Families of Automorphic L-functions

Shin, Sug Woo

PANTS XVII, Clemson, Dec 03, 2011

Shin, Sug Woo [Families of Automorphic](#page-129-0) L-functions

→ 伊 ▶ → 唐 ▶

 $4.17 \times$

重

K 로)

Outline

Q Families

- Families in general
- Distribution problems
- Why interesting?
- ² Equidistribution
	- General setup
	- Original Sato-Tate conjecture (for elliptic curves)
- **3** L-functions and automorphic forms
	- Automorphic forms and representations
	- Automorphic L-functions and their local invariants
	- Level and weight aspects
- ⁴ Equidistribution for automorphic families
	- Questions and Results (w/ N. Templier)

● → → ミ →

メロメ メ都 メメ きょくきょう

È

 299

(Loosely) a collection of data $\{X_t\}_{t\in\mathcal{T}}$, where X_t varies nicely over the parameter set T .

 $4.17 \times$

 $\mathcal{A} \cap \mathcal{B} \longrightarrow \mathcal{A} \subset \mathcal{B} \longrightarrow$

重

∢ 重 ≯

(Loosely) a collection of data $\{X_t\}_{t\in\mathcal{T}}$, where X_t varies nicely over the parameter set T .

Ex 1. **discrete family**: when $T = \mathbb{Z}_{\geq 1}$

Just a sequence $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}.$

(One could choose T differently.)

 $\mathcal{A} \cap \mathcal{B} \longrightarrow \mathcal{A} \subset \mathcal{B} \longrightarrow$

(Loosely) a collection of data $\{X_t\}_{t\in\mathcal{T}}$, where X_t varies nicely over the parameter set T .

Ex 1. **discrete family**: when $T = \mathbb{Z}_{\geq 1}$

Just a sequence $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}.$

(One could choose T differently.) This can be enhanced to

Ex 2. projective system over $T = \mathbb{Z}_{\geq 1}$

$$
\cdots \to X_n \to X_{n-1} \to \cdots \to X_1.
$$

イロメ イ母メ イヨメ イヨメー

へのへ

Ex 3. vector bundle $X \rightarrow T$

= family of vec spaces $\{X_t\}_{t\in\mathcal{T}}$ over a manifold or an alg variety \mathcal{T}

 $4.17 \times$

 \mathcal{A} \mathcal{F} \mathcal{F} \mathcal{A} \mathcal{F} \mathcal{F}

(大震 トー 重

Ex 3. vector bundle $X \rightarrow T$

= family of vec spaces $\{X_t\}_{t\in\mathcal{T}}$ over a manifold or an alg variety \mathcal{T}

Ex 4. morphism of schemes $X \rightarrow T$

 $=$ family of schemes $\{X_t\}_{t\in\mathcal{T}}$

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

 \leftarrow \Box

一 (語) () 重

Ex 3. vector bundle $X \to T$

= family of vec spaces $\{X_t\}_{t\in\mathcal{T}}$ over a manifold or an alg variety T

Ex 4. morphism of schemes $X \rightarrow T$

 $=$ family of schemes $\{X_t\}_{t\in\mathcal{T}}$

The following are two special cases of Ex 4:

Ex 5. Legendre family of elliptic curves (say $\mathcal{T} = \mathbb{A}^1_{\mathbb{C}} \backslash \{0,1\}$)

$$
= \text{family of curves } y^2 = x(x-1)(x-t), \ t \in \mathbb{C} \setminus \{0,1\}.
$$

 \mathcal{A} and \mathcal{A} in \mathcal{A} . If \mathcal{A}

Allen Market

へのへ

Ex 3. vector bundle $X \to T$

= family of vec spaces $\{X_t\}_{t\in\mathcal{T}}$ over a manifold or an alg variety T

Ex 4. morphism of schemes $X \rightarrow T$

 $=$ family of schemes $\{X_t\}_{t\in\mathcal{T}}$

The following are two special cases of Ex 4:

Ex 5. Legendre family of elliptic curves (say $\mathcal{T} = \mathbb{A}^1_{\mathbb{C}} \backslash \{0,1\}$)

$$
= \text{family of curves } y^2 = x(x-1)(x-t), \ t \in \mathbb{C} \setminus \{0,1\}.
$$

Ex 6. reductions of algebraic variety X over $T = {\rm Spec} \mathbb{Z}$ or $T = \text{Spec} \mathbb{Z}[1/S]$

 $=\{X \bmod p\}_{p:\text{prime}}$ (+ gen fiber over Q).

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

1. Distribution problem for families $\{X_t\}_{t\in\mathcal{T}}$.

a mills.

メ御 ドメミ ドメミド

重

- 1. Distribution problem for families $\{X_t\}_{t\in\mathcal{T}}$.
	- $X_t \rightsquigarrow$ some invariant inv $(X_t) \in \mathcal{X}$.

 \leftarrow \Box

K 御 と K 唐 と K 唐 と…

- 1. Distribution problem for families $\{X_t\}_{t\in\mathcal{T}}$.
	- $X_t \rightsquigarrow$ some invariant $\text{inv}(X_t) \in \mathcal{X}$.

Question

How does $inv(X_t)$ vary in X as t moves around?

メ 御 メ メ ヨ メ ス ヨ メ

 $2Q$

扂

- 1. Distribution problem for families $\{X_t\}_{t\in\mathcal{T}}$.
	- $X_t \rightsquigarrow$ some invariant $inv(X_t) \in \mathcal{X}$.

Question How does $inv(X_t)$ vary in X as t moves around?

Ex:
$$
\mathcal{X} = \mathbb{Z}
$$
; when $X \to \mathcal{T}$ is a morph of schemes (manifolds)

\nOn $inv(X_t) = \dim X_t$.

イロト イ押 トイモト イモト

- 1. Distribution problem for families $\{X_t\}_{t\in\mathcal{T}}$.
	- $X_t \rightsquigarrow$ some invariant $inv(X_t) \in \mathcal{X}$.

Question

How does $\text{inv}(X_t)$ vary in X as t moves around?

Ex:
$$
\mathcal{X} = \mathbb{Z}
$$
; when $X \to T$ is a morph of schemes (manifolds)

$$
\bullet \ \mathrm{inv}(X_t)=\dim X_t.
$$

 $\mathbf{2} \;\; \text{inv}(X_t) = \text{dim}\; H^i(X_t, \mathcal{F}_t)$ for fixed i and sheaf $\mathcal F$ on $X.$

→ 伊 → → ミ →

- 1. Distribution problem for families $\{X_t\}_{t\in\mathcal{T}}$.
	- $X_t \rightsquigarrow$ some invariant $inv(X_t) \in \mathcal{X}$.

Question

How does $inv(X_t)$ vary in X as t moves around?

Ex:
$$
\mathcal{X} = \mathbb{Z}
$$
; when $X \to T$ is a morph of schemes (manifolds)

$$
\bullet \ \mathrm{inv}(X_t)=\dim X_t.
$$

- $\mathbf{2} \;\; \text{inv}(X_t) = \text{dim}\; H^i(X_t, \mathcal{F}_t)$ for fixed i and sheaf $\mathcal F$ on $X.$
- \odot inv $(X_p) = #X(\mathbb{F}_p)$, where $(p) \in \text{Spec} \mathbb{Z} = \mathcal{T}$.

メタメメ ミメメ ミメ

Deligne's proof of Weil conj implies:

Proposition

Assume $X \to \text{Spec} \mathbb{Z}[1/S]$ is smooth and proper. There is some asymptotic "coherence" in $p \mapsto #X(\mathbb{F}_p)$.

 \mathcal{A} \mathcal{F} \mathcal{F} \mathcal{A} \mathcal{F} \mathcal{F}

Deligne's proof of Weil conj implies:

Proposition Assume $X \to \text{Spec} \mathbb{Z}[1/S]$ is smooth and proper. There is some asymptotic "coherence" in $p \mapsto #X(\mathbb{F}_p)$.

This family almost looks like a disc family but is still extremely deep and interesting.

へのへ

Deligne's proof of Weil conj implies:

Proposition Assume $X \to \text{Spec} \mathbb{Z}[1/S]$ is smooth and proper. There is some asymptotic "coherence" in $p \mapsto #X(\mathbb{F}_p)$.

This family almost looks like a disc family but is still extremely deep and interesting.

Ex:
$$
X = \text{ell curve}
$$
; say $y^2 = x(x - 1)(x - t)$, $t \in \mathbb{Z}\setminus\{0, 1\}$
\n $S = \text{set of primes dividing } t$

$$
\overline{p+1-2\sqrt{p}} \leq \#X(\mathbb{F}_p) \leq p+1+2\sqrt{p}.
$$
 (Hasse, 1930s)

へのへ

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}} =$ disc family.

a mills.

メ 御 メ メ ヨ メ ス ヨ メ

重

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}=\text{disc}$ family. Natural to assume $|X_t|<\infty.$ We could accumulate $Y_t := \cup_{u \leq t} X_u$ so that

$$
|Y_t| < \infty, \quad |Y_t| \to \infty.
$$

御 ▶ イヨ ▶ イヨ ▶ ...

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}=\text{disc}$ family. Natural to assume $|X_t|<\infty.$ We could accumulate $Y_t := \cup_{u \leq t} X_u$ so that

$$
|Y_t| < \infty, \quad |Y_t| \to \infty
$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \leq t}$ as $t \to \infty$?

