Some background on elliptic curves and Galois cohomology

Jim Brown

September 19, 2009

Jim Brown [Some background on elliptic curves and Galois cohomology](#page-68-0)

 QQ

医单位 化重

 \sim

 $2Q$

Ξ

 \bullet A complete nonsingular curve E of genus 1 over k together with a point $O \in E(k)$.

ALCOHOL:

 QQ

- \bullet A complete nonsingular curve E of genus 1 over k together with a point $O \in E(k)$.
- **2** A nonsingular plane projective curve E of degree 3 together with a point $O \in E(k)$.

 QQ

- \bullet A complete nonsingular curve E of genus 1 over k together with a point $O \in E(k)$.
- **2** A nonsingular plane projective curve E of degree 3 together with a point $O \in E(k)$.
- \bullet A nonsingular plane projective curve E of the form

$$
Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3.
$$

 Ω

More familiarly, if $\text{char } k \neq 2, 3$, one can write an elliptic curve in the form

$$
Y^2 = X^3 + aX + b
$$

where $\Delta=4a^3+27b^2\neq 0$ (along with a point at infinity $(0:1:0).$

- 4 国家 3 国家

 QQ

Given a set R, we write $E(R)$ for those $P = (x, y)$ with $x, y \in R$ and $y^2 = x^3 + ax + b$.

伊 ▶ イヨ ▶ イヨ ▶

 299

э

Given a set R, we write $E(R)$ for those $P = (x, y)$ with $x, y \in R$ and $y^2 = x^3 + ax + b$. There is an addition on $E(k)$ that makes it into a group:

∢ 三 ▶

Given a set R, we write $E(R)$ for those $P = (x, y)$ with $x, y \in R$ and $y^2 = x^3 + ax + b$.

There is an addition on $E(k)$ that makes it into a group:

 QQ

(Mordell-Weil) For any elliptic curve over a number field k , the group $E(k)$ is finitely generated.

医间周的 间唇的

 2990

э

(Mordell-Weil) For any elliptic curve over a number field k , the group $E(k)$ is finitely generated.

1 This was shown by Mordell in the case $k = \mathbb{Q}$ in 1922.

医间周的 间唇的

 Ω

(Mordell-Weil) For any elliptic curve over a number field k , the group $E(k)$ is finitely generated.

- **1** This was shown by Mordell in the case $k = \mathbb{Q}$ in 1922.
- ² For general number fields this is contained the thesis of Weil (1928). (He actually proved: given any nonsingular projective curve C over a number field k , one has $\mathrm{Pic}^0(C)$ is finitely generated.)

 Ω

(Weak Mordell-Weil) For any elliptic curve E over a number field k and any integer n, $E(k)/nE(k)$ is finite.

医间窦的间窦

 2990

э

(Weak Mordell-Weil) For any elliptic curve E over a number field k and any integer n, $E(k)/nE(k)$ is finite.

The Mordell-Weil theorem follows from the Weak Mordell-Weil theorem by a descent argument.

 $x = x$

つくへ

(Weak Mordell-Weil) For any elliptic curve E over a number field k and any integer n, $E(k)/nE(k)$ is finite.

The Mordell-Weil theorem follows from the Weak Mordell-Weil theorem by a descent argument.

To prove the Weak Mordell-Weil theorem one uses Galois cohomology, which we now review.

つくい

 $4.29 \times 14.$

 \equiv

We write G_k for $\mathrm{Gal}(k^{\mathrm{al}}/k).$

 $\leftarrow \equiv +$

We write G_k for $\mathrm{Gal}(k^{\mathrm{al}}/k).$

We write $E(k^{\rm al})[n]$ for the n -torsion points of $E(k^{\rm al})$, i.e., the points $P \in E(k^{\text{al}})$ so that $nP = 0$.

 QQ

We write G_k for $\mathrm{Gal}(k^{\mathrm{al}}/k).$

We write $E(k^{\rm al})[n]$ for the n -torsion points of $E(k^{\rm al})$, i.e., the points $P \in E(k^{\text{al}})$ so that $nP = 0$.

