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LECTURE 1: THE MORDELL-WEIL THEOREM

Torsion on elliptic curves. Let k be a field. An elliptic curve B
is a curve of genus 1 over k, together with a distinguished k-rational
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point OF. This curve can be defined as the locus in P? of a non-singular
cubic equation of the form:

E:Y*Z+aXYZ +asYZ?=X®+3X?Z + as X Z* + agZ°,

where the coefficients a; all lie in k; the curve is non-singular if and
only if a certain polynomial A(ay, .. .,ae) (the discriminant of the gen-
eralized Weierstrass equation) in the coefficients does not vanish. In
this model, the distinguished point Og = [0 : 1: 0] is the unique point
of the curve lying on the line Z = 0 at infinity. For this reason we often
work with the inhomogeneous equation

y2 + a1y +azy = z3 + 0,2:1:2 + a4 + ag.

If K/k is any field extension then the chord-tangent process turns
E(K), the set of points P = (z,y) of E with coordinates in K, into an
abelian group, with the zero element being Og. The addition law has
the following property:

P+Q+ R=0¢ P,Q,R are collinear.
In particular, for a point P = (z,y), the equality P+(—P)+Op = Op
-~ tells us that
—P = (z,-y — a1 — a3).
In particular,
(1) QP=0g = P=-P&2y+az+a3=0.

A short calculation shows that this is equivalent to asking that x satisfy
the cubic equation 4z + byz? + 2b4z + bg = 0, where the b; are certain
polynomial functions in the a;. The discriminant of this cubic equation
is equal to 16 - A. If k is of characteristic 2, this polynomial factors
as (a;x + a3)?; otherwise, as A # 0 the roots of this polynomial are
distinct and
E2)(K) = Z[/2Z x Z|2Z
for any field K/k that contains these roots (If A is an abelian group,
then A[n] denotes the n-torsion of A).
Let k° denote a separable closure of k. If k* < C, then we have

E[n(k) C Efn)(**) = E[n)(C) 2 Z/nZ x Z/nZ.

Indeed, there is an analytic isomorphism E(C) = C/A of complex Lie
groups, for some lattice A C C. In particular, this implies the second
isomorphism above.

To see the first equality, note that there exists a polynomial @y in
two variables, with coefficients in k, with the property that nP = Og
if and only if Qn(z,y) = 0. Therefore, if 0 € Aut(C/k) and nP = Of,
then P° is also an n-torsion point. In particular, P has only finitely
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many conjugates over k; so its co-ordinates must in fact be algebraic
over k.
In general, we have the following result.

Proposition 1. Let n be a positive integer prime to the characteristic
of k.

En](k*) 2 Z/nZ x Z/nZ.

On the other hand, if k is of characteristic 2 then we have seen that
E[2](k) is either a cyclic group of order 2 (if a; # 0), or is trivial (if
a; = 0). Indeed, the non-trivial 2-torsion points correspond to roots of
the polynomial a;z + ag = 0.

A standard reference for the results described above, which does
not assume a large amount of algebraic geometry, is [47]. For proofs
using scheme-theoretic language, in the more general setting of abelian
varieties, see [39].

Galois cohomology. We continue with E/k as before. Let n > 1
be an integer prime to the characteristic, and fix a choice of separable
closure k°. There is an exact sequence of Galois modules

0 — Eln] E E 0.

Xn

When we write E or E[n] here, we really mean the points over k°.
Taking the long exact sequence in Galois cohomology, we get

E(k) . E(k) Hl(k,E[TL])_ﬁHl(k,E)THl(k,E)
This gives us a short exact sequence
0 — E(k)/nE(k) - H'(k, E[n]) — H(k, E)[n] — 0.

The map & sends the equivalence class of P to the cohomology class
of the cocycle 0 — Q7 — @, where Q is any point in E(k®) with the
property that nQ) = P.

We now specialize to the case that n = 2, and suppose that the
characteristic of k is # 2 and that all of the points of E[2] are already
defined over k. Then our curve E can be given by an equation of the
form

Y= (z —er)(z — €2)( — ea),
which has A = 16 [[(ei—e;)?. If B denotes the group £*/(k*)?, written
multiplicatively, we have an isomorphism (described below)

Hl(k,E[2]) = {(b1,b2,b3) € B3: by-by-b3 = 1} = B?
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Lemma 2. With this identification, the map 6 is given by the formula
8(P) = (z — e1,% — €3,% — €3) in B} (suitably interpreted - if one of
these entries vanishes, then we replace it with any element making the
triple lie in the above subgroup).

Proof. The proof is based on the existence of the Weil pairing (cf. Ch.
III of [47]) ez : E[2] x E[2] — ps . It is bilinear, strictly alternating,
and non-degenerate, so gives an injective homomorphism E[2] — u

defined by
P — (ez(P,Tl),62(P,T2),62(P, T3))

where T, = (e;, 0) are the three non-trivial 2-torsion points. The image
consists of the subgroup with product equal to 1, and Kummer theory
provides the isomorphism used above.

We define the Weil pairing e, as follows. Given a 2-torsion point T3,
find functions f;, g; in the function field k(E) of E with the property
that div f; = 2T} — 20g, and f; o [2] = g?. In our case, we can take
fi = © — e;, and define e3(S,T;) = gi(S + X)/g:(X) for any point X
such that g;(S + X) and g;(X) are both defined and not zero.

Now take P € E(k), and let Q € E(k®) be such that 2Q = P. Then
with the given identifications we have

§: P Q° —Q=(eQ — QT = (6:(Q7 — @+ X)/g:(X))s.
If P # T; then on taking X = @ we have
%(Q° — Q+ X)/9i(X) = 6:(Q°)/%:(Q)

=4:(Q)"/%:(Q) = \/fi(P)v/\/fi(P)'
The result follows. g

Let us now suppose that k is a global field, that is, a number field
or the function field of a non-singular projective curve defined over a
finite field. Let S be the set of places v which are either archimedean,
or divide 2, or such that the e; are not all integral at v, or such that
v(A) # 0. Note that S is a finite set. (We will see later that the curve
E has good reduction at all places v which are not in the finite set S.)

Lemma 3. For any v € S, and for any point P = (z,y) in E(k,),
v(z — €;) is even for all 3. :

Proof. Suppose first that v(z —e;) < 0 for some, and hence all, i. Then
v(z — ¢;) does not depend on ¢ and the defining equation of E shows
that 3v(z — e;) = 2v(y), giving the result.
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Suppose instead that v(z — ¢;) > 0 for some i. Since v(A) = 0, we
have v(e; — ;) = v(z —¢; — z +e;) = 0 for j # i, s0o v(z — ;) = 0.
Hence v(z — e;) = 2v(y).

The above lemma shows that E(k)/2E(k) injects into the subgroup
of B} consisting of those elements with v(c;) even whenever v is not
in S. But this subgroup is finite: let k*(S,2)/(k*)? C k*/(k*)? be
the subgroup of elements with even valuation outside of S, and let Ag
be the ring of S-integers of k; that is, the subring of k consisting of
elements having non-negative valuation at all places outside S. Then
there is an exact sequence

1 — A3 /(A5 — k*(5,2)/ (k*)? — Pic(4s)[2] — 1

and the outside two terms are both finite, by the finiteness of the class
group Pic(As) and the finite generation of the unit group Ag of Ag. It
follows that E(k)/2E(k) is finite.

For general n one defines two groups as follows. For every place v
we have s commutative diagram with exact rows:

0 —— E(k)/nE(k) —— H(k, E[n]) — H'(k, E)ln] —>0

l | |

0 — E(ky)/nE(ky) = H(ky, Eln]) —> H' (ky, B)[n] —> 0

Definition 4. The n-Selmer group is the group of those elements of
H'(k, E[n]) whose restriction to H'(k,, E[n]) lies in the image of the
group E(k,)/nE(k,) for all places v. In other words, we take

Sel,(k, E) = ker (Hl(k, Eln]) — [ H (*, E)) .

v

The Tate-Shafarevitch group is defined by

1i(k, E) = ker (Hl(k, E) - [[ H (K0, E)) .

We then have an exact sequence
0 — E(k)/nE(k) — Sel,(k, E) — 1i(k, E)[n] — 0.

- One can show, using the classical finiteness theorems of algebraic num-
ber theory, that the n-Selmer group is always finite. This proves that
the two groups E(k)/nE(k) and W(k, E)[n] are both finite, for any
integer n > 1. The first finiteness statement is called the weak Mordell-
Weil theorem.
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A proof of this theorem in the general case can be found in Ch. VIII
of [47], or Ch. 4 of [37].

Reduction modulo v. One element of the proof of the finiteness
of the n-Selmer group is the notion of the reduction of elliptic curves
modulo a prime, to which we now turn. Let k, be a field complete with
respect to a normalized discrete valuation v. For us these will arise as
the completions at finite places of global fields. From now on we write
A, for the ring of integers, , for a choice of uniformizer of this discrete
valuation ring, and T, for the residue field Ay/myA,.

Take an elliptic curve E/k,. Let us choose an equation for E such
that the a; are all in A,, and such that v(A(ay,...,a)) is minimal
with respect to this property. This is called a minimal equation for
E. Write a; for the image of a; in F,. One can show that the reduced
curve

y2 + dyry + azy = x3 + 62372 + a4 + ag
does not depend on the choice of minimal equation (at least, up to
isomorphism over the residue field). It therefore has the right to be

called the reduction of E modulo v, and we will write it as Ey, or Eif
no confusion will result.

