). The conjecture that
X(E/k) is finite, so contains no infinitely divisible non-zero elements, is an attempt
to rectify this. So far however, all proofs of the finiteness of X(E/k) have depended
on knowing the rank in advance.

7. The conjecture of Birch and Swinnerton-Dyer

We return to the study of the L-function of E over k, and give a more precise
statement of conjecture 4).

Let n ≥ 0 be the rank of E(k), and let ZP1 +ZP2 + · · ·+ZPn be a free subgroup
of finite index t in E(k). We use the positive definite height pairing 〈, 〉 on E(k) to
define the positive real number

R(E/k) = det (〈Pi, Pj〉)/t2.

Then R(E/k) is an invariant of E(k), which is independent of the basis, or of the
free subgroup chosen.

Let ω be a non-zero invariant differential on E(k). Using the canonical local
valuation ||v at each place v of k, and a local decomposition of Haar measure of k,
dx = ⊗dxv on the adeles A of k giving the quotient group A/k volume 1, we may
define for each place v a measure |ω|v on the group E(kv).

For each infinite place v of k, we define

cv(ω) =
∫

E(kv)
|ω|v.

For each finite place v = vP of k, we define

cv(ω) = cP (ω) =
∫

E(kv)
|ω|v · L(E/kv, 1).

Here L(E/kv, 1) is the valve at s = 1 of the P -th term in the Euler product for
L(E/k, s).

When E has good reduction (mod P ), we have

L(E/kv, 1) = (1− aP NP−1 + NP−1)−1 = NP/#E(A/P ).

If furthermore, we assume that
{ ∫

AP
dxP = 1

ω is integral at P and ω .≡ 0 (modP )

then cP (ω) = 1. Since this is true for almost all primes P , the product
∏

cv(ω) over
all valuations is well-defined. It is independent of the choice of ω, by the product
formula.
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The refined version of 4) is the conjecture of Birch and Swinnerton-Dyer:

lim
s→1

L(E/k, s)/(s− 1)n =
∏

cv(ω) · R(E/k) · #X(E/k).

If ω is a global Néron differential, then
∏

cv(ω) =
∏

v infinite

cv(ω) ·
∏

P
with bad reduction

(E(kP ) : E0(kP )) · |D|−1/2,

where D is the discriminant of k over Q.
For example, assume that E(k) has rank n = 1, and let P be a point of infinite

order. Let t be the index of the subgroup ZP in E(k). Then the conjecture of Birch
and Swinnerton-Dyer predicts that

L(E/k, 1) = 0

L′(E/k, 1) =
∏

cv(ω) · 〈P, P 〉 · #X(E/k)/t2.

8. Heegner points on the curve X0(N)

The combination of the results of Faltings and Taylor-Wiles suggest the following
attack on the conjecture of Birch and Swinnerton-Dyer, when k = Q.

Let f =
∑

n≥1 anqn be the eigenform of weight 2 on Γ0(N) associated to the
L-function

L(E/Q, s) =
∑

n≥1

ann−s.

Then
ωf = f(q)

dq

q
= 2πif(τ) dτ

is a regular differential on the modular curve X0(N) over Q. Indeed, the non-
cuspidal complex points of the curve X0(N) have the form H/Γ0(N), where H is
the upper half-plane, and one can check that the differential ωf on H is invariant
under Γ0(N). Shimura showed that ωf had only two independent complex periods,
so corresponds to an elliptic curve factor E∗ of the Jacobian of X0(N). Moreover,
L(E∗/Q, s) = L(f, s) = L(E/Q, s), so by Faltings’ isogeny theorem, E∗ is isogenous
to E over Q.

It follows that there is a dominant morphism of algebraic curves over Q
ϕ : X0(N) → E

taking the cusp i∞ of X0(N) to the origin of E. If we insist that ϕ be of minimal
degree, it is well-defined up to sign. This suggests using arithmetic information on
the curve X0(N) to study the arithmetic of the curve E — an idea first investigated
by Bryan Birch.

A point x on the curve X0(N) has a modular description — it corresponds to
a pair of elliptic curves (ε −→

f
ε′) related by an isogeny f whose kernel is cyclic of

order N . This allows us to construct, via the theory of complex multiplication, a
collection of points — called Heegner points — on X0(N) over number fields of
small degree.

Let k be an imaginary quadratic field where all primes p dividing N are split.
Let A be the ring of integers of k and let n ⊂ A be an ideal with n · n = (N),
gcd(n, n) = 1. Then the complex elliptic curves ε = C/A and ε′ = C/n−1 are
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related by an isogeny f with kernel (n−1/A) cyclic of order N . The corresponding
point x = (ε −→

f
ε′) on X0(N) is defined over H, the Hilbert class field of k.

