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Notion of families

What is a family?

(Loosely) a collection of data {Xt}t∈T , where Xt varies nicely over
the parameter set T .

Ex 1. discrete family: when T = Z≥1
Just a sequence {Xt}t∈Z≥1

.

(One could choose T differently.) This can be enhanced to

Ex 2. projective system over T = Z≥1
· · · → Xn → Xn−1 → · · · → X1.
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Examples of families

Ex 3. vector bundle X → T

= family of vec spaces {Xt}t∈T over a manifold or an alg variety T

Ex 4. morphism of schemes X → T

= family of schemes {Xt}t∈T

The following are two special cases of Ex 4:

Ex 5. Legendre family of elliptic curves (say T = A1
C\{0, 1})

= family of curves y2 = x(x − 1)(x − t), t ∈ C\{0, 1}.

Ex 6. reductions of algebraic variety X over T = SpecZ or
T = SpecZ[1/S ]

= {X mod p}p:prime (+ gen fiber over Q).
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Distribution problem for families (1)

1. Distribution problem for families {Xt}t∈T .

Xt  some invariant inv(Xt) ∈ X .

Question

How does inv(Xt) vary in X as t moves around?

Ex: X = Z; when X → T is a morph of schemes (manifolds)

1 inv(Xt) = dim Xt .

2 inv(Xt) = dim H i (Xt ,Ft) for fixed i and sheaf F on X .

3 inv(Xp) = #X (Fp), where (p) ∈ SpecZ = T .
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Dist problem for families (2) - over set of primes

Deligne’s proof of Weil conj implies:

Proposition

Assume X → SpecZ[1/S ] is smooth and proper.
There is some asymptotic “coherence” in p 7→ #X (Fp).

This family almost looks like a disc family but is still extremely
deep and interesting.

Ex: X = ell curve; say y2 = x(x − 1)(x − t), t ∈ Z\{0, 1}
S = set of primes dividing t

p + 1− 2
√

p ≤ #X (Fp) ≤ p + 1 + 2
√

p. (Hasse, 1930s)
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Dist problem for families (3) - discrete case

Consider {Xt}t∈Z≥1
= disc family.

Natural to assume |Xt | <∞.
We could accumulate Yt := ∪u≤tXu so that

|Yt | <∞, |Yt | → ∞ .

Dist problem can be phrased as (made precise later):

Question

What is the “limiting dist” of inv(Yt) = {inv(Xu)}u≤t as t →∞?

Ex: primes in arith progression (Dirichlet)

Yt := {p ≤ t : prime - N}, X := (Z/NZ)×.

inv(Yt) = {p mod N}p∈Yt  “equidistributed” on X .

Ex: number of points on ell curves X → SpecZ[1/S ]

inv(Xp) = p + 1−#X (Fp) ∈ [−2, 2] (Hasse)  call ap.

[Q] Dist of a2, a3, a5, ... in [−2, 2]? · · · to be revisited!
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Why study families?

1 An essential way to attack a difficult problem.

Deligne’s proof of Weil conj (RH over fin fields):
Construct a 1-dim family out of a variety X over Fq.
Density argument:
know about Xt on a dense subset of T  know the rest.

2 Average over family is easier to estimate than indiv members.

Arthur-Selberg trace formula:
compute (weighted) average over “automorphic forms” on G .

3 A difficult problem stated for indiv members  
family-analogue may provide evidence or insight (if not proof),

e.g. rank r of ell curve E/Q, E (Q) ' Zr ⊕ (fin):

individual rank - BSD conj,
avg rank in families - recent progress (Bhargava-Shankar)
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Entering Part 2

1 Families

Families in general
Distribution problems
Why interesting?

2 Equidistribution

General setup
Original Sato-Tate conjecture (for elliptic curves)

3 L-functions and automorphic forms

Automorphic forms and representations
Automorphic L-functions and their local invariants
Level and weight aspects

4 Equidistribution for automorphic families

Questions and Results
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Equidistribution - setup

{Yt}t∈Z≥1
= disc family, 0 < |Yt | <∞, |Yt | → ∞ as t →∞,

i = inv : Yt → X ,

C (X ) = nice space of C-valued functions,

µ = nice measure on C (X ).

µcountYt
:=

1

|Yt |
∑
y∈Yt

δi(y).

Definition

{Yt} is µ-equidistributed if µcountYt
→ µ as t →∞, i.e.