Definition 5. If v(A) = 0, then E will be non-singular, and so will
be an elliptic curve. In this case, we say that E has good reduction at
v. If v(A) > 0 then the reduced curve will be singular, in which case
we say that F has bad reduction. However, the non-singular locus E™
can still be made into a group variety using the same chord-tangent
process, with the point at infinity still playing the role of zero element.
There are three possibilities.

1) E is a cuspidal cubic curve. In this case, E™s is isomorphic to
tlle additive group G,.

(2) E is a nodal cubic curve, and the tangent lines at the node are
defined over the residue field. In this case, E™ is isomorphic to
the multiplicative group G-

(3) E is a nodal cubic curve, and the tangent lines at the node are
defined only over a quadratic extension of the residue field. In
this case, E™ is isomorphic to the twisted form of the multi-
plicative group corresponding to this quadratic extension.

We speak respectively of additive, split multiplicative, and non-split
multiplicative reduction.

Ezample. Consider the curve
E:y* =z(zx - 1)(z — 1)
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over the function field k = F,(t) of genus 0, where ¢ is odd. This curve
has discriminant A = 16-¢2- (t—1)2. Since a change of variable changes
the valuation of A at each place by a multiple of 12, the above equation
is minimal at all places except t = oo. At the place ¢ = 1, the curve
E has split multiplicative reduction. At the place ¢ = 0 the curve £
has multiplicative reduction, and the tangents at the node are rational
if and only if —1 is a square in F,. We will see that the curve E has
additive reduction at ¢t = o0

One of the reasons that the notion of reduction is useful is the ex-
istence of a natural reduction map p : E(k,) — E(F,). Choose a
minimal equation for E over A,. Given a point P = [X : Y : Z] with
co-ordinates in k,, one can assume that each co-ordinate is integral, and
that at least one of X, Y, Z has valuation 0. The point p(P) = [X,Y, Z]
then lies on the reduced curve. There are some important subgroups
associated to the map p. '

Definition 6. We write
E°(ky) = p~!(B™(F,))

for the inverse image of the smooth locus on the reduced curve (if E
has good reduction, then E(k,) = E%(k,)). We write :

E'(k,) = p(Op)
for the inverse image of the point at infinity on the reduced curve.

Proposition 7. The restriction of p to E°(k,) is a homomorphism,
and surjects onto E™*(F,).

Moreover, if n is prime to the residue characteristic and E has good
reduction at v, then the restriction of p to the n-torsion of E(k,) is
also injective, and so induces an isomorphism

E(k,)[n) & B™(F,)[n].

Proof. The surjectivity follows from a version of Hensel’s lemma. The
fact that p is a homomorphism follows on showing that the chord-
tangent process behaves well with respect to reduction.

There is a complete description of the kernel of the reduction map
in terms of the formal group attached to E, giving the addition law
in a neighborhood of the identity. It is known that all the torsion in
the kernel has order a power of the residue characteristic; this gives
the second part of the proposition. For the definition of the associated
formal group, see Ch. IV of [47] or Thm. 4.2 in [49] . An introduction
to one-dimensional formal groups in general can be found in {19]. O
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Descent computations. One of the reasons for introducing the
Selmer group is that it is effectively computable. In this section we
will briefly describe the procedure in a special case and then carry it
out for two curves which will be of interest in later lectures.

We will again consider the case where E is an elliptic curve over a
global field k, not of characteristic 2, and all the points of E[2] have
co-ordinates in k. In this case, E can be written in the form

E:y’=(z—e)(z — e2)(z — e3),
and we continue to write T; = (e;,0).
Let S denote the set of places of k which divide 2 or where E has
bad reduction, together with the infinite places. Lemma 3 shows that
we have injections

E(k)/2E(k) — Sely(k, E) — (k*(S5,2)/(k*)*)i
the latter group being finite. In order to compute the Selmer group
exactly we must compute the local conditions at v imposed by the
image of E(k,)/2E(k,) in H(k,, E[2]), for every place v.
In fact, the group on the right above is the one obtained by imposing
the local conditions at places not in S. In other words,

(k*(8,2)/(k)?) = ker (H '(k, E[2]) = || B'(%, E)> :
. vgS
It remains therefore to compute the conditions at the finitely many
places v € S. This can be done using the explicit description of the
map § given earlier.

Proposition 8. A triple
(b1, b2, bs) € (K(S,2)/(K")*)y
not lying in 8(E[2]) lies in Sels(k, E) if and only if for everyv € S

there exists a solution (21, 23, z3) in k, with 212223 # 0 to the following
pair of equations:

blzf - bgzg =€9— €1

b1zf - b3Z?2, = €3 — €1.

Proof. Suppose that (by, by, b3) does lie in the 2-Selmer group. Without
loss of generality, we may suppose that b;b; = b3. We must be able to

produce, for every v € S, a solution to the equations
blz% =T —€
byz2 =T — ey
baz2 =1 — €3
y* = (z — e1)(z — e2)(z — e3)
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with values in k,. Then one has
bi12 = es — €1 + ba2d = e3 — €1 + b2},

proving necessity. On the other hand, given a solution to the equations
in the statement of the proposition, one can take

r = blzf + e and y= b1b221Z2Z3,
and then (z,y) is a point in E(k,) mapping to our given triple. O

The computation of the Selmer group is therefore reduced to the
problem of deciding whether finitely many curves have points defined
over local fields. This is a simple matter, using Hensel’s lemma. With
this information in hand, we will compute an example.

Ezample. Take k = F,(t) with ¢ odd, and let E be the elliptic curve
E:y?*=z(z—1)(z —1).

The computation of the Selmer group at 2 splits into two cases, de-
pending on whether or not —1 is a square in Fy, although we will see
that the final answer is the same:

Sely(k, E) = (Z/2Z)>.

Suppose first that —1 is a square, and let o be a non-square in Fy.
The above curve has bad reduction at the places t = 0,1 and oo, and
good reduction elsewhere. We can therefore take S = {0, 1,00}, and
the pair (b, bz) can take the values (a®t®(t — 1), a%te(t — 1)7), where
a,..., [ are allowed to take the values 0 or 1.

Before beginning the descent computation we note a shortcut which
is often useful. At each place v of k, we have the filtration

E(k,) D E°(ky) D E(ky).

Write C = E(k,)/E(k,). Since E'(k,) can be represented as the set
of points of a formal group in 7,A,, where multiplication by 2 is an
isomorphism ([47], Prop. IV.2.3(b)), E(k,)/2E(k,) is isomorphic to
c/2C.

Now, C has a natural filtration whose quotients are E(k,)/E°(ky)
and E°(k,)/E*(k,) = E"(F,). The latter group is easily understood,
and the first group can be computed using Tate’s algorithm to com-
pute the Néron model of an elliptic curve, cf. [49] or [48], chapter IV.
Once enough is known about the group C/2C, it can sometimes be
shown that the elements of E[2] give a complete set of representatives,
immediately giving the local conditions at v.

In the language of the above references, the curve £ has multiplica-
tive reduction of Kodaira type I5 at the places 0 and 1, and additive
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reduction of Kodaira type I5 at infinity. Looking at the table on page
46 of [49] (also Table 15.1 in [47]) shows that when u = oo,

E(k,)/E°(k,) = Z./2Z x Z/27.
The group E‘,’ja (F,) has no 2-torsion, so in this case we see that
E(k.)/2E(k.)

is an abelian group of the same type.
Now, computing the map & on the 2-torsion of E locally at the place

u gives

(0,0) (t,-1) = (1)

(1»0) (1$ 1- t) = (17t)

(ta 0) (t1t - 1) = (tat)v
so we are in the case described above. Applying these local conditions
implies that a set of representatives for the 2-Selmer group is contained
in the set of elements (£*(t—1)¢,t°(t—1)7). At this point it is instructive
to draw a table:

bl 1t t—1 tt-1)
ba
1 Oz (0,0)
i
t—1 (1,0) (t0)
t(t — 1)

The entries above indicate that a point in E(k) maps to the given
pair (b;,bz), which must therefore lie in the 2-Selmer group. To decide
whether the remaining entries lie in the Selmer group, we argue using
the proposition above. Note that the conditions at oo have already
been imposed, so we need only check for points on the corresponding
curves in the completions at 0 and 1.

Consider the pair (by,bs) = (t — 1,1). This corresponds to the pair
of equations

t-1)2F—22=1
and
-1 -(t-—1A=t

Let w be the normalized discrete valuation at ¢ — 1. If (21,22, 23) is a
solution in k,, with 2123 # 0, then the first equation shows that w(z;) >
0. Then the second equation gives 1 + 2w(z3) = 0, a contradiction. It
follows that the system of equations has no solution in k,,, and hence
(t —1,1) is not in the 2-Selmer group.
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Using the fact that if £ € Sely(k, E) but y & Sely(k, E) then zy &
Sely(k, E'), we arriva at the following table.

b 1 t t—1 tit—-1)
bo
1 Og (0,0) X X
t
=1 (1,0) (t,0) X X
t(t—-1)

A cross indicates an element that does not lie in the 2-Selmer group.
One can now check that neither of the pairs (1,t) or (t —1,t) lie in the
2-Selmer group, giving the following table.

| 1 t t—1 tt—1)
by
1 Oz (0,00 X X
¢ X X X X
t—1 1,00 (£0) X X
t(t — 1) X X X X

It follows that
Sely(k, E) = E(k)/2E(k) = E[2] = (Z/2Z)2.