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}=\text{disc}$ family. Natural to assume $|X_t|<\infty.$ We could accumulate $Y_t := \cup_{u \leq t} X_u$ so that

$$
|Y_t| < \infty, \quad |Y_t| \to \infty
$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \leq t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

イ押 トラ ミトラ ミニト

つへへ

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}=\text{disc}$ family. Natural to assume $|X_t|<\infty.$ We could accumulate $Y_t := \cup_{u \leq t} X_u$ so that

$$
|Y_t| < \infty, \quad |Y_t| \to \infty.
$$

Dist problem can be phrased as (made precise later):

Question What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \leq t}$ as $t \to \infty$? Ex: primes in arith progression (Dirichlet)

•
$$
Y_t := \{p \le t : \text{prime} \nmid N\}, \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.
$$

イ押 トラ ミトラ ミニト

つへへ

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}=\text{disc}$ family. Natural to assume $|X_t|<\infty.$ We could accumulate $Y_t := \cup_{u \leq t} X_u$ so that

$$
|Y_t| < \infty, \quad |Y_t| \to \infty.
$$

Dist problem can be phrased as (made precise later):

Question What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \leq t}$ as $t \to \infty$? Ex: primes in arith progression (Dirichlet) $Y_t := \{p \le t : \text{prime} \nmid N\}, \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.$

• $inv(Y_t) = \{p \mod N\}_{p \in Y_t} \leadsto "equidistributed"$ on X.

メ 御 メ メ ヨ メ ス ヨ メ

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}=\text{disc}$ family. Natural to assume $|X_t|<\infty.$ We could accumulate $Y_t := \cup_{u \leq t} X_u$ so that

$$
|Y_t| < \infty, \quad |Y_t| \to \infty.
$$

Dist problem can be phrased as (made precise later):

Question What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \leq t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

•
$$
Y_t := \{p \le t : \text{prime} \nmid N\}, \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.
$$

• $inv(Y_t) = \{p \mod N\}_{p \in Y_t} \rightsquigarrow$ "equidistributed" on X.

Ex: number of points on ell curves $X \to \text{Spec} \mathbb{Z}[1/S]$

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}=\text{disc}$ family. Natural to assume $|X_t|<\infty.$ We could accumulate $Y_t := \cup_{u \leq t} X_u$ so that

$$
|Y_t| < \infty, \quad |Y_t| \to \infty.
$$

Dist problem can be phrased as (made precise later):

Question What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \leq t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

•
$$
Y_t := \{p \le t : \text{prime} \nmid N\}, \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.
$$

• $inv(Y_t) = \{p \mod N\}_{p \in Y_t} \rightsquigarrow$ "equidistributed" on X.

Ex: number of points on ell curves $X \to \text{Spec} \mathbb{Z}[1/S]$

• $inv(X_p) = p + 1 - \#X(\mathbb{F}_p) \in [-2, 2]$ (Hasse) \rightsquigarrow call a_p .

 $\overline{1}$ $\overline{0}$

Consider $\{X_t\}_{t\in\mathbb{Z}_{\geq 1}}=\text{disc}$ family. Natural to assume $|X_t|<\infty.$ We could accumulate $Y_t := \cup_{u \leq t} X_u$ so that

$$
|Y_t| < \infty, \quad |Y_t| \to \infty.
$$

Dist problem can be phrased as (made precise later):

Question

What is the "limiting dist" of $inv(Y_t) = \{inv(X_u)\}_{u \leq t}$ as $t \to \infty$?

Ex: primes in arith progression (Dirichlet)

•
$$
Y_t := \{p \le t : \text{prime} \nmid N\}, \mathcal{X} := (\mathbb{Z}/N\mathbb{Z})^{\times}.
$$

• $inv(Y_t) = \{p \mod N\}_{p \in Y_t} \rightsquigarrow$ "equidistributed" on X.

Ex: number of points on ell curves $X \to \text{Spec} \mathbb{Z}[1/S]$

- $inv(X_n) = p + 1 \#X(\mathbb{F}_n) \in [-2, 2]$ (Hasse) \rightsquigarrow call a_n .
- [Q] Dist of a_2, a_3, a_5, \ldots in $[-2, 2]$? \cdots [to](#page-26-0) [be](#page-28-0) [r](#page-19-0)[e](#page-27-0)[vi](#page-28-0)[sit](#page-0-0)[ed](#page-129-0)[!](#page-0-0)

റാര

1 An essential way to attack a difficult problem.

a mills.

→ イ団 ト イ ヨ ト イ ヨ ト

重

 299

- **1** An essential way to attack a difficult problem.
	- Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over \mathbb{F}_q .

 $2Q$

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

- **1** An essential way to attack a difficult problem.
	- Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over \mathbb{F}_q .
	- Density argument: know about X_t on a dense subset of $T \rightsquigarrow$ know the rest.

- **1** An essential way to attack a difficult problem.
	- Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over \mathbb{F}_q .
	- Density argument: know about X_t on a dense subset of $T \rightsquigarrow$ know the rest.

2 Average over family is easier to estimate than indiv members.

- **1** An essential way to attack a difficult problem.
	- Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over \mathbb{F}_q .
	- Density argument: know about X_t on a dense subset of $T \rightsquigarrow$ know the rest.

2 Average over family is easier to estimate than indiv members.

• Arthur-Selberg trace formula: compute (weighted) average over "automorphic forms" on G.

- **1** An essential way to attack a difficult problem.
	- Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over \mathbb{F}_q .
	- Density argument: know about X_t on a dense subset of $T \rightsquigarrow$ know the rest.

2 Average over family is easier to estimate than indiv members.

- Arthur-Selberg trace formula: compute (weighted) average over "automorphic forms" on G.
- \bullet A difficult problem stated for indiv members \rightsquigarrow family-analogue may provide evidence or insight (if not proof),

- **1** An essential way to attack a difficult problem.
	- Deligne's proof of Weil conj (RH over fin fields): Construct a 1-dim family out of a variety X over \mathbb{F}_q .
	- Density argument: know about X_t on a dense subset of $T \rightsquigarrow$ know the rest.

2 Average over family is easier to estimate than indiv members.

- Arthur-Selberg trace formula: compute (weighted) average over "automorphic forms" on G.
- \bullet A difficult problem stated for indiv members \rightsquigarrow family-analogue may provide evidence or insight (if not proof),
	- e.g. rank r of ell curve E/\mathbb{Q} , $E(\mathbb{Q}) \simeq \mathbb{Z}^r \oplus (\text{fin})$:
		- individual rank BSD conj,
		- avg rank in families recent progress (Bhargava-Shankar)

- オート オート オート

- **1** Families
	- Families in general
	- Distribution problems
	- Why interesting?
- **2** Equidistribution
	- General setup
	- Original Sato-Tate conjecture (for elliptic curves)
- **3** L-functions and automorphic forms
	- Automorphic forms and representations
	- Automorphic L-functions and their local invariants
	- Level and weight aspects
- ⁴ Equidistribution for automorphic families
	- Questions and Results
$\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=\hbox{disc family, } 0<|Y_t|<\infty, \, |Y_t|\to\infty \hbox{ as } t\to\infty,$

a mills.

メ御 ドメミドメ ミド

重

 298

 $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=\hbox{disc family, } 0<|Y_t|<\infty, \, |Y_t|\to\infty \hbox{ as } t\to\infty,$ \bullet $i = \text{inv}: Y_t \to \mathcal{X}$.

a mills.

メ 御 メ メ ヨ メ メ ヨ メー

重

 $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=\hbox{disc family, } 0<|Y_t|<\infty, \, |Y_t|\to\infty \hbox{ as } t\to\infty,$

$$
\bullet \ \ i=\mathrm{inv}: Y_t\to\mathcal{X},
$$

• $C(\mathcal{X})$ = nice space of C-valued functions,

メ御き メミメ メミメー

 $2Q$

唾

- $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=\hbox{disc family, } 0<|Y_t|<\infty, \, |Y_t|\to\infty \hbox{ as } t\to\infty,$
- \bullet $i = \text{inv}: Y_t \to \mathcal{X}$.
- $C(\mathcal{X})$ = nice space of C-valued functions,
- ρ μ = nice measure on $C(\mathcal{X})$.

 $2Q$

母 ▶ イヨ ▶ イヨ ▶ │

 $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=\hbox{disc family, } 0<|Y_t|<\infty, \, |Y_t|\to\infty \hbox{ as } t\to\infty,$

$$
\bullet \ \ i=\mathrm{inv}: Y_t\to\mathcal{X},
$$

- $C(\mathcal{X})$ = nice space of C-valued functions,
- ρ μ = nice measure on $C(\mathcal{X})$.

$$
\mu_{Y_t}^{\text{count}} := \frac{1}{|Y_t|} \sum_{y \in Y_t} \delta_{i(y)}.
$$

 $2Q$

母 ▶ イヨ ▶ イヨ ▶ │

 $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=\hbox{disc family, } 0<|Y_t|<\infty, \, |Y_t|\to\infty \hbox{ as } t\to\infty,$

$$
\bullet \ \ i=\mathrm{inv}:\, Y_t\to\mathcal{X},
$$

- $C(\mathcal{X})$ = nice space of C-valued functions,
- \bullet μ = nice measure on $C(\mathcal{X})$.

$$
\mu_{Y_t}^{\text{count}} := \frac{1}{|Y_t|} \sum_{y \in Y_t} \delta_{i(y)}.
$$

Definition

 $\{Y_t\}$ is μ -equidistributed if $\mu_{Y_t}^{\text{count}} \to \mu$ as $t \to \infty$,

 $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=\hbox{disc family, } 0<|Y_t|<\infty, \, |Y_t|\to\infty \hbox{ as } t\to\infty,$

$$
\bullet \ \ i=\mathrm{inv}: Y_t\to\mathcal{X},
$$

- $C(\mathcal{X})$ = nice space of C-valued functions,
- \bullet μ = nice measure on $C(\mathcal{X})$.

