Some background on elliptic curves and Galois cohomology

Jim Brown

September 19, 2009

Jim Brown Some background on elliptic curves and Galois cohomology

Image: Image:

• A complete nonsingular curve E of genus 1 over k together with a point $O \in E(k)$.

- A complete nonsingular curve E of genus 1 over k together with a point $O \in E(k)$.
- **2** A nonsingular plane projective curve E of degree 3 together with a point $O \in E(k)$.

- A complete nonsingular curve E of genus 1 over k together with a point $O \in E(k)$.
- **2** A nonsingular plane projective curve E of degree 3 together with a point $O \in E(k)$.
- **③** A nonsingular plane projective curve E of the form

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}.$$

More familiarly, if $\operatorname{char} k \neq 2,3,$ one can write an elliptic curve in the form

$$Y^2 = X^3 + aX + b$$

where $\Delta=4a^3+27b^2\neq 0$ (along with a point at infinity (0:1:0).)

< ∃ >

Given a set R, we write E(R) for those P=(x,y) with $x,y\in R$ and $y^2=x^3+ax+b.$

伺 と く ヨ と く ヨ と

Given a set R, we write E(R) for those P = (x, y) with $x, y \in R$ and $y^2 = x^3 + ax + b$. There is an addition on E(k) that makes it into a group:

Given a set R, we write E(R) for those P = (x, y) with $x, y \in R$ and $y^2 = x^3 + ax + b$. There is an addition on E(k) that makes it into a group:

(Mordell-Weil) For any elliptic curve over a number field k, the group E(k) is finitely generated.

白 ト ・ ヨ ト ・ ヨ ト

э

(Mordell-Weil) For any elliptic curve over a number field k, the group E(k) is finitely generated.

1 This was shown by Mordell in the case $k = \mathbb{Q}$ in 1922.

→ Ξ →

(Mordell-Weil) For any elliptic curve over a number field k, the group E(k) is finitely generated.

- **1** This was shown by Mordell in the case $k = \mathbb{Q}$ in 1922.
- For general number fields this is contained the thesis of Weil (1928). (He actually proved: given any nonsingular projective curve C over a number field k, one has Pic⁰(C) is finitely generated.)

(Weak Mordell-Weil) For any elliptic curve E over a number field k and any integer n, E(k)/nE(k) is finite.

- < ≣ ≻ <

(Weak Mordell-Weil) For any elliptic curve E over a number field k and any integer n, E(k)/nE(k) is finite.

The Mordell-Weil theorem follows from the Weak Mordell-Weil theorem by a descent argument.

(Weak Mordell-Weil) For any elliptic curve E over a number field k and any integer n, E(k)/nE(k) is finite.

The Mordell-Weil theorem follows from the Weak Mordell-Weil theorem by a descent argument.

To prove the Weak Mordell-Weil theorem one uses Galois cohomology, which we now review.

18 ►

We write G_k for $\operatorname{Gal}(k^{\operatorname{al}}/k)$.

We write G_k for $\operatorname{Gal}(k^{\mathrm{al}}/k)$.

We write $E(k^{al})[n]$ for the *n*-torsion points of $E(k^{al})$, i.e., the points $P \in E(k^{al})$ so that nP = 0.

We write G_k for $\operatorname{Gal}(k^{\mathrm{al}}/k)$.

We write $E(k^{al})[n]$ for the *n*-torsion points of $E(k^{al})$, i.e., the points $P \in E(k^{al})$ so that nP = 0.

Note that one has a natural action of G_k on $E(k^{\rm al})$ and on $E(k^{\rm al})[n]$ given by $\sigma \cdot (x,y) = (x^{\sigma}, y^{\sigma})$.

Let G be a topological group and M a $G\operatorname{-module}$ where the action of G on M is continuous.

Let G be a topological group and M a G-module where the action of G on M is continuous.

One can define cohomology groups $H^n(G, M)$ for all $n \ge 0$, but we only define them for n = 0, 1.

Let G be a topological group and M a G-module where the action of G on M is continuous.

One can define cohomology groups $H^n(G, M)$ for all $n \ge 0$, but we only define them for n = 0, 1.

For n=0, set $H^0(G,M)=M^G=\{m\in M:m^\sigma=m \text{ for all } \sigma\in G\}.$

A crossed homomorphism is a continuous homomorphism $f:G\to M$ satisfying

$$f(\sigma\tau) = f(\sigma) + f(\tau)^{\sigma}$$

for all $\sigma, \tau \in G$.