In particular, the curve E has no rational points except for 2-torsion (it
is a simple matter to check that E has no torsion except for 2-torsion).
In the case that —1 is not a square in F one can proceed similarly,
aided by the fact that E[2] now generates E(ky)/2E(ky) at the place
w used above. Hence E(k) & (Z/2Z)* and 11(k, E)[2] = 0.

Ezample. Let
Ett— 1)y =z(z - 1)(z —1).

This is a twist of E, in the sense that it becomes isomorphic to F over
the separable quadratic extension obtained by adjoining /t(t — 1), via
the substitution 1/t(t — 1)y — y. This curve E' now has additive reduc-
tion of type I} at the three places ¢ = 0,1 and oo, and good reduction
elsewhere. One can check that the natural map E'[2] — E'(k,)/2E'(k,)
is an isomorphism at these 3 places, allowing one to immediately cal-
culate the 2-Selmer group. One obtains

n o~ J (Z/2Z)° if —1 is not a square in F(';
Sela (k, E) = { (z/2zZ)* if —11is a square in Fy.

In the next lecture, we will compare these results with those predicted
by the conjecture of Birch and Swinnerton-Dyer.
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Heights. Let k be a global field, and E/k an elliptic curve. Let
n be a non-zero integer. The finiteness of E(k)/nE(k) is a necessary
condition for the finite generation of E(k), but by no means a sufficient
one. For example, E(C)/nE(C) is trivial for all n # 0. To extract
a proof of the full Mordell-Weil theorem from the weak version, we
introduce the Néron-Tate height. This is a pairing (,) : E(k) x E(k) —
R such that:
(1) {,) is biadditive and symmetric.
(2) For all P € E(k),(P,P) > 0.
(3) For all M > 0, the set of points P such that (P,P) < M is
finite.

Remark. The existence of such a pairing has the immediate corollary
that the torsion group E(k)iors is finite. In fact, one can show that a
point P is torsion if and only if (P, P) = 0.

We will give the definition of the height pairing on the Jacobian of
a curve in lecture 3. In the case that k = Q, an approximation to
the height can be given as follows. Taking a point to its = co-ordinate
gives a map from E to P!, defined over Q. Writing z(P) = a/b with
a,b coprime integers, we define the logarithmic height to be h(P) =
log max(|al, |b]). Then the difference (P, P) — h(P) is bounded as P
ranges over E(Q).

With this in hand, we can deduce the full Mordell-Weil theorem.

Theorem 9. Let k be a global field, E/k an elliptic curve. Then E(k)
is a finitely generated abelian group.

Proof. Choose an integer n > 1, and let the points P, ..., P be rep-
resentatives for the finite group E(k)/nE(k). Let M = max;((F;, F;)),
and let T" be the set of points P such that (P, P) < M. This is a finite
set.

In fact, the points in T generate E(k). Otherwise, there exists a
point Q of minimal height which is not in the span of T. Since the
P, tepresent the cosets of nE(k), there exists an i and a point R in
E(k) such that Q@ — P; = nR. Since Q and P; are not collinear in the
Euclidean space E(k) ® R, we find

(Q_ R,Q—R) <4- (Q)Q))
le!
n?-(R,R) <4-(Q,Q).
By the minimality of the height of @, the point R must lie in the span

of T'. This implies that the same is true of Q = nR + P;, which is the
desired contradiction. O



LECTURES ON THE CONJECTURE OF BIRCH AND SWINNERTON-DYER 13

With this theorem in hand we can define an important invariant of
elliptic curves over global fields.

Definition 10. Let Py, ..., P, be a basis for a free subgroup of E(k)
of finite index I. The requlator of E is defined to be the positive real
number

R(E/k) = det({P;, P;))/T*.

One can check that this definition does not depend on the choice of
P,. For example, if E(k) is finite, then R(E/k) = 1/#E(k)%.

We will see in lecture 3 that when E is an elliptic curve over a global
function field k = F,(X), then (P,Q) is a rational multiple of logg,
where the denominator is controlled by the places of bad reduction.
The regulator R(E/k) is then a positive rational multiple of (loggq)™.

The theory of heights is developed for elliptic curves in [47]. A rather
direct approach, treating just the case when k = @, can be found in [9].
For a discussion of Néron’s theory of local heights on curves, see [22],
or the discussion in the third lecture.

LECTURE 2: CONJECTURES ON L-FUNCTIONS

Before discussing the conjecture of Birch and Swinnerton-Dyer, we
must define the L-function of an elliptic curve over a global field k. It
is given as an Euler product, the factors being indexed by the finite
places of k. We begin by defining the incomplete L-function, which
omits the finite number of places at which F has bad reduction.

The incomplete L-function. Let E be an elliptic curve defined
over k. Let S be the finite set of places of k consisting of the infinite
places and the places where E' has bad reduction. As discussed above,
for all places v ¢ S, there is a model of E with the coefficients a;
lying in the local ring A, at v and the discriminant A = A, is a unit
in A,. In this case, we get an elliptic curve E, over the residue field
F, = A,/m,A,, a finite field of cardinality g,.

The following theorem is fundamental for ellipt'ic curves over finite

fields.

Theorem 11 (Hasse). Write #E,(F,) = 1+ ¢, — ay, where v € S.
Then

a2 < 4qy,

so the roots of the polynomial

ho(t) =1 — ayt + gut’ = (1 — a4, X)(1 — @ X)
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lie in an imaginary quadratic field. Furthermore, if F,/F, is the unique
field extension of degree n > 1, then

#E(F) = (@ +1) = (of +&5)-
Proof. See [47], Thm. V.1.1. O

These point counts on E over finite places are the key ingredient
in defining its corresponding L-function. The polynomial h,(t) is the
reciprocal of the formal local L-factor of an elliptic curve over a finite
field:

L(E,[Fy,t) = hy(t)™.
Substitute g;* for ¢ to get the local L-factor
@)  Lu(B/k,s) = L(Ey/Foq™*) = (1 — aug,” +¢,7 ) 7"
Definition 12. With notation as above, the incomplete L-function of
Eis
3) Ls(E/k,s) = || Lo(E/k,s)-
vgS )

Both this infinite product, and the Dirichlet series Ls(E/k,s) =
Y 1 Gl with integral coefficients which is formally assembled from
it converge absolutely in the half plane Re(s) > 3/2. This follows from
the estimate in the above theorem and comparison with the Dedekind
zeta-function of k. Note that when k is a function field, this Dirichlet

series is of the form Y _.obmg ™ where q is the cardinality of the
constant field of k. -

The formal Euler product (3) determines E up to isogeny over k.
Before defining the complete L-function, we describe how this works.

Interlude on the isogeny theorem.

Definition 13. Let [ be a prime and let E/k be an elliptic curve. The
l-adic Tate module of E is

TE=ImE ",
n
the limit being taken over the natural numbers with respect to the
homomorphisms

B — EQ.

Observe that T} E has a natural profinite topology, and a continuous
action of Gal(k®/k). When [ is prime to the characteristic, Proposition
1 implies that T}E is a free Z;-module of rank 2. We will often use
the 2-dimensional vector space VVE = T\E ®gz, Qi, over ;. This has
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a continuous action of Gal(k®/k), and gives (after a choice of basis) a
2-dimensional [-adic Galois representation

PEL: Gal(k“’/k) — GLZ(QI)

When k is a global field, one can show that this representation is un-
ramified away from the finite collection of places S(I) of k, which divide
[ or where the curve E has bad reduction. For each finite place v ¢ S(I)
let ¢, denote a choice of arithmetic Frobenius element in Gy, the Ga-
lois group of the maximal extension of k which is unramified outside
of S(I). Then pg;(¢,) has characteristic polynomial

(4) X2 - ayX +g,forvégsS.

The element ¢, is defined only up to conjugacy in Gggy but the char-
acteristic polynomial is independent of this choice. Since S(I) is fi-
nite, the Chebotarev density theorem implies that the set {@,}vgs is
dense in Ggyy. By continuity, the terms in the Euler product defining
the incomplete L-function determine the characteristic polynomials of
pe,(o) for all 0 € Gg(). In particular, knowledge of the Euler product
of Ls(E/k,s) determines the representation pg; up to isomorphism,
provided that this representation is semi-simple, which was proved by
Serre cf. [43], I-10.
Tate conjectured that the natural map

(5) HOIIlk(E, EI) ® Zl - Hom(;al(ka/k) (TIE, TlE’),

known to be injective ([47],Thm. 7.4), is in fact an isomorphism, when-
ever k is a field finitely generated over the prime field. He proved this
for abelian varieties in the case when k is a finite field [50], and Serre
proved it for elliptic curves when k is a number field, under the as-
sumption that E has a place of multiplicative reduction [43]. Finally,
Faltings proved the full conjecture for all abelian varieties [18], [14]. In
particular, two elliptic curves are isogenous if and only if the associated
l-adic representations are isomorphic.