$$
\mu_{Y_t}^{\text{count}} := \frac{1}{|Y_t|} \sum_{y \in Y_t} \delta_{i(y)}.
$$

Definition

 $\{Y_t\}$ is μ -equidistributed if $\mu_{Y_t}^{\text{count}} \to \mu$ as $t \to \infty$, i.e.

$$
\forall f \in C(\mathcal{X}), \quad \lim_{t \to \infty} \frac{1}{|Y_t|} \sum_{y \in Y_t} f(y) = \mu(f) = \int_{\mathcal{X}} f d\mu.
$$

 $\{Y_t\}_{t\in\mathbb{Z}_{\geq 1}}=\hbox{disc family, } 0<|Y_t|<\infty, \, |Y_t|\to\infty \hbox{ as } t\to\infty,$

$$
\bullet \ \ i=\mathrm{inv}:\, Y_t\to\mathcal{X},
$$

- $C(\mathcal{X})$ = nice space of C-valued functions,
- \bullet μ = nice measure on $C(\mathcal{X})$.

$$
\mu_{Y_t}^{\text{count}} := \frac{1}{|Y_t|} \sum_{y \in Y_t} \delta_{i(y)}.
$$

Definition

 $\{Y_t\}$ is μ -equidistributed if $\mu_{Y_t}^{\text{count}} \to \mu$ as $t \to \infty$, i.e.

$$
\forall f \in C(\mathcal{X}), \quad \lim_{t \to \infty} \frac{1}{|Y_t|} \sum_{y \in Y_t} f(y) = \mu(f) = \int_{\mathcal{X}} f d\mu.
$$

♠ variant: use a weighted average.

Equidistribution - when $\mathcal X$ is finite

$$
\text{(Example: } Y_t = \{p \leq t : p \nmid N\}, \ \mathcal{X} = (\mathbb{Z}/N\mathbb{Z})^{\times}, \ a_x = 1/\varphi(N).)
$$

•
$$
{Y_t}_{t \in \mathbb{Z}_{\geq 1}} =
$$
disc family; invariant $i: Y_t \to \mathcal{X}$,

•
$$
P_x(Y_t) := \#\{y \in Y_t : i(y) = x\} / |Y_t|
$$
 so that

$$
\mu_{Y_t}^{\text{count}} := \frac{1}{|Y_t|} \sum_{y \in Y_t} \delta_{i(y)} = \sum_{x \in \mathcal{X}} P_x(Y_t) \delta_x.
$$

• A prob measure μ on $\mathcal X$ has the form

$$
\mu=\sum_{x\in\mathcal{X}}a_x\delta_x,\quad(\sum_{x\in\mathcal{X}}a_x=1).
$$

I said $\{Y_t\}$ is μ -equidistributed if $\mu^{\text{count}}_{Y_t} \to \mu$ as $t \to \infty$, which is true iff $P_x(Y_t) \to a_x$ for all $x \in \mathcal{X}$.

御 ▶ イヨ ▶ イヨ ▶ ...

 $E =$ elliptic curve over $\mathbb Q$ without complex mult.

 $2Q$

∢ 重 ≯

 $E =$ elliptic curve over $\mathbb O$ without complex mult.

 $a_E : \{ \text{(almost all)} \text{ primes} \} \rightarrow \mathbb{C}$ by $a_E(p):=(1+p-\#E(\mathbb{F}_p))/\rho^{1/2}\in[-2,2]$ by Hasse.

 $2Q$

 $\epsilon = 1$

CALCULATION

 $E =$ elliptic curve over $\mathbb O$ without complex mult.

 a_F : {(almost all) primes} $\rightarrow \mathbb{C}$ by $a_E(p):=(1+p-\#E(\mathbb{F}_p))/\rho^{1/2}\in[-2,2]$ by Hasse.

Conjecture (Sato-Tate, 1960s)

$$
\{a_{\mathsf{E}}(p)\}_{p\leq N} \text{ is equidist. on } [-2,2] \text{ w.r.t } \mu^{\text{ST}} = \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}} dx.
$$

メ御き メミメ メミメー

 $E =$ elliptic curve over $\mathbb O$ without complex mult.

 a_F : {(almost all) primes} $\rightarrow \mathbb{C}$ by $a_E(p):=(1+p-\#E(\mathbb{F}_p))/\rho^{1/2}\in[-2,2]$ by Hasse.

Conjecture (Sato-Tate, 1960s)

$$
\{a_E(p)\}_{p\leq N} \text{ is equidist. on } [-2,2] \text{ w.r.t } \mu^{\text{ST}} = \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}} dx.
$$

Theorem (Barnet-Lamb, Clozel, Gee, Geraghty, Harris, Shepherd-Barron, Taylor; 2006-2010)

The conjecture is true (also true if $\mathbb{Q} \rightsquigarrow$ totally real field).

メ 倒 ト メ ヨ ト メ ヨ ト

つくい

 $E =$ elliptic curve over $\mathbb O$ without complex mult.

 a_F : {(almost all) primes} $\rightarrow \mathbb{C}$ by $a_E(p):=(1+p-\#E(\mathbb{F}_p))/\rho^{1/2}\in[-2,2]$ by Hasse.

Conjecture (Sato-Tate, 1960s)

$$
\{a_E(p)\}_{p\leq N} \text{ is equidist. on } [-2,2] \text{ w.r.t } \mu^{\text{ST}} = \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}} dx.
$$

Theorem (Barnet-Lamb, Clozel, Gee, Geraghty, Harris, Shepherd-Barron, Taylor; 2006-2010)

The conjecture is true (also true if $\mathbb{Q} \rightsquigarrow$ totally real field).

 $*$ "Automorphic analogue" also proved for GL_2 . (ell curves $↔$ modular forms.) For general algebraic varieties and general automorphic reps, the analog conj is wide open.

イロメ イ部メ イヨメ イヨメー

Sato-Tate conjecture for elliptic curves - graphics

source: Barry Mazur, Finding meaning in error terms, 2007.

• red =
$$
\mu
$$
ST, blue = μ ^{count} from { $a_E(p)$ }.

つへへ

- **1** Families
	- Families in general
	- Distribution problems
	- Why interesting?
- ² Equidistribution
	- General setup
	- Original Sato-Tate conjecture (for elliptic curves)
- **3** L-functions and automorphic forms
	- Automorphic forms and representations
	- Automorphic L-functions and their local invariants
	- Level and weight aspects
- ⁴ Equidistribution for automorphic families
	- Questions and Results

A + + = +

ia ⊞is

つくい

There are three abundant sources of L-functions:

 \leftarrow

∢ 重う

目

There are three abundant sources of L-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- **2** algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

不重 医心

There are three abundant sources of L-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- **2** algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy $(+)$ Fontaine-Mazur))

There should be a correspondence between (1) , (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

 $2Q$

∢ 御 ▶ . ∢ 唐 ▶ . ∢ 唐 ▶ . .

There are three abundant sources of L-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- **2** algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy $(+)$ Fontaine-Mazur))

There should be a correspondence between (1) , (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

Examples

There are three abundant sources of L-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- **2** algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy $(+)$ Fontaine-Mazur))

There should be a correspondence between (1) , (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

Examples

$$
\bullet \ \pi = 1, \ M = \mathrm{Spec} \mathbb{Q}, \ \rho = 1 \Rightarrow L(s, \pi) = \cdots = \zeta(s).
$$

There are three abundant sources of L-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- **2** algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy $(+)$ Fontaine-Mazur))

There should be a correspondence between (1) , (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

Examples

•
$$
\pi = 1
$$
, $M = \text{Spec}\mathbb{Q}$, $\rho = 1 \Rightarrow L(s, \pi) = \cdots = \zeta(s)$.

•
$$
\pi : (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times} \stackrel{\text{cyclo~thy}}{\leftrightarrow} \rho : \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to \mathbb{C}^{\times}.
$$

 \leadsto Dirichlet *L*-functions

There are three abundant sources of L-functions:

- **1** automorphic forms (or representations) $\pi \rightsquigarrow L(s, \pi)$
- **2** algebraic varieties (or "motives") M over $\mathbb{Q} \rightsquigarrow L(s, M)$
- **3** Galois representations $\rho \rightsquigarrow L(s, \rho)$

Conjecture (Langlands philosophy $(+)$ Fontaine-Mazur))

There should be a correspondence between (1) , (2) and (3) characterized by $L(s, \pi) = L(s, M) = L(s, \rho)$.

Examples

- $\bullet \pi = 1$, $M = \text{Spec} \mathbb{Q}$, $\rho = 1 \Rightarrow L(s, \pi) = \cdots = \zeta(s)$.
- $\pi: (\mathbb{Z}/n\mathbb{Z})^\times \to \mathbb{C}^\times \stackrel{\text{cyclo~thy}}{\leftrightarrow} \rho: \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to \mathbb{C}^\times.$
	- \rightsquigarrow Dirichlet *L*-functions
- f (cuspform) $\overset{\text{Wiles et al}}{\leftrightarrow} E$ (ell. curve) \leftrightarrow Gal rep on $\mathcal{T}_I E \otimes \mathbb{Q}_I.$

 \circ

Our focus: auto forms (reps) π and their *L*-functions $L(s, \pi)$. They are central in number theory...but, hey, what are they?

 $2Q$

4. E. K

Our focus: auto forms (reps) π and their L-functions $L(s, \pi)$. They are central in number theory...but, hey, what are they?