4 B K 4 B K

A crossed homomorphism is a continuous homomorphism $f:G\to M$ satisfying

$$f(\sigma\tau) = f(\sigma) + f(\tau)^{\sigma}$$

for all $\sigma, \tau \in G$.

A principal crossed homomorphism is a continuous homomorphism $f:G\to M$ satisfying

$$f(\sigma) = m^{\sigma} - m$$

for some fixed $m \in M$ and all $\sigma \in G$.

$H^1(G,M) = \frac{\{\text{crossed homomorphisms}\}}{\{\text{principal crossed homomorphisms}\}}.$

留 と く ヨ と く ヨ と

$$H^1(G,M) = \frac{\{\text{crossed homomorphisms}\}}{\{\text{principal crossed homomorphisms}\}}$$

Theorem

Given an exact sequence of G-modules

$$0 \to M_1 \to M_2 \to M_3 \to 0,$$

there is a canonical exact sequence

$$0 \to M_1^G \to M_2^G \to M_3^G \to H^1(G, M_1) \to H^1(G, M_2) \to H^1(G, M_3).$$

/□ ▶ < 글 ▶ < 글

э

If ${\cal G}$ acts on ${\cal M}$ trivially then

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

If ${\cal G}$ acts on ${\cal M}$ trivially then

$$\bullet H^0(G,M) = M$$

御 と く ヨ と く ヨ と

If ${\cal G}$ acts on ${\cal M}$ trivially then

1
$$H^0(G, M) = M$$

$$H^1(G, M) = \operatorname{Hom}_{\operatorname{grp}}(G, M).$$

御 と く ヨ と く ヨ と

э

If G acts on M trivially then

$$\bullet \ H^0(G,M) = M$$

$$H^1(G, M) = \operatorname{Hom}_{\operatorname{grp}}(G, M).$$

Example

If $G = G_k$ and $M = E(k^{al})$, then $H^0(G, M) = E(k)$.

□ > < = > <

э

If G acts on M trivially then

$$H^0(G,M) = M$$

$$H^1(G, M) = \operatorname{Hom}_{\operatorname{grp}}(G, M)$$

Example

If $G = G_k$ and $M = E(k^{al})$, then $H^0(G, M) = E(k)$.

On the other hand, $H^1(G_k, E(k^{al}))$ is not so easy...

- **→** → **→**

If G acts on M trivially then

Example

If $G = G_k$ and $M = E(k^{al})$, then $H^0(G, M) = E(k)$.

On the other hand, $H^1(G_k, E(k^{al}))$ is not so easy...

In general we write $H^n(k, M)$ to denote $H^n(G_k, M)$.

For any integer n one has that the map $n: E(k^{\rm al}) \to E(k^{\rm al})$ is surjective.

御 と く ヨ と く ヨ と

э

For any integer n one has that the map $n:E(k^{\rm al})\to E(k^{\rm al})$ is surjective.

This theorem gives an exact sequence:

$$0 \to E(k^{\mathrm{al}})[n] \to E(k^{\mathrm{al}}) \xrightarrow{n} E(k^{\mathrm{al}}) \to 0.$$

- 4 注 > - 4

For any integer n one has that the map $n:E(k^{\rm al})\to E(k^{\rm al})$ is surjective.

This theorem gives an exact sequence:

$$0 \to E(k^{\rm al})[n] \to E(k^{\rm al}) \xrightarrow{n} E(k^{\rm al}) \to 0.$$

Which in turn gives an exact sequence:

$$0 \to E(k)[n] \to E(k) \xrightarrow{n} E(k) \to H^1(k, E(k^{\rm al})[n])$$
$$\to H^1(k, E(k^{\rm al})) \xrightarrow{n} H^1(k, E(k^{\rm al})).$$

$$0 \to E(k)/nE(k) \to H^1(k, E(k^{\mathrm{al}})[n]) \to H^1(k, E(k^{\mathrm{al}}))[n] \to 0.$$

$$0 \to E(k)/nE(k) \to H^1(k, E(k^{\mathrm{al}})[n]) \to H^1(k, E(k^{\mathrm{al}}))[n] \to 0.$$

Unfortunately, $H^1(k, E(k^{al})[n])$ is not in general finite.

$$0 \to E(k)/nE(k) \to H^1(k, E(k^{\mathrm{al}})[n]) \to H^1(k, E(k^{\mathrm{al}}))[n] \to 0.$$

Unfortunately, $H^1(k, E(k^{al})[n])$ is not in general finite.