Thus the Euler product defining the incomplete L-function is a com-
plete isogeny invariant of elliptic curves over global fields. More notes

on this section may be found in [47], Ch. 3, §7.

The L-function of an elliptic curve. The general formalism of
L-functions suggests that the L-function of an elliptic curve E over a
global field k should have a meromorphic continuation to the whole of
C and satisfy a functional equation. Before this can be true we must
add some factors to the incomplete L-function, corresponding to the
infinite places and the finite places of bad reduction.
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Recall that S is the set of infinite places, together with the places
where E has bad reduction. For finite v € S, we define the local
L-factor

1 if E has additive reduction at v;
T~ (1—-¢z%)~! if E has split multiplicative
(6) Ly(s)= reduction at v;

(14¢;°)"' if E has non-split multiplicative
reduction at v.

A commonality between L-factors at good and bad finite places is that

Qv
(7 Ly(1) = —=——,
#EG*(Fy)
where E™ is the smooth locus of the reduction of a minimal model for
E over A,.

The following two quantities measure bad reduction.

Definition 14. The minimal discriminant of an elliptic curve E over
a number field (resp. global function field) k is the integral ideal of k
(resp. positive divisor of the curve associated to the function field k)

defined by :
D(E/k) =] [ o2,
vioo

where A, is the discriminant of a minimal equation for E/k, and p, is
the prime ideal (resp. prime divisor) associated to the finite place v.

Remark. Suppose that k is a number field, with ring of integers A.
We say that a Weierstrass model for E is a global minimal model if
it is a minimal model at all finite places v of k. Such a model exists
if and only if a certain projective A-module of rank 1, corresponding
to the Néron differentials, has trivial class in Pic(A). If such a model
exists, then the discriminant ideal D(E/k) is principal, generated by

the discriminant A of a global minimal model. For more details, see
[47], Ch. VIII, §8.

Definition 15. The conductor of E is the integral ideal or positive
divisor given by
N(E/k) =[]t
vioo

where

0 if E has good reduction at v
8 fo=s1 if E has multiplicative reduction at v
2+6, if E has additive reduction at v,
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and where 8, is a non-negative integer depending on the action of wild
inertia at v on T} E. It is zero whenever the characteristic of v is prime
to 6.

Remark. In fact, the conductor of E is the Artin conductor of the Tate
module of E [45]. It is related to D(E/k) by Ogg’s formula [41]

fo = ord,(D(E/k)) + 1 — my,
where m,, is the number of irreducible components of the Néron model
of E at v.
We can now define the L-function.

Definition 16. The L-function of E/k is
) L(E/k,s) = H Ly(E/k, ).
vioo

When k is a number field, we also add factors at the infinite places,
setting

A(E[k,s) = (@n)~*T(s)) " UL(E/E, 5),
whereas when k is a function field we set
A(E/k,s) = L(E/k, s).

As we saw above, the product defining L{E/k,s) converges abso-
lutely in the region Re(s) > 3/2. In the function field case, the
L-function of a constant elliptic curves will have a pole on the line
Re(s) = 3/2. We illustrate this with a specific example.

Definition 17. Let E/k be an elliptic curve over a function field k =
F,(X), where X is a geometrically irreducible, non-singular projective
curve over F,. We say that F is a constant elliptic curve if it arises by
extension of scalars from Iy to k, that is,

E=A XF., k
for some elliptic curve A/F,. Otherwise, we say that E is non-constant.

Ezample. Let A/F4 be the elliptic curve over the field of four elements
defined by the generalized Weierstrass equation

Ay +y=2+w,  wherew®=1w#1

Our aim is to compute the L-function L(E/k,s) where k = F4(t) and
E=A XF, k.
One may quickly verify that #A(F4) = 1, so that its L-factor is

L(A[Fy,s)=(1—4-47°+4-472)1
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By Theorem 11, the L-factor for A taken over the unique extension
Fyn/F4 of degree n is
(10) L(A/Fan,s) = (1—2-2"- 47 +4"-472)7 = (1 - 47"(71/2)~2,

The L-function L(E/k,s) is by definition the product of the local
L-factors at the places of k, all of which are of good reduction. Hence

L(E/k,s) = Z(s - (1/2))*
where Z(s) is the zeta-function of the global field k = F4(t). Since
X = P! in this case, we have
1

(1 —4-5)(1 —41-3)

which has simple poles at the points s = 0 and s = 1. Hence L(E/k, s)
has double poles at the points s = 1/2 and s = 3/2.

Z(s) =

Conjecture 18. The complez analytic function A(E/k, s) on the right
half plane Re(s) > 3/2 admits an meromorphic continuation to the
entire complex plane and satisfies the functional equation

(11) A(E/k,s) = £A'*A(E[k,2 — s),

where A is a positive integer. If E is not a constant elliptic curve, then
the continuation is holomorphic.

Grothendieck proved this conjecture in the case that k is a function
field; in this case it is a consequence of Poincaré duality in étale coho-
mology [26]. Wiles, Taylor, and others proved it in the case that Ek=Q
[56], [53], [4], as a consequence of the modularity of elliptic curves over
Q. Some other cases when k is a totally real number field are known.

Remark. In the number field case, the constant A should be equal to
the product of the absolute norm of N(E/k) with the square of the
discriminant of k. In the function field case, A = qldegN(E/k)+49-4)
where ¢ is the cardinality of the constant field and g is the genus of

the base curve X. Note that A corresponds with the degree of the
L-function (see Proposition 22).

Remark. If Conjecture 18 is true, then the sign =+ in the functional
equation, which is known in general as a root number, is given by

(12) + = (_l)ord_,=1 L(E/k,s), i

since the reflection point of the functional equation is s = 1. We note

that the global sign is a product of local root numbers, almost all of
which are equal to +1 [24].
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An overview of the topics of this section, with further references,
may be found in [47], §C.16. '

Periods. We continue with the notations of the previous section.
The conjecture of Birch and Swinnerton-Dyer connects the behavior of
L(E/k, s) near the point s = 1 to the rank of E(k), and to some further
arithmetic invariants of E. In the previous lecture, we defined several
of these invariants, namely the Tate-Shafarevitch group Wi(k, E) and
the regulator R(E/k). It remains to define the global period of E. We
begin with some motivation.

For the moment, let us assume that our L-function has a meromor-
phic continuation to all of C, and consider which arithmetic properties
of E might influence the behaviour of the L-function near s = 1. Equa-
tion (7) suggests that larger point counts at finite places would make
the L-function smaller near s = 1. We want to put this data together,
despite the fact that the infinite product

L(B/k,s) = [] Lu(s)
vioo
need not converge at the point s = 1. We will do this via adelic inte-
gration, a byproduct of which will be the period. For an introduction
to adelic integration, see [55].

Recall that an elliptic curve has an invariant differential that is
unique up to scalar multiple. For each place v of k let w, be a non-
zero invariant differential for E/k,. Together with the choice of a Haar
measure dz, on the additive group of k,, this gives us a Haar measure
|w,| on the compact group E(k,).

Lemma 19 (Tate [49]). Let E be an elliptic curve over k, where v is
a finite place of k, and choose a minimal Weierstrass model for E. Let
w, be an invariant differential, defined over A,, which does not vanish
modulo m,A,, and let dx, be the Haar measure on k, which gives A,

volume 1. Then
[ o= (B )
E(ky) v Lv(l) .

Proof. We begin with some notation. We may assume that F is given
by a minimal equation-

E:y? + a12y + azy = 7° + ap” + a4 + ag,
and that the differential is of the form
dz

Wy == e
2y+ a1z + a3
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We let z = —z/y. Then z is a local parameter at the point at the
point O, and working in the formal completion at the origin gives
that dz = wy(1 + O(2)).

The proof of the lemma is based on the existence of the formal group
of E, alluded to in the proof of the Proposition 7. Completing along
the origin z = 0 of E gives a formal group F' with the property that
(r,)r (that is, the set m,A, endowed with the group law defined by
F) is isomorphic to E'(k,). In particular, viewing E(k,) as a v-adic
analytic manifold, z : E(k,) — m,A, forms a chart. It follows that

1 1
] = dz(1 + O(2)| = ——— j dz| = =,
/;1(’3\1) |w ‘ ‘[rvAu l ( ( )I [A'U : W"AU] Ay I I Qv

using the translation invariance of Haar measure and the fact that
|1+ 0(z)| = 1 when z € m,Ay, by the ultrametric property of the
v-adic absolute value.
Write B
N, = [Eo(kv) : El(kv)] = #E,°(Fy).
Applying the translation invariance of w, now gives

[ ot B P

E(ky) Qv

)

and re-arranging gives the result. ' O

Choose a non-zero invariant differential w on E/k; it gives an in-
variant differential which we denote w, on E/k, for all places v. Also,
choose a decomposition

(13) dz = Q,dz,

of the Haar measure dz on the addles A of k with f, " dz =1 (so dz,
is a Haar measure on k).

