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Notion of families

What is a family?

(Loosely) a collection of data {X;}:cT, where X; varies nicely over
the parameter set T.

| A\

Ex 1. discrete family: when T =Z>,

Just a sequence {X;}iez -

A\

(One could choose T differently.)
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Notion of families

What is a family?

(Loosely) a collection of data {X;}:cT, where X; varies nicely over
the parameter set T.

| A\

Ex 1. discrete family: when T =Z>,

Just a sequence {X;}iez -

A\

(One could choose T differently.) This can be enhanced to

Ex 2. projective system over T = Z>1

v = Xy = Xpo1 — oo = X1
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Examples of families

Ex 3. vector bundle X — T
= family of vec spaces {X;}+c1 over a manifold or an alg variety T
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= family of vec spaces {X;}+c1 over a manifold or an alg variety T

Ex 4. morphism of schemes X — T

= family of schemes {X;};e7
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Examples of families

Ex 3. vector bundle X — T

= family of vec spaces {X;}+c1 over a manifold or an alg variety T

Ex 4. morphism of schemes X — T

= family of schemes {X;};e7

The following are two special cases of Ex 4:

Ex 5. Legendre family of elliptic curves (say T = A%\{0,1})

= family of curves y? = x(x — 1)(x — t), t € C\{0, 1}.
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Examples of families

Ex 3. vector bundle X — T

= family of vec spaces {X;}:c7 over a manifold or an alg variety T

Ex 4. morphism of schemes X — T

= family of schemes {X;}teT

The following are two special cases of Ex 4:

Ex 5. Legendre family of elliptic curves (say T = A%\{0,1})

= family of curves y? = x(x — 1)(x — t), t € C\{0, 1}.

Ex 6. reductions of algebraic variety X over T = SpecZ or
T = SpecZ[1/S]

= {X mod p}p.prime (+ gen fiber over Q).
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Distribution problem for families (1)

1. Distribution problem for families {X;}c 1.
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1. Distribution problem for families {X;}c 1.

@ X; ~» some invariant inv(X;) € X.

How does inv(X:) vary in X as t moves around?
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1. Distribution problem for families {X;}c 1.

@ X; ~» some invariant inv(X;) € X.

How does inv(X:) vary in X as t moves around?

Ex: X =Z; when X — T is a morph of schemes (manifolds)
(1 ] iIlV(Xt) =dim Xt.
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Distribution problem for families (1)

1. Distribution problem for families {X;}c 1.

@ X; ~» some invariant inv(X;) € X.

How does inv(X:) vary in X as t moves around?

Ex: X =Z; when X — T is a morph of schemes (manifolds)
Q inv(X;) =dim X;.
Q inv(X;) = dim H(X;, F¢) for fixed i and sheaf F on X.
Q inv(X,) = #X(Fp), where (p) € SpecZ = T.
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Dist problem for families (2) - over set of primes

Deligne's proof of Weil conj implies:

Proposition

Assume X — SpecZ[1/S] is smooth and proper.
There is some asymptotic “coherence” in p — #X(Fp).
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Dist problem for families (2) - over set of primes

Deligne's proof of Weil conj implies:

Proposition

Assume X — SpecZ[1/S] is smooth and proper.
There is some asymptotic “coherence” in p — #X(Fp).

This family almost looks like a disc family but is still extremely
deep and interesting.
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Dist problem for families (2) - over set of primes

Deligne's proof of Weil conj implies:

Proposition

Assume X — SpecZ[1/S] is smooth and proper.
There is some asymptotic “coherence” in p — #X(F).

This family almost looks like a disc family but is still extremely
deep and interesting.

Ex: X = ell curve; say y? = x(x — 1)(x — t), t € Z\{0,1}

S = set of primes dividing t
p+1—-2/p < #X(Fp) < p+1+2,/p. (Hasse, 1930s)
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Dist problem for families (3) - discrete case

Consider {X:}tez., = disc family.
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Dist problem for families (3) - discrete case

Consider {X;}tez., = disc family. Natural to assume | X;| < oco.
We could accumulate Y; := U,<: X, so that

[|Ye| <00, [Vi| = ool
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What is the “limiting dist” of inv(Y:) = {inv(X,)}u<¢ as t — 007
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Consider {X;}tez., = disc family. Natural to assume | X;| < oco.
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[|Ye| <00, [Vi| = ool

Dist problem can be phrased as (made precise later):
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Dist problem for families (3) - discrete case

Consider {X;}tez., = disc family. Natural to assume | X;| < oco.
We could accumulate Y; := U,<: X, so that

[|Ye| <00, [Vi| = ool

Dist problem can be phrased as (made precise later):

What is the “limiting dist” of inv(Y:) = {inv(X,)}u<¢ as t — 007

Ex: primes in arith progression (Dirichlet)
o Yi:={p<t:primef N}, X :=(Z/NZ)*.
o inv(Y:) = {p mod N},cy, ~ “equidistributed” on X

Ex: number of points on ell curves X — SpecZ[1/S]
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Dist problem for families (3) - discrete case

Consider {X;}tez., = disc family. Natural to assume | X;| < oco.
We could accumulate Y; := U,<: X, so that

[|Ye| <00, [Vi| = ool

Dist problem can be phrased as (made precise later):

What is the “limiting dist” of inv(Y:) = {inv(X,)}u<¢ as t — 007

Ex: primes in arith progression (Dirichlet)
o Yi:={p<t:primef N}, X :=(Z/NZ)*.
o inv(Y:) = {p mod N},cy, ~ “equidistributed” on X

Ex: number of points on ell curves X — SpecZ[1/S]

o inv(X,) =p+1—#X(Fp) € [-2,2] (Hasse) ~» call ap.
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Dist problem for families (3) - discrete case

Consider {X;}tez., = disc family. Natural to assume | X;| < oco.
We could accumulate Y; := U,<: X, so that

[|Ye| <00, [Vi| = ool

Dist problem can be phrased as (made precise later):

What is the “limiting dist” of inv(Y:) = {inv(X,)}u<¢ as t — 007

Ex: primes in arith progression (Dirichlet)
o Yi:={p<t:primef N}, X :=(Z/NZ)*.
o inv(Y:) = {p mod N},cy, ~ “equidistributed” on X

Ex: number of points on ell curves X — SpecZ[1/S]

o inv(X,) =p+1—#X(Fp) € [-2,2] (Hasse) ~» call ap.
e [Q] Dist of ay, a3, as, ... in [-2,2]? --- to be revisited!
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Why study families?

