THE ETNC FOR DIRICHLET L-FUNCTIONS AT s=10
- DRAFT NOTES

DAVID BURNS

OVERVIEW OF LECTURES

The ‘Equivariant Tamagawa Number Conjecture’ (or ‘ETNC’ for short) was
formulated by Flach and the present author in [BuF01] as a natural refinement of
the ‘Tamagawa Number Conjecture’ of Bloch and Kato. The latter conjecture was
originally formulated by Bloch and Kato in [BK] and then extended and refined
by both Kato [K92, K93] and Fontaine and Perrin-Riou [FP]. This earlier seminal
work of Bloch, Kato, Fontaine and Perrin-Riou was restricted to motives with
commutative coefficients and also left unresolved an important ‘sign ambiguity’
problem. By combining Deligne’s notion of virtual objects with the methods of
relative algebraic K-theory the ETNC simultaneously extended the formalism of
Tamagawa number conjectures to motives with non-commutative coefficients and
also resolved the sign ambiguity problem (in the commutative case).

The ETNC formalism now underlies much of the important recent work in non-
commutative Iwasawa theory (see, for example, Fukaya and Kato [FK] or Venj akob’s
survey article [V]). At the same time it has also provided a universal framework
which, upon appropriate specialisation, has refined a very wide variety of well known
and rather explicit conjectures and results concerning the leading terms at integer
values of motivic L-functions ranging, for example, from the Rubin-Stark Conjec-
ture to the conjectures of Chinburg in Galois module theory and the refinement of
the Birch and Swinnerton-Dyer Conjecture formulated by Mazur and Tate. By now
there is also an impressive amount of evidence, both theoretical and numerical and
due to various authors, in support of important special cases of the ETNC (see, for
example, Flach’s survey article [F104] or [Bul0]).

Our main aim in these lectures is to review in as explicit a fashion as possible
the special case of the ETNC that is relevant to the value at zero of Dirichlet L-
functions, and hence also to the abelian case of Stark’s Main Conjecture. We shall
also explain some of the refinements of Stark’s Main Conjecture that this case of
the ETNC predicts.

1. DETERMINANT MODULES

1.1. Free modules. Let R be a commutative unital noetherian ring. = For each
finitely generated free R-module M we set

[M]g == AR =D (),
This is a free R-module of rank one: if one chooses an R-basis {m; : 1 < i < d} of
M, then one obtains a (non-canonical) isomorphism of R-modules [M]r — R by
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sending /\;:‘Iimi to 1g. If ¢ is a homomorphism of finitely generated free R-modules.
of the same rank d, then we write [¢]r for the induced homomorphism of H-modules
[M]g — [N]z.

When R is clear from context we will often abbreviate [M]p to [M]. f N is a
another finitely generated free R-module, then we will abbreviate the tensor product
[M]r ®r [N]g to [M]g|Nlg, or even just [M][N].

We will use the following basic properties of this construction.

P1) [0]r = R.

P IE:0—- M — N — P — 0is an exact sequence of finitely generated
free R-modules, then there is a canonical isomorphism of R-modules of the
form «(€) : |N)g = [M]r[P]R-

P3) For each finitely generated free R-module M we set

[M]EI = HomR([M]R’ R)a

regarded as an R-module via r(8)(8) = 8(rd) for ecach r € R,0 € M)z
and § € [M]x. Then there are canonical isomorphisms of R-modules of the
form

eV [I\l]R[M]El R, 00— 0(8)

evar : [M|E [M]r = R, 0®6— 0(3).

P4) Each isomorphism of finitely generated free R-modules ¢ : M — N gives
rise to a canonical isomorphism of R-modules of the form

1 [9a®id 1 ev

t(¢) :[M]a[N|7" 2% [NIR[N]F' = R

- [#1z ®id
t(¢) (M7 [Nlr ——
Remark 1.1. If £ is an exact sequence as in P2), then the isomorphisms evas,evy
and evp allow one to regard ¢(€) as an isomorphism [M]g[N]z'[Plr = R or even
[M]RNIRIPIR} = R. When applying isomorphisms of the form «(£) we will
usually not specify explicitly which one of these possible interpretations that we
have in mind (believing that it will always be clear from context!)

[N]51[N}r <25 R.

Exercise 1.2. Describe (£} explicitly.