Definition 20. The period of E/k is

P/ = Pe) =T (1.0 [ N ) TL [ ol

v{oo v|oo (kv)

To see that this quantity is well defined we make the following ob-
servations: first, the conditions of Lemma 19 are satisfied for almost
all finite v, that is, [, dz, =1, w, is defined over A,, and w, does not
vanish modulo m,. Second, we note that E® # E for only finitely many
finite places v, so that by Lemma 19 the product defining P(E/k) has
almost all terms equal to 1.
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It remains to show that the period is independent of the choice of

invariant differential. This is the case, because a rescaling w — Aw by
X € k* modifies P by a factor of

H I)‘lv =1,

by the product formula. Therefore P(E/k) is an invariant of the elliptic
curve E/k.

Remark. The observations above amount to an introduction to adelic
integration in the particular case of an elliptic curve. In this setting
the L, (1) play the role of the “convergence factors” of [55], Ch. 2.

Ezxample. Let k be a number field. If there exists a Néron differential w
over the ring of integers A of k, which has non-zero reduction modulo
every prime, then

a1 PEHR =] / who - T] [EGk) : E°(R)] - 1Del ™2,

v]oo v bad

where Dy, is the discriminant of k. The discriminant appears because
(with the usual local normalization of dz, at every place) the compact
quotient A/k has volume |Dg|"/? ([55], §2.1.3).

Ezample. Let k be a function field of genus g, with constant field F,.
Then

(15)  PE/MK) = [[[B(k): B°(R))/ (¢ HresE/0).

bad v

For comparison with the number field case, the factor g~ reflects
the volume || Ak dz = ¢! of A/k under the standard product Haar

measure ([55], §2.1.3), and the factor ¢~ 7296 P(E/k) gtems from the ob-
struction to the existence of an everywhere integral Néron differential.

The conjecture of Birch and Swinnerton-Dyer. We now have

all of the definitions in place in order to state the precise form of the
Birch and Swinnerton-Dyer conjecture.

Conjecture 21. Let E/k be an elliptic curve over a global field, and
assume that L(E/k,s) has a meromorphic continuation to a neighbor-
hood of the point s = 1.
(1) If n is the rank of the ﬁmtcly generated abelian group E(k),
then

ords=1 L(E/k, s) = n.
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(2) Set c(E[/k) = P(E/k)- R(E/k) - #1u(k,E). Then
L(E/k,s) ~c(EJk)-(s—1)" as s — 1.

For another discussion of this conjecture, with a reward attached,
see [57].

A naive original motivation for this conjecture is that one might
expect a larger number of rational points to yield larger numbers of
points on reductions modulo finite places. Then the partial products
of the infinite product

Ls(E/k, 1) =" [ Lo(B/k,1) = qu/#EW(F.)

good v

would tend to be relatively smaller. The original conjecture and the
numerical evidence that led to it are recorded in [2].

Remark. A much weaker form of Conjecture 21 is the parity conjecture,
that =, the sign of the functional equation of E is equal to (— 1)raak(E(E)
Compare the remark after Conjecture 18.

Remark. We have seen that the L-function is an isogeny invariant of
E/k. The individual terms P(E/k), R(E/k), and #m(k, E) which
occur in the conjecture of Birch and Swinnerton-Dyer are isomorphism
invariants, and can change when we modify E by an isogeny. However,
their product is an isogeny invariant (8], [52], [38].

Remark. Bloch [3] defines an extension of commutative algebraic groups

1 G}, G E 1

over k, where n is the rank of E(k). The existence of such an extension
is a consequence of the theorem of Serre-Rosenlicht [44], VII, Thm.
6, which gives a natural isomorphism between the groups Exti(E, Gm)
and Pic®(E)(k), the latter being naturally identified with the k-rational
points of E.

The L-function for G is the product

L(G/k,s) = L(E/k, s)¢e(s)",

where (;(s) is the Dedekind zeta-function of k. Therefore we expect
L(G/k,s) to be regular and non-zero at s = 1. Bloch shows that
G(k) is discrete and co-compact in G(A), where A is the ring of adeles
of k, and calculates the volume of the quotient group G(A)/G(k) in
terms of the period and regulator of E/k. He shows that the Birch and
Swinnerton-Dyer conjecture for E would follow from standard conjec-
tures on Tamagawa numbers, applied to the algebraic group G.
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Examples of elliptic curves over number fields.

Ezample. Let E/Q be the elliptic curve
E:y+y=2°—=x
of conductor N = 37. We will calculate some of the invariants of E to
show what the Birch and Swinnerton-Dyer conjecture implies.
Let v be a place of good reduction. By Proposition 7, the reduction

map E(Q) — E(F,) is injective on n-torsion when n is prime to v. In
this case we have

#E(F,) =5 and #E(F3) =17,

and so E(Q) is torsion-free. Since P = (0,0) € E(Q) is not equal to
Og, the rank of F over Q must be at least one. In fact, one can check
that E(Q) = ZP via a descent argument similar to the one outlined in
the previous lecture.

Next, we will calculate the period of E. The Tamagawa factors
[E(Qp) : E°(Qy)] are trivial at all places of good reduction, and ap-
plying Tate’s algorithm and looking at the table in [49], noting that E
has multiplicative reduction at 37 with ordss(j(E)) = —1, shows that
E = E® at p = 37 as well. Equation (14) now gives P(E/k) = [ E®R) |w].
The BSD conjecture predicts that L(E/Q, 1) = 0 and

(16) L/(E/Q,1) = #11(Q, E) - (P, P) - /E o

where w is a Néron differential on E/Q.

The sign in the functional equaltion of L(E/Q, s) is equal to —1, so
the L-function vanishes to odd order at s = 1. One can compute the
value L'(E/Q, 1), which is non-zero. Hence the L-function vanishes to
order exactly 1, i.e. E has analytic rank 1. Via the work of Kolyvagin
[31] and Gross-Zagier [25], the Birch and Swinnerton-Dyer conjecture
is known for curves of analytic rank 0 and 1, up to some ambiguity in

the leading term. In this case, the full conjecture is known to be true.
We have

L(E/Q1)=(PP)- o) |l

and the group UI(Q, F) is trivial.
Ezample. Let E/Q be the elliptic curve
(17) E:y»+y=2—Tz+6,

of conductor N = 5077. Brumer and Kramer found that this is the
elliptic curve over Q of rank 3 with smallest conductor, making it an
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interesting case study for elliptic curves of higher rank. (It also has 36
points with integral coordinates in the minimal model.) It has no non-
trival torsion because its reductions modulo 2 and 3 are the same as in
the above example. Also, as in the previous example, E(Q,) = E°(Qy)
for all p because ordser7(7(E)) = —1.

In [6] the authors make a detailed study of the invariants of E, which
together with the conjecture of Birch and Swinnerton-Dyer would imply
that 111(Q, E) = 1. We now review these computations. Via a descent
and height calculations, one can show that P, = (0,2), P, = (1,0), P3 =
(2,0) generate E(Q), i.e

E(Q) = ZP, + ZP, + ZP;.

A calculation of the real period [ ) |wl, the regulator R(E/Q), and

the L-function around s = 1 suggests that that L(E/Q, s) vanishes to
order 3 around s = 1 with leading term

«(B/k) ~ R(E/Q) - /E IZESECERS

accurate to 28 decimal places. Although this calculation suggests
strongly that 1I(Q, E) is trivial, we still don’t know if it is finite.

Remark. These examples of elliptic curves with rank 3 were important
in finding the first effective lower bound on class numbers of positive
definite binary quadratic forms, completing the program of Goldfeld
[21], [20]. Namely, the Gross-Zagier formula [25] implies that for an
elliptic curve E/Q whose L-function has a odd-order zero at s = 1,
there exists a computable point P € E(Q) such that

L'(E/Q,1) = (P, P),

where c is a positive constant. If the point P is torsion (hence (P, P) =
0) the derivative vanishes. This argument applied to the elliptic curve
defined in equation (17) allows one to show that L(E/Q, s) vanishes to
order 3 at s = 1.

L-functions of elliptic curves over function fields. Let & be
the function field of an irreducible non-singular projective curve X of
genus g over the finite field F, of g elements. We will assume that

]F Nk = Fy, or equivalently tha.t X is geometrically irreducible (cf.
[32] Cor. 3.2.14).

Proposition 22. Let E/k be an elliptic curve. Then we can write

L(E/k, s)=M(q™®)
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where M(z) is a rational function of degree
(18) deg M = 4g — 4 +deg N(E/k).

If E/k is non-constant, then M(z) is a polynomial with integer coeffi-
cients, and constant coefficient equal to 1.

The proof uses étale cohomology, cf. [11], [37]. The L-functions of
elliptic curves can be expressed in terms of characteristic polynomials
of Frobenius actions on appropriate étale cohomology groups.

Definition 23. Let U be a geometrically irreducible non-singular curve
over F,. Let X be the (unique) non-singular completion of U, cf. [28]
1.6. Then k = F,(U) = F¢(X). Write S for the set of places of k which
correspond to points of X — U, and let Ks be the maximal separable
extension of k which is unramified outside S, inside a suitable separable
closure of k. We call the group Gal(Ks/k) the étale fundamental group
m1(U) of U. Let I be a prime not dividing q. A lisse l-adic sheaf F on
U is a continuous finite-dimensional l-adic representation of m;(U).

