Families of Automorphic *L*-functions

Shin, Sug Woo

PANTS XVII, Clemson, Dec 03, 2011

Shin, Sug Woo Families of Automorphic L-functions

→ 同 → → 三 →

< ∃ >

æ

Outline

Families

- Families in general
- Distribution problems
- Why interesting?
- 2 Equidistribution
 - General setup
 - Original Sato-Tate conjecture (for elliptic curves)
- **I**-functions and automorphic forms
 - Automorphic forms and representations
 - Automorphic L-functions and their local invariants
 - Level and weight aspects
- G Equidistribution for automorphic families
 - Questions and Results (w/ N. Templier)

回 と く ヨ と く ヨ と

æ

(Loosely) a collection of data $\{X_t\}_{t \in T}$, where X_t varies nicely over the parameter set T.

→ 同 → → 三 →

(Loosely) a collection of data $\{X_t\}_{t \in T}$, where X_t varies nicely over the parameter set T.

Ex 1. discrete family: when $T = \mathbb{Z}_{\geq 1}$

Just a sequence $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}$.

(One could choose T differently.)

イロン イヨン イヨン イヨン

(Loosely) a collection of data $\{X_t\}_{t\in T}$, where X_t varies nicely over the parameter set T.

Ex 1. discrete family: when $T = \mathbb{Z}_{\geq 1}$

Just a sequence $\{X_t\}_{t\in\mathbb{Z}_{>1}}$.

(One could choose T differently.) This can be enhanced to

Ex 2. projective system over $T = \mathbb{Z}_{>1}$

$$\cdots \rightarrow X_n \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_1.$$

・ロン ・回 と ・ ヨン ・ ヨン

Ex 3. vector bundle $X \rightarrow T$

= family of vec spaces $\{X_t\}_{t \in T}$ over a manifold or an alg variety T

▲□→ ▲ □→ ▲ □→

Ex 3. vector bundle $X \rightarrow T$

= family of vec spaces $\{X_t\}_{t \in T}$ over a manifold or an alg variety T

Ex 4. morphism of schemes $X \rightarrow T$

= family of schemes $\{X_t\}_{t \in T}$

イロン イヨン イヨン イヨン

Ex 3. vector bundle $X \to T$

= family of vec spaces $\{X_t\}_{t \in T}$ over a manifold or an alg variety T

Ex 4. morphism of schemes $X \rightarrow T$

= family of schemes $\{X_t\}_{t \in T}$

The following are two special cases of Ex 4:

Ex 5. Legendre family of elliptic curves (say $T = \mathbb{A}^1_{\mathbb{C}} \setminus \{0, 1\}$)

= family of curves
$$y^2 = x(x-1)(x-t)$$
, $t \in \mathbb{C} \setminus \{0,1\}$.

- 4 回 ト 4 ヨ ト - 4 ヨ ト

Ex 3. vector bundle $X \to T$

= family of vec spaces $\{X_t\}_{t \in T}$ over a manifold or an alg variety T

Ex 4. morphism of schemes $X \rightarrow T$

= family of schemes $\{X_t\}_{t \in T}$

The following are two special cases of Ex 4:

Ex 5. Legendre family of elliptic curves (say $T = \mathbb{A}^1_{\mathbb{C}} \setminus \{0, 1\}$)

= family of curves
$$y^2 = x(x-1)(x-t)$$
, $t \in \mathbb{C} \setminus \{0,1\}$.

Ex 6. reductions of algebraic variety X over $T = \operatorname{Spec}\mathbb{Z}$ or $T = \operatorname{Spec}\mathbb{Z}[1/S]$

 $= \{X \mod p\}_{p:\text{prime}} (+ \text{ gen fiber over } \mathbb{Q}).$

イロト イヨト イヨト イヨト

1. Distribution problem for families $\{X_t\}_{t \in \mathcal{T}}$.

(1日) (日) (日)

æ

- 1. Distribution problem for families $\{X_t\}_{t \in \mathcal{T}}$.
 - $X_t \rightsquigarrow \text{ some invariant } \operatorname{inv}(X_t) \in \mathcal{X}$.

(1日) (日) (日)

2

- 1. Distribution problem for families $\{X_t\}_{t \in \mathcal{T}}$.
 - $X_t \rightsquigarrow \text{ some invariant } \operatorname{inv}(X_t) \in \mathcal{X}$.

Question

How does $inv(X_t)$ vary in \mathcal{X} as t moves around?

イロン イヨン イヨン イヨン

- 1. Distribution problem for families $\{X_t\}_{t \in \mathcal{T}}$.
 - $X_t \rightsquigarrow \text{ some invariant } \operatorname{inv}(X_t) \in \mathcal{X}$.

Question How does $inv(X_t)$ vary in \mathcal{X} as t moves around?

Ex:
$$\mathcal{X} = \mathbb{Z}$$
; when $X \to T$ is a morph of schemes (manifolds)
• $inv(X_t) = \dim X_t$.

・ロン ・回と ・ヨン ・ヨン

- 1. Distribution problem for families $\{X_t\}_{t \in \mathcal{T}}$.
 - $X_t \rightsquigarrow \text{ some invariant } \operatorname{inv}(X_t) \in \mathcal{X}$.

Question

How does $inv(X_t)$ vary in \mathcal{X} as t moves around?

Ex:
$$\mathcal{X} = \mathbb{Z}$$
; when $X \to T$ is a morph of schemes (manifolds)

$$1 \quad \text{inv}(X_t) = \dim X_t.$$

• $\operatorname{inv}(X_t) = \dim H^i(X_t, \mathcal{F}_t)$ for fixed *i* and sheaf \mathcal{F} on X.

・ロト ・回ト ・ヨト ・ヨト

- 1. Distribution problem for families $\{X_t\}_{t \in \mathcal{T}}$.
 - $X_t \rightsquigarrow \text{ some invariant } \operatorname{inv}(X_t) \in \mathcal{X}$.

Question

How does $inv(X_t)$ vary in \mathcal{X} as t moves around?

Ex:
$$\mathcal{X} = \mathbb{Z}$$
; when $X \to T$ is a morph of schemes (manifolds)

$$Inv(X_t) = \dim X_t.$$

- $\operatorname{inv}(X_t) = \dim H^i(X_t, \mathcal{F}_t)$ for fixed *i* and sheaf \mathcal{F} on X.
- $\operatorname{inv}(X_p) = \#X(\mathbb{F}_p)$, where $(p) \in \operatorname{Spec}\mathbb{Z} = T$.

・ロト ・回ト ・ヨト ・ヨト

Deligne's proof of Weil conj implies:

Proposition

Assume $X \to \operatorname{Spec}\mathbb{Z}[1/S]$ is smooth and proper. There is some asymptotic "coherence" in $p \mapsto \#X(\mathbb{F}_p)$.

(4回) (4回) (日)

Deligne's proof of Weil conj implies:

Proposition

Assume $X \to \operatorname{Spec}\mathbb{Z}[1/S]$ is smooth and proper. There is some asymptotic "coherence" in $p \mapsto \#X(\mathbb{F}_p)$.

This family almost looks like a disc family but is still extremely deep and interesting.

<回と < 目と < 目と

Deligne's proof of Weil conj implies:

Proposition

Assume $X \to \operatorname{Spec}\mathbb{Z}[1/S]$ is smooth and proper. There is some asymptotic "coherence" in $p \mapsto \#X(\mathbb{F}_p)$.

This family almost looks like a disc family but is still extremely deep and interesting.

Ex:
$$X = \text{ell curve}$$
; say $y^2 = x(x-1)(x-t)$, $t \in \mathbb{Z} \setminus \{0,1\}$
 $S = \text{set of primes dividing } t$
 $p+1-2\sqrt{p} \le \#X(\mathbb{F}_p) \le p+1+2\sqrt{p}$. (Hasse, 1930s)

個 と く ヨ と く ヨ と …

Consider $\{X_t\}_{t \in \mathbb{Z}_{>1}} = \text{disc family}.$

(4回) (注) (注) (注) (注)

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}} = \text{disc family.}$ Natural to assume $|X_t| < \infty$. We could accumulate $Y_t := \cup_{u\leq t} X_u$ so that

$$|Y_t| < \infty, \quad |Y_t| \to \infty$$

回 と く ヨ と く ヨ と

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}} = \text{disc family.}$ Natural to assume $|X_t| < \infty$. We could accumulate $Y_t := \cup_{u\leq t} X_u$ so that

$$|Y_t| < \infty, \quad |Y_t| \to \infty$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \le t}$ as $t \to \infty$?