Goal: Replace $H^1(k, E(k^{al})[n])$ with a group we can show is finite and contains the image of E(k)/nE(k).

< ∃ →

-

For each place v one obtains a commutative diagram:

For each place v one obtains a commutative diagram:

Define the n-Selmer group by

For each place v one obtains a commutative diagram:

Define the n-Selmer group by

$$\operatorname{Sel}_{n}(E/k) = \{ c \in H^{1}(k, E(k^{\operatorname{al}})[n]) : \forall v, c_{v} \text{ comes from } E(k_{v}) \}$$
$$= \ker \left(H^{1}(k, E(k^{\operatorname{al}})[n]) \to \prod_{v} H^{1}(k_{v}, E(k_{v}^{\operatorname{al}})) \right).$$

A 10

$$\amalg(E/k) = \ker\left(H^1(k, E(k^{\rm al})) \to \prod_{\upsilon} H^1(k_{\upsilon}, E(k_{\upsilon}^{\rm al}))\right).$$

A 10

$$\amalg(E/k) = \ker\left(H^1(k, E(k^{\rm al})) \to \prod_{\upsilon} H^1(k_{\upsilon}, E(k_{\upsilon}^{\rm al}))\right).$$

It is conjectured that Ⅲ is finite, but it is not known in general.

$$\amalg(E/k) = \ker\left(H^1(k, E(k^{\rm al})) \to \prod_{\upsilon} H^1(k_{\upsilon}, E(k_{\upsilon}^{\rm al}))\right).$$

- It is conjectured that Ⅲ is finite, but it is not known in general.
- **2** There is a precise (conjectural) relationship between the order of \coprod and the rank of E(k).

$$\amalg(E/k) = \ker\left(H^1(k, E(k^{\rm al})) \to \prod_{\upsilon} H^1(k_{\upsilon}, E(k_{\upsilon}^{\rm al}))\right).$$

- It is conjectured that Ⅲ is finite, but it is not known in general.
- **2** There is a precise (conjectural) relationship between the order of \coprod and the rank of E(k).
- Solution With the proper geometric interpretation □ provides a measure of the failure of the local-global principle.

Using the exact sequence

$$0 \to E(k)/nE(k) \to H^1(k, E(k^{\mathrm{al}})[n]) \to H^1(k, E(k^{\mathrm{al}}))[n] \to 0$$

and the kernel-cokernel exact sequence we obtain:

∃ >

Using the exact sequence

$$0 \to E(k)/nE(k) \to H^1(k, E(k^{\rm al})[n]) \to H^1(k, E(k^{\rm al}))[n] \to 0$$

and the kernel-cokernel exact sequence we obtain:

$$0 \to E(k)/nE(k) \to \operatorname{Sel}_n(E/k) \to \amalg(E/k)[n] \to 0.$$

∃ >

Finally, in the case of elliptic curves one can show $\mathrm{Sel}_n(E/k)$ is finite. In fact, it is actually computable! Thus we obtain the weak Mordell-Weil theorem.

Let E be an elliptic curve over k and let υ be a finite place.

→ 3 → < 3</p>

Let E be an elliptic curve over k and let v be a finite place.

Considering E as an elliptic curve over k_v , we can choose a (minimal) equation for E so that the $a_i \in \mathcal{O}_v$.

Let E be an elliptic curve over k and let v be a finite place.

Considering E as an elliptic curve over k_v , we can choose a (minimal) equation for E so that the $a_i \in \mathcal{O}_v$.

The curve obtained by taking the reduction of the $a_i \mod \varpi_v$ does not depend on the choice of the equation and we write \widetilde{E}_v for this curve.

Let E be an elliptic curve over k and let v be a finite place.

Considering E as an elliptic curve over k_v , we can choose a (minimal) equation for E so that the $a_i \in \mathcal{O}_v$.

The curve obtained by taking the reduction of the a_i modulo ϖ_v does not depend on the choice of the equation and we write \tilde{E}_v for this curve.

If \widetilde{E}_v is an elliptic curve, we say E has good reduction at v.