We have adopted a simplified definition here in order to avoid unnec-
essary complications. For the general definition, we refer to [27] or [37].
As examples of lisse l-adic sheaves, we have the trivial representation Q;
of m1(X), and the representation V;(E) of m(U), where E is an elliptic
curve over k = F(X) and U is the complement of the set S of places
of bad reduction. By the criterion of Néron-Ogg-Shafarevitch [45], this
representation is unramified at places of good reduction, hence it is
lisse on U. In Grothendieck’s theory, we will often work with the dual
representation ViEV of m(U), which is the cohomology in degree 1 of
the family of curves over U. The Weil pairing gives an isomorphism
with the Tate twist

V(E)Y = W(E)(-1).
We note that the arithmetic Frobenius ¢ : £ — z7 in the Galois group

acts by the scalar g on Q(1), so the geometric Frobenius Frob = ¢!
acts by ¢ on the twist Q;(—1).

Definition 24. Let F be a lisse [-adic étale sheaf on a non-singular
geometrically irreducible curve U/F,, and let U 0 denote the set of closed
points of U. Then the formal L-function of F is given by

LU, F,t) = [] det (1 — ¥ Frob, | F).
yelo

Here Frob,, denotes the geometric Frobenius at the place v correspond-
ing to y.The L-function L(U, F,s) is given by substituting ¢~* for .
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Let us now sketch the proof of Proposition 22. In order to avoid tech-
nical complications we will make some simplifying assumptions along
the way. For example, we will assume that ¢ is not a power of 2or 3
to avoid dealing with wild ramification.

Proof. Step 1: The bad factors. Let S be the set of places of bad
reduction of E/k. We have

L(E/k,s) = | [ L.(E/k.s) = Ls(E/k,s) - [ Z.(E/E, ).
v vES
First we will discuss the latter factor, coming from places of bad reduc-
tion. Recall the L-factors at places of bad reduction, given in Equation
(6), and compare them to the formula for the conductor N (E/k) of E
given in Definition 15. Our assumption on g implies that the factors
§, in Equation (8) vanish, hence

H Ly(E/k,t) is a rational function of degree deg N(E/k) —2-#S.
vES

To complete the proof, it suffices to show that the first factor Ls(E /k,t)
is a rational function of degree 4g — 4 + 2 - #5.

Step 2. An equality of L-functions. Write U for the complement
of S in X, and consider V;E as a representation of the étale fundamental
group my(U), i.e. as a lisse l-adic étale sheaf on U. Therefore, by
the equality of the characteristic polynomial of pg; (¢y) in Equation
(4) with the definition of an L-factor in Equation (2), one obtains an
identity of L-functions

LS(E/k7t) = L(Ua ‘/lEv)t)‘

where V;EV is the dual representation, on the first degree cohomology
of E.

Step 3: Grothendieck’s work on L-functions In this step we
split into two cases, depending on whether the set S of places of bad
reduction is empty or not. A good general reference on this material
is [29].

Case S # 0. The curve U is affine since S is not empty, and V,E
is lisse. These conditions imply, by a version of the Lefschetz trace
formula [37], that

_ det(1 —tFrob | H}(U x¢, Fg, UEY))
"~ det(1 — t Frob | H2(U xy, F, VEV))’

L(UVIEY, )
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where the cohomology is étale cohomology with compact supports.
Here Frob continues to denote the geometric Frobenius. The denom-
_inator is trivial, because H2(V;EV) = 0. Indeed, it is Poincaré dual
to H°(V,E)(—1). But the group H°(V,E) is equal to the invariants of
Gal(k*/F4(X)) on V;E. Since E/k is non-constant, there are only a
finite number of I- torsion points defined over Fy(X), and this group is
trivial.

The cohomology with compact supports on an affine curve always
vanishes in all degrees not 1 or 2. We have shown that it is also trivial
in degree 2 in this case. Hence the rank of HX(U xg, Fg, VIEY) is
the negative of the Euler characteristic of this cohomology. We have
shown that Lg(E/k,t) is a polynomial. To show that its degree is
equal to 4g — 4 + 245 it remains to show that the Euler characteristic
x(H*(U,V,EV)) is equal to 4 — 4g — 2#S5. We can calculate this Euler
characteristic using use ordinary étale cohomology, which is Poincaré
dual to cohomology with compact supports.

Case S = (. In this case X = U. For a lisse étale sheaf over the
smooth geometrically irreducible projective curve X, the determina-
tion of the L-function is even more straightforward because as X/F,
is proper, there is no concern with compact supports. Grothendieck’s
theory implies that

L(X,ViE,t) = [] det(1—tFrob | H'(X xg, F,, ViEY))~CY'
0<i<2
Therefore it again suffices to show that the Euler characteristic of the
étale cohomology of V,EV is 4 — 4g.

Step 4: Raynaud’s Euler Characteristic Formula. This for-
mula, given in [42], gives the Euler characteristic of the cohomology of
[-adic sheaves as the product of the Euler characteristic of the base U
with the rank of the sheaf, modified by terms that measure the wild
ramification at points in S. There is no wild ramification on X in our
case, because we have assumed that ¢ is not a power of 2 or 3. Thus

x(H*(U,EY)) = x(U) - dimq, V.E".
As we saw above, VIEY is of dimension 2 and the Euler characteris-
tic of U is given by x(X) — #S = 2 — 29 — #S. This shows that

x(H*(U,V,EV)) = 4 — 4g — 24S, which is what was needed in both of
the cases in Step 3. 0

Remark. Assume that E is constant, E = A xg, X for some an elliptic
curve A/F,. If Y is a smooth projective variety over I, of dimension
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d, we can define its zeta function as
(19) Z(Y,t) = [] (1-t%e¥) = L(Y,Qy1),
yeY?

which by the Lefschetz trace formula [26] is equal to
2d
Z(Y,t) = [ ] det(1 — t Frob | Hi(Y,Q))1™
i=0
In particular, we find that
1—at+qt*  L,(E/k,t)™?
Q-H1-q) Q-1 -qt)
where a = ¢+ 1 — #A(F,) and

Z(A,t) =

M(t)
(1-t)(1-qt)
where M(t) is a polynomial of degree 2g(X). By the Kiinneth formula
and the general relation between zeta and L-functions
: det(1 — tFrob | H}(A) ® H(X))

det(1 — ¢ Frob | (H'(A) ® HO(X)) @ (H'(A) ® H2(X)))’
As the Frobenius eigenvalues on the 1-dimensional Q-vector spaces
HO(X) and H?(X) are 1 and q respectively, we find that

det(1 — tFrob | H'(A4) ® H'(X))
(1 —aqg*+ ql—Zs)(l —- aql—a + q3—23)
Note that this is a rational function of degree 4g —4 in ¢~° as expected.

Z(X,t) =

L(E/k,t) =

(20)  L(E/k,s) =

Examples of elliptic curves over function fields. We present
two examples of non-constant elliptic curves where the conjecture of
Birch and Swinnerton-Dyer is known to be true. In both cases, X = P!
and k = Fg(X) = Fy(t).

Ezample. Suppose that g is odd, and consider the elliptic curve E/k
given by the equation
y? = z(z — 1)(z — t), of discriminant A = 16t*(t — 1)°.
This is the first curve studied in the previous lecture. Making the
change of variable s = 1/t gives the equation
y? = z(x — s)(z — s?), of discriminant A’ = 16s%(s — 1)?,

As we noted in lecture 1, a change of variable changes the valuation
of the discriminant at each place by a multiple of 12; it follows that
the above equations are both minimal at every place where they are
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integral. We see that E has multiplicative reduction at the places
t = 0,1 and additive reduction at ¢ = co, and the conductor and
minimal discriminant are given by (cf. Equation 8)

N(E/k) = (0) + (1) + 2(cc) and D(E/k) = 2(0) + 2(1) + 8(c0).
An application of Tate’s algorithm shows that the reduction at the bad
places t = 0, 1, co are of Kodaira types I», I» and I respectively [49].

To calculate the period P(E/k), we need to know the quantities
deg D(E/k) = 12, the genus g(X) = 0, and the indices [E(k,) : E°(k,)]
at the places of bad reduction ¢ = 0,1, 00, which are 2,2, and 4, re-
spectively, cf. [49]. Using Equation (15), we find that

P(E/k) = [] [E(k) : E°(ky)] = 20 - 21 - 4oo = 16.
bad v
To calculate the regulator R(E/k), we recall from the previous lecture

that

E(k) = {OE) (0) 0), (1) O)’ (ta O)}
Hence ‘

R(E/k) = #E(k)™* = 1/16.

Finally, since the degree of N(E/k) is 4, Proposition 22 implies that
L(E/k,s) = 1. Now, the Birch and Swinnerton-Dyer conjecture is
known for this elliptic curve, since E is the generic fiber of a rational
surface (cf. the next lecture). It follows that

1= L(E/k,1) = P(E/k) - Rg - #111(k, E) = #11(k, E),
so the Tate-Shafarevitch group is trivial. The fact that the 2-torsion
in 111(k, E) is trivial follows from the descent calculation of lecture 1.

Ezample. Assume that ¢ = p is an odd prime. Let E'/k be the elliptic
curve defined by

E :t(t— 1)y = z(z — 1)(z — 1).

The minimal regular model of E’ over X is a K3 surface over F,. In
this case, the conjecture of Birch and Swinnerton-Dyer is also known
to be true.