Exercise 1.3. What is the connection between the isomorphism t(¢) and the
determinant of a matrix of ¢ (with respect to any choice of R-bases of M and N)?

1.2. Semisimple algebras. Let A be a finite dimensional semisimple commutative
algebra. Then A decomposes as a finite product of fields A = [];.; A; and there
is a corresponding decomposition of any finitely generated A-module M as a sum
M = @, ; M; where M; is a finitely generated A;-module. - Since any finitely
generated A;-module is free we may therefore define an A-module by setting

[M]a := EPIMi]4..
iel
If M is a free A-module, then this definition of [M]4 agrees with that given in 1.1.
In general, there is a (non-canonical) isomorphism of A-modules {AM]4 = A and the
properties P1)-P4) in 1.1.1 (with R equal to each field A;) combine to give analogous
properties and isomorphisms t(£),eva (where we set [M],;" 1= Homa([M]a, A))
and t(¢) in this new setting.
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1.3. Orders. For simplicity we only discuss determinants over the orders that are
of most relevance for us. So we fix a finite abelian group G and write A for the
group ring Q[G] (this is a finite dimensional semisimple commutative Q-algebra)
and 2 for the subring Z|G] of A. For each prime p we write Z, for the localisation
of Z at p. For cach Z-module M we write My for the localisation M ®z Zy).

1.3.1. Projective modules. If M is finitely generated projective 2-module, then a
theorem of Swan (cf. [CuR, (32.1)]) implies that Mg := M ®zQ is a free A-module
and further that for each prime p the localisation M,y is a free 2(,)-module of
rank rank(Mg). We therefore obtain an 2g)-submodule [Mp)u,, of [Mg]a. It
is possible to show that the intersection

(1) (Mg = [\[Mp))ary,

is a non-zero A-submodule of [Mg] 4. This construction has the following properties:

o If A is a finitely generated free A-module, then this definition coincides
with that in 1.1.

e The construction of [M]g via localisations means that in general it is
no longer true that there is an isomorphism of %-modules of the form
[M)y = 2. However, for every prime p the localisation ([M]a)() is equal
to [M(pla,, and so is isomorphic (non-canonically) to ;). This means
that [M]g is an ‘invertible 2-module’, or a ‘locally-free A-module of rank
one’. ,

o There are natural analogues of the properties P1)-P4) in 1.1.1 and of the
isomorphisms ¢(£),evar (with [M]5! := Homg ([M]a,2)) and ¢(¢) in this

new setting.

1.3.2. Modules of finite projective dimension. An %-module M has finite projec-
tive dimension if and only if for all subgroups J of G and all degrees ¢ the Tate

cohomology group H*(J, M) vanishes (a condition which is automatically satisfied

if, for example, M is a finite module of order prime to the order of G). If M is any
finitely generated such module, then it is known that there exists an exact sequence
of A-modules of the form

£E:0-P->N-M->0
in which P and N are both finitely generated and projective.
Definition If M is a finitely generated 2-module of finite projective dimnension,
then one chooses a resolution £ as above and defines [M]y to be the image of
the submodule [P]y'[N]a of [Po]s'[Ng]a under the isomorphism «(Q &z &) :
[Pol ™! [Nola = [Mga.
This construction has the following properties:
¢ [M]y is independent of the choice of resolution £.
o If M is a finitely generated projective %-module, then (A has finite pro-
jective dimension and) [Mlg coincides with the module defined in 1.3.1.
e There are natural analogues of the propertiecs P1)-P4) in 1.1.1 and of the

isomorphisms ¢(€),evas (with [AJ]gl := Homg([M]a,2)) and t(¢) in this
new setting.

Exercise 1.4. Prove that {M]y is independent of the choice of £.
dy Mo prg., tie Peo Nty Ol TG

Ogreeo 1.3.1
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Exercise 1.5. Let M be a finite module. Show that A has finite projective
dimension as a Z-module and that [M]z is equal to the submodule |M|™! - Z of

Q=[Mglo: (pix Mg 0 bre MOQ® =0)
2. YONEDA 2-EXTENSIONS AND DETERMINANT LATTICES
We fix a finite group G, set 2 := Z[G] and assume given %-modules M and N.