白 と く ヨ と く ヨ と …

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}} = \text{disc family.}$ Natural to assume $|X_t| < \infty$. We could accumulate $Y_t := \cup_{u\leq t} X_u$ so that

$$|Y_t| < \infty, \quad |Y_t| \to \infty$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \le t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}} = \text{disc family.}$ Natural to assume $|X_t| < \infty$. We could accumulate $Y_t := \cup_{u\leq t} X_u$ so that

$$|Y_t| < \infty, \quad |Y_t| \to \infty$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \le t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

•
$$Y_t := \{ p \le t : \text{prime} \nmid N \}, \ \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}} = \text{disc family.}$ Natural to assume $|X_t| < \infty$. We could accumulate $Y_t := \cup_{u\leq t} X_u$ so that

$$|Y_t| < \infty, \quad |Y_t| \to \infty$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \le t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

•
$$Y_t := \{ p \le t : \text{prime} \nmid N \}, \ \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

•
$$\operatorname{inv}(Y_t) = \{p \mod N\}_{p \in Y_t} \rightsquigarrow \text{``equidistributed'' on } \mathcal{X}.$$

(日) (日) (日)

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}} = \text{disc family.}$ Natural to assume $|X_t| < \infty$. We could accumulate $Y_t := \cup_{u\leq t} X_u$ so that

$$|Y_t| < \infty, \quad |Y_t| \to \infty$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \le t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

•
$$Y_t := \{ p \le t : \text{prime} \nmid N \}, \ \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

• $\operatorname{inv}(Y_t) = \{p \mod N\}_{p \in Y_t} \rightsquigarrow$ "equidistributed" on \mathcal{X} .

Ex: number of points on ell curves $X \to \operatorname{Spec}\mathbb{Z}[1/S]$

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}} = \text{disc family.}$ Natural to assume $|X_t| < \infty$. We could accumulate $Y_t := \cup_{u\leq t} X_u$ so that

$$|Y_t| < \infty, \quad |Y_t| \to \infty$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \le t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

•
$$Y_t := \{ p \le t : \text{prime} \nmid N \}, \ \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

• $\operatorname{inv}(Y_t) = \{p \mod N\}_{p \in Y_t} \rightsquigarrow$ "equidistributed" on \mathcal{X} .

Ex: number of points on ell curves $X \to \operatorname{Spec}\mathbb{Z}[1/S]$

• $\operatorname{inv}(X_p) = p + 1 - \#X(\mathbb{F}_p) \in [-2, 2]$ (Hasse) \rightsquigarrow call a_p .

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}} = \text{disc family.}$ Natural to assume $|X_t| < \infty$. We could accumulate $Y_t := \cup_{u\leq t} X_u$ so that

$$|Y_t| < \infty, \quad |Y_t| \to \infty$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \le t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

•
$$Y_t := \{ p \le t : \text{prime} \nmid N \}, \ \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

• $\operatorname{inv}(Y_t) = \{p \mod N\}_{p \in Y_t} \rightsquigarrow$ "equidistributed" on \mathcal{X} .

Ex: number of points on ell curves $X \to \operatorname{Spec}\mathbb{Z}[1/S]$

- $\operatorname{inv}(X_p) = p + 1 \#X(\mathbb{F}_p) \in [-2, 2]$ (Hasse) \rightsquigarrow call a_p .
- [Q] Dist of a_2, a_3, a_5, \dots in [-2, 2]? \dots to be revisited!

An essential way to attack a difficult problem.

(4回) (4回) (日)

æ

- An essential way to attack a difficult problem.
 - Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over F_q.

回 と く ヨ と く ヨ と

- An essential way to attack a difficult problem.
 - Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over F_q.
 - Density argument: know about X_t on a dense subset of T → know the rest.

<回と < 目と < 目と

- An essential way to attack a difficult problem.
 - Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over F_q.
 - Density argument: know about X_t on a dense subset of T → know the rest.

2 Average over family is easier to estimate than indiv members.

・ 同 ト ・ ヨ ト ・ ヨ ト

- An essential way to attack a difficult problem.
 - Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over F_q.
 - Density argument: know about X_t on a dense subset of T → know the rest.

2 Average over family is easier to estimate than indiv members.

• Arthur-Selberg trace formula: compute (weighted) average over "automorphic forms" on *G*.

- (目) - (日) - (日)

- An essential way to attack a difficult problem.
 - Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over F_q.
 - Density argument: know about X_t on a dense subset of T → know the rest.

2 Average over family is easier to estimate than indiv members.

- Arthur-Selberg trace formula: compute (weighted) average over "automorphic forms" on *G*.

(4月) (4日) (4日)

- An essential way to attack a difficult problem.
 - Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over F_q.
 - Density argument: know about X_t on a dense subset of T → know the rest.

2 Average over family is easier to estimate than indiv members.

- Arthur-Selberg trace formula: compute (weighted) average over "automorphic forms" on *G*.
- - e.g. rank r of ell curve E/\mathbb{Q} , $E(\mathbb{Q}) \simeq \mathbb{Z}^r \oplus (\operatorname{fin})$:
 - individual rank BSD conj,
 - avg rank in families recent progress (Bhargava-Shankar)

- Families
 - Families in general
 - Distribution problems
 - Why interesting?
- e Equidistribution
 - General setup
 - Original Sato-Tate conjecture (for elliptic curves)
- **1** *L*-functions and automorphic forms
 - Automorphic forms and representations
 - Automorphic L-functions and their local invariants
 - Level and weight aspects
- G Equidistribution for automorphic families
 - Questions and Results

高 とう モン・ く ヨ と
• $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=$ disc family, $0<|Y_t|<\infty, \ |Y_t|\to\infty$ as $t\to\infty$,

(本部) (本語) (本語) (語)

• $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}$ = disc family, $0 < |Y_t| < \infty$, $|Y_t| \to \infty$ as $t \to \infty$, • $i = \text{inv} : Y_t \to \mathcal{X}$,

(4回) (注) (注) (注) (注)

• $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=$ disc family, $0<|Y_t|<\infty, \ |Y_t|\to\infty$ as $t\to\infty$,

•
$$i = \operatorname{inv} : Y_t \to \mathcal{X}$$
,

• $C(\mathcal{X}) =$ nice space of \mathbb{C} -valued functions,

(ロ) (同) (E) (E) (E)

- $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}$ = disc family, $0<|Y_t|<\infty, |Y_t|\to\infty$ as $t\to\infty$,
- $i = \operatorname{inv} : Y_t \to \mathcal{X}$,
- $C(\mathcal{X}) =$ nice space of \mathbb{C} -valued functions,
- μ = nice measure on $C(\mathcal{X})$.

(《圖》 《문》 《문》 - 문

• $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}$ = disc family, $0<|Y_t|<\infty, |Y_t|\to\infty$ as $t\to\infty$,

•
$$i = \operatorname{inv} : Y_t \to \mathcal{X}$$
,

- $C(\mathcal{X}) =$ nice space of \mathbb{C} -valued functions,
- μ = nice measure on $C(\mathcal{X})$.

$$\mu_{Y_t}^{\text{count}} := \frac{1}{|Y_t|} \sum_{y \in Y_t} \delta_{i(y)}.$$

(《圖》 《문》 《문》 - 문

• $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}$ = disc family, $0<|Y_t|<\infty, |Y_t|\to\infty$ as $t\to\infty$,

•
$$i = \operatorname{inv} : Y_t \to \mathcal{X}$$
,

- $C(\mathcal{X}) =$ nice space of \mathbb{C} -valued functions,
- μ = nice measure on $C(\mathcal{X})$.

$$\mu_{Y_t}^{\operatorname{count}} := \frac{1}{|Y_t|} \sum_{y \in Y_t} \delta_{i(y)}.$$

Definition

 $\{Y_t\}$ is μ -equidistributed if $\mu_{Y_t}^{\mathrm{count}} o \mu$ as $t o \infty$,

- A 🗇 🕨 - A 🖻 🕨 - A 🖻 🕨 -

• $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}$ = disc family, $0<|Y_t|<\infty, |Y_t|\to\infty$ as $t\to\infty$,

•
$$i = \operatorname{inv} : Y_t \to \mathcal{X}$$
,

- $C(\mathcal{X}) =$ nice space of \mathbb{C} -valued functions,
- μ = nice measure on $C(\mathcal{X})$.

$$\mu_{Y_t}^{\operatorname{count}} := \frac{1}{|Y_t|} \sum_{y \in Y_t} \delta_{i(y)}.$$