A similar computation to the one above reveals that

N(E'[k) = 2(0) + 2(1) + 2(c0) and D(E'/k) = 8(0) -+ 8(1) + 8(c0).
Proposition 22 then implies that L(E’/k, s) is a polynomial of degree
2 in p~°. After a calculation (cf. section 8.8 of [30]) one finds that this
polynomial is

) _f1-2@-p)pc+p** ifp=1 (mod 4);
L(E/kas)—{l_p—% if p=3 (mod 4),
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where a, b are the unique positive integers such that a is odd and p =
a® + b2
In the case that p =1 (mod 4), we get

L(E'[k,1) = (1 —2(a® — ") /p+1) = 4°/p # 0.

Proceding as before, Equation (15) implies that P(E'/k) = 4-4 -
4/p since [E'(k,) : E®(k,)] = 4 at the places t = 0,1, and oo, and
deg D(E'[/k) = 24. Since the L-function does not vanish at s = 1
we know that E'(k) is finite, and is an easy matter to compute the
torsion subgroup, showing that #E'(k) = 4, and hence that we have
R(E'[k) = 1/4%. Then the Birch and Swinnerton-Dyer conjecture im-
plies that
#m(k, E') = b°.

Since b is even, we see that WI(k, E') is non-trivial. The fact that
1i(k, E') has even order is consistent with the descent calculation in
lecture 1.

In the case that p = 3 (mod 4), L(E'/k,1) = 0 and L'(E'[k,1) =
2log p, so by the Birch and Swinnerton-Dyer conjecture E'(k) has rank
exactly 1. As before, P(E'/k) = 64/p. If we take P to be a generator
modulo torsion then E'(k) = ZP + (Z/2Z)?, so

R(E/k) = (P, P)/4,

which as we mentioned at the end of the previous lecture is equal to
rlogp/4% where r is rational. In fact r € 1Z; the height pairing takes
on integral values except for contributions from places of bad reduction,
the denominators of which can be bounded explicitly in terms of the
Kodaira type, cf. lecture 3.

Applying the Birch and Swinnerton-Dyer conjecture, we see that

2logp = L'(E/k,1) = c(E/k) = 4rlog p#11i(k, E),

so #M1(k, E) - 2r = 1. The existence of the Cassels-Tate pairing (cf.
[7], [52]) implies that III(k, E') has square order, and consequently that
#1(k, E) =1 and r = 3.

LECTURE 3: PROGRESS TO DATE

Results over number fields. Let k be a number field, and E/k
an elliptic curve. As we saw in lecture 2, the conjecture of Birch and
Swinnerton-Dyer cannot be formulated until one knows that the L-
function of E/k can be analytically continued to a neighborhood of the
point s = 1. This continuation has been established for some elliptic
curves, which we now describe.
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A Shimura curve X over C is the quotient of the upper half plane by
an arithmetic Fuchsian group. These groups all arise from quaternion
algebras over totally real number fields k, which are split at precisely
one real place v of k. The associated system of Shimura curves has a

canonical model over the field k, embedded in C via the place v [12],
[13], [58].

Definition 25. We say an elliptic curve E over a totally real number
field k is modular if it is isogenous over k to a factor of the Jacobian
of some Shimura curve.

When k = Q, it is known that all elliptic curves are modular [4]. Here
one only needs the classical modular curves, which are the Shimura
curves associated to the split quaternion algebra of two-by-two matrices
over Q.

Theorem 26 (Gross-Zagier [25], Kolyvagin [31], Zhang [58]). Let E/k
be a modular elliptic curve over the totally real number field k. Then
L(E/k,s) is entire and satisfies Conjecture 18. If we assume further
that ord,—y L(E/k,s) < 1, then

(1) rank(E(k)) = ords—1 L(E/k, s);

(2) mi(k, E) is finite; and

(3) the Birch and Swinnerton-Dyer conjecture is irue at almost all
PTIMES.

This theorem is due to Gross-Zagier and Kolyvagin for k£ = Q and
to Zhang in the general case. By the statement “is true at almost all
primes”, we mean that the ratio c(E/k)/(R(E/k) - P(E/k)) is a non-
zero rational number. and that for all rational primes p outside of a
specified finite set depending on the curve E, the p-part of the order
of m(k, E) is equal to the p-part of this ratio. In many cases, one
can refine Kolyvagin’s method to prove that the specified finite set is
empty.

The crux of the proof is the exploitation of special points on Shimura
curves, which are defined over abelian extensions of CM fields K with
totally real subfield k. We give a sketch in the case that kK = Q, where
the special points are called Heegner points. Assume that E has con-
ductor N = N(E/Q). Then the proof that E is modular exhibits
a weight 2 newform f for the group I'o(N) with integer Fourier co-
efficients such that L(f,s) = L(E/Q,s). The space of cusp forms of
weight 2 for [y(N) is naturally identified with the space of holomorphic
differentials on Xo(N). This implies that E is isogenous to a quotient
of the Jacobian Jo(IN) over Q [15].
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The composition of the canonical map Xy(N) — Jo(N), obtained
by sending the cusp oo to the zero point of Jo(N), with the projection
Jo(N) — E gives a dominant map 7 : Xo(/N) — E defined over Q. We
let w be the unique invariant differential on E over Q) which satisfies
7 (w) = wy = 2mifdz [33].

The complement of the cusps in Xy(N) is a coarse moduli space
of elliptic curves (A, A’) related by a cyclic N-isogeny. Let K be an
imaginary quadratic number field of discriminant D in which all the
prime factors of N are split. There exists an integral ideal n of K such
that ged(n,fi) = 1 and n-f = (), and the complex elliptic curves
given by the lattice quotients A = C/n and A’ = C/Ok are related by
the isogeny z : A — A’ with cyclic kernel Ok /n of order N. By the
theory of complex multiplication, cf. [48], Ch. II, this Heegner point =
is defined over the Hilbert class field H of K, that is, z € Xo(N)(H).

Recall that 7(z) is the projection of the class [z] — [0o] € Jo(N)(H)
to E(H), and let

P= Y (=) €EK),

oeGal(H/K)

the addition occurring in E(H). Birch asked when P had infinite order
in the group E(K). Based on extensive computations, he conjectured
that this question was related to the non-vanishing of the first derivative
of L(E/K,s) at s = 1. It is proved in [25] that

_ (PP
VID|l  JEg)

The proof of this identity follows from a comparison of the calculation of
the first derivative, using Rankin’s integral formula for the L-function,
with the calculation of the global height of P, using Néron’s theory of
local heights on the curve Xy(N), discussed below.

In particular, P has infinite order if and only if L'(E/K,1) does
not vanish. If P has infinite order, Kolyvagin’s work then shows that
(K, E) is finite. Combining this argument with some non-vanishing
results for the L-series of quadratic twists gives the result in the theo-
rem when

L'(E/K, s)

|wl-

OI'dss:l L(E/Q) 3)

is 0 or 1. This completes our sketch of the proof.

Local and global heights. Let k be a global field. Néron’s theory
of local heights (cf. [40], [25]) expresses the canonical height pairing on
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the Jacobian J of a curve X/k as a sum

(@.B) =Y, (b,
places v
of local terms, almost all of which are zero. Here we take a, b to be divi-
sors of degree zero on X with disjoint supports representing the classes
o and B. The local symbols (, ), are characterised by the property that
they are bi-additive, symmetric, continuous, and satisfy

(e, div(f))y = log|f(a)ls = log | [ IF@)I5™,

where a = ), m, - z and f is a rational function on X.

When v is archimedean, the local height pairing {, ), is defined using
potential theory. When v is a non-archimedean place, the local pair-
ing can be defined using intersection theory as follows. Let £ be the
minimal regular model of E over Spec A,, cf. [10], [32].

We write F = Y a;F;, where F is the special fiber of £, the F; are its
irreducible components, and the a; are their respective multiplicities.
The intersection pairing (,) in the special fiber has the property that
(F,F;) is zero for each i. Furthermore, it is negative definite on the
quotient group Y, ZF;/ZF, so is non-degenerate over Q.

To define the local height in this case, take a divisor a =Y m.-z on
E of degree 0, and its closure A in £. It suffices to treat the case that
a is pointwise rational over k, (i.e. if m; # 0, then z has co-ordinates
in k).

By the non-degeneracy of the intersection pairing in the special fiber,
we can find a Q-divisor u, whose support lies in the special fiber, such
that (A — u, F;) = 0 for each 4. Given a degree 0 divisor b, rational
over k,, relatively prime to a, we take its closure B in £, and define

{a,b), = (A — p, B) - log #(A,/mAy).

Using the classification of the special fibers of the minimal regular
models of elliptic curves, and their intersection matrices (cf. the tablein
[49]), one can find bounds on the denominators of the local pairing, and
thus of the global height pairing for function fields. This fact was used
in the previous lecture. A detailed computation of the denominators,

corresponding to the classification of special fibers, can be found in
[46)].

Results over function fields. Let F, be a finite field with ¢ = p®
elements, and X a non-singular geometrically irreducible projective
curve, defined over F,. It follows that F, N k = FF,, where we write

k =F,(X) for the function field of X.
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Theorem 27 (M.Artin - Tate [52]). Let E be an elliptic curve, defined
over k. Then
ords=1 L(E/k, s) > rank E(k),

and the following are equivalent:

(1) Eguality holds above.

(2) uI(k, E) is finite.

(3) I(k, E)[l°] 4s finite for a single prime l.