@ An essential way to attack a difficult problem.
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Construct a 1-dim family out of a variety X over Fy.
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@ An essential way to attack a difficult problem.

o Deligne's proof of Weil conj (RH over fin fields):
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know about X; on a dense subset of T ~~ know the rest.
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e Density argument:
know about X; on a dense subset of T ~~ know the rest.

@ Average over family is easier to estimate than indiv members.
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© A difficult problem stated for indiv members ~~
family-analogue may provide evidence or insight (if not proof),
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Why study families?

@ An essential way to attack a difficult problem.

o Deligne's proof of Weil conj (RH over fin fields):
Construct a 1-dim family out of a variety X over Fy.

e Density argument:
know about X; on a dense subset of T ~~ know the rest.

@ Average over family is easier to estimate than indiv members.

o Arthur-Selberg trace formula:
compute (weighted) average over “automorphic forms” on G.

© A difficult problem stated for indiv members ~~
family-analogue may provide evidence or insight (if not proof),

e.g. rank r of ell curve E/Q, E(Q) ~ Z" & (fin):
e individual rank - BSD conj,
e avg rank in families - recent progress (Bhargava-Shankar)
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Entering Part 2

© Families
e Families in general
e Distribution problems
o Why interesting?
@ Equidistribution
o General setup
e Original Sato-Tate conjecture (for elliptic curves)
© L-functions and automorphic forms
e Automorphic forms and representations
e Automorphic L-functions and their local invariants
o Level and weight aspects
@ Equidistribution for automorphic families
e Questions and Results
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Equidistribution - setup

o {Yi}tez., = disc family, 0 < |Y¢| < oo, |Yi| = coas t — oo,
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o {Yi}tez., = disc family, 0 < |Y¢| < oo, |Yi| = coas t — oo,
o j=inv:Y; > X,
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Equidistribution - setup

o {Yi}tez., = disc family, 0 < |Y¢| < oo, |Yi| = coas t — oo,
o j=inv:Y; > X,

@ C(X) = nice space of C-valued functions,
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Equidistribution - setup

{Yt}t6221 = disc family, 0 < | Y| < 00, |Y¢| = 00 as t — oo,
i=inv: Y > X,

C(X) = nice space of C-valued functions,

i = nice measure on C(X).
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Equidistribution - setup

{Yt}t6221 = disc family, 0 < | Y| < 00, |Y¢| = 00 as t — oo,
i=inv: Y > X,

C(X) = nice space of C-valued functions,

{4 = nice measure on C(X).

count .,
. di(
1% Y ‘ Yt ‘ Z
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Equidistribution - setup

{Yt}t6221 = disc family, 0 < | Y| < 00, |Y¢| = 00 as t — oo,
i=inv: Y > X,

C(X) = nice space of C-valued functions,

{4 = nice measure on C(X).

count .,
. di(
1% Y ‘ Yt ‘ Z

YEY:

{ Yt} is p-equidistributed if "™ — pas t — oo,
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Equidistribution - setup

o {Yi}tez., = disc family, 0 < |Y¢| < oo, |Yi| = coas t — oo,
o j=inv:Y; > X,
@ C(X) = nice space of C-valued functions,

@ 4 = nice measure on C(X )

c)gunt. ‘Yt‘ Z 5

YEY:

{ Yt} is p-equidistributed if u$"™ — pas t — oo, i.e.

vfe C(X), lim = !Yt! > fly /deu-

YEY:
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Equidistribution - setup

o {Yi}tez., = disc family, 0 < |Y¢| < oo, |Yi| = coas t — oo,
e i=inv:Y; — X,
@ C(X) = nice space of C-valued functions,

@ /i = nice measure on C(X).

c)gunt. ‘Yt‘ Z 5

YEY:

{ Yt} is p-equidistributed if u$"™ — pas t — oo, i.e.

vfe C(X), lim = !Yt! > fly /deu-

YEY:

@& variant: use a weighted average.
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Equidistribution - when X is finite

(Example: Yy ={p<t:p{N}, X =(Z/NZ)*, ax =1/¢(N).)
° {Yt}tEZZ1 = disc family; invariant / : Y; — X,
o P (Y:):=#{y € Yt :i(y) = x}/|Yt| so that
coun 1
Hy, b= m Z 5i(y) = Z PX(Yt)5X.
t yEYt xXEX

@ A prob measure y on X has the form

= Z axOx, (Z ay =1).

xeX xeX

| said {Y:} is p-equidistributed if "™ — p as t — oo, which is
true iff P(Y:) — ax for all x € X.
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Sato-Tate conjecture for elliptic curves

E = elliptic curve over Q without complex mult.
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Sato-Tate conjecture for elliptic curves

E = elliptic curve over Q without complex mult.

ag : {(almost all) primes} — C by
ae(p) = (L +p — #E(Fp))/p*/? € [~2,2] by Hasse.
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Sato-Tate conjecture for elliptic curves

E = elliptic curve over Q without complex mult.

ag : {(almost all) primes} — C by
ae(p) = (1 + p — #E(Fp))/p"/? € [-2,2] by Hasse.

Conjecture (Sato-Tate, 1960s)

{ae(p)}p<n is equidist. on [-2,2] w.r.t 5T = 1\/1 — %de.
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Sato-Tate conjecture for elliptic curves

E = elliptic curve over Q without complex mult.

ag : {(almost all) primes} — C by
ae(p) = (1 + p — #E(Fp))/p"/? € [-2,2] by Hasse.

Conjecture (Sato-Tate, 1960s)

{ae(p)}p<n is equidist. on [-2,2] w.r.t 5T = 1\/1 — %de.