Definition

 $\{Y_t\}$ is μ -equidistributed if $\mu_{Y_t}^{\text{count}} \to \mu$ as $t \to \infty$, i.e.

$$\forall f \in C(\mathcal{X}), \quad \lim_{t \to \infty} \frac{1}{|Y_t|} \sum_{y \in Y_t} f(y) = \mu(f) = \int_{\mathcal{X}} f d\mu$$

• $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=$ disc family, $0<|Y_t|<\infty, \ |Y_t|\to\infty$ as $t\to\infty$,

•
$$i = \operatorname{inv} : Y_t \to \mathcal{X}$$
,

- $C(\mathcal{X}) =$ nice space of \mathbb{C} -valued functions,
- μ = nice measure on $C(\mathcal{X})$.

$$\mu_{Y_t}^{\operatorname{count}} := \frac{1}{|Y_t|} \sum_{y \in Y_t} \delta_{i(y)}.$$

Definition

 $\{Y_t\}$ is μ -equidistributed if $\mu_{Y_t}^{\text{count}} \to \mu$ as $t \to \infty$, i.e.

$$orall f \in \mathcal{C}(\mathcal{X}), \quad \lim_{t \to \infty} rac{1}{|Y_t|} \sum_{y \in Y_t} f(y) = \mu(f) = \int_{\mathcal{X}} f d\mu_t$$

♠ variant: use a weighted average.

• E •

Equidistribution - when \mathcal{X} is finite

(Example:
$$Y_t = \{p \leq t : p \nmid N\}$$
, $\mathcal{X} = (\mathbb{Z}/N\mathbb{Z})^{\times}$, $a_x = 1/\varphi(N)$.)

•
$$\{Y_t\}_{t\in\mathbb{Z}_{>1}}$$
 = disc family; invariant $i: Y_t \to \mathcal{X}$,

•
$$P_x(Y_t) := \#\{y \in Y_t : i(y) = x\}/|Y_t|$$
 so that

$$\mu_{\mathbf{Y}_t}^{\text{count}} := \frac{1}{|\mathbf{Y}_t|} \sum_{\mathbf{y} \in \mathbf{Y}_t} \delta_{i(\mathbf{y})} = \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{P}_{\mathbf{x}}(\mathbf{Y}_t) \delta_{\mathbf{x}}.$$

• A prob measure μ on ${\mathcal X}$ has the form

$$\mu = \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{a}_{\mathbf{x}} \delta_{\mathbf{x}}, \quad (\sum_{\mathbf{x} \in \mathcal{X}} \mathbf{a}_{\mathbf{x}} = 1).$$

I said $\{Y_t\}$ is μ -equidistributed if $\mu_{Y_t}^{\text{count}} \to \mu$ as $t \to \infty$, which is true iff $P_x(Y_t) \to a_x$ for all $x \in \mathcal{X}$.

(本部) (本語) (本語) (語)

E =elliptic curve over \mathbb{Q} without complex mult.

< ≣⇒

- < ∃ >

E =elliptic curve over \mathbb{Q} without complex mult.

 a_E : {(almost all) primes} $\rightarrow \mathbb{C}$ by $a_E(p) := (1 + p - \#E(\mathbb{F}_p))/p^{1/2} \in [-2, 2]$ by Hasse.

回 と く ヨ と く ヨ と

E = elliptic curve over \mathbb{Q} without complex mult.

 a_E : {(almost all) primes} $\rightarrow \mathbb{C}$ by $a_E(p) := (1 + p - \#E(\mathbb{F}_p))/p^{1/2} \in [-2, 2]$ by Hasse.

Conjecture (Sato-Tate, 1960s)

$$\{a_E(p)\}_{p \le N}$$
 is equidist. on [-2,2] w.r.t $\mu^{\text{ST}} = \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}} dx$.

- 〈 同 〉 〈 臣 〉 〈 臣 〉 ― 臣

E = elliptic curve over \mathbb{Q} without complex mult.

 a_E : {(almost all) primes} $\rightarrow \mathbb{C}$ by $a_E(p) := (1 + p - \#E(\mathbb{F}_p))/p^{1/2} \in [-2, 2]$ by Hasse.

Conjecture (Sato-Tate, 1960s)

$$\{a_E(p)\}_{p \le N}$$
 is equidist. on $[-2, 2]$ w.r.t $\mu^{ST} = \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4} dx}$.

Theorem (Barnet-Lamb, Clozel, Gee, Geraghty, Harris, Shepherd-Barron, Taylor; 2006-2010)

The conjecture is true (also true if $\mathbb{Q} \rightsquigarrow$ totally real field).

(日) (部) (注) (注) (言)

E = elliptic curve over \mathbb{Q} without complex mult.

 a_E : {(almost all) primes} $\rightarrow \mathbb{C}$ by $a_E(p) := (1 + p - \#E(\mathbb{F}_p))/p^{1/2} \in [-2, 2]$ by Hasse.

Conjecture (Sato-Tate, 1960s)

$$\{a_E(p)\}_{p \le N}$$
 is equidist. on $[-2, 2]$ w.r.t $\mu^{ST} = \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}} dx$.

Theorem (Barnet-Lamb, Clozel, Gee, Geraghty, Harris, Shepherd-Barron, Taylor; 2006-2010)

The conjecture is true (also true if $\mathbb{Q} \rightsquigarrow$ totally real field).

* "Automorphic analogue" also proved for GL_2 . (ell curves \leftrightarrow modular forms.) For general algebraic varieties and general automorphic reps, the analog conj is *wide open*.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Sato-Tate conjecture for elliptic curves - graphics

source: Barry Mazur, Finding meaning in error terms, 2007.

• red =
$$\mu^{\text{ST}}$$
, blue = μ^{count} from $\{a_E(p)\}$.

- Families
 - Families in general
 - Distribution problems
 - Why interesting?
- 2 Equidistribution
 - General setup
 - Original Sato-Tate conjecture (for elliptic curves)
- **I**-functions and automorphic forms
 - Automorphic forms and representations
 - Automorphic L-functions and their local invariants
 - Level and weight aspects
- G Equidistribution for automorphic families
 - Questions and Results

白 ト く ヨ ト く ヨ ト

There are three abundant sources of *L*-functions:

æ

There are three abundant sources of *L*-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- 2 algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **③** Galois representations $\rho \rightsquigarrow L(s, \rho)$

★御▶ ★理▶ ★理▶ 二臣

There are three abundant sources of *L*-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- 2 algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **③** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

- * @ * * ほ * * ほ * … ほ

There are three abundant sources of *L*-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- 2 algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

There are three abundant sources of *L*-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- 2 algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

•
$$\pi = \mathbf{1}, M = \operatorname{Spec}\mathbb{Q}, \rho = \mathbf{1} \Rightarrow L(s, \pi) = \cdots = \zeta(s).$$

There are three abundant sources of *L*-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- 2 algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

- $\pi = \mathbf{1}$, $M = \operatorname{Spec}\mathbb{Q}$, $\rho = \mathbf{1} \Rightarrow L(s, \pi) = \cdots = \zeta(s)$.
- $\pi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times} \stackrel{\text{cyclo thy}}{\leftrightarrow} \rho: \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to \mathbb{C}^{\times}.$
 - \rightsquigarrow Dirichlet *L*-functions

There are three abundant sources of *L*-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- 2 algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

- $\pi = \mathbf{1}$, $M = \operatorname{Spec}\mathbb{Q}$, $\rho = \mathbf{1} \Rightarrow L(s, \pi) = \cdots = \zeta(s)$.
- $\pi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times} \stackrel{\text{cyclo thy}}{\leftrightarrow} \rho: \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to \mathbb{C}^{\times}.$
 - \rightsquigarrow Dirichlet L-functions
- f (cuspform) $\stackrel{\text{Wiles et al}}{\leftrightarrow} E$ (ell. curve) \leftrightarrow Gal rep on $T_I E \otimes \mathbb{Q}_I$.

Our focus: auto forms (reps) π and their *L*-functions $L(s, \pi)$. They are central in number theory...but, hey, what are they?

向下 イヨト イヨト

Our focus: auto forms (reps) π and their *L*-functions $L(s, \pi)$. They are central in number theory...but, hey, what are they?

Here's a correct but lazy way: auto form of GL_n is

$$f \in L^2(GL_n(\mathbb{Q})\mathbb{R}^{\times} \setminus GL_n(\mathbb{A})).$$

(Here $\mathbb{A} \approx \prod_{p} \mathbb{Q}_{p} \times \mathbb{R}$, $GL_{n}(\mathbb{A}) \approx \prod_{p} GL_{n}(\mathbb{Q}_{p}) \times \mathbb{R}$.)

