Zachary A. Kent Emory University

Classical Eichler-Shimura Theory

Modular Forms

Basic Definitions

Basic Definitions

Notation: Throughout, let

 $z = x + iy \in \mathbb{H}$ with $x, y \in \mathbb{R}$ and y > 0.

Basic Definitions

Notation: Throughout, let

$$z = x + iy \in \mathbb{H}$$
 with $x, y \in \mathbb{R}$ and $y > 0$.

"Definition"

A modular form of weight k is any holomorphic function f on \mathbb{H} satisfying:

Basic Definitions

Notation: Throughout, let

$$z = x + iy \in \mathbb{H}$$
 with $x, y \in \mathbb{R}$ and $y > 0$.

"Definition"

A modular form of weight k is any holomorphic function f on \mathbb{H} satisfying:

1 For all
$$\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}
ight) \in \mathrm{SL}_2(\mathbb{Z})$$
, we have

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z).$$

Basic Definitions

Notation: Throughout, let

$$z = x + iy \in \mathbb{H}$$
 with $x, y \in \mathbb{R}$ and $y > 0$.

"Definition"

A modular form of weight k is any holomorphic function f on \mathbb{H} satisfying:

) For all
$$\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}
ight)\in\mathrm{SL}_2(\mathbb{Z})$$
, we have

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z).$$

2 We have that f is holomorphic at the cusps.

Classical Eichler-Shimura Theory

Modular Forms

Fourier expansions

Classical Eichler-Shimura Theory

Modular Forms

Fourier expansions

Lemma

If f is a weight k modular form, then

$$f(z) = \sum_{n \ge 0} c_f(n)q^n$$
 where $q := \exp(2\pi i z)$.

Classical Eichler-Shimura Theory

Modular Forms

Fourier expansions

Lemma

If f is a weight k modular form, then

$$f(z) = \sum_{n \ge 0} c_f(n) q^n$$
 where $q := \exp(2\pi i z)$.

(日) (日) (日) (日) (日) (日) (日) (日)

Notation

• $M_k :=$ weight k modular forms.

Classical Eichler-Shimura Theory

Modular Forms

Fourier expansions

Lemma

If f is a weight k modular form, then

$$f(z) = \sum_{n \ge 0} c_f(n)q^n$$
 where $q := \exp(2\pi i z)$.

Notation

- $M_k :=$ weight k modular forms.
- $S_k := \text{weight } k \text{ cusp forms}$ (subspace of M_k whose forms have vanishing constant terms)

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Periods

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

Periods

The Setting

• $k \ge 4$ is an even integer

Eichler-Shimura-Manin

Periods

The Setting

• $k \ge 4$ is an even integer

Definition

If $f \in S_k$ and $0 \le n \le k - 2$, then the *n*th **period** of *f* is

$$r_n(f):=\int_0^\infty f(it)t^n dt.$$

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

Periods and L-values

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

Periods and L-values

Remark

For these n, we have the following relation with critical values

$$L(f, n+1) = \frac{(2\pi)^{n+1}}{n!} \cdot r_n(f).$$

Classical Eichler-Shimura Theory

Eichler-Shimura-Manin

Period Polynomials

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

Period Polynomials

Lemma

If $f \in S_k$ and

$$r(f;z):=\int_0^{i\infty}f(\tau)(z-\tau)^{k-2}d\tau,$$

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

Period Polynomials

Lemma

If $f \in S_k$ and

$$r(f;z) := \int_0^{i\infty} f(\tau)(z-\tau)^{k-2} d\tau,$$

then

$$r(f;z) = \sum_{n=0}^{k-2} i^{-n+1} \binom{k-2}{n} \cdot r_n(f) \cdot z^{k-2-n}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

Abstract Framework

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

Abstract Framework

Definition

If $P \in \mathbf{V} := \mathbf{V}_{k-2}(\mathbb{C}) = \text{polynomials of degree} \le k-2$, and $\gamma := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, then let

$$P|\gamma := (cz+d)^{k-2} \cdot P\left(\frac{az+b}{cz+d}\right)$$

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

Abstract Framework

Definition

If $P \in \mathbf{V} := \mathbf{V}_{k-2}(\mathbb{C}) = \text{polynomials of degree} \le k-2$, and $\gamma := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, then let

$$P|\gamma := (cz+d)^{k-2} \cdot P\left(rac{az+b}{cz+d}
ight)$$

Lemma

Let
$$S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $U := \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, and let