Theorem (Barnet-Lamb, Clozel, Gee, Geraghty, Harris,

Shepherd-Barron, Taylor; 2006-2010)

The conjecture is true (also true if Q ~~ totally real field).
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Sato-Tate conjecture for elliptic curves

E = elliptic curve over Q without complex mult.

ag : {(almost all) primes} — C by
ae(p) = (1 + p — #E(Fp))/p"/? € [-2,2] by Hasse.

Conjecture (Sato-Tate, 1960s)

{ae(p)}p<n is equidist. on [-2,2] w.r.t 5T = 1\/1 — %de.

Theorem (Barnet-Lamb, Clozel, Gee, Geraghty, Harris,

Shepherd-Barron, Taylor; 2006-2010)

The conjecture is true (also true if Q ~~ totally real field).

* “Automorphic analogue” also proved for GLy. (ell curves <
modular forms.) For general algebraic varieties and general
automorphic reps, the analog conj is wide open.
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Sato-Tate conjecture for elliptic curves - graphics

source: Barry Mazur, Finding meaning in error terms, 2007.

o red = 15T, blue = " from {ag(p)}.
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Entering Part 3

© Families

e Families in general

e Distribution problems

e Why interesting?
@ Equidistribution

o General setup

o Original Sato-Tate conjecture (for elliptic curves)
© L-functions and automorphic forms

e Automorphic forms and representations
e Automorphic L-functions and their local invariants
o Level and weight aspects

@ Equidistribution for automorphic families
o Questions and Results
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L-functions + Langlands philosophy

There are three abundant sources of L-functions:
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@ automorphic forms (or representations) 7 ~~ L(s, )
@ algebraic varieties (or "motives’) M over Q ~~ L(s, M)
© Galois representations p ~ L(s, p)
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L-functions + Langlands philosophy

There are three abundant sources of L-functions:
@ automorphic forms (or representations) 7 ~~ L(s, )
@ algebraic varieties (or "motives’) M over Q ~~ L(s, M)
© Galois representations p ~ L(s, p)

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3)
characterized by L(s,7) = L(s, M) = L(s, p).
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L-functions + Langlands philosophy

There are three abundant sources of L-functions:

@ automorphic forms (or representations) 7 ~~ L(s, )
@ algebraic varieties (or "motives’) M over Q ~~ L(s, M)
© Galois representations p ~ L(s, p)

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3)
characterized by L(s,7) = L(s, M) = L(s, p).

Examples

5\ | \
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L-functions + Langlands philosophy

There are three abundant sources of L-functions:

@ automorphic forms (or representations) 7 ~~ L(s, )
@ algebraic varieties (or "motives’) M over Q ~~ L(s, M)
© Galois representations p ~ L(s, p)

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3)
characterized by L(s,7) = L(s, M) = L(s, p).

| 5\

Examples
e m=1 M=SpecQ, p=1= L(s,m) =---=((s).
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L-functions + Langlands philosophy

There are three abundant sources of L-functions:

@ automorphic forms (or representations) 7 ~~ L(s, )
@ algebraic varieties (or "motives’) M over Q ~~ L(s, M)
© Galois representations p ~ L(s, p)

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3)
characterized by L(s,7) = L(s, M) = L(s, p).

e m=1 M=SpecQ, p=1= L(s,m) =---=((s).

cyclo thy

o m:(Z/nZ)* - C* 77 prGal(Q(¢n)/Q) — C*.
~ Dirichlet L-functions
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L-functions + Langlands philosophy

There are three abundant sources of L-functions:

@ automorphic forms (or representations) 7 ~~ L(s, )
@ algebraic varieties (or "motives’) M over Q ~~ L(s, M)
© Galois representations p ~ L(s, p)

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3)
characterized by L(s,7) = L(s, M) = L(s, p).

e m=1 M=SpecQ, p=1= L(s,m) =---=((s).
o m: (Z/nZ)* — C* V&M p: Gal(Q((r)/Q) - C.
~~ Dirichlet L-functions

o f (cuspform) Wilgs et al £ (ell. curve) <» Gal rep on T)E ® Q).
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Automorphic forms and representations - (1)

Our focus: auto forms (reps) m and their L-functions L(s, ).

They are central in number theory...but, hey, what are they?
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Automorphic forms and representations - (1)

Our focus: auto forms (reps) m and their L-functions L(s, ).

They are central in number theory...but, hey, what are they?
Here's a correct but lazy way: auto form of GL, is
f € L*(GLy(Q)R™\GL,(A)).

(Here A~ [],Qp x R, GLs(A) =[], GLn(Qp) x R.)

An irred constituent of the regular rep of GL,(A) on L2(---) is
auto rep of GL,(A).

Problem: Maybe too vague!
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Automorphic forms and representations - (2)

Better to understand modular forms (~ auto forms of GL»):
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Automorphic forms and representations - (2)

Better to understand modular forms (~ auto forms of GL»):
o I(N)={AeSLy(Z): A= 1 (mod N)}
e H={ze€C:Im(z) >0}, acted on by I'(N) via

< i Z)'Z'_)(az+b)(cz+d)1_
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o I(N)={AeSLy(Z): A= 1 (mod N)}
e H={ze€C:Im(z) >0}, acted on by I'(N) via

< i Z)'Z'_)(az+b)(cz+d)1_

e [(N)\$H* = compact Riemann surface ~~ proj system in N.
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e H={ze€C:Im(z) >0}, acted on by I'(N) via

< i Z)'Z'_)(az+b)(cz+d)1_
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(Ex: T(1)\$H* ~ PY(C).)
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Automorphic forms and representations - (2)

Better to understand modular forms (~ auto forms of GL»):
o I(N)={AeSLy(Z): A= 1 (mod N)}
e H={ze€C:Im(z) >0}, acted on by I'(N) via

( i Z)'Z'_)(az+b)(cz+d)1_

e [(N)\$H* = compact Riemann surface ~~ proj system in N.
(Ex: T(1)\$H* ~ PY(C).)