2.1. Perfect 2-extensions. . A ‘2-extension of M by N’ is an cxact sequence of
U-modules of the form

T:0—=N—=Ey % E — M—0.
If 7' is another exact sequence 0 — N — Ej 4, Ef - M — 0, then we write
T ~s T if there exists a commutative diagram of 2-modules of the form

d

0 N Ey E, M 0
(2) lidN l¢° l¢1 lidM
0 N Ey—Y B M 0.

This relation ~ fails to be an equivalence relation on the set of such 2-extensions (it
is not in general symmetric) but nevertheless generates an equivalence relation. The
associated set Ext% (M, N) of equivalence classes is finite, of cardinality dividing a

power of |G, and has a natural (abelian) group structure. (For more details see,
for example, [HS].)

Definition We say that an element € of Ext% (M, N) is perfect if it can be repre-
sented by an extension 0 — N - Eq — By — M — 0 in which the A-modules Ey
and E; are hoth finitely generated and of finite projective dimension.

Remark 2.1. The existence of a perfect element in Ext%(M, N) is a strong re-
striction on the structures of M and N (for example, it immediately implies that
they are both finitely generated) and is far from guaranteed.

2.2. Determinant lattices. We now assume to be given an isomorphism of R[G]-
modules
A Ng = Mp.
We show that if € is any perfect element of ExtZ(M, N), then one can associate to
the pair (¢,A) a canonical (invertible) A-submodule of R[G].
To do this we first choose a representative

T:0=N—-E%E -M—0
of e. This exact sequence gives rise to short exact sequences of R[G]-modules
£ :0— Ng — Eyg — im(d)g — 0
62 0 — im(d)m — El,R - MR — 0
and hence to a composite isomorphism of R[G]-modules
— E1)e(&: . . — —
UT ) : [Bos)lBra) ™ “ELE (Mg fim(@)r]) (fim(d)z] ™ [Mz] )
CVim(d)g [NR][A4R]_1
ey

2, ria).
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Definition We set Z(¢, A) := +(7, \)([Eola[E1ly"), where [Eo)a[E1]y! is regarded
as a submodule of [Fo ][] [ELR]R;FG] in the natural way.

The key result in respect of the above construction is the following.
Proposition 2.2. Z(¢, \) depends only upon € and A.

Proof. We explain the key point. If € is perfect then for any two representatives
T and T’ of ¢ one knows that T ~ 77. In particular, there exists a conmunutative
diagram of the form (2). Consider the following related commutative diagram.

’ d /
EO El

l(o id) lid
(d.¢°)

1 I
B —2L per D, g

lid l(id,O)
d

Ey ——— Ey.

The central column is clearly a short exact sequence, call it £, and it is also straight-
forward to show that the central row is a short exact sequence, call it £'. The
diagram therefore induces an isomorphism of %-modules

(T, T) : (BIEN 2 (1B @ By ) (B

= (1B © BB B LD (BB
It can be shown that (77, A) = «(7,A) o (R®z ¢(7,7")) and hence that
(T, V(BB ™Y) = U T, )T, TYEELD ) = LT, M) (Bl [Ed] -
O

Example If G is trivial, then the explicit computation of Z(e, A) is straightforward
(see Exercise 2.3 below). To consider the simplest non-trivial case we assume that
G is cychc of prime order p and that M = N = Z. In this case it can be shown that

xtZ(Z,Z) has order p and moreover that every non-zero element of Ext%(Z, Z) is
pelfect Further, if A is any isomorphism of R[G]—modules R =R, and € and ¢ any
two non-zero clements of Ext(Z, Z), then one has E(¢, A) = E(¢', A) if and only if
€ =¢ (50 (¢, A) actually determines €!).

Exercise 2.3. If G is the trivial group, then so is Ext%(M,N) and if M and
N are finitely generated the unique element 0 of Ext% (M, N) is perfect. For any
isomorphism ) of R-modules compute explicitly the submodule £(0, A) of R. (Recall
Exercise 1.5.)

Exercise 2.4. Prove that if ) is any other isomorphism of R{G]-modules, then
E(e, X') = detgiey (AL 0 X') - Z(e, A).

3. THE CONJECTURE

3.1. Notation. We now fix a finite abelian extension of global fields K/k and set
G = Gal(K/k). We also fix a finite non-empty set of places S of k which contains
all archimedean places (if any) and all places which ramify in K/k. We write S(K)
for the set of places of K which lie above those in S.
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We write Qg for the ring of S(K)-integers in K and set Ug := OF,Js =
Huwesxy Kw and Cs := Js/A(Us), where A is the natural diagonal embedding
Us — Jg. We write Yg for the free abelian group on the set S(L) and Xg for
the kernel of the natural map € : Y5 — Z. We note that all of these groups are
naturally G-modules.