Here's a correct but lazy way: auto form of GL_n is

$$
f\in L^2(GL_n(\mathbb{Q})\mathbb{R}^\times\backslash GL_n(\mathbb{A})).
$$

(Here $\mathbb{A}\approx \prod_{\rho}\mathbb{Q}_{\rho}\times\mathbb{R}$, $GL_n(\mathbb{A})\approx \prod_{\rho} GL_n(\mathbb{Q}_{\rho})\times\mathbb{R}$.)

An irred constituent of the regular rep of $GL_n({\mathbb A})$ on $L^2(\cdots)$ is auto rep of $GL_n(\mathbb{A})$.

Problem: Maybe too vague!

医骨盆 医骨盆的

Better to understand modular forms (\rightsquigarrow auto forms of GL_2):

メ御き メミメ メミメー

 $2Q$

扂

Better to understand modular forms (\rightsquigarrow auto forms of GL_2):

\n- \n
$$
\begin{aligned}\n \mathsf{O} \ \Gamma(N) &= \{ A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N} \} \\
\mathsf{O} \ \mathfrak{H} &= \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}, \text{ acted on by } \Gamma(N) \text{ via } \\
&\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z \mapsto (az + b)(cz + d)^{-1}.\n \end{aligned}
$$
\n
\n

メ御き メミメ メミメー

 $2Q$

扂

\n- \n
$$
\begin{aligned}\n \mathsf{P}(N) &= \{ A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N} \} \\
\mathsf{P}(S) &= \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}, \text{ acted on by } \Gamma(N) \text{ via } \\
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z & \mapsto (az + b)(cz + d)^{-1}.\n \end{aligned}
$$
\n
\n

Γ $(N) \setminus \mathfrak{H}^* =$ compact Riemann surface \leadsto proj system in N.

御き メミメ メミメー

\n- \n
$$
\begin{aligned}\n \mathsf{P}(N) &= \{ A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N} \} \\
\mathsf{P}(S) &= \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}, \text{ acted on by } \Gamma(N) \text{ via } \\
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z & \mapsto (az + b)(cz + d)^{-1}.\n \end{aligned}
$$
\n
\n

Γ $(N) \setminus \mathfrak{H}^* =$ compact Riemann surface \leadsto proj system in N. (Ex: $\Gamma(1)\backslash \mathfrak{H}^* \simeq \mathbb{P}^1(\mathbb{C})$.)

5 8 9 9 9 9 9 9 9 9

つくい

$$
\bullet \ \Gamma(N) = \{A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N}\}
$$

•
$$
\mathfrak{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}
$$
, acted on by $\Gamma(N)$ via\n
$$
\begin{pmatrix}\n a & b \\
c & d\n\end{pmatrix} \cdot z \mapsto (az + b)(cz + d)^{-1}.
$$

- Γ $(N) \setminus \mathfrak{H}^* =$ compact Riemann surface \leadsto proj system in N. (Ex: $\Gamma(1)\backslash \mathfrak{H}^* \simeq \mathbb{P}^1(\mathbb{C})$.)
- modular form of level N, wt $\kappa \geq 1$ $\overline{A} =$ holo fcn $\mathfrak{H}^* \to \mathbb{C} +$ "wt κ " transf. law w.r.t $\Gamma(N)$ -action.

母 ▶ イヨ ▶ イヨ ▶ │

へのへ

\n- \n
$$
\Gamma(N) = \{ A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N} \}
$$
\n
\n- \n
$$
\mathfrak{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}, \text{ acted on by } \Gamma(N) \text{ via } \left(\begin{array}{cc} a & b \\ c & b \end{array} \right)
$$
\n
\n

$$
\begin{pmatrix} a & b \ c & d \end{pmatrix} \cdot z \mapsto (az + b)(cz + d)^{-1}.
$$

Γ $(N) \setminus \mathfrak{H}^* =$ compact Riemann surface \leadsto proj system in N. (Ex: $\Gamma(1)\backslash \mathfrak{H}^* \simeq \mathbb{P}^1(\mathbb{C})$.)

• modular form of level N, wt
$$
\kappa \ge 1
$$

= holo fen $\mathfrak{H}^* \to \mathbb{C} +$ "wt κ " transfer. law w.r.t $\Gamma(N)$ -action.

$$
\overline{M(\kappa, N)} = \mathbb{C}\text{-v. sp. of such fens, } \circlearrowleft
$$
 "Hecke operators" $\{T_p\}$.
 $\overline{\mathcal{F}(\kappa, N)} = \mathbb{C}\text{-basis of eigenvectors.}$

御き メミメメ ミメー

\n- \n
$$
\Gamma(N) = \{ A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{N} \}
$$
\n
\n- \n
$$
\mathfrak{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}, \text{ acted on by } \Gamma(N) \text{ via } \left(\begin{array}{cc} a & b \\ c & b \end{array} \right)
$$
\n
\n

$$
\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\cdot z\mapsto (az+b)(cz+d)^{-1}.
$$

Γ $(N) \setminus \mathfrak{H}^* =$ compact Riemann surface \leadsto proj system in N. (Ex: $\Gamma(1)\backslash \mathfrak{H}^* \simeq \mathbb{P}^1(\mathbb{C})$.)

• modular form of level N, wt
$$
\kappa \ge 1
$$

= holo fen $\mathfrak{H}^* \to \mathbb{C} +$ "wt κ " transf. law w.r.t $\Gamma(N)$ -action.

$$
\frac{M(\kappa, N)}{\mathcal{F}(\kappa, N)} = \mathbb{C}\text{-}\mathsf{v}.
$$
sp. of such fens, \circ "Hecke operators" $\{T_p\}$.

$$
\frac{\mathcal{F}(\kappa, N)}{\mathcal{F}(\kappa, N)} = \mathbb{C}\text{-}{\text{-}basis of eigenvectors.}
$$

Fact: $\forall \kappa, N, |\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$ as $\kappa + N \to \infty$.

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) =$ basis ("eigenforms") for wt κ level N mod forms.

← 重 下

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) =$ basis ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k\geq 1}$:

御 ▶ ス ヨ ▶ ス ヨ ▶ ...

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) =$ basis ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k\geq 1}$:

Ex 1: **level aspect** - κ fixed

Let N_k be a seq $\to \infty$ as $k \to \infty \rightsquigarrow {\{\mathcal{F}_k = \mathcal{F}(\kappa, N_k)\}}_{k \geq 1}$.

メ御 トメ ヨ トメ ヨ トー

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) =$ basis ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k\geq 1}$:

Ex 1: **level aspect** - κ fixed

Let N_k be a seq $\to \infty$ as $k \to \infty \rightsquigarrow {\{\mathcal{F}_k = \mathcal{F}(\kappa, N_k)\}}_{k \geq 1}$.

Ex 2: weight aspect - N fixed

Let κ_k be a seq $\to \infty$ as $k \to \infty \rightsquigarrow {\mathcal{F}}_k = {\mathcal{F}}(\kappa_k, N)$ _{$k > 1$}.

イロン イ団ン イミン イミン 一番
Automorphic forms and representations - (3)

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) =$ basis ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k\geq 1}$:

Ex 1: **level aspect** - κ fixed

Let N_k be a seq $\to \infty$ as $k \to \infty \rightsquigarrow {\{\mathcal{F}_k = \mathcal{F}(\kappa, N_k)\}}_{k \geq 1}$.

Ex 2: weight aspect - N fixed

Let κ_k be a seq $\to \infty$ as $k \to \infty \rightsquigarrow {\mathcal{F}}_k = {\mathcal{F}}(\kappa_k, N)$ _{$k > 1$}.

• These generalize: $GL_2 \rightarrow GL_n$ (and others).

イロン イ団ン イミン イミン 一番

Automorphic forms and representations - (3)

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) =$ basis ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k\geq 1}$:

Ex 1: **level aspect** - κ fixed

Let N_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow {\mathcal{F}_k = \mathcal{F}(\kappa, N_k)}_{k \geq 1}$.

Ex 2: weight aspect - N fixed

Let κ_k be a seq $\to \infty$ as $k \to \infty \rightsquigarrow {\mathcal{F}}_k = {\mathcal{F}}(\kappa_k, N)$ _{$k > 1$}.

- These generalize: $GL_2 \rightarrow GL_n$ (and others).
- What are interesting invariants for auto forms/reps?

イロン イ団ン イミン イミン 一番

Automorphic forms and representations - (3)

Introduced auto forms and reps of GL_n . As a special case,

 $\mathcal{F}(\kappa, N) =$ basis ("eigenforms") for wt κ level N mod forms.

Remarked $|\mathcal{F}(\kappa, N)| < \infty$ and $|\mathcal{F}(\kappa, N)| \to \infty$. Obtain arithmetically significant disc families $\{\mathcal{F}_k\}_{k\geq 1}$:

Ex 1: **level aspect** - κ fixed

Let N_k be a seq $\rightarrow \infty$ as $k \rightarrow \infty \rightsquigarrow {\{\mathcal{F}_k = \mathcal{F}(\kappa, N_k)\}}_{k \geq 1}$.

Ex 2: weight aspect - N fixed

Let κ_k be a seq $\to \infty$ as $k \to \infty \rightsquigarrow {\mathcal{F}}_k = {\mathcal{F}}(\kappa_k, N)$ _{$k > 1$}.

- These generalize: $GL_2 \rightarrow GL_n$ (and others).
- What are interesting invariants for auto forms/reps? (a) $|\mathcal{F}_k|$ (\approx genus of $\Gamma \backslash \mathfrak{H}^*$ if $k = 2$), may ask about growth. (b) T_p -eigenval. (or local inv in *L*-fcns). \cdots Our concern K 경기 X 경기 : 경

a mills.