An irred constituent of the regular rep of $GL_n(\mathbb{A})$ on $L^2(\cdots)$ is auto rep of $GL_n(\mathbb{A})$.

Problem: Maybe too vague!

伺い イヨト イヨト

Better to understand modular forms (\rightsquigarrow auto forms of GL_2):

・ 回 と く ヨ と く ヨ と

Better to understand modular forms (\rightsquigarrow auto forms of GL_2):

•
$$\Gamma(N) = \{A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N}\}$$

• $\mathfrak{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$, acted on by $\Gamma(N)$ via
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z \mapsto (az + b)(cz + d)^{-1}.$

・ 回 と く ヨ と く ヨ と

•
$$\Gamma(N) = \{A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N}\}$$

• $\mathfrak{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$, acted on by $\Gamma(N)$ via
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z \mapsto (az + b)(cz + d)^{-1}.$

• $\Gamma(N) \setminus \mathfrak{H}^* = \text{compact Riemann surface} \rightsquigarrow \text{proj system in } N.$

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

•
$$\Gamma(N) = \{A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N}\}$$

• $\mathfrak{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$, acted on by $\Gamma(N)$ via
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z \mapsto (az + b)(cz + d)^{-1}.$

 Γ(N)\𝔅^{*} = compact Riemann surface → proj system in N. (Ex: Γ(1)\𝔅^{*} ≃ ℙ¹(ℂ).)

回 と く ヨ と く ヨ と …

•
$$\Gamma(N) = \{A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N}\}$$

•
$$\mathfrak{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$$
, acted on by $\Gamma(N)$ via
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z \mapsto (az+b)(cz+d)^{-1}.$

- Γ(N)\𝔅^{*} = compact Riemann surface → proj system in N. (Ex: Γ(1)\𝔅^{*} ≃ ℙ¹(ℂ).)
- modular form of level N, wt $\kappa \geq 1$ = holo fcn $\mathfrak{H}^* \to \mathbb{C} + \text{``wt } \kappa\text{''}$ transf. law w.r.t $\Gamma(N)$ -action.

・ 回 と ・ ヨ と ・ ヨ と

•
$$\Gamma(N) = \{A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N}\}$$

•
$$\mathfrak{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$$
, acted on by $\Gamma(N)$ via
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z \mapsto (az+b)(cz+d)^{-1}.$

 Γ(N)\第^{*} = compact Riemann surface → proj system in N. (Ex: Γ(1)\9^{*} ≃ P¹(C).)

• modular form of level
$$N$$
, wt $\kappa \ge 1$
= holo fcn $\mathfrak{H}^* \to \mathbb{C}$ + "wt κ " transf. law w.r.t $\Gamma(N)$ -action.
 $\overline{M(\kappa, N)} = \mathbb{C}$ -v. sp. of such fcns, \circlearrowright "Hecke operators" $\{T_p\}$.
 $\overline{\mathcal{F}(\kappa, N)} = \mathbb{C}$ -basis of eigenvectors.

白 と く ヨ と く ヨ と

•
$$\Gamma(N) = \{A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N}\}$$

•
$$\mathfrak{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$$
, acted on by $\Gamma(N)$ via
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z \mapsto (az+b)(cz+d)^{-1}.$

 Γ(N)\𝔅^{*} = compact Riemann surface → proj system in N. (Ex: Γ(1)\𝔅^{*} ≃ ℙ¹(ℂ).)

• modular form of level
$$N$$
, wt $\kappa \ge 1$
= holo fcn $\mathfrak{H}^* \to \mathbb{C}$ + "wt κ " transf. law w.r.t $\Gamma(N)$ -action.
 $\overline{M(\kappa, N)} = \mathbb{C}$ -v. sp. of such fcns, \circlearrowright "Hecke operators" $\{T_p\}$.
 $\overline{\mathcal{F}(\kappa, N)} = \mathbb{C}$ -basis of eigenvectors.

 $\underline{\mathsf{Fact}}: \ \forall \kappa, \mathsf{N}, \ |\mathcal{F}(\kappa, \mathsf{N})| < \infty \ \text{and} \ |\mathcal{F}(\kappa, \mathsf{N})| \to \infty \ \text{as} \ \kappa + \mathsf{N} \to \infty.$

同下 《日下 《日下 》曰

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) = \text{basis}$ ("eigenforms") for wt κ level N mod forms.

< 注→ < 注→ -

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) = \text{basis}$ ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k \ge 1}$:

回 と く ヨ と く ヨ と …

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) = \text{basis}$ ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k \ge 1}$:

Ex 1: level aspect - κ fixed

Let N_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow \{\mathcal{F}_k = \mathcal{F}(\kappa, N_k)\}_{k \geq 1}$.

(本部) (本語) (本語) (語)

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) = \text{basis}$ ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k \ge 1}$:

Ex 1: level aspect - κ fixed

Let N_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow \{\mathcal{F}_k = \mathcal{F}(\kappa, N_k)\}_{k \geq 1}$.

Ex 2: weight aspect - N fixed

Let
$$\kappa_k$$
 be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow \{\mathcal{F}_k = \mathcal{F}(\kappa_k, N)\}_{k \ge 1}$.

(日) (部) (注) (注) (言)
Automorphic forms and representations - (3)

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) = \text{basis}$ ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k \ge 1}$:

Ex 1: level aspect - κ fixed

Let N_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow \{\mathcal{F}_k = \mathcal{F}(\kappa, N_k)\}_{k \geq 1}$.

Ex 2: weight aspect - N fixed

Let κ_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow \{\mathcal{F}_k = \mathcal{F}(\kappa_k, N)\}_{k \geq 1}$.

• These generalize: $GL_2 \rightsquigarrow GL_n$ (and others).

(ロ) (同) (E) (E) (E)

Automorphic forms and representations - (3)

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) = \text{basis}$ ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k \ge 1}$:

Ex 1: level aspect - κ fixed

Let N_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow \{\mathcal{F}_k = \mathcal{F}(\kappa, N_k)\}_{k \geq 1}$.

Ex 2: weight aspect - N fixed

Let κ_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow \{\mathcal{F}_k = \mathcal{F}(\kappa_k, N)\}_{k \geq 1}$.

- These generalize: $GL_2 \rightsquigarrow GL_n$ (and others).
- What are interesting invariants for auto forms/reps?

(ロ) (同) (E) (E) (E)

Automorphic forms and representations - (3)

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) = \text{basis}$ ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k \ge 1}$:

Ex 1: level aspect - κ fixed

Let N_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow \{\mathcal{F}_k = \mathcal{F}(\kappa, N_k)\}_{k \geq 1}$.

Ex 2: weight aspect - N fixed

Let κ_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow \{\mathcal{F}_k = \mathcal{F}(\kappa_k, N)\}_{k \geq 1}$.

- These generalize: $GL_2 \rightsquigarrow GL_n$ (and others).
- What are interesting invariants for auto forms/reps?
 (a) |F_k| (≈ genus of Γ\ℌ* if k = 2), may ask about growth.
 (b) T_p-eigenval. (or local inv in L-fcns). ··· Our concern

個 と く ヨ と く ヨ と …

æ

Given an auto rep π of $GL_n(\mathbb{A})$, there is a way to construct

• L-function $L(s, \pi)$ in $s \in \mathbb{C}$.

Image: A image: A

Given an auto rep π of $GL_n(\mathbb{A})$, there is a way to construct

• L-function
$$L(s,\pi)$$
 in $s \in \mathbb{C}$.
Ex: $\pi = \mathbf{1}$, $n = 1 \rightsquigarrow L(s,\pi) = \zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$.

向下 イヨト イヨト

Given an auto rep π of $GL_n(\mathbb{A})$, there is a way to construct

• L-function
$$L(s,\pi)$$
 in $s \in \mathbb{C}$.
Ex: $\pi = \mathbf{1}$, $n = 1 \rightsquigarrow L(s,\pi) = \zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$.

Some nice properties:

- Analytic continuation: L(s, π) extends to all s ∈ C (except finitely many poles).
- 2 Euler product: $L(s,\pi) = \prod_{p} L_{p}(s,\pi)$, Ex: $\zeta(s) = \prod_{p} (1-p^{-s})^{-1}$, $\operatorname{Re}(s) > 1$.
- Solution Functional Equation: $\Lambda(s, \pi) = \Lambda(1 s, \pi^{\vee})$ (Λ = completed *L*-function).