 $\mathbf{W} := \{ P \in \mathbf{V} : P + P | S = P + P | U + P | U^2 = 0 \}.$

Classical Eichler-Shimura Theory Eichler-Shimura-Manin

Abstract Framework

Definition

If $P \in \mathbf{V} := \mathbf{V}_{k-2}(\mathbb{C}) = \text{polynomials of degree} \le k-2$, and $\gamma := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, then let

$$P|\gamma := (cz+d)^{k-2} \cdot P\left(rac{az+b}{cz+d}
ight)$$

Lemma

Let
$$S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $U := \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, and let

$$\mathbf{W} := \{ P \in \mathbf{V} : P + P | S = P + P | U + P | U^2 = 0 \}.$$

Then **W** is the cohomology group $H^1(SL_2(\mathbb{Z}), \mathbf{V})$.

Classical Eichler-Shimura Theory Eichler-Shimura-Manin, Kohnen-Zagier

Eichler-Shimura Isomorphism

Classical Eichler-Shimura Theory Eichler-Shimura-Manin, Kohnen-Zagier

Eichler-Shimura Isomorphism

Remark

The map $r: f \longrightarrow r(f; z)$ defines a homomorphism

$$r: S_k \longrightarrow \mathbf{W}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Classical Eichler-Shimura Theory Eichler-Shimura-Manin, Kohnen-Zagier

Eichler-Shimura Isomorphism

Remark

The map $r : f \longrightarrow r(f; z)$ defines a homomorphism

$$r: S_k \longrightarrow \mathbf{W}.$$

Theorem (Eichler-Shimura)

If $\mathbf{W}_0 \subset \mathbf{W}$ is the codim. 1 space not containing $z^{k-2} - 1$, then

$$r: S_k \longrightarrow \mathbf{W}_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is an isomorphism.

Classical Eichler-Shimura Theory

Eichler-Shimura-Manin, Kohnen-Zagier

A larger theory?

Classical Eichler-Shimura Theory Eichler-Shimura-Manin, Kohnen-Zagier

A larger theory?

Question

Is this all part of a larger theory?

Harmonic Maass forms

Harmonic Maass Forms

Mock modular forms and their shadows Harmonic Maass forms

Harmonic Maass Forms

The theory of harmonic Maass forms has many applications.

Mock modular forms and their shadows Harmonic Maass forms

Harmonic Maass Forms

The theory of harmonic Maass forms has many applications.

- Partitions and q-series identities
- Moonshine for affine Lie superalgebras
- Borcherds' products
- Donaldson invariants (Moore-Witten Conjecture)

Harmonic Maass forms

Definition

Basic Definitions

Harmonic Maass forms

Definition

Basic Definitions

Hyperbolic Laplacian:

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

Harmonic Maass forms

Definition

Harmonic weak Maass forms

"Definition"

A harmonic Maass form is any smooth function F on \mathbb{H} satisfying:

Harmonic Maass forms

Definition

Harmonic weak Maass forms

"Definition"

A harmonic Maass form is any smooth function F on \mathbb{H} satisfying:

• For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, we have

$$F\left(\frac{az+b}{cz+d}\right) = (cz+d)^k F(z).$$

Harmonic Maass forms

Definition

Harmonic weak Maass forms

"Definition"

A harmonic Maass form is any smooth function F on \mathbb{H} satisfying:

• For all
$$\left(\begin{smallmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{smallmatrix}
ight) \in \operatorname{SL}_2(\mathbb{Z})$$
, we have

$$F\left(\frac{az+b}{cz+d}\right) = (cz+d)^k F(z).$$

2 We have that
$$\Delta_k F = 0$$
.

Harmonic Maass forms

Definition

Harmonic weak Maass forms

"Definition"

A harmonic Maass form is any smooth function F on \mathbb{H} satisfying:

• For all
$$\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}
ight) \in \mathrm{SL}_2(\mathbb{Z})$$
, we have

$$F\left(\frac{az+b}{cz+d}\right) = (cz+d)^k F(z).$$

2 We have that
$$\Delta_k F = 0$$
.

Notation

The space of weight k harmonic Maass forms is denoted H_k .

Harmonic Maass forms

Fourier expansions

Fourier expansions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Harmonic Maass forms

Fourier expansions

Fourier expansions

Lemma (Bruinier, Funke)

If $F \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ -function, then

Harmonic Maass forms

Fourier expansions

Fourier expansions

Lemma (Bruinier, Funke)

If $F \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ -function, then

$$F(z) = \sum_{n \gg -\infty} c_F^+(n)q^n + \sum_{n < 0} c_F^-(n)\Gamma(k - 1, 4\pi |n|y)q^n.$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Holomorphic part F^+ Nonholomorphic part F^-

Remark

The function F^+ is called a mock modular form.