 \leftarrow \leftarrow \leftarrow

④ 重 お ④ 重 お

重

Given an auto rep π of $GL_n(\mathbb{A})$, there is a way to construct

• L-function $L(s, \pi)$ in $s \in \mathbb{C}$.

Given an auto rep π of $GL_n(\mathbb{A})$, there is a way to construct

• *L*-function
$$
L(s, \pi)
$$
 in $s \in \mathbb{C}$.
Ex: $\pi = 1$, $n = 1 \rightsquigarrow L(s, \pi) = \zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$.

 $2Q$

K 로)

Given an auto rep π of $GL_n(\mathbb{A})$, there is a way to construct

• *L*-function
$$
L(s, \pi)
$$
 in $s \in \mathbb{C}$.
Ex: $\pi = 1$, $n = 1 \rightsquigarrow L(s, \pi) = \zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$.

Some nice properties:

1 Analytic continuation: $L(s, \pi)$ extends to all $s \in \mathbb{C}$ (except finitely many poles).

2 Euler product:
$$
L(s, \pi) = \prod_{p} L_{p}(s, \pi)
$$
. Ex: $\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}$, Re(s) > 1.

• Functional Equation:
$$
Λ(s, π) = Λ(1 - s, πγ)
$$

(Λ = completed L-function).

 $\epsilon = 1$

$$
\pi \quad \rightsquigarrow \quad L(s,\pi)=\prod_{\rho}L_{\rho}(s,\pi),\ \mathrm{Re}(s)>1.
$$

 \leftarrow \sim 1 @ ▶ 금 Pork 금 Porc

重

$$
\pi \quad \rightsquigarrow \quad L(s,\pi)=\prod_{\rho}L_{\rho}(s,\pi),\ \mathrm{Re}(s)>1.
$$

Fact: For a.a.p,
$$
L_p(s,\pi) = \prod_{i=1}^n (1 - a_{p,i}(\pi)p^{-s})^{-1}
$$
, $a_{p,i}(\pi) \in \mathbb{C}^\times$.

 \leftarrow

A \sim 重 **IN** 一 三 三 ト

重

$$
\pi \quad \rightsquigarrow \quad L(s, \pi) = \prod_{\rho} L_{\rho}(s, \pi), \; \mathrm{Re}(s) > 1.
$$

Fact: For a.a.p,
$$
L_p(s,\pi) = \prod_{i=1}^n (1 - a_{p,i}(\pi)p^{-s})^{-1}
$$
, $a_{p,i}(\pi) \in \mathbb{C}^\times$.

 \rightsquigarrow Local invariant for π at $p = a_{p,1},...,a_{p,n}$ in \mathbb{C}^\times (unordered).

4. 重 トー

扂

$$
\pi \quad \rightsquigarrow \quad L(s, \pi) = \prod_{\rho} L_{\rho}(s, \pi), \; \mathrm{Re}(s) > 1.
$$

Fact: For a.a.p,
$$
L_p(s,\pi) = \prod_{i=1}^n (1 - a_{p,i}(\pi)p^{-s})^{-1}
$$
, $a_{p,i}(\pi) \in \mathbb{C}^\times$.

 \rightsquigarrow Local invariant for π at $p = a_{p,1},...,a_{p,n}$ in \mathbb{C}^\times (unordered).

- Conj: If π is cuspidal ("simple obj"), $\forall p, i, |a_{p,i}| = 1$.
- Known: $\{a_{p,i}\}$ for a.a. $p \rightsquigarrow \exists$ at most one π .

つくい

$$
\pi \quad \rightsquigarrow \quad L(s, \pi) = \prod_{\rho} L_{\rho}(s, \pi), \; \mathrm{Re}(s) > 1.
$$

Fact: For a.a.p,
$$
L_p(s,\pi) = \prod_{i=1}^n (1 - a_{p,i}(\pi)p^{-s})^{-1}
$$
, $a_{p,i}(\pi) \in \mathbb{C}^\times$.

 \rightsquigarrow Local invariant for π at $p = a_{p,1},...,a_{p,n}$ in \mathbb{C}^\times (unordered).

- Conj: If π is cuspidal ("simple obj"), $\forall p, i, |a_{p,i}| = 1$.
- Known: $\{a_{n,i}\}\$ for a.a. $p \rightsquigarrow \exists$ at most one π .

Ex: ell curves $E\leftrightarrow$ wt 2 forms f so that $L(s+\frac{1}{2})$ $(\frac{1}{2}, E) = L(s, f)$ $L_p(s,f)=(1-a_{p,1}(f)p^{-s})^{-1}(1-a_{p,2}(f)p^{-s})^{-1}$ for $a_{p,1},a_{p,2}\in S^1.$ $L_p(s, E) = (1 - a_p(E)p^{-s} + p^{1-2s})^{-1}.$

 Ω

$$
\pi \quad \rightsquigarrow \quad L(s, \pi) = \prod_{\rho} L_{\rho}(s, \pi), \; \mathrm{Re}(s) > 1.
$$

Fact: For a.a.p,
$$
L_p(s,\pi) = \prod_{i=1}^n (1 - a_{p,i}(\pi)p^{-s})^{-1}
$$
, $a_{p,i}(\pi) \in \mathbb{C}^\times$.

 \rightsquigarrow Local invariant for π at $p = a_{p,1},...,a_{p,n}$ in \mathbb{C}^\times (unordered).

- Conj: If π is cuspidal ("simple obj"), $\forall p, i, |a_{p,i}| = 1$.
- Known: $\{a_{p,i}\}$ for a.a. $p \rightsquigarrow \exists$ at most one π .

Ex: ell curves $E\leftrightarrow$ wt 2 forms f so that $L(s+\frac{1}{2})$ $(\frac{1}{2}, E) = L(s, f)$ $L_p(s,f)=(1-a_{p,1}(f)p^{-s})^{-1}(1-a_{p,2}(f)p^{-s})^{-1}$ for $a_{p,1},a_{p,2}\in S^1.$ $L_p(s, E) = (1 - a_p(E)p^{-s} + p^{1-2s})^{-1}.$ $a_p(E)/p^{1/2} = \frac{p+1-\#E(E_p)}{p^{1/2}}$ $\frac{-\#E(\mathbb{F}_p)}{p^{1/2}} = a_{p,1}(f) + a_{p,2}(f) \in [-2,2].$ $p^{-1/2} (T_p-e.v.)$

つへへ

Recall: $E \leftrightarrow f \rightsquigarrow p^{-1/2} a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2,2]$. (Given $a_p(E)$, roots of $x^2 - p^{-1/2} a_p(E)x + 1 = a_{p,1}, a_{p,2} \in S^1$.)

AD - 4 E - 4 E - 1

重

Recall:
$$
E \leftrightarrow f \leadsto p^{-1/2} a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2,2]
$$
.
(Given $a_p(E)$, roots of $x^2 - p^{-1/2} a_p(E)x + 1 = a_{p,1}, a_{p,2} \in S^1$.)

Theorem (cited before)

$$
\{p^{-1/2}a_p(E)\}\
$$
 are equidist on [-2,2] wrt $\mu^{ST} = \frac{1}{\pi}\sqrt{1-x^2/4}dx$.

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ …

È

Recall:
$$
E \leftrightarrow f \leadsto p^{-1/2} a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2,2]
$$
.
(Given $a_p(E)$, roots of $x^2 - p^{-1/2} a_p(E)x + 1 = a_{p,1}, a_{p,2} \in S^1$.)

Theorem (cited before)

$$
\{p^{-1/2}a_p(E)\}\
$$
 are equidist on [-2,2] wrt μ ST = $\frac{1}{\pi}\sqrt{1-x^2/4}dx$.

Implied if
$$
\begin{pmatrix} a_{p,1} & 0 \\ 0 & a_{p,2} \end{pmatrix}
$$
 defines a "random" conj class in

\n $SU(2) = \{A \in M_2(\mathbb{C}) : A\overline{A}^T = 1\}$ as $p \to \infty$.

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ …

È

Recall:
$$
E \leftrightarrow f \leadsto p^{-1/2} a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2,2]
$$
.
(Given $a_p(E)$, roots of $x^2 - p^{-1/2} a_p(E) x + 1 = a_{p,1}, a_{p,2} \in S^1$.)

Theorem (cited before)

$$
\{p^{-1/2}a_p(E)\}\
$$
 are equidist on [-2,2] wrt μ ST = $\frac{1}{\pi}\sqrt{1-x^2/4}dx$.

Implied if
$$
\begin{pmatrix} a_{p,1} & 0 \\ 0 & a_{p,2} \end{pmatrix}
$$
 defines a "random" conj class in

\n $SU(2) = \{A \in M_2(\mathbb{C}) : A\overline{A}^T = 1\}$ as $p \to \infty$.

i.e. if μ^{ST} is "push-forward" of Haar measure on $SU(2)$ via

$$
SU(2) \ \longrightarrow \ SU(2)/conj \ \stackrel{\text{trace}}{\longrightarrow} [-2,2].
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할

Recall:
$$
E \leftrightarrow f \leadsto p^{-1/2} a_p(E) = a_{p,1}(f) + a_{p,2}(f) \in [-2,2]
$$
.
(Given $a_p(E)$, roots of $x^2 - p^{-1/2} a_p(E) x + 1 = a_{p,1}, a_{p,2} \in S^1$.)

Theorem (cited before)

$$
\{p^{-1/2}a_p(E)\}\
$$
 are equidist on [-2,2] wrt μ ST = $\frac{1}{\pi}\sqrt{1-x^2/4}dx$.