・回 とくほとくほとう

$$\pi \quad \rightsquigarrow \quad L(s,\pi) = \prod_p L_p(s,\pi), \text{ Re}(s) > 1.$$

個 と く ヨ と く ヨ と …

æ

$$\pi \quad \rightsquigarrow \quad L(s,\pi) = \prod_{\rho} L_{\rho}(s,\pi), \operatorname{Re}(s) > 1.$$

Fact: For a.a.p,
$$L_p(s,\pi) = \prod_{i=1}^n (1-a_{p,i}(\pi)p^{-s})^{-1}, a_{p,i}(\pi) \in \mathbb{C}^{\times}.$$

個 と く ヨ と く ヨ と …

æ

$$\pi \quad \leadsto \quad L(s,\pi) = \prod_{\rho} L_{\rho}(s,\pi), \operatorname{Re}(s) > 1.$$

Fact : For a.a.
$$p$$
, $L_p(s,\pi) = \prod_{i=1}^n (1-a_{p,i}(\pi)p^{-s})^{-1}$, $a_{p,i}(\pi) \in \mathbb{C}^{\times}$.

 \rightsquigarrow Local invariant for π at $p = a_{p,1}, ..., a_{p,n}$ in \mathbb{C}^{\times} (unordered).

回 と く ヨ と く ヨ と

2

$$\pi \quad \leadsto \quad L(s,\pi) = \prod_{\rho} L_{\rho}(s,\pi), \operatorname{Re}(s) > 1.$$

Fact : For a.a.
$$p$$
, $L_p(s,\pi) = \prod_{i=1}^n (1-a_{p,i}(\pi)p^{-s})^{-1}$, $a_{p,i}(\pi) \in \mathbb{C}^{\times}$.

 \rightsquigarrow Local invariant for π at $p = a_{p,1}, ..., a_{p,n}$ in \mathbb{C}^{\times} (unordered).

- Conj: If π is cuspidal ("simple obj"), $\forall p, i, |a_{p,i}| = 1$.
- Known: $\{a_{p,i}\}$ for a.a. $p \rightsquigarrow \exists$ at most one π .

< 回 > < 注 > < 注 > … 注

$$\pi \quad \leadsto \quad L(s,\pi) = \prod_{\rho} L_{\rho}(s,\pi), \operatorname{Re}(s) > 1.$$

Fact: For a.a.
$$p$$
, $L_p(s,\pi) = \prod_{i=1}^n (1-a_{p,i}(\pi)p^{-s})^{-1}$, $a_{p,i}(\pi) \in \mathbb{C}^{\times}$.

 \rightsquigarrow Local invariant for π at $p = a_{p,1}, ..., a_{p,n}$ in \mathbb{C}^{\times} (unordered).

- Conj: If π is cuspidal ("simple obj"), $\forall p, i, |a_{p,i}| = 1$.
- Known: $\{a_{p,i}\}$ for a.a. $p \rightsquigarrow \exists$ at most one π .

Ex: ell curves $E \leftrightarrow$ wt 2 forms f so that $L(s + \frac{1}{2}, E) = L(s, f)$ $L_p(s, f) = (1 - a_{p,1}(f)p^{-s})^{-1}(1 - a_{p,2}(f)p^{-s})^{-1}$ for $a_{p,1}, a_{p,2} \in S^1$. $L_p(s, E) = (1 - a_p(E)p^{-s} + p^{1-2s})^{-1}$.

$$\pi \quad \leadsto \quad L(s,\pi) = \prod_{\rho} L_{\rho}(s,\pi), \operatorname{Re}(s) > 1.$$

Fact : For a.a.
$$p$$
, $L_p(s,\pi) = \prod_{i=1}^n (1-a_{p,i}(\pi)p^{-s})^{-1}$, $a_{p,i}(\pi) \in \mathbb{C}^{\times}$.

 \rightsquigarrow Local invariant for π at $p = a_{p,1}, ..., a_{p,n}$ in \mathbb{C}^{\times} (unordered).

- Conj: If π is cuspidal ("simple obj"), $\forall p, i, |a_{p,i}| = 1$.
- Known: $\{a_{p,i}\}$ for a.a. $p \rightsquigarrow \exists$ at most one π .

Ex: ell curves $E \leftrightarrow$ wt 2 forms f so that $L(s + \frac{1}{2}, E) = L(s, f)$ $L_p(s, f) = (1 - a_{p,1}(f)p^{-s})^{-1}(1 - a_{p,2}(f)p^{-s})^{-1}$ for $a_{p,1}, a_{p,2} \in S^1$. $L_p(s, E) = (1 - a_p(E)p^{-s} + p^{1-2s})^{-1}$. $a_p(E)/p^{1/2} = \frac{p+1-\#E(\mathbb{F}_p)}{p^{1/2}} = \underbrace{a_{p,1}(f) + a_{p,2}(f)}_{p^{-1/2} \cdot (T_{p}-e.v.)} \in [-2, 2]$.

Recall: $E \leftrightarrow f \rightsquigarrow p^{-1/2}a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2, 2].$ (Given $a_p(E)$, roots of $x^2 - p^{-1/2}a_p(E)x + 1 = a_{p,1}, a_{p,2} \in S^1.$)

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Recall:
$$E \leftrightarrow f \rightsquigarrow p^{-1/2}a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2,2].$$

(Given $a_p(E)$, roots of $x^2 - p^{-1/2}a_p(E)x + 1 = a_{p,1}, a_{p,2} \in S^1.$)

Theorem (cited before)

$$\{p^{-1/2}a_p(E)\}$$
 are equidist on $[-2,2]$ wrt $\mu^{ST} = \frac{1}{\pi}\sqrt{1-x^2/4}dx$.

・ロン ・回 と ・ ヨン ・ ヨン

Э

Recall:
$$E \leftrightarrow f \rightsquigarrow p^{-1/2}a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2,2].$$

(Given $a_p(E)$, roots of $x^2 - p^{-1/2}a_p(E)x + 1 = a_{p,1}, a_{p,2} \in S^1.$)

Theorem (cited before)

$$\{p^{-1/2}a_p(E)\}$$
 are equidist on $[-2,2]$ wrt $\mu^{ST} = \frac{1}{\pi}\sqrt{1-x^2/4}dx$.

Implied if
$$\begin{pmatrix} a_{p,1} & 0 \\ 0 & a_{p,2} \end{pmatrix}$$
 defines a "random" conj class in
 $SU(2) = \{A \in M_2(\mathbb{C}) : A\overline{A}^T = 1\}$ as $p \to \infty$.

・ロン ・回 と ・ ヨン ・ ヨン

Э

Recall:
$$E \leftrightarrow f \rightsquigarrow p^{-1/2}a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2,2].$$

(Given $a_p(E)$, roots of $x^2 - p^{-1/2}a_p(E)x + 1 = a_{p,1}, a_{p,2} \in S^1.$)

Theorem (cited before)

$$\{p^{-1/2}a_p(E)\}$$
 are equidist on $[-2,2]$ wrt $\mu^{ST} = \frac{1}{\pi}\sqrt{1-x^2/4}dx$.

Implied if
$$\begin{pmatrix} a_{p,1} & 0 \\ 0 & a_{p,2} \end{pmatrix}$$
 defines a "random" conj class in
 $SU(2) = \{A \in M_2(\mathbb{C}) : A\overline{A}^T = 1\}$ as $p \to \infty$.

i.e. if μ^{ST} is "push-forward" of Haar measure on SU(2) via

$$SU(2) \longrightarrow SU(2)/\text{conj} \stackrel{\text{trace}}{\longrightarrow} [-2,2].$$

(ロ) (同) (E) (E) (E)

Recall:
$$E \leftrightarrow f \rightsquigarrow p^{-1/2}a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2,2].$$

(Given $a_p(E)$, roots of $x^2 - p^{-1/2}a_p(E)x + 1 = a_{p,1}, a_{p,2} \in S^1.$)

Theorem (cited before)

$$\{p^{-1/2}a_p(E)\}$$
 are equidist on $[-2,2]$ wrt $\mu^{ST} = \frac{1}{\pi}\sqrt{1-x^2/4}dx$.