Let P = TrH/k(ϕ(x)) in E(k), where the trace is taken by adding the conjugates
of ϕ(x) in E(H). Birch asked the question of when P had infinite order, and con-
jectured that it was related to the non-vanishing of the first derivative of L(E/k, s)
at s = 1. Zagier and I answered this in 1983, by proving the following limit formula.
Let ω be the invariant differential on E over Q with ϕ∗(ω) = ωf . Then

L(E/k, 1) = 0

L′(E/k, 1) =
∫

E(C)
|ω| · |D|−1/2 · 〈P, P 〉.

This implies that P has infinite order if and only if L′(E/k, 1) .= 0.

9. Heegner points and the Selmer group

We continue with the notation of the previous section, and assume that P has
infinite order in E(k). Write ω0 = cω, where ω0 is a Néron differential on E over
Q. It is known that c is an integer. For each prime p dividing N , let mp be the
order of (E(Qp) : E0(Qp)).

If we compare the limit formula with the conjecture of Birch and Swinnerton-
Dyer for E over k, we are led to predict that

(1) the group E(k) has rank n = 1, so contains the subgroup ZP with finite
index t

(2) the group X(E/k) is finite, of order (t/c · Πmp)2.
Victor Kolyvagin was able to prove 1) and most of 2) in 1986, by studying the

relationship between Heegner points and the Selmer groups of E over k.
An example of what Kolyvagin established is the following [5]. Let # be an odd

prime where the Galois action on E[#] has image GL2(Z/#Z) and which does not
divide the point P in the finitely generated group E(k). Then Sel(E/k, #) has
dimension 1 over Z/#Z. Since this contains the subgroup E(k)/#E(k) where P is
nontrivial, this implies that

(1) the rank of E(k) is equal to 1,
(2) the group of #-torsion X(E/k)[#] is zero.

Both are consistent with the predictions above, as the hypotheses on # imply
that # does not divide t.

These hypotheses hold for almost all primes #, when E does not have complex
multiplication. With more work at the remaining primes, Kolyvagin was able to
establish the finiteness of X(E/k), under the hypothesis that L′(E/k, 1) .= 0. Com-
bining this with some non-vanishing results, this yields the finiteness of X(E/Q)
for all elliptic curves E over Q whose L-function vanishes to order ≤ 1 at s = 1.

10. On the distribution of Frobenius classes

Another question on the L-function where there has been recent progress is the
distribution of Frobenius conjugacy classes, as the prime P varies. Assume that
E over k has good reduction at P , and recall that the characteristic polynomial of
Frob(P ) on the #-adic homology T#E is equal to

x2 − aP x + NP.
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Let tP = aP /(NP )1/2 in R. By the inequality a2
P ≤ 4NP we have −2 ≤ tP ≤ 2. In

other words, the polynomial
x2 − tP x + 1

is the characteristic polynomial of a conjugacy class {γP } in the compact group
SU2. Richard Taylor [10] has recently proved the Sato-Tate conjecture — that
these classes are equidistributed with respect to the push forward of Haar measure
under the map SU2 → SU2/conjugacy = [−2, 2], at least when k is totally real and
E has a prime of multiplicative reduction.

Another result on distribution was obtained by Noam Elkies [3] in his thesis.
Assuming that k has a real completion, the value aP = 0 occurs for infinitely many
primes P .

11. Speculations on curves of higher rank

Some of the main questions remaining open concern curves of rank n ≥ 2. As-
sume, for simplicity, that the curve E is defined over Q. We still do not know if
the rank of the group E(Q) can be arbitrarily large, although examples of all ranks
n ≤ 19 have been found on the computer. Elkies recently found a curve over Q
whose rank is at least 28.

Another open question is the variation of the rank in families of curves with the
same j-invariant. If E is defined by the equation

y2 = f(x),

and d is a fundamental discriminant, let E(d) be the curve defined by the equation

dy2 = f(x).

Then E(d) becomes isomorphic to E over the quadratic extension k = Q(
√

d), but
is not isomorphic to E over Q. In particular, the ranks of E(d)(Q) and E(Q) may
differ.

Let F (x) be the number of fundamental discriminants d with |d| ≤ x, where the
rank n(d) of E(d)(Q) is at least 2. Theoretical results of Katz and Sarnak lead one
to guess that F (x) grows like a constant times x3/4(log x)a. Since the number of
discriminants d with |d| ≤ x grows like a constant times x, this suggests that curves
of rank n ≥ 2 are rare.
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