@ modular form of level N, wt x > 1
= holo fcn $* — C + “wt " transf. law w.r.t ['(N)-action.
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Automorphic forms and representations - (2)

Better to understand modular forms (~ auto forms of GL»):
o I(N)={AeSLy(Z): A= 1 (mod N)}
e H={ze€C:Im(z) >0}, acted on by I'(N) via

( i Z)'Z'_)(az+b)(cz+d)1_

e [(N)\$H* = compact Riemann surface ~~ proj system in N.
(Ex: T(1)\$H* ~ PY(C).)

@ modular form of level N, wt x > 1
= holo fcn $* — C + “wt " transf. law w.r.t ['(N)-action.

M(x, N)| = C-v. sp. of such fcns, ) “Hecke operators” {T,}.

F(r, N)| = C-basis of eigenvectors.
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Automorphic forms and representations - (2)

Better to understand modular forms (~ auto forms of GL»):
o I(N)={AeSLy(Z): A= 1 (mod N)}
e H={ze€C:Im(z) >0}, acted on by I'(N) via

( i Z)'Z'_)(az+b)(cz+d)1_

e [(N)\$H* = compact Riemann surface ~~ proj system in N.
(Ex: T(1)\$H* ~ PY(C).)

@ modular form of level N, wt x > 1
= holo fcn $* — C + “wt " transf. law w.r.t ['(N)-action.

M(x, N)| = C-v. sp. of such fcns, ) “Hecke operators” {T,}.

F(r, N)| = C-basis of eigenvectors.
act: Vi, N, |F(k, N)| < oo and |F(k, N)| = 0o as k + N — oc.
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Automorphic forms and representations - (3)

Introduced auto forms and reps of GL,. As a special case,

F(k,N) = basis (“eigenforms") for wt x level N mod forms.
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Automorphic forms and representations - (3)

Introduced auto forms and reps of GL,. As a special case,
F(k,N) = basis (“eigenforms") for wt x level N mod forms.

Remarked |F(k, N)| < co and |F(k, N)| — oc.
Obtain arithmetically significant disc families {Fy }x>1:
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Automorphic forms and representations - (3)

Introduced auto forms and reps of GL,. As a special case,
F(k,N) = basis (“eigenforms") for wt x level N mod forms.

Remarked |F(k, N)| < co and |F(k, N)| — oc.
Obtain arithmetically significant disc families {Fy }x>1:

Ex 1: level aspect - « fixed

Let Ny be a seq — 00 as k — 0o ~ {Fx = F(k, Ni) }i>1-
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Automorphic forms and representations - (3)

Introduced auto forms and reps of GL,. As a special case,
F(k,N) = basis (“eigenforms") for wt x level N mod forms.

Remarked |F(k, N)| < co and |F(k, N)| — oc.
Obtain arithmetically significant disc families {Fy }x>1:

Ex 1: level aspect - « fixed

Let Ny be a seq — 00 as k — 0o ~ {Fx = F(k, Ni) }i>1-

Ex 2: weight aspect - N fixed
Let ki be a seq — 00 as k — 0o ~» {Fx = F(kk, N)}i>1.
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Automorphic forms and representations - (3)

Introduced auto forms and reps of GL,. As a special case,
F(k,N) = basis (“eigenforms") for wt x level N mod forms.

Remarked |F(k, N)| < co and |F(k, N)| — oc.
Obtain arithmetically significant disc families {Fy }x>1:

Ex 1: level aspect - « fixed

Let Ny be a seq — 00 as k — 0o ~ {Fx = F(k, Ni) }i>1-

Ex 2: weight aspect - N fixed

Let ki be a seq — 00 as k — 0o ~» {Fx = F(kk, N)}i>1.

@ These generalize: GLp ~~ GL, (and others).
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Automorphic forms and representations - (3)

Introduced auto forms and reps of GL,. As a special case,
F(k,N) = basis (“eigenforms") for wt x level N mod forms.

Remarked |F(k, N)| < co and |F(k, N)| — oc.
Obtain arithmetically significant disc families {Fy }x>1:

Ex 1: level aspect - « fixed

Let Ny be a seq — 00 as k — 0o ~ {Fx = F(k, Ni) }i>1-

Ex 2: weight aspect - N fixed
Let ki be a seq — 00 as k — 0o ~» {Fx = F(kk, N)}i>1.

@ These generalize: GLp ~~ GL, (and others).

@ What are interesting invariants for auto forms/reps?
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Automorphic forms and representations - (3)

Introduced auto forms and reps of GL,. As a special case,
F(k,N) = basis (“eigenforms") for wt x level N mod forms.

Remarked |F(k, N)| < co and |F(k, N)| — oc.
Obtain arithmetically significant disc families {Fy }x>1:

Ex 1: level aspect - « fixed

Let Ny be a seq — 00 as k — 0o ~ {Fx = F(k, Ni) }i>1-

Ex 2: weight aspect - N fixed
Let ki be a seq — 00 as k — 0o ~» {Fx = F(kk, N)}i>1.

@ These generalize: GLp ~~ GL, (and others).

@ What are interesting invariants for auto forms/reps?
(a) |Fk| (= genus of M\$H* if k = 2), may ask about growth.
(b) Tp-eigenval. (or local inv in L-fcns). --- Our concern
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Automorphic L-functions

About to explain invt coming from local factors of L-fcns.
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Automorphic L-functions

About to explain invt coming from local factors of L-fcns.

Given an auto rep 7 of GL,(A), there is a way to construct
e [-function L(s,7) ins € C.
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Automorphic L-functions

About to explain invt coming from local factors of L-fcns.

Given an auto rep 7 of GL,(A), there is a way to construct

e [-function L(s,7) ins € C.
Ex m=1,n=1~ L(S,W):C(s):l+%+;‘7+....
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Automorphic L-functions

About to explain invt coming from local factors of L-fcns.

Given an auto rep 7 of GL,(A), there is a way to construct
e [-function L(s,7) ins € C.
Ex r=1,n=1~L(s,;m)=((s)=1+2%+%+
Some nice properties:

© Analytic continuation: L(s, ) extends to all s € C
(except finitely many poles).