Implied if
$$\begin{pmatrix} a_{p,1} & 0 \\ 0 & a_{p,2} \end{pmatrix}$$
 defines a "random" conj class in
 $SU(2) = \{A \in M_2(\mathbb{C}) : A\overline{A}^T = 1\}$ as $p \to \infty$.

i.e. if μ^{ST} is "push-forward" of Haar measure on SU(2) via

$$SU(2) \longrightarrow SU(2)/\text{conj} \stackrel{\text{trace}}{\longrightarrow} [-2,2].$$

♠ In generalized S-T, replace SU(2) by max cpt subgp of some \mathbb{C} Lie gp \widehat{G} . (Here G depends on problem.)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Entering last part

- Families
 - Families in general
 - Distribution problems
 - Why interesting?
- 2 Equidistribution
 - General setup
 - Original Sato-Tate conjecture (for elliptic curves)
- **1** *L*-functions and automorphic forms
 - Automorphic forms and representations
 - Automorphic L-functions and their local invariants
 - Level and weight aspects
- Equidistribution for automorphic families
 - Questions and Results

白 と く ヨ と く ヨ と

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A})$).

•
$$\pi \rightsquigarrow L(s,\pi) = \prod_{p} L_{p}(s,\pi) \rightsquigarrow (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.$$

(4回) (4回) (日)

æ

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A})$).

•
$$\pi \rightsquigarrow L(s,\pi) = \prod_{p} L_{p}(s,\pi) \rightsquigarrow (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.$$

Our concern $\cdots \{\mathcal{F}_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

(本部) (本語) (本語) (語)

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A})$).

•
$$\pi \rightsquigarrow L(s,\pi) = \prod_{p} L_{p}(s,\pi) \rightsquigarrow (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.$$

Our concern $\cdots \{\mathcal{F}_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k o \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.

・ 回 ト ・ ヨ ト ・ ヨ ト

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A})$).

•
$$\pi \rightsquigarrow L(s,\pi) = \prod_{p} L_{p}(s,\pi) \rightsquigarrow (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.$$

Our concern $\cdots \{\mathcal{F}_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k o \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.
- Have $|\mathcal{F}_k| < \infty$, $\lim_{k \to \infty} |\mathcal{F}_k| = \infty$.

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A})$).

•
$$\pi \rightsquigarrow L(s,\pi) = \prod_{p} L_{p}(s,\pi) \rightsquigarrow (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.$$

Our concern $\cdots \{\mathcal{F}_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k o \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.
- Have $|\mathcal{F}_k| < \infty$, $\lim_{k \to \infty} |\mathcal{F}_k| = \infty$.
- $\{\mathcal{F}_k\}_{k\geq 1} \rightsquigarrow \{\mathfrak{F}_k\}_{k\geq 1}$ family of *L*-functions

- 本部 とくき とくき とうき

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A})$).

•
$$\pi \rightsquigarrow L(s,\pi) = \prod_{p} L_{p}(s,\pi) \rightsquigarrow (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.$$

Our concern $\cdots \{\mathcal{F}_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k o \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.
- Have $|\mathcal{F}_k| < \infty$, $\lim_{k \to \infty} |\mathcal{F}_k| = \infty$.
- $\{\mathcal{F}_k\}_{k\geq 1} \rightsquigarrow \{\mathfrak{F}_k\}_{k\geq 1}$ family of *L*-functions

Interesting statistical problems on $\{\mathcal{F}_k\}$ or $\{\mathfrak{F}_k\}$ or $\{\mathfrak{F}_k\}$

- 本部 とくき とくき とうき

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A})$).

•
$$\pi \rightsquigarrow L(s,\pi) = \prod_{p} L_{p}(s,\pi) \rightsquigarrow (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.$$

Our concern $\cdots \{\mathcal{F}_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k o \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.
- Have $|\mathcal{F}_k| < \infty$, $\lim_{k \to \infty} |\mathcal{F}_k| = \infty$.
- $\{\mathcal{F}_k\}_{k\geq 1} \rightsquigarrow \{\mathfrak{F}_k\}_{k\geq 1}$ family of *L*-functions

Interesting statistical problems on $\{\mathcal{F}_k\}$ or $\{\mathfrak{F}_k\}$ ···

• (equi-)dist of $(a_{p,1}(\pi), ..., a_{p,n}(\pi))$? (See next slide.)

Etc...

 $\{\mathcal{F}_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$, level or wt aspect

 $\pi \mapsto t_p(\pi) := (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^n/S_n = \widehat{T}/\Omega \text{ is invt at } p.$

回り くほり くほり ……ほ

$$\{\mathcal{F}_k\}_{k\geq 1}$$
 = family of auto reps of $GL_n(\mathbb{A})$, level or wt aspect

$$\pi\mapsto t_{
ho}(\pi):=(a_{
ho,1},...,a_{
ho,n})\in (\mathbb{C}^{ imes})^n/S_n=\widehat{T}/\Omega$$
 is invt at $ho.$

Question (Are the following μ -equidist for some μ on $(\mathbb{C}^{\times})^n/S_n$?)

(Assume all $\pi \in \mathcal{F}_k$ are unramified at p or p_k .)

•
$$\{t_p(\pi):\pi\in\mathcal{F}_k\}_{k\geq 1}$$
, where p fixed,

②
$$\{t_{m{
ho}_k}(\pi):\pi\in\mathcal{F}_k\}_{k\geq 1}$$
, where $p_k o\infty$,

3
$$\{t_p(\pi)\}_{p:\text{prime}}$$
, where π fixed.

$$\{\mathcal{F}_k\}_{k\geq 1}$$
 = family of auto reps of $GL_n(\mathbb{A})$, level or wt aspect

$$\pi\mapsto t_{p}(\pi):=(a_{p,1},...,a_{p,n})\in (\mathbb{C}^{ imes})^{n}/S_{n}=\widehat{T}/\Omega$$
 is invt at $p.$

Question (Are the following μ -equidist for some μ on $(\mathbb{C}^{\times})^n/S_n$?)

(Assume all $\pi \in \mathcal{F}_k$ are unramified at p or p_k .)

$$lacksymbol{0}\ \{t_{p}(\pi):\pi\in\mathcal{F}_{k}\}_{k\geq1}$$
, where p fixed,

2
$$\{t_{m{
ho}_k}(\pi):\pi\in\mathcal{F}_k\}_{k\geq 1}$$
, where $m{
ho}_k o\infty$,

3
$$\{t_p(\pi)\}_{p:\text{prime}}$$
, where π fixed.

* May ask similar questions about general G in place of GL_n .

・ 回 と ・ ヨ と ・ ヨ と …

$$\{\mathcal{F}_k\}_{k\geq 1}$$
 = family of auto reps of $GL_n(\mathbb{A})$, level or wt aspect

$$\pi\mapsto t_{
ho}(\pi):=(a_{
ho,1},...,a_{
ho,n})\in (\mathbb{C}^{ imes})^n/S_n=\widehat{T}/\Omega$$
 is invt at $ho.$

Question (Are the following μ -equidist for some μ on $(\mathbb{C}^{\times})^n/S_n$?)

(Assume all $\pi \in \mathcal{F}_k$ are unramified at p or p_k .)

0
$$\{t_p(\pi):\pi\in\mathcal{F}_k\}_{k\geq 1}$$
, where p fixed,

2
$$\{t_{p_k}(\pi):\pi\in\mathcal{F}_k\}_{k\geq 1}$$
, where $p_k o\infty$,

3
$$\{t_{\rho}(\pi)\}_{\rho:\text{prime}}$$
, where π fixed.

* May ask similar questions about general G in place of GL_n .

Theorem (Q1: S., 2009; Q2: S.-Templier, 2011)

Answers Q1 and Q2 for G s.t. $G(\mathbb{R})$ has d.s. (No clue to Q3.)

$$\{\mathcal{F}_k\}_{k\geq 1}$$
 = family of auto reps of $GL_n(\mathbb{A})$, level or wt aspect

$$\pi\mapsto t_{p}(\pi):=(a_{p,1},...,a_{p,n})\in (\mathbb{C}^{ imes})^{n}/S_{n}=\widehat{T}/\Omega$$
 is invt at $p.$

Question (Are the following μ -equidist for some μ on $(\mathbb{C}^{\times})^n/S_n$?)

(Assume all $\pi \in \mathcal{F}_k$ are unramified at p or p_k .)

1
$$\{t_p(\pi):\pi\in\mathcal{F}_k\}_{k\geq 1}$$
, where p fixed,

2
$$\{t_{p_k}(\pi):\pi\in\mathcal{F}_k\}_{k\geq 1}$$
, where $p_k o\infty$,

3
$$\{t_{\rho}(\pi)\}_{\rho:\text{prime}}$$
, where π fixed.

* May ask similar questions about general G in place of GL_n .

Theorem (Q1: S., 2009; Q2: S.-Templier, 2011)

Answers Q1 and Q2 for G s.t. $G(\mathbb{R})$ has d.s. (No clue to Q3.)