Implied if
$$
\begin{pmatrix} a_{p,1} & 0 \\ 0 & a_{p,2} \end{pmatrix}
$$
 defines a "random" conj class in

\n $SU(2) = \{A \in M_2(\mathbb{C}) : A\overline{A}^T = 1\}$ as $p \to \infty$.

i.e. if μ^{ST} is "push-forward" of Haar measure on $SU(2)$ via

$$
SU(2) \ \longrightarrow \ SU(2)/conj \ \stackrel{\text{trace}}{\longrightarrow} [-2,2].
$$

 \spadesuit In generalized S-T, replace $SU(2)$ by max cpt subgp of some $\mathbb C$ Lie gp \widehat{G} . (Here G depends on problem.)

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 듣

Entering last part

- **1** Families
	- Families in general
	- Distribution problems
	- Why interesting?
- ² Equidistribution
	- General setup
	- Original Sato-Tate conjecture (for elliptic curves)
- **3** L-functions and automorphic forms
	- Automorphic forms and representations
	- Automorphic L-functions and their local invariants
	- Level and weight aspects
- **4** Equidistribution for automorphic families
	- Questions and Results

つくい

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A}))$.

$$
\bullet \ \pi \rightsquigarrow L(s,\pi)=\prod_{p}L_{p}(s,\pi)\rightsquigarrow (a_{p,1},...,a_{p,n})\in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.
$$

a mills.

メ御 ドメミ ドメミド

重

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A}))$.

$$
\bullet \ \pi \rightsquigarrow L(s,\pi)=\prod_{p}L_{p}(s,\pi)\rightsquigarrow (a_{p,1},...,a_{p,n})\in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.
$$

Our concern \cdots $\{\mathcal{F}_k\}_{k>1} =$ family of auto reps of $GL_n(\mathbb{A})$.

メ御 トメ ヨ トメ ヨ トー

 $2Q$

唾

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A}))$.

$$
\bullet \ \pi \rightsquigarrow L(s,\pi)=\prod_{p}L_{p}(s,\pi)\rightsquigarrow (a_{p,1},...,a_{p,n})\in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.
$$

Our concern \cdots $\{\mathcal{F}_k\}_{k>1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k \to \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.

 $2Q$

All The Second

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A}))$.

$$
\bullet \ \pi \rightsquigarrow L(s,\pi)=\prod_{p}L_{p}(s,\pi)\rightsquigarrow (a_{p,1},...,a_{p,n})\in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.
$$

Our concern \cdots $\{F_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k \to \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.
- Have $|\mathcal{F}_k| < \infty$, $\lim_{k \to \infty} |\mathcal{F}_k| = \infty$.

A + + = + + = +

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A}))$.

$$
\bullet \ \pi \rightsquigarrow L(s,\pi)=\prod_{p}L_{p}(s,\pi)\rightsquigarrow (a_{p,1},...,a_{p,n})\in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.
$$

Our concern \cdots $\{F_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k \to \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.
- Have $|\mathcal{F}_k| < \infty$, $\lim_{k \to \infty} |\mathcal{F}_k| = \infty$.
- \bullet $\{\mathcal{F}_k\}_{k>1} \rightsquigarrow \{\mathfrak{F}_k\}_{k>1}$ family of *L*-functions

AD - 4 E - 4 E - 1

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A}))$.

$$
\bullet \ \pi \rightsquigarrow L(s,\pi)=\prod_{p}L_{p}(s,\pi)\rightsquigarrow (a_{p,1},...,a_{p,n})\in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.
$$

Our concern \cdots $\{F_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k \to \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.
- Have $|\mathcal{F}_k| < \infty$, $\lim_{k \to \infty} |\mathcal{F}_k| = \infty$.
- $\bullet \{F_k\}_{k>1} \rightsquigarrow {\mathfrak{F}_k}_{k>1}$ family of L-functions

Interesting statistical problems on $\{\mathcal{F}_k\}$ or $\{\mathfrak{F}_k\} \cdots$

押す マチャンチャー

• Introduced auto rep π of $GL_n(\mathbb{A})$ (or $G(\mathbb{A}))$.

$$
\bullet \ \pi \rightsquigarrow L(s,\pi)=\prod_{p}L_{p}(s,\pi)\rightsquigarrow (a_{p,1},...,a_{p,n})\in (\mathbb{C}^{\times})^{n}/\mathfrak{S}_{n}.
$$

Our concern \cdots $\{F_k\}_{k\geq 1}$ = family of auto reps of $GL_n(\mathbb{A})$.

- (level aspect) level $N_k \to \infty$, wt κ_k fixed, or
- (wt aspect) wt $\kappa_k \to \infty$, level N_k fixed.
- Have $|\mathcal{F}_k| < \infty$, $\lim_{k \to \infty} |\mathcal{F}_k| = \infty$.
- $\bullet \{F_k\}_{k>1} \rightsquigarrow {\mathfrak{F}_k}_{k>1}$ family of L-functions

Interesting statistical problems on $\{\mathcal{F}_k\}$ or $\{\mathfrak{F}_k\}\cdots$

• (equi-)dist of $(a_{p,1}(\pi), ..., a_{p,n}(\pi))$? (See next slide.)

Etc...

マーロー マニューマニュー ニュー

 $\{\mathcal{F}_k\}_{k>1}$ = family of auto reps of $GL_n(\mathbb{A})$, level or wt aspect $\pi \mapsto t_p(\pi) := (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^n / S_n = \widehat{T}/\Omega$ is invt at p .

重き メモメー

 $2Q$

后

$$
\{\mathcal{F}_k\}_{k\geq 1} = \text{family of auto resps of } GL_n(\mathbb{A}), \text{ level or wt aspect}
$$

$$
\pi \mapsto t_p(\pi) := (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^n / S_n = \widehat{T} / \Omega \text{ is input at } p.
$$

Question (Are the following μ -equidist for some μ on $(\mathbb{C}^{\times})^n/S_n$?)

(Assume all $\pi \in \mathcal{F}_k$ are unramified at p or p_k .)

•
$$
\{t_p(\pi): \pi \in \mathcal{F}_k\}_{k \geq 1}
$$
, where *p* fixed,

$$
\bullet \ \{t_{p_k}(\pi):\pi\in\mathcal{F}_k\}_{k\geq 1}, \text{ where } p_k\to\infty,
$$

•
$$
\{t_p(\pi)\}_{p:\text{prime}}
$$
, where π fixed.

$$
\{\mathcal{F}_k\}_{k\geq 1} = \text{family of auto resps of } GL_n(\mathbb{A}), \text{ level or wt aspect}
$$

$$
\pi \mapsto t_p(\pi) := (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^n / S_n = \widehat{T} / \Omega \text{ is input at } p.
$$

Question (Are the following μ -equidist for some μ on $(\mathbb{C}^{\times})^n/S_n$?)

(Assume all $\pi \in \mathcal{F}_k$ are unramified at p or p_k .)

•
$$
\{t_p(\pi): \pi \in \mathcal{F}_k\}_{k \geq 1}
$$
, where *p* fixed,

$$
\bullet \ \{t_{p_k}(\pi):\pi\in\mathcal{F}_k\}_{k\geq 1}, \text{ where } p_k\to\infty,
$$

•
$$
\{t_p(\pi)\}_{p:\text{prime}}
$$
, where π fixed.

 $*$ May ask similar questions about general G in place of GL_n .

つくい

$$
\{\mathcal{F}_k\}_{k\geq 1} = \text{family of auto reps of } GL_n(\mathbb{A}), \text{ level or wt aspect}
$$

$$
\pi \mapsto t_p(\pi) := (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^n / S_n = \widehat{T} / \Omega \text{ is input at } p.
$$

Question (Are the following μ -equidist for some μ on $(\mathbb{C}^{\times})^n/S_n$?)

(Assume all $\pi \in \mathcal{F}_k$ are unramified at p or p_k .)

•
$$
\{t_p(\pi): \pi \in \mathcal{F}_k\}_{k \geq 1}
$$
, where *p* fixed,

$$
\bullet \ \{t_{p_k}(\pi): \pi\in \mathcal{F}_k\}_{k\geq 1}, \text{ where } p_k\to \infty,
$$

•
$$
\{t_p(\pi)\}_{p:\text{prime}}
$$
, where π fixed.

 $*$ May ask similar questions about general G in place of GL_n .

Theorem (Q1: S., 2009; Q2: S.-Templier, 2011)

Answers Q1 and Q2 for G s.t. $G(\mathbb{R})$ has d.s. (No clue to Q3.)

 Ω

マタンマチャマチャ

$$
\{\mathcal{F}_k\}_{k\geq 1} = \text{family of auto reps of } GL_n(\mathbb{A}), \text{ level or wt aspect}
$$

$$
\pi \mapsto t_p(\pi) := (a_{p,1},...,a_{p,n}) \in (\mathbb{C}^{\times})^n / S_n = \widehat{T} / \Omega \text{ is input at } p.
$$

Question (Are the following μ -equidist for some μ on $(\mathbb{C}^{\times})^n/S_n$?)

(Assume all $\pi \in \mathcal{F}_k$ are unramified at p or p_k .)

•
$$
\{t_p(\pi): \pi \in \mathcal{F}_k\}_{k \geq 1}
$$
, where *p* fixed,

$$
\bullet \ \{t_{p_k}(\pi): \pi\in \mathcal{F}_k\}_{k\geq 1}, \text{ where } p_k\to \infty,
$$

•
$$
\{t_p(\pi)\}_{p:\text{prime}}
$$
, where π fixed.

 $*$ May ask similar questions about general G in place of GL_n .