@ Euler product: L(s,m) =[], Ly(s, ),
Ex: ¢(s) =1[,(1 —p~°)" 1 Re(s) > 1.

© Functional Equation: A(s,7) = A(1 —s, ")
(AN = completed L-function).
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Local invariants for automorphic L-functions

™~ L(s,m) =], Lp(s, ), Re(s) > 1.
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Local invariants for automorphic L-functions

™~ L(s,m) =], Lp(s, ), Re(s) > 1.

n

Fact: Fora.a.p, Ly(s,m)= H(l —api(m)p~*) Y, api(m) € C*.
i=1
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Local invariants for automorphic L-functions

™~ L(s,m) =], Lp(s, ), Re(s) > 1.

n

Fact: Fora.a.p, Ly(s,m)= H(l —api(m)p~*) Y, api(m) € C*.
i=1

~» Local invariant for m at p = ap 1, ..., ap,n in C* (unordered).
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Local invariants for automorphic L-functions

™~ L(s,m) =], Lp(s, ), Re(s) > 1.

n
Fact: Fora.a.p, Ly(s,m)= H(l —api(m)p~*) Y, api(m) € C*.
i=1
~» Local invariant for m at p = ap 1, ..., ap,n in C* (unordered).
e Conj: If 7 is cuspidal (“simple obj"), Vp, i, |api| = 1.

e Known:{ap;} for a.a. p ~» 3 at most one .
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Local invariants for automorphic L-functions

™~ L(s,m) =], Lp(s, ), Re(s) > 1.

n
Fact: Fora.a.p, Ly(s,m)= H(l —api(m)p~*) Y, api(m) € C*.
i=1
~» Local invariant for m at p = ap 1, ..., ap,n in C* (unordered).
e Conj: If 7 is cuspidal (“simple obj"), Vp, i, |api| = 1.

e Known:{ap;} for a.a. p ~» 3 at most one .

Ex: ell curves E «» wt 2 forms f so that L(s + 3, E) = L(s, f)

Lp(s,f)=(1— ap’l(f)pfs)*l(l — apg(f)p*s)*1 for ap1,ap2 € st
Lo(s. E) = (1 - 3,(E)p + p=2) L
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Local invariants for automorphic L-functions

™~ L(s,m) =], Lp(s, ), Re(s) > 1.

n
Fact: Fora.a.p, Ly(s,m)= H(l —api(m)p~*) Y, api(m) € C*.
i=1
~» Local invariant for m at p = ap 1, ..., ap,n in C* (unordered).
e Conj: If 7 is cuspidal (“simple obj"), Vp, i, |api| = 1.

e Known:{ap;} for a.a. p ~» 3 at most one .

Ex: ell curves E «» wt 2 forms f so that L(s + 3, E) = L(s, f)

Lp(s,f)=(1— ap’l(f)pfs)*l(l — apg(f)p*s)*1 for ap1,ap2 € st
Lo(s. E) = (1 - 3,(E)p + p=2) L

ap(E)/pH/? = BEEEER) = a1 (F) + 3p0(F) € [-2,2].

P12 (Tprov.)
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Sato-Tate revisited

Recall: E < f ~ p~Y2a,(E) = ap1(f) + apa(f) € [-2,2].
(Given a,(E), roots of x2 — p~1/2a,(E)x + 1 = ap1,ap2 € St.)
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Sato-Tate revisited

Recall: E < f ~ p~Y2a,(E) = ap1(f) + apa(f) € [-2,2].
(Given a,(E), roots of x2 — p~1/2a,(E)x + 1 = ap1,ap2 € St.)

Theorem (cited before)

{p_l/zap(E)} are equidist on [—2,2] wrt ST = %\/mdx
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Sato-Tate revisited

Recall: E < f ~ p~Y2a,(E) = ap1(f) + apa(f) € [-2,2].
(Given a,(E), roots of x2 — p~1/2a,(E)x + 1 = ap1,ap2 € St.)

Theorem (cited before)

{p_l/zap(E)} are equidist on [—2,2] wrt ST = %\/mdx

Implied if ( p1 0 > defines a “random” conj class in
0 ap72

SU2) = {A€ My(C) : AA" =1} as p — .
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Sato-Tate revisited

Recall: E < f ~ p~Y2a,(E) = ap1(f) + apa(f) € [-2,2].
(Given a,(E), roots of x2 — p~1/2a,(E)x + 1 = ap1,ap2 € St.)

Theorem (cited before)

{p_l/zap(E)} are equidist on [—2,2] wrt ST = %\/mdx

Implied if ( p1 0
0 ap72

SU2) = {A€ My(C) : AA" =1} as p — .

> defines a “random” conj class in

i.e. if uST is “push-forward” of Haar measure on SU(2) via

SU(2) —s SU(2)/conj 25 [2,2].
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Sato-Tate revisited

Recall: E < f ~ p~Y2a,(E) = ap1(f) + apa(f) € [-2,2].
(Given a,(E), roots of x2 — p~1/2a,(E)x + 1 = ap1,ap2 € St.)

Theorem (cited before)

{p_l/zap(E)} are equidist on [—2,2] wrt ST = %\/mdx

Implied if ( p1 0
0 ap72

> defines a “random” conj class in
SU2) = {A€ My(C) : AA" =1} as p — .
i.e. if uST is “push-forward” of Haar measure on SU(2) via

SU(2) —s SU(2)/conj 25 [2,2].