∀f ∈ C (X ), lim
t→∞

1

|Yt |
∑
y∈Yt

f (y) = µ(f ) =

∫
X

fdµ.

♠ variant: use a weighted average.
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Equidistribution - when X is finite

(Example: Yt = {p ≤ t : p - N}, X = (Z/NZ)×, ax = 1/ϕ(N).)

{Yt}t∈Z≥1
= disc family; invariant i : Yt → X ,

Px(Yt) := #{y ∈ Yt : i(y) = x}/|Yt | so that

µcountYt
:=

1

|Yt |
∑
y∈Yt

δi(y) =
∑
x∈X

Px(Yt)δx .

A prob measure µ on X has the form

µ =
∑
x∈X

axδx , (
∑
x∈X

ax = 1).

I said {Yt} is µ-equidistributed if µcountYt
→ µ as t →∞, which is

true iff Px(Yt)→ ax for all x ∈ X .
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Sato-Tate conjecture for elliptic curves

E = elliptic curve over Q without complex mult.

aE : {(almost all) primes} → C by
aE (p) := (1 + p −#E (Fp))/p1/2 ∈ [−2, 2] by Hasse.

Conjecture (Sato-Tate, 1960s)

{aE (p)}p≤N is equidist. on [−2, 2] w.r.t µST = 1
π

√
1− x2

4 dx.

Theorem (Barnet-Lamb, Clozel, Gee, Geraghty, Harris,
Shepherd-Barron, Taylor; 2006-2010)

The conjecture is true (also true if Q  totally real field).

∗ “Automorphic analogue” also proved for GL2. (ell curves ↔
modular forms.) For general algebraic varieties and general
automorphic reps, the analog conj is wide open.
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Sato-Tate conjecture for elliptic curves - graphics

source: Barry Mazur, Finding meaning in error terms, 2007.

red = µST, blue = µcount from {aE (p)}.
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Entering Part 3

1 Families

Families in general
Distribution problems
Why interesting?

2 Equidistribution

General setup
Original Sato-Tate conjecture (for elliptic curves)

3 L-functions and automorphic forms

Automorphic forms and representations
Automorphic L-functions and their local invariants
Level and weight aspects

4 Equidistribution for automorphic families

Questions and Results
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L-functions + Langlands philosophy

There are three abundant sources of L-functions:

1 automorphic forms (or representations) π  L(s, π)

2 algebraic varieties (or “motives”) M over Q  L(s,M)

3 Galois representations ρ  L(s, ρ)

Conjecture (Langlands philosophy (+ Fontaine-Mazur))

There should be a correspondence between (1), (2) and (3)
characterized by L(s, π) = L(s,M) = L(s, ρ).

Examples

π = 1, M = SpecQ, ρ = 1 ⇒ L(s, π) = · · · = ζ(s).

π : (Z/nZ)× → C× cyclo thy↔ ρ : Gal(Q(ζn)/Q)→ C×.
 Dirichlet L-functions

f (cuspform)
Wiles et al↔ E (ell. curve) ↔ Gal rep on TlE ⊗Ql .
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Automorphic forms and representations - (1)

Our focus: auto forms (reps) π and their L-functions L(s, π).

They are central in number theory...but, hey, what are they?

Here’s a correct but lazy way: auto form of GLn is

f ∈ L2(GLn(Q)R×\GLn(A)).

(Here A ≈
∏

p Qp × R, GLn(A) ≈
∏

p GLn(Qp)× R.)

An irred constituent of the regular rep of GLn(A) on L2(· · · ) is
auto rep of GLn(A).

Problem: Maybe too vague!
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Automorphic forms and representations - (2)

Better to understand modular forms ( auto forms of GL2):

Γ(N) = {A ∈ SL2(Z) : A ≡ I (mod N)}
H = {z ∈ C : Im(z) > 0}, acted on by Γ(N) via(

a b
c d

)
· z 7→ (az + b)(cz + d)−1.

Γ(N)\H∗ = compact Riemann surface  proj system in N.
(Ex: Γ(1)\H∗ ' P1(C).)

modular form of level N, wt κ ≥ 1
= holo fcn H∗ → C + “wt κ” transf. law w.r.t Γ(N)-action.

M(κ,N) = C-v. sp. of such fcns, 	 “Hecke operators” {Tp}.

F(κ,N) = C-basis of eigenvectors.