3.2. Canonical classes. We recall the definition of certain canonical extension
classes coming from class field theory.

3.2.1. We first assume S is large enough so that Pic(Og) vanishes and consider
exact commutative diagram of Z|G}-modules of the following form

0 0 0 0
0 Us A B Xs 0
A C
(3) 0 Js A B’ Ys 0
€
0 C’S AII BII Z 0
0 0 0 0.

Lemma 3.1. Assume that Pic(Og) vanishes. Then the extension classes of the
second and third rows of the diagram (8) determine the extension class of the first
row. Further, if the modules A’,B', A” and B have finile projeclive dimension,
then the extension class of the first row is perfect.

Proof. The key point in proving the first assertion is that if Pic(Og) vanishes, then
Cs is the module of a class formation and so H!(G,, Cs) vanishes for each place v
in 5. The proof of the second statement is standard homological algebra. 0

Using important earlier work of Tate [T66], in [C] Chinburg proved the existence
of a diagram (3) in which the second, resp. third, row is a representative of the
semi-local, resp. global, canonical class of class field theory (for details of the
canonical classes see, for example, [NSW]). Further, it was shown that in any
such diagram the modules A’, B’, A”, B” can be chosen to be of finite projective
dimension. Following Lemma 3.1 we may therefore make the following definition.

Definition We let 75 denote the perfect clement of Exté(X 5,Us) which is repre-
sented by the extension class of the first row of any diagram (3) in which the second,
resp. third, row is a representative of the semi-local, resp. global, canonical class.

3.2.2. We now extend the definition of 75 to the general case.

Lemma 3.2, There exists a (finilely generated) Z[G)-module X which is unique
up to unique isomorphism and has the following two properties:

(i) There is an ezact sequence 0 — Pic(Og) — X5 — X5 — 0.
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(i) There exists a canonical perfect extension class 75 in ExtZ(Xs,Us) such
that if Pic(Og) vanishes (so Xg = Xs), then Ts coincides with the extension
class defined in 3.2.1.

Remark 3.3. The definition of 7¢ in Lemma 3.2 makes clear the link to the more
explicit description that is possible in the case that Pic(Og) vanishes, but is oth-
erwise rather unsatisfactory. However, that’s only because we are hiding its true
origins. The natural way to define both the module Xs and extension 7 is in
terms of the compactly supported (Weil-)étale cohomology of the constant sheaf Z
on Spec(Os).

3.3. Statement of the conjecture. We set G* := Hom(G,C*) and for each
x € G" we write e, for the idempotent T(I;—| 2 gec x(¢7Y)g of C[G] and Ls(x,s)
for the S-truncated Dirichlet L-function that is associated to x. We then obtain a
C|G}-valued meromorphic function of a complex variable z by setting

() . 05(z) = Y Ls(% 2)ex.
XEGH
It is straightforward to show (by using the algebra decomposition (5) below and the
fact that complex conjugation is continuous) that the leading term 6%(0) of 65(2)
at z = 0 belongs to R[G] C C[G].
The relevant case of the equivariant Tamagawa number conjecture predicts an
explicit formula for the lattice Z[G} - 65(0) C R[G]. To state this we write

As:Usg = Xsr

for the isomorphism of R[G]-modules that is induced by (Lemma 3.2(i) and) the
negative of the Dirichlet regulator map.

Conjecture 3.4. Z[G] - 05(0) = (75, As).

Remark 3.5. The validity of Conjecture 3.4 is known to be independent of the
choice of S and to behave functorially under change of extension (more precisely,
if Conjecture 3.4 is valid for K/k then for each intermediate ficld E it is valid for
both K/E and E/k). Conjecture 3.4 is also known to be valid unconditionally in
each of the following special cases.

¢ K is a finite abelian extension of Q. (The validity of Conjecture 3.4 in this
case follows from results of Greither and the present author {BuG, Th. 8.1,
Rem. 8.1} and later results of Flach dealing with the 2-primary part of the
conjecture [F109].)

o There exists an imaginary quadratic field F which has class number 1 and is
such that F C k, K/F is finite abelian and [K : k] is both odd and divisible
only by primes which split completely in F/Q. (This case is proved by Bley
in [Bl, Th. 4.2].)

o K/k is quadratic. (This case is proved by Kim in [Ki, §2.4, Rem. i)].)

e K is a global function field. (This case is proved in [BuLT].)