® In generalized S-T, replace SU(2) by max cpt subgp of some C
Lie gp G. (Here G depends on problem.)
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Entering last part

© Families
e Families in general
e Distribution problems
o Why interesting?
@ Equidistribution
o General setup
e Original Sato-Tate conjecture (for elliptic curves)
© L-functions and automorphic forms
e Automorphic forms and representations
e Automorphic L-functions and their local invariants
o Level and weight aspects
@ Equidistribution for automorphic families
o Questions and Results
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Recap of the story so far

@ Introduced auto rep 7 of GL,(A) (or G(A)).
o~ L(s,m) = Hp Lp(s,m) ~ (ap1, .-y ap,n) € (C*)"/G,.
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Recap of the story so far

@ Introduced auto rep 7 of GL,(A) (or G(A)).
o~ L(s,m) = Hp Lp(s,m) ~ (ap1, .-y ap,n) € (C*)"/G,.
Our concern - -+ {Fi}i>1 = family of auto reps of GL,(A).
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Recap of the story so far

@ Introduced auto rep 7 of GL,(A) (or G(A)).
o~ L(s,m) = Hp Lp(s,m) ~ (ap1, .-y ap,n) € (C*)"/G,.
Our concern - -+ {Fi}i>1 = family of auto reps of GL,(A).

o (level aspect) level Ny — oo, wt Ky fixed, or

o (wt aspect) wt kg — 00, level Ny fixed.
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Recap of the story so far

@ Introduced auto rep 7 of GL,(A) (or G(A)).

o~ L(s,m) = Hp Lp(s,m) ~ (ap1, .-y ap,n) € (C*)"/G,.
Our concern - -+ {Fi}i>1 = family of auto reps of GL,(A).

o (level aspect) level Ny — oo, wt Ky fixed, or

o (wt aspect) wt kg — 00, level Ny fixed.

e Have | Fy| < 0o, limg_o0 | Fk| = 0.
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Recap of the story so far

@ Introduced auto rep 7 of GL,(A) (or G(A)).

o~ L(s,m) = Hp Lp(s,m) ~ (ap1, .-y ap,n) € (C*)"/G,.
Our concern - -+ {Fi}i>1 = family of auto reps of GL,(A).

o (level aspect) level Ny — oo, wt Ky fixed, or

o (wt aspect) wt kg — 00, level Ny fixed.

e Have |Fy| < oo, limg_soo | Fk| = 0.

® {Fitk>1 ~ {Sk}k>1 family of L-functions
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Recap of the story so far

@ Introduced auto rep 7 of GL,(A) (or G(A)).

o~ L(s,m) = Hp Lp(s,m) ~ (ap1, .-y ap,n) € (C*)"/G,.
Our concern - -+ {Fi}i>1 = family of auto reps of GL,(A).

o (level aspect) level Ny — oo, wt Ky fixed, or

o (wt aspect) wt kg — 00, level Ny fixed.

e Have |Fy| < oo, limg_soo | Fk| = 0.

® {Fitk>1 ~ {Sk}k>1 family of L-functions

Interesting statistical problems on {Fy} or {§«} ---
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Recap of the story so far

@ Introduced auto rep 7 of GL,(A) (or G(A)).
o~ L(s,m) = Hp Lp(s,m) ~ (ap1, .-y ap,n) € (C*)"/G,.
Our concern - -+ {Fi}i>1 = family of auto reps of GL,(A).

o (level aspect) level Ny — oo, wt Ky fixed, or

o (wt aspect) wt kg — 00, level Ny fixed.

e Have |Fy| < oo, limg_soo | Fk| = 0.

® {Fitk>1 ~ {Sk}k>1 family of L-functions
Interesting statistical problems on {Fy} or {§«} ---

o (equi-)dist of (ap1(7), ..., ap,n(7))? (See next slide.)

Etc...

Shin, Sug Woo Families of Automorphic L-functions



Statistical questions for automorphic families

{Fk}k>1 = family of auto reps of GL,(A), level or wt aspect
T = tp(m) == (ap,1, .-, ap,n) € (C*)"/S, = T/Q s invt at p.
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Statistical questions for automorphic families

{Fk}k>1 = family of auto reps of GL,(A), level or wt aspect
T = tp(m) == (ap,1, .-, ap,n) € (C*)"/S, = T/Q s invt at p.

Question (Are the following p-equidist for some p on (C*)"/S5,7)

(Assume all w € F are unramified at p or py.)
Q {tp(m): 7 € Fi}i>1, Where p fixed,
Q {tp () : ™€ Fili>1, where p — o0,
© {tp(m)}p:prime, Where 7 fixed.
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Statistical questions for automorphic families

{Fk}k>1 = family of auto reps of GL,(A), level or wt aspect
T = tp(m) == (ap,1, .-, ap,n) € (C*)"/S, = T/Q s invt at p.

Question (Are the following p-equidist for some p on (C*)"/S5,7)
(Assume all w € F are unramified at p or py.)

Q {tp(m): 7 € Fi}i>1, Where p fixed,

Q {tp () : ™€ Fili>1, where p — o0,

© {tp(m)}p:prime, Where 7 fixed.

x May ask similar questions about general G in place of GL,.
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Statistical questions for automorphic families

{Fk}k>1 = family of auto reps of GL,(A), level or wt aspect
T = tp(m) == (ap,1, .-, ap,n) € (C*)"/S, = T/Q s invt at p.

Question (Are the following p-equidist for some p on (C*)"/S5,7)

(Assume all w € F are unramified at p or py.)
Q {tp(m): 7 € Fi}i>1, Where p fixed,
Q {tp () : ™€ Fili>1, where p — o0,
© {tp(m)}p:prime, Where 7 fixed.

x May ask similar questions about general G in place of GL,.

Theorem (Q1: S., 2009; Q2: S.-Templier, 2011)

Answers Q1 and Q2 for G s.t. G(R) has d.s. (No clue to Q3.)
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Statistical questions for automorphic families

{Fk}k>1 = family of auto reps of GL,(A), level or wt aspect
T = tp(m) == (ap,1, .-, ap,n) € (C*)"/S, = T/Q s invt at p.

Question (Are the following p-equidist for some p on (C*)"/S5,7)
(Assume all w € F are unramified at p or py.)

Q {tp(m): 7 € Fi}i>1, Where p fixed,

Q {tp () : ™€ Fili>1, where p — o0,

© {tp(m)}p:prime, Where 7 fixed.

x May ask similar questions about general G in place of GL,.

Theorem (Q1: S., 2009; Q2: S.-Templier, 2011)

Answers Q1 and Q2 for G s.t. G(R) has d.s. (No clue to Q3.)