Note that one has a natural action of G_k on $E(k^{\rm al})$ and on $E(k^{\text{al}})[n]$ given by $\sigma \cdot (x, y) = (x^{\sigma}, y^{\sigma}).$

 Ω

Let G be a topological group and M a G -module where the action of G on M is continuous.

化重变 化重

Let G be a topological group and M a G -module where the action of G on M is continuous.

One can define cohomology groups $H^n(G,M)$ for all $n \geq 0$, but we only define them for $n = 0, 1$.

化重复 化重变

 Ω

Let G be a topological group and M a G -module where the action of G on M is continuous.

One can define cohomology groups $H^n(G,M)$ for all $n \geq 0$, but we only define them for $n = 0, 1$.

For $n = 0$, set $H^0(G,M)=M^G=\{m\in M: m^\sigma=m\,\,\text{for all}\,\,\sigma\in G\}.$

 Ω

A crossed homomorphism is a continuous homomorphism $f: G \to M$ satisfying

$$
f(\sigma\tau) = f(\sigma) + f(\tau)^{\sigma}
$$

for all $\sigma, \tau \in G$.

化重变 化重

 QQ

后

A crossed homomorphism is a continuous homomorphism $f: G \to M$ satisfying

$$
f(\sigma\tau) = f(\sigma) + f(\tau)^{\sigma}
$$

for all $\sigma, \tau \in G$.

A principal crossed homomorphism is a continuous homomorphism $f: G \to M$ satisfying

$$
f(\sigma) = m^{\sigma} - m
$$

for some fixed $m \in M$ and all $\sigma \in G$.

つくへ

$$
H^{1}(G, M) = \frac{\{\text{crossed homomorphisms}\}}{\{\text{principal crossed homomorphisms}\}}
$$

.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 19 Q Q ·

$$
H^1(G,M) = \frac{\{\text{crossed homomorphisms}\}}{\{\text{principal crossed homomorphisms}\}}
$$

Theorem

Given an exact sequence of G-modules

$$
0 \to M_1 \to M_2 \to M_3 \to 0,
$$

there is a canonical exact sequence

$$
0 \to M_1^G \to M_2^G \to M_3^G \to H^1(G, M_1) \to H^1(G, M_2) \to H^1(G, M_3).
$$

有 \sim

-41

.

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow \mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow$

つくへ

э

If G acts on M trivially then

イロト イ部 トメ 君 トメ 君 ト

E

If G acts on M trivially then

$$
\bullet \ \ H^0(G,M) = M
$$

イロト イ部 トメ 君 トメ 君 ト

目

If G acts on M trivially then

$$
\bullet \ \ H^0(G,M) = M
$$

$$
\bullet \ \ H^1(G,M) = \text{Hom}_{\text{grp}}(G,M).
$$

→ イ団 メ イ ヨ メ イ ヨ メ

E

If G acts on M trivially then

\n- $$
H^0(G, M) = M
$$
\n- $H^1(G, M) = \text{Hom}_{\text{grp}}(G, M).$
\n

Example

If $G = G_k$ and $M = E(k^{\text{al}})$, then $H^0(G, M) = E(k)$.

御 ▶ イ君 ▶ イ君

 290

э

If G acts on M trivially then

\n- $$
H^0(G, M) = M
$$
\n- $H^1(G, M) = \text{Hom}_{\text{grp}}(G, M).$
\n

Example

If
$$
G = G_k
$$
 and $M = E(k^{al})$, then $H^0(G, M) = E(k)$.

On the other hand, $H^1(G_k, E(k^{\rm al}))$ is not so easy...

す 御 メ イ 君 メ イ 君 メ

 $2Q$

э

If G acts on M trivially then

\n- $$
H^0(G, M) = M
$$
\n- $H^1(G, M) = \text{Hom}_{\text{grp}}(G, M).$
\n

Example

If
$$
G = G_k
$$
 and $M = E(k^{al})$, then $H^0(G, M) = E(k)$.