Harmonic Maass forms

Differential Operators

Relation to classical modular forms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Harmonic Maass forms

Differential Operators

Relation to classical modular forms

• $M_k^!$:= weight k weakly holomorphic modular forms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Harmonic Maass forms

Differential Operators

Relation to classical modular forms

- $M_k^!$:= weight *k* weakly holomorphic modular forms.
- S[!]_k := weight k weakly holomorphic cusp forms (subspace of M[!]_k whose forms have vanishing constant terms.)

Harmonic Maass forms

Differential Operators

Relation to classical modular forms

- $M_k^!$:= weight k weakly holomorphic modular forms.
- S[!]_k := weight k weakly holomorphic cusp forms (subspace of M[!]_k whose forms have vanishing constant terms.)

Lemma

If
$$D := \frac{1}{2\pi i} \cdot \frac{d}{dz}$$
, then
• $D^{k-1} : M^{!}_{2-k} \longrightarrow S^{!}_{k}$ (Bol),

Harmonic Maass forms

Differential Operators

Relation to classical modular forms

- $M_k^!$:= weight *k* weakly holomorphic modular forms.
- S[!]_k := weight k weakly holomorphic cusp forms (subspace of M[!]_k whose forms have vanishing constant terms.)

Lemma

If
$$D := \frac{1}{2\pi i} \cdot \frac{d}{dz}$$
, then
• $D^{k-1} : M_{2-k}^! \longrightarrow S_k^!$ (Bol),
• $D^{k-1} : H_{2-k} \longrightarrow S_k^!$ (Bruinier, Ono, Rhoades).

Harmonic Maass forms

Differential Operators

Relation to classical modular forms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Harmonic Maass forms

Differential Operators

Relation to classical modular forms

Lemma (Bruinier, Funke)

If $\xi_w := 2iy^w \overline{\frac{\partial}{\partial \overline{z}}}$, then

$$\xi_{2-k}: H_{2-k} \twoheadrightarrow S_k.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Harmonic Maass forms

Differential Operators

Relation to classical modular forms

Lemma (Bruinier, Funke)
If
$$\xi_w := 2iy^w \overline{\frac{\partial}{\partial \overline{z}}}$$
, then
 $\xi_{2-k} : H_{2-k} \twoheadrightarrow S_k$.

Remark

The cusp form $\xi_{2-k}(F)$ is called the **shadow** of F^+ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Extended Eichler-Shimura Theory

Period polynomials

Period polynomials revisited

Definition

For $f \in S_k$, the period polynomial is given by

$$r(f;z):=\int_0^{i\infty}f(\tau)(z-\tau)^{k-2}d\tau,$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Extended Eichler-Shimura Theory

Period polynomials

Period polynomials revisited

Definition

For $f \in S_k$, the period polynomial is given by

$$r(f;z) := \int_0^{i\infty} f(\tau)(z-\tau)^{k-2} d\tau,$$

Remark

For $f \in S_k^!$, the above integral may be divergent.

Extended Eichler-Shimura Theory

Period polynomials

The Regularized integral

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mock modular forms and their shadows Extended Eichler-Shimura Theory Period polynomials

The Regularized integral

Consider a continuous function $f : \mathbb{H} \to \mathbb{C}$ and

$$f(z) = O(e^{c \ln z})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for some $c \in \mathbb{R}^+$ as $\text{Im } z \to \infty$.

Mock modular forms and their shadows Extended Eichler-Shimura Theory Period polynomials

The Regularized integral

Consider a continuous function $f : \mathbb{H} \to \mathbb{C}$ and

$$f(z) = O(e^{c \ln z})$$

for some $c \in \mathbb{R}^+$ as $\operatorname{Im} z \to \infty$.

Definition (Fricke, Rankin-Selberg) For $t \gg 0$, if $\int_{i}^{i\infty} e^{itz} f(z) dz$

has an analytic continuation to t = 0, then we define

$$R.\int_{i}^{i\infty}f(z)\,dz:=\left[\int_{i}^{i\infty}e^{itz}f(z)\,dz\right]_{t=0}.$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 のへぐ

Extended Eichler-Shimura Theory Generalized Period Polynomials

More period polynomials

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalized Period Polynomials

More period polynomials

If $f \in S_k$, then

$$r(f;z) := \int_0^{i\infty} f(\tau)(z-\tau)^{k-2} d\tau.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Generalized Period Polynomials

More period polynomials

If $f \in S_k$, then

$$r(f;z) := \int_0^{i\infty} f(\tau)(z-\tau)^{k-2} d\tau.$$

Definition

For $f \in S_k^!$, define

$$r(f;z) := R. \int_0^{i\infty} f(\tau)(z-\tau)^{k-2} d\tau.$$

Extended Eichler-Shimura Theory Generalized Period Polynomials

Mock modular forms and Eichler integrals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mock modular forms and their shadows Extended Eichler-Shimura Theory Generalized Period Polynomials

Mock modular forms and Eichler integrals

Remark

Recall the extended Bol-type identity:

$$D^{k-1}: H_{2-k} \longrightarrow S^!_k$$
 (Bruinier, Ono, Rhoades).