@ Q2 (resp. Q3) is “S-T conj for families (resp. indiv aut reps)".
@ Previous (beyond GL): Q1 (mainly cpt quot), Q2 (none).
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Answer to Q1: Plancherel density for families - (1)

For Q1, we fix p.
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Answer to Q1: Plancherel density for families - (1)

For Q1, we fix p. Interested in the limit as k — oo of

count

1 ~
BEp | = T Z Or,, ameasure on T./Q, where
| k’ TEFy
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Answer to Q1: Plancherel density for families - (1)

For Q1, we fix p. Interested in the limit as k — oo of

u;g;gt — | k’ Z r,, @ measure on T, </, where
TEFy
T/Q ) TC/Q Safake {unr temp reps 1, of G(Qp)}.
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Answer to Q1: Plancherel density for families - (1)

For Q1, we fix p. Interested in the limit as k — oo of

u;g;gt - | k’ Z r,, @ measure on TC/Q where
TEFy
T/Q ) TC/Q Safake {unr temp reps 1, of G(Qp)}.

~

e T. = copies of S; T = copies of C*.

@ Some 7, may not be tempered ~~ ignore in the sum.

@ Need to be weighted suitably.
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Answer to Q1: Plancherel density for families - (1)

For Q1, we fix p. Interested in the limit as k — oo of

u;g;gt — | k’ Z r,, @ measure on TC/Q where
TEFy
T/Q ) TC/Q Safake {unr temp reps 1, of G(Qp)}.

~

e T. = copies of S; T = copies of C*.
@ Some 7, may not be tempered ~~ ignore in the sum.

@ Need to be weighted suitably.

We are going to relate the limit of u%f—’kljgt to:

MEI = Plancherel measure on ?C/Q (depending on p).

Shin, Sug Woo Families of Automorphic L-functions



Answer to Q1: Plancherel density for families - (1)

For Q1, we fix p. Interested in the limit as k — oo of

u;g;gt — | k’ Z r,, @ measure on TC/ Q, where
TEFy
T/Q ) TC/Q Safake {unr temp reps 1, of G(Qp)}.

~

e T. = copies of S; T = copies of C*.
@ Some 7, may not be tempered ~~ ignore in the sum.

@ Need to be weighted suitably.

We are going to relate the limit of u%f—’kljgt to:

MEI = Plancherel measure on ?C/Q (depending on p).

e Toy model: G fin gp ~ pP! = > prirr rep(dim p) - 6, on fin set.
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Answer to Q1: Plancherel density for families - (2)

Let {Fk} be a family in level or wt aspect. If G(R) admits a disc

series (or an ell torus) then | limy o pRM" = ,up .

( “p-compos are like random var chosen from T. </ acc. to ,upl ")
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Answer to Q1: Plancherel density for families - (2)

Let {Fk} be a family in level or wt aspect. If G(R) admits a disc

series (or an ell torus) then | limy o pRM" = ,up .

( “p-compos are like random var chosen from T. </ acc. to ,upl ")

@ Previous: Clozel (d.s. of G(Qp), 1986), Sauvageot (cpt quot,
1997), Conrey-Duke-Farmer and Serre (GLy, 1997).
@ Sarnak envisioned in 1980s.
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Answer to Q1: Plancherel density for families - (2)

Let {Fk} be a family in level or wt aspect. If G(R) admits a disc

series (or an ell torus) then | limy o pRM" = ,up .

( “p-compos are like random var chosen from Te /S acc. to ,upl ")

@ Previous: Clozel (d.s. of G(Qp), 1986), Sauvageot (cpt quot,
1997), Conrey-Duke-Farmer and Serre (GLy, 1997).
@ Sarnak envisioned in 1980s.

@ Theorem is true for not only unr reps but all reps. Just
replace ?C/Q ~> unitary dual of G(Qp).
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Answer to Q1: Plancherel density for families - (2)

Let {Fk} be a family in level or wt aspect. If G(R) admits a disc

series (or an ell torus) then | limy o pRM" = ,up .

( “p-compos are like random var chosen from T. </ acc. to ,upl ")

@ Previous: Clozel (d.s. of G(Qp), 1986), Sauvageot (cpt quot,
1997), Conrey-Duke-Farmer and Serre (GLy, 1997).
@ Sarnak envisioned in 1980s.

@ Theorem is true for not only unr reps but all reps. Just
replace ?C/Q ~> unitary dual of G(Qp).

@ Analogue holds at infinite places.
(Limit mult formula for disc series on real gps; Weyl's law.)

Shin, Sug Woo Families of Automorphic L-functions



Answer to Q1: Plancherel density for families - (2)

Let {Fk} be a family in level or wt aspect. If G(R) admits a disc

series (or an ell torus) then | limy o pRM" = ,up .

( “p-compos are like random var chosen from T. </ acc. to ,upl ")

@ Previous: Clozel (d.s. of G(Qp), 1986), Sauvageot (cpt quot,
1997), Conrey-Duke-Farmer and Serre (GLy, 1997).
@ Sarnak envisioned in 1980s.

@ Theorem is true for not only unr reps but all reps. Just
replace ?C/Q ~> unitary dual of G(Qp).

@ Analogue holds at infinite places.
(Limit mult formula for disc series on real gps; Weyl's law.)

@ Cor: Ramanujan conj holds at p for 100 percent of reps.
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Answer to Q2: Sato-Tate for families - (1)

count

Recall: p%! p, Captures the dist of pyx-compos of m € Fj.
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Answer to Q2: Sato-Tate for families - (1)

count

Recall: p%! p, Captures the dist of pyx-compos of m € Fj.

7

ST

= Sato-Tate measure on ?C/Q (dep only on G),

push-forward Haar meas on @C via EC —» EC /conj ~ /7\} /2.
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Answer to Q2: Sato-Tate for families - (1)

count

Recall: p%! p, Captures the dist of pyx-compos of m € Fj.

MST

= Sato-Tate measure on ?C/Q (dep only on G),

push-forward Haar meas on @C via EC —» EC /conj ~ /7\} /2.