On the other hand, $H^1(G_k, E(k^{\rm al}))$ is not so easy...

In general we write $H^n(k,M)$ to denote $H^n(G_k,M)$.

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$

 QQ

For any integer n one has that the map $n: E(k^{\rm al}) \to E(k^{\rm al})$ is surjective.

個 トメミ トメミト

 299

э

For any integer n one has that the map $n: E(k^{\rm al}) \to E(k^{\rm al})$ is surjective.

This theorem gives an exact sequence:

$$
0 \to E(k^{\text{al}})[n] \to E(k^{\text{al}}) \stackrel{n}{\to} E(k^{\text{al}}) \to 0.
$$

化重变 化重

 QQ

For any integer n one has that the map $n: E(k^{\rm al}) \to E(k^{\rm al})$ is surjective.

This theorem gives an exact sequence:

$$
0 \to E(k^{\text{al}})[n] \to E(k^{\text{al}}) \stackrel{n}{\to} E(k^{\text{al}}) \to 0.
$$

Which in turn gives an exact sequence:

$$
0 \to E(k)[n] \to E(k) \xrightarrow{n} E(k) \to H^1(k, E(k^{\text{al}})[n])
$$

$$
\to H^1(k, E(k^{\text{al}})) \xrightarrow{n} H^1(k, E(k^{\text{al}})).
$$

 QQ

任 \sim

 $0 \to E(k)/nE(k) \to H^1(k, E(k^{al})[n]) \to H^1(k, E(k^{al}))[n] \to 0.$

 QQ

$$
0 \to E(k)/nE(k) \to H^{1}(k, E(k^{al})[n]) \to H^{1}(k, E(k^{al}))[n] \to 0.
$$

Unfortunately, $H^1(k,E(k^{\rm al})[n])$ is not in general finite.

$$
0 \to E(k)/nE(k) \to H^1(k, E(k^{al})[n]) \to H^1(k, E(k^{al}))[n] \to 0.
$$

Unfortunately, $H^1(k,E(k^{\rm al})[n])$ is not in general finite.

Goal: Replace $H^1(k, E(k^{\rm al})[n])$ with a group we can show is finite and contains the image of $E(k)/nE(k)$.

つくい

4 重 \rightarrow 重

×.

A \sim 299

∍

For each place v one obtains a commutative diagram:

$$
0 \longrightarrow E(k)/nE(k) \longrightarrow H^{1}(k, E(k^{al})[n]) \longrightarrow H^{1}(k, E(k^{al}))[n] \longrightarrow 0
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
0 \longrightarrow E(k_{v})/nE(k_{v}) \longrightarrow H^{1}(k_{v}, E(k_{v}^{al})[n]) \longrightarrow H^{1}(k_{v}, E(k_{v}^{al}))[n] \longrightarrow 0.
$$

For each place v one obtains a commutative diagram:

$$
0 \longrightarrow E(k)/nE(k) \longrightarrow H^{1}(k, E(k^{al})[n]) \longrightarrow H^{1}(k, E(k^{al}))[n] \longrightarrow 0
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
0 \longrightarrow E(k_{v})/nE(k_{v}) \longrightarrow H^{1}(k_{v}, E(k_{v}^{al})[n]) \longrightarrow H^{1}(k_{v}, E(k_{v}^{al}))[n] \longrightarrow 0.
$$

Define the n -Selmer group by

For each place v one obtains a commutative diagram:

$$
0 \longrightarrow E(k)/nE(k) \longrightarrow H^{1}(k, E(k^{al})[n]) \longrightarrow H^{1}(k, E(k^{al}))[n] \longrightarrow 0
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
0 \longrightarrow E(k_{v})/nE(k_{v}) \longrightarrow H^{1}(k_{v}, E(k_{v}^{al})[n]) \longrightarrow H^{1}(k_{v}, E(k_{v}^{al}))[n] \longrightarrow 0.
$$

