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Basic Definitions

Notation: Throughout, let

z=x+iyeH with x,yeR and y>0.

“Definition”
A modular form of weight k is any holomorphic function f on H
satisfying:

Q Forall (25) € SLy(Z), we have

f (ZIZ) — (cz+ d) £(2).

@ We have that f is holomorphic at the cusps.




Mock modular forms and their shadows
Classical Eichler-Shimura Theory
Modular Forms

Fourier expansion




Mock modular forms and their shadows
Classical Eichler-Shimura Theory
Modular Forms

Fourier expansions

Lemma
If f is a weight k modular form, then

f(z) = Z cr(n)q" where g := exp(2miz).
n>0




Mock modular forms and their shadows
Classical Eichler-Shimura Theory
Modular Forms

Fourier expansions

Lemma
If f is a weight k modular form, then

f(z) = Z cr(n)q" where g := exp(2miz).
n>0
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o My := weight kK modular forms.
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Fourier expansions

Lemma
If f is a weight k modular form, then

f(z) = Z cr(n)q" where g := exp(2miz).

n>0
Notation
o My := weight kK modular forms.
o S, := weight k cusp forms

(subspace of My whose forms have vanishing constant terms)
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The Setting
@ k >4 is an even integer

Definition
If f €S, and0<n<k—2, then the nth period of f is

ro(F) = /O  fit)endt.
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Periods and L-values

Remark
For these n, we have the following relation with critical values

L(f,n+1) = (2”,7)|+1 ralF).
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Lemma
If f € S and
H(F:2) = / F(r)(z — 7)<,
0

then -

= k —2

r(f;z) = /"H( ) ) ra(f) s
n=0
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Abstract Framework

Definition
If P €V :=V,_»(C) = polynomials of degree < k — 2,
and v:= (25) € SLy(Z), then let

+b
Ply = dyf2.p(Z12)
[y:i=(cz+d) (cz+d

Lemma
Let S = ((1) _01) and U := (i _01), and let

W:={PcV : P+P|S=P+P|U+PIU>=0}.

Then W is the cohomology group H'(SLa(Z), V).
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Remark
The map r : f — r(f; z) defines a homomorphism

r:Sg— W.
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Eichler-Shimura Isomorphism

Remark

The map r : f — r(f; z) defines a homomorphism

r:Sg— W.

Theorem (Eichler-Shimura)

If Wog C W s the codim. 1 space not containing zk=2 _ 1, then

r:Sk—>W0

is an isomorphism.
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A larger theory?

Question
Is this all part of a larger theory? J
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Harmonic Maass Forms

The theory of harmonic Maass forms has many applications.

o Partitions and g-series identities

@ Moonshine for affine Lie superalgebras

Borcherds' products

Donaldson invariants (Moore-Witten Conjecture)
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Hyperbolic Laplacian:

2 o2 o 0
22 o H _ _—
Bui=y <5x2 " 0y2> i <3X " '8y>
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“Definition”
A harmonic Maass form s any smooth function F on H
satisfying:

Q Forall (25) € SLy(Z), we have

= (zis) = (cz+ d)* F(2).
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“Definition”
A harmonic Maass form s any smooth function F on H
satisfying:

Q Forall (25) € SLy(Z), we have

= (az +Z) = (cz+ d)* F(2).

cz +

@ We have that AyF = 0.
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Harmonic weak Maass forms

“Definition”
A harmonic Maass form s any smooth function F on H
satisfying:

Q Forall (25) € SLy(Z), we have

= (az +Z> = (cz+ d)* F(2).

cz +

@ We have that AyF = 0.

Notation
The space of weight k harmonic Maass forms is denoted Hy.
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Lemma (Bruinier, Funke)
If F € Hy_y and T (a, x) is the incomplete T -function, then

F@) = 3 ct(ng"+ 3 cr(mr(k — 1 4lnly)q"

n>—oo n<0

7 7

Holomorphic part F© Nonholomorphic part F~
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Fourier expansions

Lemma (Bruinier, Funke)
If F € Hy_y and T(a, x) is the incomplete I-function, then

F@) = 3 ct(ng"+ 3 cr(mr(k — 1 4lnly)q"

n>—oo n<0

7 7

Holomorphic part F© Nonholomorphic part F~

Remark

The function Ft is called a mock modular form.
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Relation to classical modular forms

° M}( := weight k weakly holomorphic modular forms.