Theorem (Q1: S., 2009; Q2: S.-Templier, 2011)

Answers Q1 and Q2 for G s.t. $G(\mathbb{R})$ has d.s. (No clue to Q3.)

- Q2 (resp. Q3) is "S-T conj for families (resp. indiv aut reps)".
- • Previous (bey[on](#page-0-0)d GL_2 GL_2): Q1 (mainly cp[t q](#page-101-0)[uo](#page-103-0)[t\)](#page-97-0)[,](#page-98-0) [Q](#page-103-0)2 [\(n](#page-129-0)on[e\).](#page-129-0)

For $Q1$, we fix p .

イロト イ部 トイヨ トイヨ トー

重

For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$
\boxed{\mu^{\text{count}}_{\mathcal{F}_k, p}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_p}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where }
$$

 $4.17 \times$

メ 御 メ メ ヨ メ メ ヨ メー

重

For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$
\boxed{\mu^{\text{count}}_{\mathcal{F}_k, \rho}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_\rho}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where}
$$

 $\widehat{T}/\Omega \supset \widehat{T}_c/\Omega \stackrel{\text{Satake}}{\leftrightarrow} \{\text{unr temp resp } \pi_p \text{ of } G(\mathbb{Q}_p)\}.$

メ御 トメ ヨ トメ ヨ トー

For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$
\boxed{\mu^{\text{count}}_{\mathcal{F}_k, \rho}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_\rho}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where}
$$

 $\widehat{T}/\Omega \supset \widehat{T}_c/\Omega \stackrel{\text{Satake}}{\leftrightarrow} \{\text{unr temp resp } \pi_p \text{ of } G(\mathbb{Q}_p)\}.$

•
$$
\hat{T}_c
$$
 = copies of S^1 ; \hat{T} = copies of \mathbb{C}^{\times} .

- Some π_p may not be tempered \rightsquigarrow ignore in the sum.
- Need to be weighted suitably.

つくい

For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$
\boxed{\mu^{\text{count}}_{\mathcal{F}_k, \rho}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_\rho}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where}
$$

 $\widehat{T}/\Omega \supset \widehat{T}_c/\Omega \stackrel{\text{Satake}}{\leftrightarrow} \{\text{unr temp resp } \pi_p \text{ of } G(\mathbb{Q}_p)\}.$

•
$$
\hat{T}_c
$$
 = copies of S^1 ; \hat{T} = copies of \mathbb{C}^{\times} .

- Some π_p may not be tempered \rightsquigarrow ignore in the sum.
- Need to be weighted suitably.

We are going to relate the limit of $\left|\mu_{\mathcal{F}_k,\bm{\rho}}^{\text{count}}\right|$ to:

$$
\mu_p^{\text{pl}} = \text{Plancherel measure on } \hat{T}_c / \Omega \text{ (depending on } p).
$$

へのへ
For Q1, we fix p. Interested in the limit as $k \to \infty$ of

$$
\boxed{\mu^{\text{count}}_{\mathcal{F}_k, \rho}} := \frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \delta_{\pi_\rho}, \quad \text{a measure on } \widehat{T}_c / \Omega, \text{ where}
$$

 $\widehat{T}/\Omega \supset \widehat{T}_c/\Omega \stackrel{\text{Satake}}{\leftrightarrow} \{\text{unr temp resp } \pi_p \text{ of } G(\mathbb{Q}_p)\}.$

•
$$
\hat{T}_c
$$
 = copies of S^1 ; \hat{T} = copies of \mathbb{C}^{\times} .

- Some π_p may not be tempered \rightsquigarrow ignore in the sum.
- Need to be weighted suitably.

We are going to relate the limit of $\left|\mu_{\mathcal{F}_k,\bm{\rho}}^{\text{count}}\right|$ to:

$$
\mu_p^{\text{pl}} = \text{Plancherel measure on } \hat{T}_c / \Omega \text{ (depending on } p).
$$

Toy model: G fin gp $\rightsquigarrow \mu^{\mathrm{pl}} = \sum_{\rho:\mathrm{irr}\; \mathrm{rep}} (\mathsf{dim}\,\rho) \cdot \delta_{\rho}$ on fin set.

 Ω

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\left|\lim_{k\to\infty}\mu^{\mathrm{count}}_{\mathcal{F}_k,\bm{\rho}}=\mu^{\mathrm{pl}}_{\bm{\rho}}\right|.$ ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

つくい

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\left|\lim_{k\to\infty}\mu^{\mathrm{count}}_{\mathcal{F}_k,\bm{\rho}}=\mu^{\mathrm{pl}}_{\bm{\rho}}\right|.$ ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

- Previous: Clozel (d.s. of $G(\mathbb{Q}_p)$, 1986), Sauvageot (cpt quot, 1997), Conrey-Duke-Farmer and Serre $(GL₂, 1997)$.
- **Sarnak envisioned in 1980s.**

へのへ

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\left|\lim_{k\to\infty}\mu^{\mathrm{count}}_{\mathcal{F}_k,\bm{\rho}}=\mu^{\mathrm{pl}}_{\bm{\rho}}\right|.$ ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

- Previous: Clozel (d.s. of $G(\mathbb{Q}_p)$, 1986), Sauvageot (cpt quot, 1997), Conrey-Duke-Farmer and Serre $(GL₂, 1997)$.
- **Sarnak envisioned in 1980s.**

Remark

• Theorem is true for not only unr reps but all reps. Just replace $\widehat{T}_c/\Omega \rightsquigarrow$ unitary dual of $G(\mathbb{Q}_p)$.

 α α

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\left|\lim_{k\to\infty}\mu^{\mathrm{count}}_{\mathcal{F}_k,\bm{\rho}}=\mu^{\mathrm{pl}}_{\bm{\rho}}\right|.$ ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

- Previous: Clozel (d.s. of $G(\mathbb{Q}_p)$, 1986), Sauvageot (cpt quot, 1997), Conrey-Duke-Farmer and Serre $(GL₂, 1997)$.
- **Sarnak envisioned in 1980s.**

Remark

- Theorem is true for not only unr reps but all reps. Just replace $\widehat{T}_c/\Omega \rightsquigarrow$ unitary dual of $G(\mathbb{Q}_p)$.
- Analogue holds at infinite places. (Limit mult formula for disc series on real gps; Weyl's law.)

Theorem (S.)

Let $\{\mathcal{F}_k\}$ be a family in level or wt aspect. If $G(\mathbb{R})$ admits a disc series (or an ell torus) then $\left|\lim_{k\to\infty}\mu^{\mathrm{count}}_{\mathcal{F}_k,\bm{\rho}}=\mu^{\mathrm{pl}}_{\bm{\rho}}\right|.$ ("p-compos are like random var chosen from \widehat{T}_c/Ω acc. to μ_p^{pl} .")

- Previous: Clozel (d.s. of $G(\mathbb{Q}_p)$, 1986), Sauvageot (cpt quot, 1997), Conrey-Duke-Farmer and Serre $(GL₂, 1997)$.
- **•** Sarnak envisioned in 1980s.

Remark

- Theorem is true for not only unr reps but all reps. Just replace $\widehat{T}_c/\Omega \rightsquigarrow$ unitary dual of $G(\mathbb{Q}_p)$.
- Analogue holds at infinite places. (Limit mult formula for disc series on real gps; Weyl's law.)
- Cor: Ramanujan conj holds at p for 100 percent of reps.

 000

Recall: $\mu_{\mathcal{F}_k, p_k}^{\text{count}}$ captures the dist of p_k -compos of $\pi \in \mathcal{F}_k$.

メ御 トメ ヨ トメ ヨ トー

重

 $2Q$

Recall: $\mu_{\mathcal{F}_k, p_k}^{\text{count}}$ captures the dist of p_k -compos of $\pi \in \mathcal{F}_k$. μ^{ST} = Sato-Tate measure on \hat{T}_c/Ω (dep only on G),

push-forward Haar meas on \widehat{G}_c via $\widehat{G}_c \rightarrow \widehat{G}_c/\text{conj} \simeq \widehat{T}_c/\Omega$.

→ 唐 × → 唐 × 。

 $2Q$

Recall: $\mu_{\mathcal{F}_k, p_k}^{\text{count}}$ captures the dist of p_k -compos of $\pi \in \mathcal{F}_k$. μ^{ST} = Sato-Tate measure on \hat{T}_c/Ω (dep only on G),

push-forward Haar meas on \hat{G}_c via $\hat{G}_c \rightarrow \hat{G}_c/\text{conj} \simeq \hat{T}_c/\Omega$.

Our main theorem is:

Theorem (S.-Templier) \bullet If $G(\mathbb{R})$ admits a disc series and • $p_k \to \infty$ "slowly" relative to the growth of level or wt, then $\lim_{k\to\infty}\mu_{\mathcal{F}_k,p_k}^{\text{count}}=\mu^{\text{ST}}.$

つくい

$$
\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \quad \text{(S-T for families)}
$$

is deduced from "Plancherel density thm with error terms":

 $\left(-\Box \right)$

AT H

← 重 トー

扂

 $2Q$

$$
\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \quad \text{(S-T for families)}
$$

is deduced from "Plancherel density thm with error terms":

Theorem (S.-Templier)

If f_p is an elt of unr Hecke alg for $G(\mathbb{Q}_p)$ of "exponent $\leq \delta$ ",

$$
\mu_{\mathcal{F},p}^{\text{count}}(f_p) - \mu_p^{\text{pl}}(f_p) = \begin{cases} O(p^{a\delta}N^{-b}), & \text{level aspect}, \\ O(p^{c\delta}\kappa^{-d}), & \text{wt aspect}, \end{cases} \tag{1}
$$

where a, b, c, d and const in $O(\cdot)$ are indep of p, e and N (or κ).