Remark 3.6. The formulation of Conjecture 3.4 looks nothing like anything that
is formulated in [BuF01]! The main reason is that the case we are dealing with is
very special: one can formulate a leading term conjecture using a single 2-extension

of Z|G]-modules (namely 7s) unlike the general case in which one has to work with
perfect complexes (rather than extensions) over Zp[G] for ecach prime p and then
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piece things together in the style of the definition (1). The proof that Conjecture
3.4 is indeed a special case of the central conjecture of [BuF01] is in fact rather
technical and is given in [BuF98].

Remark 3.7. If, as already alluded to in Remark 3.3, one reinterprets Conjecture
3.4 in terms of étale cohomology (by using the results of [BuF98]), then connections
with other (commutative) conjectures become apparent. In particular, one finds
that in the function feld, resp. number field, case Conjecture 3.4 is an equivariant
refinement of the relevant case of Lichtenbaum’s conjecture [L, Conj. 8.1e)], resp.
is a version without ‘sign ambiguities’ of the form discussed in [BuF01, Rem. 9]
of the relevant case of Kato's earlier ‘generalized Iwasawa main conjecture’ [K93,
Conj. 3.2.2]. (We note that, perhaps surprisingly, such sign ambiguities mecan that
the relevant case of [K93, Conj. 3.2.2) is itself insufficient to imply the refinements
of Stark’s Conjecture that we discuss in section 5.)

Exercise 3.8. Show that if K = k, then Conjecture 3.4 just recovers the analytic
class number formula up to sign. (Recall Exercises 1.3 and 2.3.)

Exercise 3.9. Show that, in general, Conjecture 3.4 is sensitive to a change of sign
of either 75 or Ag. (Recall Exercise 2.4.)
4. STARK’S CONJECTURE

For each ¥ € G" we write X : C[G] — C for the induced ring homomorphism.
Then there is a natural identification of algebras

(5) clg) = ] € = - (xe)x

and, with respect to this identification, one has

(6) Q[G] = {(y)x : (Tx)” = Txw for all w € Aut(C)}.
For each homomorphism of Q[G}-modules ¢ : Us g — Xs,q we set
(7 R(¢) = detgc)(A5" © ¢r) € R[G].

Proposition 4.1. Conjecture 3.4 implies Stark’s Main Conjecture.

Proof. We assume the validity of Conjecture 3.4 and fix an isomorphism of QIG}-
modules ¢ : Usg — Xs,0. Then ¢~ 1(Xs,0) = Us,g and so one has

QI[G) - 95(0) = E(7s, As)e
=t(xs)([Usql[Xsal ™)
= evxgq(As(Us@)l[Xs0) ™)
= evxsq(Ps 07 (Xs0)][Xsel ™)
= evxgq([Xs0l[Xs.l " )detric)(As 0 b3 ")
= evxg0([Xs0l[Xsal™) - R($)™
=QIG)- R(¢)™"-
It follows that R(¢)0%(0) belongs to Q[G] and hence that
R(R(9)05(0))” = X* (R(¢)05(0))-
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To deduce Stark’s Main Conjecture (in the formulation given by Tate in [T84, Chap.
I, Conj. 5.1}) it suffices to note that for each x € G" one has

Ls(x.0)

(8) X(£(¢)05(0)) = dete(Asc o ¢El | ex(XSC))'

Exercise 4.2. Prove (6) and (8).

5. REFINEMENTS OF STARK’S CONJECTURE

It has by now been shown that Conjecture 3.4 either recovers or implies re-
finements of a wide variety of more explicit (and often better known) conjectures,
including each of the following:

The ‘Rubin-Stark Conjecture’.

Popescu’s Conjecture.

The ‘refined class number formula’ of Gross.

The ‘refined class number formula’ of Tate.

The ‘refined class number formula’ of Aoki, Lee and Tan.
The ‘guess’ formulated by Gross in |G, top of p. 195].
The ‘refined p-adic abelian Stark Conjecture’ of Gross.
Brumer’s Conjecture.

The Brumer-Stark Conjecture.

The ‘Q(3)-Conjecture’ of Chinburg.