Define the n -Selmer group by

$$
\text{Sel}_{n}(E/k) = \{c \in H^{1}(k, E(k^{\text{al}})[n]): \forall v, c_{v} \text{ comes from } E(k_{v})\}
$$

$$
= \text{ker}\left(H^{1}(k, E(k^{\text{al}})[n]) \to \prod_{v} H^{1}(k_{v}, E(k^{\text{al}}_{v}))\right).
$$

A

医阿里氏阿里

B э

$$
\amalg(E/k) = \ker\left(H^1(k,E(k^{\rm al})) \to \prod_{v} H^1(k_v,E(k^{\rm al}_v))\right).
$$

A

医阿里氏阿里

B э

$$
\mathsf{L}\mathsf{L}(E/k) = \ker\left(H^1(k, E(k^{\text{al}})) \to \prod_{v} H^1(k_v, E(k^{\text{al}}_v))\right).
$$

 \bullet It is conjectured that $\mathbf H$ is finite, but it is not known in general.

医阿雷氏阿雷氏

$$
\mathsf{L}\mathsf{L}(E/k) = \ker\left(H^1(k, E(k^{\text{al}})) \to \prod_{v} H^1(k_v, E(k^{\text{al}}_v))\right).
$$

- \bullet It is conjectured that $\mathbf H$ is finite, but it is not known in general.
- ² There is a precise (conjectural) relationship between the order of $I\!I\!I$ and the rank of $E(k)$.

化重 网络重

 QQ

$$
\mathsf{L}\mathsf{L}(E/k) = \ker\left(H^1(k, E(k^{\text{al}})) \to \prod_{v} H^1(k_v, E(k^{\text{al}}_v))\right).
$$

- \bullet It is conjectured that $\mathbf H$ is finite, but it is not known in general.
- ² There is a precise (conjectural) relationship between the order of \mathbf{H} and the rank of $E(k)$.
- \bullet With the proper geometric interpretation $\mathbf \mu$ provides a measure of the failure of the local-global principle.

つくへ

Using the exact sequence

$$
0 \to E(k)/nE(k) \to H^1(k, E(k^{\text{al}})[n]) \to H^1(k, E(k^{\text{al}}))[n] \to 0
$$

and the kernel-cokernel exact sequence we obtain:

∢∄≯⊣∢ \equiv

Using the exact sequence

$$
0 \to E(k)/nE(k) \to H^1(k, E(k^{\text{al}})[n]) \to H^1(k, E(k^{\text{al}}))[n] \to 0
$$

and the kernel-cokernel exact sequence we obtain:

$$
0 \to E(k)/nE(k) \to Sel_n(E/k) \to \amalg (E/k)[n] \to 0.
$$

∢∄≯⊣∢ \equiv

Finally, in the case of elliptic curves one can show $\text{Sel}_n(E/k)$ is finite. In fact, it is actually computable! Thus we obtain the weak Mordell-Weil theorem.

化重变 化重

 QQ

A

おす者 おす者

 $2Q$

∍

Considering E as an elliptic curve over k_{ν} , we can choose a (minimal) equation for E so that the $a_i \in \mathcal{O}_v$.

Considering E as an elliptic curve over k_{ν} , we can choose a (minimal) equation for E so that the $a_i \in \mathcal{O}_v$.

The curve obtained by taking the reduction of the a_i modulo ϖ_v does not depend on the choice of the equation and we write E_v , for this curve.

つくへ

Considering E as an elliptic curve over k_{ν} , we can choose a (minimal) equation for E so that the $a_i \in \mathcal{O}_v$.

The curve obtained by taking the reduction of the a_i modulo ϖ_v does not depend on the choice of the equation and we write \widetilde{E}_v , for this curve.

If E_v is an elliptic curve, we say E has good reduction at v .