へのへ

$$
\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \quad \text{(S-T for families)}
$$

is deduced from "Plancherel density thm with error terms":

Theorem (S.-Templier)

If f_p is an elt of unr Hecke alg for $G(\mathbb{Q}_p)$ of "exponent $\leq \delta$ ",

$$
\mu_{\mathcal{F},p}^{\text{count}}(f_p) - \mu_p^{\text{pl}}(f_p) = \begin{cases} O(p^{a\delta}N^{-b}), & \text{level aspect}, \\ O(p^{c\delta}\kappa^{-d}), & \text{wt aspect}, \end{cases} \tag{1}
$$

where a, b, c, d and const in $O(\cdot)$ are indep of p, e and N (or κ).

Indeed,

$$
\bullet \ \mu_{p_k}^{\mathrm{pl}} \to \mu^{\mathrm{ST}} \ \text{as} \ k \to \infty \ \text{(standard)}.
$$

• p_k grows "slowly" rel to N_k or $\kappa_k \Rightarrow O(\cdots) \to 0$ as $k \to \infty$.

へのへ

$$
\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \quad \text{(S-T for families)}
$$

is deduced from "Plancherel density thm with error terms":

Theorem (S.-Templier)

If f_p is an elt of unr Hecke alg for $G(\mathbb{Q}_p)$ of "exponent $\leq \delta$ ",

$$
\mu_{\mathcal{F},p}^{\text{count}}(f_p) - \mu_p^{\text{pl}}(f_p) = \begin{cases} O(p^{a\delta}N^{-b}), & \text{level aspect}, \\ O(p^{c\delta}\kappa^{-d}), & \text{wt aspect}, \end{cases} \tag{1}
$$

where a, b, c, d and const in $O(\cdot)$ are indep of p, e and N (or κ).

Indeed,

$$
\bullet \ \mu^{\mathop{\mathrm{pl}}}_{\mathop{\mathcal{P}} k} \to \mu^{\mathop{\mathrm{ST}}} \ \text{as} \ k \to \infty \ \text{(standard)}.
$$

• p_k grows "slowly" rel to N_k or $\kappa_k \Rightarrow O(\cdots) \to 0$ as $k \to \infty$. (In fact, [\(1\)](#page-117-0) implies answer to Q1 by fixing p and $N \to \infty$ or $\kappa \to \infty.$)

つくい

$$
\lim_{k \to \infty} \mu_{\mathcal{F}_k, p_k}^{\text{count}} = \mu^{\text{ST}} \quad \text{(S-T for families)}
$$

is deduced from "Plancherel density thm with error terms":

Theorem (S.-Templier)

If f_p is an elt of unr Hecke alg for $G(\mathbb{Q}_p)$ of "exponent $\leq \delta$ ",

$$
\mu_{\mathcal{F},p}^{\text{count}}(f_p) - \mu_p^{\text{pl}}(f_p) = \begin{cases} O(p^{a\delta}N^{-b}), & \text{level aspect}, \\ O(p^{c\delta}\kappa^{-d}), & \text{wt aspect}, \end{cases} \tag{1}
$$

where a, b, c, d and const in $O(\cdot)$ are indep of p, e and N (or κ).

Indeed,

$$
\bullet \ \mu_{p_k}^{\mathrm{pl}} \to \mu^{\mathrm{ST}} \ \text{as} \ k \to \infty \ \text{(standard)}.
$$

• p_k grows "slowly" rel to N_k or $\kappa_k \Rightarrow O(\cdots) \to 0$ as $k \to \infty$. (In fact, [\(1\)](#page-117-0) implies answer to Q1 by fixing p and $N \to \infty$ or $\kappa \to \infty$.) How do we prove [\(1\)](#page-117-0)? $2Q$

a mills.

メタメメ ミメメ ミメー

重

 299

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu^{\mathrm{count}}_{\mathcal{F},\bm{\rho}}(\mathit{f}_{\bm{\rho}})$ (if weighted suitably):

 $2Q$

御 ▶ イヨ ▶ イヨ ▶ │

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu^{\rm count}_{\mathcal{F},\bm{\rho}}(f_{\bm{\rho}})$ (if weighted suitably): For suitable functions

 $f^{\infty,p}$ on $G(\mathbb{A}^{\infty,p})$ (dep on fixed level outside p),

•
$$
f_{\kappa}
$$
 on $G(\mathbb{R})$ (dep on wt κ),
\n
$$
\mu_{\mathcal{F},p}^{\text{count}}(f_{p}) = I_{\text{spec}}(f_{p}f^{\infty,p}f_{\kappa}).
$$

御き メミメ メミメー

 $2Q$

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu^{\rm count}_{\mathcal{F},\bm{\rho}}(f_{\bm{\rho}})$ (if weighted suitably): For suitable functions

 $f^{\infty,p}$ on $G(\mathbb{A}^{\infty,p})$ (dep on fixed level outside p),

•
$$
f_{\kappa}
$$
 on $G(\mathbb{R})$ (dep on wt κ),
\n
$$
\mu_{\mathcal{F},p}^{\text{count}}(f_{p}) = I_{\text{spec}}(f_{p}f^{\infty,p}f_{\kappa}).
$$

The trace formula tells us: $I_{\text{spec}}(f_p f^{\infty,p} f_{\kappa}) = I_{\text{geom}}(f_p f^{\infty,p} f_{\kappa})$

$$
= \sum_{\substack{\gamma \in G(\mathbb{Q})/\sim \\ \mathbb{R}-\mathrm{ell}}} \mathrm{vol}(\mathcal{G}_{\gamma}) \cdot O_{\gamma}^{\mathcal{G}(\mathbb{A}^{\infty})}(f_{p}f^{\infty, p}) \cdot \Phi_{\infty}^{\mathcal{G}}(\gamma, \kappa) + \left(\begin{array}{c} \mathrm{similar \ terms} \\ \mathrm{for \ Levi \ of} \ G \end{array} \right)
$$

.

つくい

化重氮 化重氮化

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu^{\rm count}_{\mathcal{F},\bm{\rho}}(f_{\bm{\rho}})$ (if weighted suitably): For suitable functions

 $f^{\infty,p}$ on $G(\mathbb{A}^{\infty,p})$ (dep on fixed level outside p),

•
$$
f_{\kappa}
$$
 on $G(\mathbb{R})$ (dep on wt κ),
\n
$$
\mu_{\mathcal{F},p}^{\text{count}}(f_{p}) = I_{\text{spec}}(f_{p}f^{\infty,p}f_{\kappa}).
$$

The trace formula tells us: $I_{\text{spec}}(f_p f^{\infty,p} f_{\kappa}) = I_{\text{geom}}(f_p f^{\infty,p} f_{\kappa})$

$$
= \sum_{\substack{\gamma \in G(\mathbb{Q})/\sim \\ \mathbb{R}-\mathrm{ell}}} \mathrm{vol}(\mathcal{G}_{\gamma}) \cdot O_{\gamma}^{\mathcal{G}(\mathbb{A}^{\infty})}(f_{p}f^{\infty,p}) \cdot \Phi_{\infty}^{\mathcal{G}}(\gamma,\kappa) + \left(\begin{array}{c} \mathrm{similar \ terms} \\ \mathrm{for \ Levi \ of} \ \mathcal{G} \end{array} \right)
$$

Levi $=G$, $\gamma=1$ \leadsto main term $f_p(1)=\mu_p^{\mathrm{pl}}(f_p)$ (up to const).

.

へのへ

A BAR BAY

Starting point is Arthur-Selberg trace formula. Its spectral side essentially computes $\mu^{\rm count}_{\mathcal{F},\bm{\rho}}(f_{\bm{\rho}})$ (if weighted suitably): For suitable functions

 $f^{\infty,p}$ on $G(\mathbb{A}^{\infty,p})$ (dep on fixed level outside p),

•
$$
f_{\kappa}
$$
 on $G(\mathbb{R})$ (dep on wt κ),
\n
$$
\mu_{\mathcal{F},p}^{\text{count}}(f_{p}) = I_{\text{spec}}(f_{p}f^{\infty,p}f_{\kappa}).
$$

The trace formula tells us: $I_{\text{spec}}(f_p f^{\infty,p} f_{\kappa}) = I_{\text{geom}}(f_p f^{\infty,p} f_{\kappa})$

$$
= \sum_{\substack{\gamma \in G(\mathbb{Q})/\sim \\ \mathbb{R}-\mathrm{ell}}} \mathrm{vol}(\mathcal{G}_{\gamma}) \cdot O_{\gamma}^{\mathcal{G}(\mathbb{A}^{\infty})} (f_{p}f^{\infty, p}) \cdot \Phi_{\infty}^{\mathcal{G}}(\gamma, \kappa) + \left(\begin{array}{c} \mathrm{similar \ terms} \\ \mathrm{for \ Levi \ of} \ \mathcal{G} \end{array} \right)
$$

- Levi $=G$, $\gamma=1$ \leadsto main term $f_p(1)=\mu_p^{\mathrm{pl}}(f_p)$ (up to const).
- **•** remaining terms (error): count γ , bound vol, Φ^G , and orb-int.

.

 Ω

Theorem (S.-Templier)

The previous result plus quite a bit of work confirms:

the prediction of Katz-Sarnak about low-lying zero stats for families of automorphic L-functions via random matrix theory

for families of level or weight aspect considered in our Sato-Tate type theorem.

Remark

Probably the first time shown for L-fcns of arbitrarily high degree.

へのへ

Thank You!

メロメ メ都 メメ きょくきょ

È

 299