Our main theorem is:

Theorem (S.-Templier)

e If G(R) admits a disc series and

@ pix — oo ‘“slowly” relative to the growth of level or wt, then

. count __ ST
kIL,moo KFepe =H |
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Answer to Q2: Sato-Tate for families - (2)

klim pE = pST | (S-T for families)
—00 ’

is deduced from “Plancherel density thm with error terms"”:
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Answer to Q2: Sato-Tate for families - (2)

klim pE = pST | (S-T for families)
—00 ’

is deduced from “Plancherel density thm with error terms”:

Theorem (S.-Templier)

If f, is an elt of unr Hecke alg for G(Qp) of “exponent< ¢”,

O(pa‘sN*b) level aspect
count _,pl — ’ ’
1FEp (fo) — tp (fp) { O(p°k~9), wt aspect,

(1)

where a, b, ¢, d and const in O(-) are indep of p, e and N (or k).
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Answer to Q2: Sato-Tate for families - (2)

klim pE = pST | (S-T for families)
—00 ’

is deduced from “Plancherel density thm with error terms”:

Theorem (S.-Templier)

If f, is an elt of unr Hecke alg for G(Qp) of “exponent< ¢”,

O(pa‘sN*b) level aspect
count _,pl — ’ ’
1FEp (fo) — tp (fp) { O(p°k~9), wt aspect,

(1)

where a, b, ¢, d and const in O(-) are indep of p, e and N (or k).

Indeed,
pl ST as k — oo (standard).

@ pi grows “slowly” rel to Ny or kx = O(---) — 0 as k — oc.
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Answer to Q2: Sato-Tate for families - (2)

klim pE = pST | (S-T for families)
—00 ’

is deduced from “Plancherel density thm with error terms”:

Theorem (S.-Templier)

If f, is an elt of unr Hecke alg for G(Qp) of “exponent< ¢”,

O(pa‘sN*b) level aspect
count _,pl — ’ ’
1FEp (fo) — tp (fp) { O(p°k~9), wt aspect,

(1)

where a, b, ¢, d and const in O(-) are indep of p, e and N (or k).

Indeed,
pl ST as k — oo (standard).
@ pi grows “slowly” rel to Ny or kx = O(---) — 0 as k — oc.
(In fact, (1) implies answer to Q1 by fixing p and N — oo or

K — 00.)
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Answer to Q2: Sato-Tate for families - (2)

klim pE = pST | (S-T for families)
—00 ’

is deduced from “Plancherel density thm with error terms”:

Theorem (S.-Templier)

If f, is an elt of unr Hecke alg for G(Qp) of “exponent< ¢”,

O(pa‘sN*b) level aspect
count _,pl — ’ ’
1FEp (fo) — tp (fp) { O(p°k~9), wt aspect,

(1)

where a, b, ¢, d and const in O(-) are indep of p, e and N (or k).

Indeed,
pl ST as k — oo (standard).
@ pi grows “slowly” rel to Ny or kx = O(---) — 0 as k — oc.
(In fact, (1) implies answer to Q1 by fixing p and N — oo or

Kk — 00.) How do we prove (1)?
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|dea of proof: Thm with error terms (wt aspect)
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|dea of proof: Thm with error terms (wt aspect)

Starting point is Arthur-Selberg trace formula. Its spectral side
essentially computes u$'»"(f;) (if weighted suitably):
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|dea of proof: Thm with error terms (wt aspect)

Starting point is Arthur-Selberg trace formula. Its spectral side
essentially computes 2" (f) (if weighted suitably): For suitable

functions
@ f°P on G(A>P) (dep on fixed level outside p),
e f, on G(R) (dep on wt k),

UL (fp) = kpec(fof O PE).
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|dea of proof: Thm with error terms (wt aspect)

Starting point is Arthur-Selberg trace formula. Its spectral side
essentially computes 2" (f) (if weighted suitably): For suitable

functions
@ f°P on G(A>P) (dep on fixed level outside p),
e f, on G(R) (dep on wt k),
Mc}glflant(fp) = kpec(fpfPfs).

The trace formula tells us: kpec(fof>Pfi) = lgcom (fof *P1y)

(A o, G similar terms
= Z VOI(G’Y)'OW( J(,FP) 05, (1, KH—( for Levi of G > '
VEG(Q)/~

R—ell
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|dea of proof: Thm with error terms (wt aspect)

Starting point is Arthur-Selberg trace formula. Its spectral side
essentially computes 2" (f) (if weighted suitably): For suitable

functions
@ f°P on G(A>P) (dep on fixed level outside p),
e f, on G(R) (dep on wt k),
Mc}glflant(fp) = kpec(fpf ™ P1y).
The trace formula tells us: kpec(fof>Pfi) = lgcom (fof *P1y)

(A o, G similar terms
= Z VOI(G’Y)'OW( J(,FP) 05, (1, KH—( for Levi of G > '
VEG(Q)/~

R—ell

o Levi=G, v =1 ~» main term f,(1) = ,Lgl(f,,) (up to const).
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|dea of proof: Thm with error terms (wt aspect)

Starting point is Arthur-Selberg trace formula. Its spectral side
essentially computes 2" (f) (if weighted suitably): For suitable

functions
@ f°P on G(A>P) (dep on fixed level outside p),
e f, on G(R) (dep on wt k),
Mc}glflant(fp) = kpec(fpfPfs).

The trace formula tells us: kpec(fof>Pfi) = lgcom (fof *P1y)

- o0, similar terms
- Z vol(Gy)- OG(A )( FP). % (7, )+< for Levi of G >
WEGEQ%I/N
o Levi=G, v =1 ~» main term f,(1) = ,Lgl(f,,) (up to const).

e remaining terms (error): count ~y, bound vol, ¢, and orb-int.
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Application to low-lying zeros in families

Theorem (S.-Templier)

The previous result plus quite a bit of work confirms:

the prediction of Katz-Sarnak about low-lying zero stats for
families of automorphic L-functions via random matrix theory

for families of level or weight aspect considered in our Sato-Tate
type theorem.

Probably the first time shown for L-fcns of arbitrarily high degree.
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Thank You!
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