- Q2 (resp. Q3) is "S-T conj for families (resp. indiv aut reps)".
- Previous (beyond *GL*₂): Q1 (mainly cpt quot), Q2 (none).

For Q1, we fix p.

・ロト ・回ト ・ヨト ・ヨト

æ

For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$\boxed{\mu_{\mathcal{F}_k,\boldsymbol{p}}^{\mathrm{count}}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_p}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where}$$

(1日) (日) (日)

2

For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$\boxed{\mu_{\mathcal{F}_k,p}^{\text{count}}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_p}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where}$$

 $\widehat{T}/\Omega \supset \widehat{T}_c/\Omega \overset{\text{Satake}}{\leftrightarrow} \{ \text{unr temp reps } \pi_p \text{ of } G(\mathbb{Q}_p) \}.$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$\boxed{\mu^{\rm count}_{\mathcal{F}_k,\rho}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_p}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where}$$

 $\widehat{\mathcal{T}}/\Omega \supset \widehat{\mathcal{T}}_c/\Omega \overset{\text{Satake}}{\leftrightarrow} \{ \text{unr temp reps } \pi_p \text{ of } \mathcal{G}(\mathbb{Q}_p) \}.$

•
$$\widehat{T}_c$$
 = copies of S^1 ; \widehat{T} = copies of \mathbb{C}^{\times} .

- Some π_p may not be tempered \rightsquigarrow ignore in the sum.
- Need to be weighted suitably.

伺下 イヨト イヨト

For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$\boxed{\mu^{\rm count}_{\mathcal{F}_k,\rho}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_p}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where}$$

 $\widehat{\mathcal{T}}/\Omega \supset \widehat{\mathcal{T}}_c/\Omega \overset{\text{Satake}}{\leftrightarrow} \{ \text{unr temp reps } \pi_p \text{ of } \mathcal{G}(\mathbb{Q}_p) \}.$

•
$$\widehat{\mathcal{T}}_{c}=$$
 copies of S^{1} ; $\widehat{\mathcal{T}}=$ copies of $\mathbb{C}^{ imes}.$

- Some π_p may not be tempered \rightsquigarrow ignore in the sum.
- Need to be weighted suitably.

We are going to relate the limit of $\mu_{\mathcal{F}_{k},p}^{\mathrm{count}}$ to:

$$\mu_{p}^{\mathrm{pl}} = \mathsf{Plancherel} \ \mathsf{measure} \ \mathsf{on} \ \widehat{\mathcal{T}}_{c} / \Omega \ (\underline{depending} \ \mathsf{on} \ p).$$
For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$\boxed{\mu^{\rm count}_{\mathcal{F}_k,\rho}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_p}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where}$$

 $\widehat{\mathcal{T}}/\Omega \supset \widehat{\mathcal{T}}_c/\Omega \overset{\text{Satake}}{\leftrightarrow} \{ \text{unr temp reps } \pi_p \text{ of } \mathcal{G}(\mathbb{Q}_p) \}.$

•
$$\widehat{\mathcal{T}}_{c}=$$
 copies of S^{1} ; $\widehat{\mathcal{T}}=$ copies of $\mathbb{C}^{ imes}.$

- Some π_p may not be tempered \rightsquigarrow ignore in the sum.
- Need to be weighted suitably.

We are going to relate the limit of $\mu_{\mathcal{F}_k,p}^{\text{count}}$ to:

$$\mu_p^{\text{pl}} = \text{Plancherel measure on } \widehat{T}_c / \Omega (\underline{depending \text{ on } p}).$$

• Toy model: G fin gp
$$\rightsquigarrow \mu^{\mathrm{pl}} = \sum_{\rho:\mathrm{irr \; rep}} (\dim \rho) \cdot \delta_{\rho}$$
 on fin set.

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\boxed{\lim_{k\to\infty} \mu_{\mathcal{F}_k,p}^{\text{count}} = \mu_p^{\text{pl}}}$. ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

個 と く ヨ と く ヨ と …

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\boxed{\lim_{k\to\infty} \mu_{\mathcal{F}_k,p}^{\text{count}} = \mu_p^{\text{pl}}}$. ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

- Previous: Clozel (d.s. of $G(\mathbb{Q}_p)$, 1986), Sauvageot (cpt quot, 1997), Conrey-Duke-Farmer and Serre (GL_2 , 1997).
- Sarnak envisioned in 1980s.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\lim_{k\to\infty} \mu_{\mathcal{F}_k,p}^{\text{count}} = \mu_p^{\text{pl}}$. ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

- Previous: Clozel (d.s. of $G(\mathbb{Q}_p)$, 1986), Sauvageot (cpt quot, 1997), Conrey-Duke-Farmer and Serre (GL_2 , 1997).
- Sarnak envisioned in 1980s.

Remark

• Theorem is true for not only unr reps but all reps. Just replace $\widehat{T}_c/\Omega \rightsquigarrow$ unitary dual of $G(\mathbb{Q}_p)$.

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\boxed{\lim_{k\to\infty} \mu_{\mathcal{F}_k,p}^{\text{count}} = \mu_p^{\text{pl}}}$. ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

- Previous: Clozel (d.s. of G(ℚ_p), 1986), Sauvageot (cpt quot, 1997), Conrey-Duke-Farmer and Serre (GL₂, 1997).
- Sarnak envisioned in 1980s.

Remark

- Theorem is true for not only unr reps but all reps. Just replace $\widehat{T}_c/\Omega \rightsquigarrow$ unitary dual of $G(\mathbb{Q}_p)$.
- Analogue holds at infinite places. (Limit mult formula for disc series on real gps; Weyl's law.)

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\boxed{\lim_{k\to\infty} \mu_{\mathcal{F}_k,p}^{\text{count}} = \mu_p^{\text{pl}}}$. ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

- Previous: Clozel (d.s. of G(ℚ_p), 1986), Sauvageot (cpt quot, 1997), Conrey-Duke-Farmer and Serre (GL₂, 1997).
- Sarnak envisioned in 1980s.

Remark

- Theorem is true for not only unr reps but all reps. Just replace $\widehat{T}_c/\Omega \rightsquigarrow$ unitary dual of $G(\mathbb{Q}_p)$.
- Analogue holds at infinite places. (Limit mult formula for disc series on real gps; Weyl's law.)
- <u>Cor</u>: Ramanujan conj holds at *p* for 100 percent of reps.

Recall: $\mu_{\mathcal{F}_k,p_k}^{\text{count}}$ captures the dist of p_k -compos of $\pi \in \mathcal{F}_k$.

(《圖》 《문》 《문》 - 문

Recall: $\mu_{\mathcal{F}_k,p_k}^{\text{count}}$ captures the dist of p_k -compos of $\pi \in \mathcal{F}_k$. $\boxed{\mu^{\text{ST}}} = \text{Sato-Tate measure on } \widehat{T}_c / \Omega \text{ (dep only on } G\text{),}$

push-forward Haar meas on \widehat{G}_c via $\widehat{G}_c \twoheadrightarrow \widehat{G}_c/\operatorname{conj} \simeq \widehat{T}_c/\Omega$.

御 と く ヨ と く ヨ と … ヨ

Recall: $\mu_{\mathcal{F}_k,p_k}^{\text{count}}$ captures the dist of p_k -compos of $\pi \in \mathcal{F}_k$. $\mu^{\text{ST}} =$ Sato-Tate measure on $\widehat{\mathcal{T}}_c / \Omega$ (dep only on G),

push-forward Haar meas on \widehat{G}_c via $\widehat{G}_c \twoheadrightarrow \widehat{G}_c/\text{conj} \simeq \widehat{T}_c/\Omega$.

Our main theorem is:

Theorem (S.-Templier) • If $G(\mathbb{R})$ admits a disc series and • $p_k \to \infty$ "slowly" relative to the growth of level or wt, then $\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}}.$

・ 国 ト ・ 国 ト ・ 国 ト … 国

$$\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \quad (\text{S-T for families})$$

is deduced from "Plancherel density thm with error terms":

・日本 ・ モン・ ・ モン

2

$$\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \left| \text{ (S-T for families)} \right|$$

is deduced from "Plancherel density thm with error terms":

Theorem (S.-Templier)

If f_p is an elt of unr Hecke alg for $G(\mathbb{Q}_p)$ of "exponents δ ",

$$\mu_{\mathcal{F},p}^{\text{count}}(f_p) - \mu_p^{\text{pl}}(f_p) = \begin{cases} O(p^{a\delta}N^{-b}), & \text{level aspect}, \\ O(p^{c\delta}\kappa^{-d}), & \text{wt aspect}, \end{cases}$$
(1)

where a, b, c, d and const in $O(\cdot)$ are indep of p, e and N (or κ).

$$\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \quad (\text{S-T for families})$$

is deduced from "Plancherel density thm with error terms":

Theorem (S.-Templier)

If f_p is an elt of unr Hecke alg for $G(\mathbb{Q}_p)$ of "exponents δ ",

$$\mu_{\mathcal{F},p}^{\text{count}}(f_p) - \mu_p^{\text{pl}}(f_p) = \begin{cases} O(p^{a\delta}N^{-b}), & \text{level aspect,} \\ O(p^{c\delta}\kappa^{-d}), & \text{wt aspect,} \end{cases}$$
(1)

where a, b, c, d and const in $O(\cdot)$ are indep of p, e and N (or κ).