The ‘Strong Stark Conjecture’ of Chinburg.

The ‘Lifted Root Number Conjecture’ of Gruenberg, Ritter and Weiss.

In this section we shall first discuss the connection between Conjecture 3.4 and
the refined class number formulas of Gross, Tate et al, and then discuss a new
refinement of Stark’s Main Conjecture that in the spirit of a version of Brumer’s
Conjecture for derivatives of fg(2) at z=0.

5.1. Congruences for values. We now discuss what Conjecture 3.4 predicts con-
cerning the value

05(0) == Ls(X,0)ex
XEGH

of the function 8g(z) at z = 0.
We first need a preparatory lemma. We set n.:=|S| ~ 1.

Lemma 5.1. (but see Remark 5.2 below!!) There exists a representative of the
canonical class Ts of the form

(9) 0—Us—FHF5 g0
where F is a finitely generated free G-module with a basis {b; : 1 < i < d} such that
each of the following is true:
(i) d > n.
(i) The module Fy := Z[G) - {b; : 1 < i < n} satisfies FZ = ker(¢%).
(iii) The module Fy := Z[G) - {b; : n < i < d} sutisfies p(Fy ) C Fy.
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Remark 5.2. Lemma 5.1 is clearly false as stated since the torsion subgroup of
Us is non-trivial and so there cannot exist an exact sequence of the form (9)! To
correct the result one needs to replace Us by a convenient approximating module
which is torsion-free (for details see [Bul0]). But, in order not to hide the key ideas,
we prefer to ignore this problem and simply state the 'result’ as shown.

Exercise 5.3. Let ¢ be the extension class of (9). Choose sections i3 and ¢o to the

surjective R[G}-module homomorphisms Fgr LR im(¢)r and Fr 2 X SR respec-
tively and write (¢, As) for the unique element of Autpje)(Fr) which is equal to
130)s on Us g and to ¢g on ¢; (im(¢)r). Prove that Z(¢, As) = Z[G]-detgic; (6, Xs))-

We return to consider f5(0). To do this we define an idempotent by setting
eqg ‘= Z €y
X

where x runs over all elements of G with the property that Ls(X,0) # 0. Then
one has

(95(0) = 65(0)80 + 95(0)(1 — 60)

= 65(0)eo

= u - detgje)((4, As))eo

=u- detR[G] (d)R)eO
(10) = u - detzje) (¢)
where u € Z[G]* and the second, resp. third, resp. fourth, resp. last, equality
follows from the definition of e, resp. by combining Conjecture 3.4 with the 'result’
of Lemma 5.1 and the formula of Exercise 5.3, resp. since eo(Us.g) = 0, resp. since

eo(ker(d)qg) = 0. Now Lemma 5.1(ii) and (iii) imply that the matrix of ¢ with
respect to the basis {b; : 1 < < d} is a block matrix of the form

Al|B

Cc\|\D
where A € Mp(Ig) and D € Mg_n(Z[G]) and all entries of the matrices B and C
belong to Ig. It follows that det(A) € I% and hence that the equality (10) implies
that

#5(0) = u - det(A)det(D) (mod .

The key point now is to note that the right hand term here can be interpreted as
the discriminant of a natural pairing of the form

Po ker(¢)C¢ x Homz(cok(¢)e, Z) — I /T
(this fact is purely homological algebra) and so one has
05(0) = disc(pg) (mod IZT1).

To deduce Gross’s refined class number formula from here simply requires the fol-
lowing class field theoretic fact (for a proof of which see [Bu07}).

Theorem 5.4. With respect to the natural identifications ker(¢)C = O:,s and
Homg(cok(¢)g,Z) = Xis and Ig/I% = G the pairing py coincides with the G-
valued reciprocity pairing introduced by Gross in [G]. In particular, Conjecture 3.4
implics the refined class number formula of Gross [G].
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Remark 5.5. For the reason explained in Remark 5.2, the actual proof of Theorem
5.4 is a little more involved than that sketched above. However it is still true that
much of the proof of Theorem 5.4 is homological algebra of a universal nature.
Indeed, the same approach gives a natural analogue of Theorem 5.4 relating the
refined Birch and Swinnerton-Dyer Conjecture ol Mazur and Tale to the relevant

case of the ETNC.

5.2. A Brumer type conjecture for higher derivatives of L-series. To be

completed.
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