° S,i = weight k weakly holomorphic cusp forms
(subspace of I\/Ik whose forms have vanishing constant terms.)

Lemma
IfD = 271'1 dz'
o DF"1: My , — S, (Bol),

then
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Relation to classical modular forms

° M}( := weight k weakly holomorphic modular forms.

° S,i = weight k weakly holomorphic cusp forms
(subspace of I\/Ik whose forms have vanishing constant terms.)

Lemma

IfD = 271'1 dz'
o D1 M), — 5. (Bol),
o Dk"1:H, , — S, (Bruinier, Ono, Rhoades).

then
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If & = 2iy" L 9 then

Eo—k : Ho_ — Sy.
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Relation to classical modular forms

Lemma (Bruinier, Funke)

If & = 2iy" L 9 then

Eo—k : Ho_ — Sy.

Remark
The cusp form &_k(F) is called the shadow of F+.
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Definition
For f € S, the period polynomial is given by

r(f;z):= /0'00 f(r)(z— T)k_2d7',
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Period polynomials revisited

Definition
For f € S, the period polynomial is given by

r(f;z):= /0'00 f(r)(z— T)k_2d7',

Remark
For f € S, the above integral may be divergent. J
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The Regularized integral

Consider a continuous function f : H — C and
f(z) = O(ec'mz)

for some ¢ € RT as Imz — .
Definition (Fricke, Rankin-Selberg)

For t > 0, if '
/ e'f(z) dz

has an analytic continuation to t = 0, then we define

R. / ™ ) dr = [ / " £ (2) dz} .
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More period polynomials

If f € Sk, then

r(f;z) = /0'00 f(r)(z — 7)< 2dr.

Definition
For f € S,L, define

r(f;z) == R. /OIOO f(r)(z — 7)*2dr.
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Mock modular forms and Eichler integrals

Remark
Recall the extended Bol-type identity:

D*"':H,_, — S; (Bruinier, Ono, Rhoades).
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Mock modular forms and Eichler integrals

Remark
Recall the extended Bol-type identity:

D*"':H,_, — S; (Bruinier, Ono, Rhoades).

Remark

Mock modular forms “are” regularized iterated integrals of weakly
holomorphic cusp forms.
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Mock modular periods generate critical L-values

Theorem (Bringmann, Guerzhoy, Kent, Ono)
If F € Hy_y and g = & _«(F) € Sk, then
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Original Eichler-Shimura Isomorphism

Theorem (Eichler-Shimura)

If Wo C W s the codim. 1 space not containing zk=2 _ 1, then
r. Sk — Wo

is an isomorphism.
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New Eichler-Shimura isomorphisms

The following diagram is commutative:

0 0

— i
Sk@SkLWO
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The isomorphism
S/ D (M5_ ) = Wy

suggests that there are more eigenforms than just those in S.
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More eigenforms

Remark

The isomorphism
S/ D (M5_ ) = Wy

suggests that there are more eigenforms than just those in S.

Definition
For any positive integer m > 2, let T(m) be the usual weight k
index m Hecke operator.
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Definition
We say f € 5,!( is a Hecke eigenform if for every Hecke operator
T(m) there is a complex number A, for which

(f [« T(m) — Anf)(2) € D¥1 (M;_k) .
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More eigenforms

Definition

We say f € 5,!( is a Hecke eigenform if for every Hecke operator
T(m) there is a complex number A, for which

(f [« T(m) — Anf)(2) € D¥1 (M;_k) .

Remark
This extends the usual definition of Hecke eigenform for Sy. J




Mock modular forms and their shadows
Extended Eichler-Shimura Theory
Hecke theory

Multiplicity two theorem

Theorem (Bringmann, Guerzhoy, Kent, Ono)
Let d = dim S,. Then

S,/D (M) = P

i=1

where each T; is a 2-dimensional Hecke eigenspace.
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