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Mock modular forms and their shadows Extended Eichler-Shimura Theory Generalized Period Polynomials

Mock modular forms and Eichler integrals

Remark

Recall the extended Bol-type identity:

$$D^{k-1}: H_{2-k} \longrightarrow S^!_k$$
 (Bruinier, Ono, Rhoades).

Remark

Mock modular forms "are" regularized iterated integrals of weakly holomorphic cusp forms.

Extended Eichler-Shimura Theory Generalized Period Polynomials

Mock modular periods generate critical L-values

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mock modular forms and their shadows Extended Eichler-Shimura Theory Generalized Period Polynomials

Mock modular periods generate critical L-values

Theorem (Bringmann, Guerzhoy, Kent, Ono) If $F \in H_{2-k}$ and $g = \xi_{2-k}(F) \in S_k$, then

$$F^{+}(z) - z^{k-2}F^{+}(-1/z) = \sum_{n=0}^{k-2} (-1)^{n} \frac{\overline{L(g, n+1)}}{(k-2-n)!} \cdot (2\pi i z)^{k-2-n}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extended Eichler-Shimura Theory Generalized Eichler-Shimura

Original Eichler-Shimura Isomorphism

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Extended Eichler-Shimura Theory Generalized Eichler-Shimura

Original Eichler-Shimura Isomorphism

Theorem (Eichler-Shimura)

If $\mathbf{W}_0 \subset \mathbf{W}$ is the codim. 1 space not containing $z^{k-2} - 1$, then

$$r: S_k \longrightarrow \mathbf{W}_0$$

is an isomorphism.

Extended Eichler-Shimura Theory Generalized Eichler-Shimura

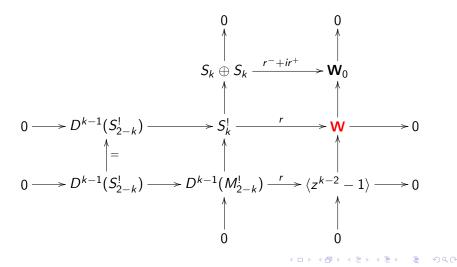
New Eichler-Shimura isomorphisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mock modular forms and their shadows Extended Eichler-Shimura Theory Generalized Eichler-Shimura

New Eichler-Shimura isomorphisms

The following diagram is commutative:



Extended Eichler-Shimura Theory

Hecke theory

More eigenforms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

More eigenforms

Remark

The isomorphism

$$S_k^!/D^{k-1}(M_{2-k}^!)\cong \mathbf{W}_0$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

suggests that there are more eigenforms than just those in S_k .

More eigenforms

Remark

The isomorphism

$$S_k^!/D^{k-1}(M_{2-k}^!)\cong \mathbf{W}_0$$

suggests that there are more eigenforms than just those in S_k .

Definition

For any positive integer $m \ge 2$, let T(m) be the usual weight k index m Hecke operator.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extended Eichler-Shimura Theory

Hecke theory

More eigenforms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

More eigenforms

Definition

We say $f \in S_k^!$ is a *Hecke eigenform* if for every Hecke operator T(m) there is a complex number λ_m for which

$$(f \mid_k T(m) - \lambda_m f)(z) \in D^{k-1}\left(M_{2-k}^!\right).$$

More eigenforms

Definition

We say $f \in S_k^!$ is a *Hecke eigenform* if for every Hecke operator T(m) there is a complex number λ_m for which

$$(f \mid_k T(m) - \lambda_m f)(z) \in D^{k-1}\left(M_{2-k}^!\right).$$

Remark

This extends the usual definition of Hecke eigenform for S_k .

Multiplicity two theorem

Theorem (Bringmann, Guerzhoy, Kent, Ono)
Let
$$d = \dim S_k$$
. Then

$$S_k^!/D^{k-1}(M_{2-k}^!) = \bigoplus_{i=1}^d \mathbb{T}_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where each \mathbb{T}_i is a 2-dimensional Hecke eigenspace.