If \widetilde{E}_v is not an elliptic curve, we can still put a group structure on $\widetilde{E}_v^{\rm ns}.$

< ∃ >

If \widetilde{E}_v is not an elliptic curve, we can still put a group structure on $\widetilde{E}_v^{\rm ns}.$

If \widetilde{E}_v is a cuspidal cubic, then \widetilde{E}_v^{ns} is isomorphic to \mathbb{G}_a and we say E has additive reduction at v.

If \widetilde{E}_v is not an elliptic curve, we can still put a group structure on $\widetilde{E}_v^{\rm ns}.$

If \widetilde{E}_v is a cuspidal cubic, then \widetilde{E}_v^{ns} is isomorphic to \mathbb{G}_a and we say E has additive reduction at v.

If \widetilde{E}_{v} is a nodal cubic and the tangent lines at the node are defined over \mathbb{F}_{v} , then \widetilde{E}_{v}^{ns} is isomorphic to \mathbb{G}_{m} and we say E has split multiplicative reduction at v.

If \tilde{E}_v is not an elliptic curve, we can still put a group structure on $\tilde{E}_v^{\rm ns}.$

If \widetilde{E}_v is a cuspidal cubic, then \widetilde{E}_v^{ns} is isomorphic to \mathbb{G}_a and we say E has additive reduction at v.

If \widetilde{E}_{v} is a nodal cubic and the tangent lines at the node are defined over \mathbb{F}_{v} , then \widetilde{E}_{v}^{ns} is isomorphic to \mathbb{G}_{m} and we say E has split multiplicative reduction at v.

If \widetilde{E}_v is a nodal cubic and the tangent lines at the node are not defined over \mathbb{F}_v , we say E has non-split multiplicative reduction at v.

Let $q_{\upsilon} = \# \mathbb{F}_{\upsilon}$.

Let $q_v = \# \mathbb{F}_v$.

Let S be the finite set of places where E does not have good reduction along with the archimedean places.

- ∢ ≣ ▶

Let $q_v = \# \mathbb{F}_v$.

Let S be the finite set of places where E does not have good reduction along with the archimedean places.

For $v \notin S$, set $a_v = 1 + q_v - \# \widetilde{E}_v(\mathbb{F}_v)$.

Let $q_v = \# \mathbb{F}_v$.

Let S be the finite set of places where E does not have good reduction along with the archimedean places.

For $v \notin S$, set $a_v = 1 + q_v - \# \widetilde{E}_v(\mathbb{F}_v)$.

For such v, set $L_v(E/k, s) = (1 - a_v q_v^{-s} + q_v^{1-2s})^{-1}$.

For $\upsilon \in S,$ define

A ►

< E ► < E

For $v \in S$, define

$$L_{v}(E/k,s) = \begin{cases} 1\\ (1-q_{v}^{-s})^{-1}\\ (1+q_{v}^{-s})^{-1} \end{cases}$$

E has additive reduction E has split multiplicative reduction E has non-split multiplicative reduction

$$L(E/k,s) = \prod_{\upsilon \nmid \infty} L_{\upsilon}(E/k,s).$$

・ロン ・部 と ・ ヨ と ・ ヨ と …

$$L(E/k,s) = \prod_{v \nmid \infty} L_v(E/k,s).$$

This L function can be completed by adding the terms for the infinite places.

∃ → < ∃</p>

$$L(E/k,s) = \prod_{v \nmid \infty} L_v(E/k,s).$$

This L function can be completed by adding the terms for the infinite places.

Once completed, the $L\mbox{-function}$ has the usual properties one would expect.

Note that one can actually write $L_v(E/k,s)$ for any finite v as:

$$L_{v}(E/k,s) = \det(1 - \sigma_{v}^{-1}q_{v}^{-s} \mid (T_{\ell}(E)^{\vee})^{I_{v}})^{-1}$$

- < ≣ ≻ <

Weak BSD Conjecture

(Weak BSD) The rank of $E(\mathbb{Q})$ is the order of vanishing of $L(E/\mathbb{Q}, s)$ at s = 1.

伺 ト く ヨ ト く ヨ ト

Weak BSD Conjecture

(Weak BSD) The rank of $E(\mathbb{Q})$ is the order of vanishing of $L(E/\mathbb{Q},s)$ at s=1.

The strong form of the conjecture that gives the first coefficient in the Taylor expansion of $L(E/\mathbb{Q}, s)$ around s = 1 will be discussed in the following talk. Note that it contains the order of the Shafarevich-Tate group!