(4) The conjecture of Birch and Swinnerton-Dyer is true for the

curve E over k.

The curve E can be considered as the generic fiber of an elliptic
surface S/F, fibered over X. In this case E(k) is closely connected
to the Néron-Severi group NS(S) of S. Motivated by this, Artin and
Tate formulated a more general conjecture, similar in spirit to the con-
jecture of Birch and Swinnerton-Dyer, relating the rank of the Néron-
Severi group and some other geometric invariants of a general surface
S to its zeta function. In this setting, the cohomological Brauer group
H2(S,G,,) plays the role of the Tate-Shafarevitch group.

In [52] Tate gives the translation of the above theorem into this
language and a proof of the “prime-to-p” part of the conjecturre, using
l-adic étale cohomology for | # p. Milne completed the proof in [35],
using more sophisticated cohomology theories capable of handling the
complications at the prime p. We give a brief sketch.

We recall that for a smooth projective surface over an algebraically
closed field, the Néron-Severi group is defined as the group of divisors
modulo algebraic equivalence, cf. [28]. It is a finitely generated abelian
group. We take S to be the minimal regular model of E over X. Then
NS(S) is defined to be the image of Pic(S) in NS(S ® F,). We then

have injections
Ek)®Q,— NS(S)®Q, — H}(S®F,,Q)),

the latter arrow coming from the cycle map in étale cohomology. More-
over, we have an exact sequence for every [ # p:

0 — NS(S) ® Q — (H%(S ® F,, Q;)(1))%r« — Vj11I(k, E) —> 0.

Here Viii(k, E) = Hom(Q;/Z;, 111(k, E)) ®7, Q is the analogue of
the l-adic Tate module for the torsion group Ii(k, E). It vanishes if
and only if III(k, E)[[*] is finite. We note that the map E(k) ® Q; —
NS(S)®Q, need not be surjective, but its cokernel is well understood.
In particular, there is a formula

rank NS(S) = rank E(k) +2 + Y (m; — 1),
teX
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where m; is the number of irreducible components in the fiber above
t. We refer to [46] for more details, as well as for the definition of the
map E(k) — NS(S).

The zeta-function of S is given by the formula

|1 EE g ) V™ where Py(S,t) = det(1 — Frobg~*|H*(S,Qy)),

and Tate’s geometric conjecture can now be rephrased in terms of the
order of vanishing of P»(S,q™°) at s = 1. Looking at the above ex-
act sequence, we see that this is equal to the multiplicity of ¢ as an
eigenvalue of Frobenius on H?, which gives the first inequality in the
theorem. Moreover, equality holds if and only if the [-primary part of
the Tate-Shafarevitch group is finite. One can also show that the poly-
nomials P;(S,T) are independent of I. These facts give the equivalence
of the first 3 statements; and the equivalence of the last follows from a
more involved calculation, once HI(k, E) is known to be finite.

Constant curves. We continue with the notation of the previous
section, and specialize to the case where E/k is a constant curve. In
this case the surface S can be taken to be E xp, X.

First, we note that E(k)iors = E(Fy). Indeed, the torsion points of
E are defined over an algebraic extension of Fy, and F,Nk =F,.

Next, suppose that P is a point of infinite order in E(k). This point
can be viewed as a section s : X — S; since the section s is not
constant, it induces a dominant morphism 7 : X — E, of finite degree.
We have the formula

(P, P) = (2degm)logg.

This follows from the fact that the height pairing on E(k) is induced
by the intersection pairing on S.

Giving the image of P in the quotient L = E(k)/E(F) is the same
as giving the map =, up to translation by elements of E(FF,). Since the
Jacobian J of X is also the Albanese variety (cf. [36]), we can identify

L = E(k)/E(F) = Homg,(J, E).

We view L as an integral even lattice, that is, a free Z-module with
a positive definite integer-valued quadratic form, the form in this case
being the height divided by 2loggq. Lattices arising in this manner
are called Mordell-Weil lattices, and have many interesting properties.
These have been studied by Elkies, Shioda and others, cf. [17], [46].

By Equation 20,
det(1 — Frobg*|HY(E, Q) ® HY(X,Q)))

(]_ —aq~s + q1—23)(1 _ aql—s + q3—25) !

L(E/k, s) =
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where a is the trace of Frobenius on the [-adic Tate module of E.
We have identified H'(X,Q;) = V,JY, and H(E,Q) = V,EY, cf.
[36], Cor. 9.6, and

ViEY ® ViJY = Hom(WJ, i(E))(-1).

Hence the rank of E(k), which is equal to the rank of the free quotient
L = Homg, (J, E), is also equal to the multiplicity of ¢ as an eigenvalue
of Frobenius on VjJY ® ViEV, by Tate’s theorem for abelian varieties
over finite fields (Equation (5)). Comparison with the above equation
for L(E/k, s) gives

ord,—; L(E/k,s) = rank E(k),

and by Theorem 27 the full Birch and Swinnerton-Dyer conjecture is
true for the curve E.

Let us write VVEY @ ViJY = U & V, where U is the g-eigenspace of
Frobenius, and V is the sum of the other eigenspaces. Then the leading
term of the L-series at s = 1 is given by

(log ¢)" det(1 — Frobg~!|V) 1 det(L)(logg)"
#E(Yorsq ™ ¢ H#E(E)os
where we have applied the conjecture of Birch and Swinnerton-Dyer,
and the evaluation of the period P(E/k) = 1/¢°~"! and the regulator
R(E/k) = det(L) - (log q)"/#E(k)%,,., to obtain the equality with the
right hand side. Canceling some terms gives the final identity
¢° det(1 — Frobg|V) = det(L)#111(k, E).

The simplest situation is when V = 0, so the characteristic polynomial
of Frobenius on V,EY ® V;JV is (t — ¢)*9. We are going to investigate a
special case where this happens.

#1(k, E),

Ezample. Suppose that g is a square, and write ¢ = 3. We choose E so
that both eigenvalues of the (arithmetic F,-)Frobenius are equal to —gq;
this can be done, for example, by taking E to be a supersingular curve
over F, with go + 1 points; then recall Equation (4). The existence
of such curves E in general is a consequence of Honda-Tate theory
[51]; they are obtained as the reduction of elliptic curves with complex
multiplication over number fields.

Let X be the non-singular, geometrically irreducible, curve cut out
by the Fermat equation

P+l 4 yqo+1 + 20+l —

in P2. This curve has genus g = go(go — 1)/2. A simple point count
shows that #X(F,) = g3 + 1. On the other hand, the Lefschetz fixed
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point theorem in étale cohomology gives the number of points as
2

> (—1) Tr(Frob |H*(X ® F,, Q1)) = ¢+ 1 — Tx(Frob |H(J, Q))).

=0
This can be equal to g3+1 if and only if all the eigenvalues of Frobenius
are equal to —qo, since the eigenvalues have absolute value go under any
embedding Q, — C [37].

We therefore have V = 0, and L = Homg,(J, E) is a lattice of rank
4g = 2go(go—1). The Birch and Swinnerton-Dyer conjecture then gives

det L- #11(k, E) = ¢° = qgo(qo—n_

Write go = pf. I [23] showed that II(k, E) is trivial if and only if
f < 2, while Dummigan [16] has studied the order of Ii(k, E) in the
case that f > 2. This allows one to compute the determinant of the
Mordell-Weil lattice, and in some cases identify its isomorphism type.
Here is a table for some small values of go; note that f < 2 in these
cases.
o |2 3 4
rank L | 4 12 24
detL |22 3% 412
L D, CTi2 2Ay
Here we obtain the D4 root lattice, the Coxeter-Todd lattice of rank
12 and a multiple of the Leech lattice of rank 24. A point count can
be used to bound the degree of maps X — E, and to show that there
are no vectors of norm 2 once gy > 2. Since the Coxeter-Todd lattice is
the unique 12-dimensional even integral lattice of determinant 3% with
no roots, this identifies L when g = 3.

Non-constant curves. We briefly describe which cases of the Birch
and Swinnerton-Dyer conjecture are known for general elliptic curves
over function fields. Continuing with the notation of the first section,
we let E/k be an elliptic curve, and 7 : § — X the minimal regular
model of E. We have an isomorphism (mwg/x)®'? & Ox(D(E/k)),
where D(E/k) is the minimal discriminant of £/k. One can show that
deg D(E/k)/12 = —(Og, Og), which can take on any non-negative
value. E is a constant curve if and only if (Og, Og) = 0.

In the case that X = P!, the low values of deg D(E/k) give (via the
classification of surfaces):

deg D(E/k) =0 S = E x P! is a ruled surface;
= 12 § is a rational surface;
=24 S is a K3 surface.
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The conjecture of Birch and Swinnerton-Dyer is known in these cases.
The case of rational surfaces is due to Milne [34]. The case of a K3
surface is due to Artin and Swinnerton-Dyer [1]. However, little is
known for genuine elliptic surfaces or for surfaces of general type, where
the conjecture of Artin and Tate remains open.

There is an analogue of modular curves and Heegner points in the
function field setting, beginning with the notions of Drinfeld modules

and Drinfeld modular curves. Using this analogy, one can show that
the conjecture of Birch and Swinnerton-Dyer is true when the order of
the L-function of E/k at s = 1is <1 [5], [54].
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