Indeed,

•
$$\mu_{
m
ho_k}^{
m pl}
ightarrow \mu^{
m ST}$$
 as $k
ightarrow \infty$ (standard).

• p_k grows "slowly" rel to N_k or $\kappa_k \Rightarrow O(\cdots) \to 0$ as $k \to \infty$.

$$\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \quad (\text{S-T for families})$$

is deduced from "Plancherel density thm with error terms":

Theorem (S.-Templier)

If f_p is an elt of unr Hecke alg for $G(\mathbb{Q}_p)$ of "exponents δ ",

$$\mu_{\mathcal{F},p}^{\text{count}}(f_p) - \mu_p^{\text{pl}}(f_p) = \begin{cases} O(p^{a\delta}N^{-b}), & \text{level aspect,} \\ O(p^{c\delta}\kappa^{-d}), & \text{wt aspect,} \end{cases}$$
(1)

where a, b, c, d and const in $O(\cdot)$ are indep of p, e and N (or κ).

Indeed,

•
$$\mu_{
ho_k}^{
m pl}
ightarrow \mu^{
m ST}$$
 as $k
ightarrow \infty$ (standard).

• p_k grows "slowly" rel to N_k or $\kappa_k \Rightarrow O(\dots) \to 0$ as $k \to \infty$. (In fact, (1) implies answer to Q1 by fixing p and $N \to \infty$ or $\kappa \to \infty$.)

$$\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \quad (\text{S-T for families})$$

is deduced from "Plancherel density thm with error terms":

Theorem (S.-Templier)

If f_p is an elt of unr Hecke alg for $G(\mathbb{Q}_p)$ of "exponents δ ",

$$\mu_{\mathcal{F},p}^{\text{count}}(f_p) - \mu_p^{\text{pl}}(f_p) = \begin{cases} O(p^{a\delta}N^{-b}), & \text{level aspect}, \\ O(p^{c\delta}\kappa^{-d}), & \text{wt aspect}, \end{cases}$$
(1)

where a, b, c, d and const in $O(\cdot)$ are indep of p, e and N (or κ).

Indeed,

•
$$\mu_{
ho_k}^{
m pl} o \mu^{
m ST}$$
 as $k o \infty$ (standard).

• p_k grows "slowly" rel to N_k or $\kappa_k \Rightarrow O(\dots) \to 0$ as $k \to \infty$. (In fact, (1) implies answer to Q1 by fixing p and $N \to \infty$ or $\kappa \to \infty$.) How do we prove (1)?

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu_{\mathcal{F},p}^{\text{count}}(f_p)$ (if weighted suitably):

・ 回 ト ・ ヨ ト ・ ヨ ト

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu_{\mathcal{F},p}^{\text{count}}(f_p)$ (if weighted suitably): For suitable functions

• $f^{\infty,p}$ on $G(\mathbb{A}^{\infty,p})$ (dep on fixed level outside p),

•
$$f_\kappa$$
 on $G(\mathbb{R})$ (dep on wt κ),

$$\mu_{\mathcal{F},p}^{\mathrm{count}}(f_p) = I_{\mathrm{spec}}(f_p f^{\infty,p} f_{\kappa}).$$

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu_{\mathcal{F},p}^{\text{count}}(f_p)$ (if weighted suitably): For suitable functions

• $f^{\infty,p}$ on $G(\mathbb{A}^{\infty,p})$ (dep on fixed level outside p),

•
$$f_{\kappa}$$
 on $G(\mathbb{R})$ (dep on wt κ),
 $\mu_{\mathcal{F},p}^{\text{count}}(f_p) = I_{\text{spec}}(f_p f^{\infty,p} f_{\kappa}).$

The trace formula tells us: $I_{\text{spec}}(f_{\rho}f^{\infty,\rho}f_{\kappa}) = I_{\text{geom}}(f_{\rho}f^{\infty,\rho}f_{\kappa})$

$$= \sum_{\substack{\gamma \in G(\mathbb{Q})/\sim\\\mathbb{R}-\mathrm{ell}}} \mathrm{vol}(G_{\gamma}) \cdot O_{\gamma}^{G(\mathbb{A}^{\infty})}(f_{p}f^{\infty,p}) \cdot \Phi_{\infty}^{G}(\gamma,\kappa) + \left(\begin{array}{c} \mathrm{similar \ terms} \\ \mathrm{for \ Levi \ of} \ G \end{array}\right)$$

(本部)) (本語)) (本語)) (語)

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu_{\mathcal{F},p}^{\text{count}}(f_p)$ (if weighted suitably): For suitable functions

• $f^{\infty,p}$ on $G(\mathbb{A}^{\infty,p})$ (dep on fixed level outside p),

•
$$f_{\kappa}$$
 on $G(\mathbb{R})$ (dep on wt κ),

$$\mu_{\mathcal{F},p}^{\text{count}}(f_p) = I_{\text{spec}}(f_p f^{\infty,p} f_{\kappa}).$$

The trace formula tells us: $I_{\text{spec}}(f_{p}f^{\infty,p}f_{\kappa}) = I_{\text{geom}}(f_{p}f^{\infty,p}f_{\kappa})$

$$= \sum_{\substack{\gamma \in G(\mathbb{Q})/\sim\\\mathbb{R}-\mathrm{ell}}} \mathrm{vol}(G_{\gamma}) \cdot O_{\gamma}^{G(\mathbb{A}^{\infty})}(f_{p}f^{\infty,p}) \cdot \Phi_{\infty}^{G}(\gamma,\kappa) + \left(\begin{array}{c} \mathrm{similar \ terms} \\ \mathrm{for \ Levi \ of} \ G \end{array}\right)$$

• Levi=G, $\gamma = 1 \rightsquigarrow$ main term $f_p(1) = \mu_p^{\text{pl}}(f_p)$ (up to const).

・吊り イヨト イヨト ニヨ

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu_{\mathcal{F},p}^{\text{count}}(f_p)$ (if weighted suitably): For suitable functions

• $f^{\infty,p}$ on $G(\mathbb{A}^{\infty,p})$ (dep on fixed level outside p),

•
$$f_{\kappa}$$
 on $G(\mathbb{R})$ (dep on wt κ),

$$\mu_{\mathcal{F},\rho}^{\text{count}}(f_{\rho}) = I_{\text{spec}}(f_{\rho}f^{\infty,\rho}f_{\kappa}).$$

The trace formula tells us: $I_{\text{spec}}(f_{p}f^{\infty,p}f_{\kappa}) = I_{\text{geom}}(f_{p}f^{\infty,p}f_{\kappa})$

$$= \sum_{\substack{\gamma \in G(\mathbb{Q})/\sim \\ \mathbb{R}-\mathrm{ell}}} \mathrm{vol}(G_{\gamma}) \cdot O_{\gamma}^{G(\mathbb{A}^{\infty})}(f_{\rho}f^{\infty,\rho}) \cdot \Phi_{\infty}^{G}(\gamma,\kappa) + \left(\begin{array}{c} \mathrm{similar \ terms} \\ \mathrm{for \ Levi \ of} \ G \end{array} \right)$$

- Levi=G, $\gamma = 1 \rightsquigarrow$ main term $f_{\rho}(1) = \mu_{\rho}^{\text{pl}}(f_{\rho})$ (up to const).
- remaining terms (error): count γ , bound vol, Φ^{G} , and orb-int.

Theorem (S.-Templier)

The previous result plus quite a bit of work confirms:

the prediction of Katz-Sarnak about low-lying zero stats for families of automorphic L-functions via random matrix theory

for families of level or weight aspect considered in our Sato-Tate type theorem.

Remark

Probably the first time shown for *L*-fcns of arbitrarily high degree.

Thank You!

< □ > < □ > < □ > < □ > < □ > .

æ