 Ω

医电影天空

If \widetilde{E}_v is a cuspidal cubic, then $\widetilde{E}_v^{\text{ns}}$ is isomorphic to \mathbb{G}_a and we say E has additive reduction at v .

つくい

If \widetilde{E}_v is a cuspidal cubic, then $\widetilde{E}_v^{\text{ns}}$ is isomorphic to \mathbb{G}_a and we say E has additive reduction at v .

If E_v is a nodal cubic and the tangent lines at the node are defined over \mathbb{F}_v , then $\widetilde{E}^\text{ns}_v$ is isomorphic to \mathbb{G}_m and we say E has split multiplicative reduction at v .

If \widetilde{E}_v is a cuspidal cubic, then $\widetilde{E}_v^{\text{ns}}$ is isomorphic to \mathbb{G}_a and we say E has additive reduction at v .

If \widetilde{E}_v , is a nodal cubic and the tangent lines at the node are defined over \mathbb{F}_v , then $\widetilde{E}^\text{ns}_v$ is isomorphic to \mathbb{G}_m and we say E has split multiplicative reduction at v .

If \widetilde{E}_n , is a nodal cubic and the tangent lines at the node are not defined over \mathbb{F}_v , we say E has non-split multiplicative reduction at υ.

メロトメ 御 トメ きょくきょう きっ

Let S be the finite set of places where E does not have good reduction along with the archimedean places.

医间窦的间窦

Let S be the finite set of places where E does not have good reduction along with the archimedean places.

For
$$
v \notin S
$$
, set $a_v = 1 + q_v - #\widetilde{E}_v(\mathbb{F}_v)$.

医间窦的间窦

Let S be the finite set of places where E does not have good reduction along with the archimedean places.

For $v \notin S$, set $a_v = 1 + a_v - \# \widetilde{E}_v(\mathbb{F}_v)$.

For such v , set $L_v(E/k, s) = (1 - a_v q_v^{-s} + q_v^{1-2s})^{-1}$.

御 ト イヨ ト イヨ トー

 Ω

For $v \in S$, define

メロトメ 伊 トメ ミトメ 毛

 299

 $\,$ э

For $v \in S$, define

$$
L_v(E/k, s) = \begin{cases} 1 & E \text{ hi} \\ (1 - q_v^{-s})^{-1} & E \text{ hi} \\ (1 + q_v^{-s})^{-1} & E \text{ hi} \end{cases}
$$

as additive reduction as split multiplicative reduction as non-split multiplicative reduction

任 \sim

$$
L(E/k, s) = \prod_{v \nmid \infty} L_v(E/k, s).
$$

メロメ メタメ メミメ メミメー

 299

唐山

$$
L(E/k, s) = \prod_{v \nmid \infty} L_v(E/k, s).
$$

This L function can be completed by adding the terms for the infinite places.

化重变 化重

 \sim

$$
L(E/k, s) = \prod_{v \nmid \infty} L_v(E/k, s).
$$

This L function can be completed by adding the terms for the infinite places.

Once completed, the L-function has the usual properties one would expect.

医骨盆 医骨

Note that one can actually write $L_v(E/k, s)$ for any finite v as:

$$
L_v(E/k, s) = \det(1 - \sigma_v^{-1} q_v^{-s} | (T_{\ell}(E)^{\vee})^{I_v})^{-1}.
$$

御 ▶ イ君 ▶ イ君

 299

э

Weak BSD Conjecture

(Weak BSD) The rank of $E(\mathbb{Q})$ is the order of vanishing of $L(E/\mathbb{Q}, s)$ at $s = 1$.

御き メモ メメモ メー

 2990

重

Weak BSD Conjecture

(Weak BSD) The rank of $E(\mathbb{Q})$ is the order of vanishing of $L(E/\mathbb{Q}, s)$ at $s = 1$.

The strong form of the conjecture that gives the first coefficient in the Taylor expansion of $L(E/\mathbb{Q}, s)$ around $s = 1$ will be discussed in the following talk. Note that it contains the order of the Shafarevich-Tate group!

つくい