Fact: ∀κ,N, |F(κ,N)| <∞ and |F(κ,N)| → ∞ as κ+ N →∞.
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Automorphic forms and representations - (3)

Introduced auto forms and reps of GLn. As a special case,

F(κ,N) = basis (“eigenforms”) for wt κ level N mod forms.

Remarked |F(κ,N)| <∞ and |F(κ,N)| → ∞.
Obtain arithmetically significant disc families {Fk}k≥1:

Ex 1: level aspect - κ fixed

Let Nk be a seq →∞ as k →∞  {Fk = F(κ,Nk)}k≥1.

Ex 2: weight aspect - N fixed

Let κk be a seq →∞ as k →∞  {Fk = F(κk ,N)}k≥1.

These generalize: GL2  GLn (and others).

What are interesting invariants for auto forms/reps?
(a) |Fk | (≈ genus of Γ\H∗ if k = 2), may ask about growth.
(b) Tp-eigenval. (or local inv in L-fcns). · · · Our concern
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Automorphic L-functions

About to explain invt coming from local factors of L-fcns.

Given an auto rep π of GLn(A), there is a way to construct

L-function L(s, π) in s ∈ C.
Ex: π = 1, n = 1  L(s, π) = ζ(s) = 1 + 1

2s + 1
3s + · · · .

Some nice properties:

1 Analytic continuation: L(s, π) extends to all s ∈ C
(except finitely many poles).

2 Euler product: L(s, π) =
∏

p Lp(s, π),

Ex: ζ(s) =
∏

p(1− p−s)−1, Re(s) > 1.

3 Functional Equation: Λ(s, π) = Λ(1− s, π∨)
(Λ = completed L-function).

Shin, Sug Woo Families of Automorphic L-functions



Automorphic L-functions

About to explain invt coming from local factors of L-fcns.

Given an auto rep π of GLn(A), there is a way to construct

L-function L(s, π) in s ∈ C.

Ex: π = 1, n = 1  L(s, π) = ζ(s) = 1 + 1
2s + 1

3s + · · · .
Some nice properties:

1 Analytic continuation: L(s, π) extends to all s ∈ C
(except finitely many poles).

2 Euler product: L(s, π) =
∏

p Lp(s, π),

Ex: ζ(s) =
∏

p(1− p−s)−1, Re(s) > 1.

3 Functional Equation: Λ(s, π) = Λ(1− s, π∨)
(Λ = completed L-function).

Shin, Sug Woo Families of Automorphic L-functions



Automorphic L-functions

About to explain invt coming from local factors of L-fcns.

Given an auto rep π of GLn(A), there is a way to construct

L-function L(s, π) in s ∈ C.
Ex: π = 1, n = 1  L(s, π) = ζ(s) = 1 + 1

2s + 1
3s + · · · .

Some nice properties:

1 Analytic continuation: L(s, π) extends to all s ∈ C
(except finitely many poles).

2 Euler product: L(s, π) =
∏

p Lp(s, π),

Ex: ζ(s) =
∏

p(1− p−s)−1, Re(s) > 1.

3 Functional Equation: Λ(s, π) = Λ(1− s, π∨)
(Λ = completed L-function).

Shin, Sug Woo Families of Automorphic L-functions



Automorphic L-functions

About to explain invt coming from local factors of L-fcns.

Given an auto rep π of GLn(A), there is a way to construct

L-function L(s, π) in s ∈ C.
Ex: π = 1, n = 1  L(s, π) = ζ(s) = 1 + 1

2s + 1
3s + · · · .

Some nice properties:

1 Analytic continuation: L(s, π) extends to all s ∈ C
(except finitely many poles).

2 Euler product: L(s, π) =
∏

p Lp(s, π),

Ex: ζ(s) =
∏

p(1− p−s)−1, Re(s) > 1.

3 Functional Equation: Λ(s, π) = Λ(1− s, π∨)
(Λ = completed L-function).

Shin, Sug Woo Families of Automorphic L-functions



Local invariants for automorphic L-functions

π  L(s, π) =
∏

p Lp(s, π), Re(s) > 1.

Fact : For a.a.p, Lp(s, π) =
n∏

i=1

(1− ap,i (π)p−s)−1, ap,i (π) ∈ C×.

 Local invariant for π at p = ap,1, ..., ap,n in C× (unordered).

Conj: If π is cuspidal (“simple obj”), ∀p, i , |ap,i | = 1.

Known:{ap,i} for a.a. p  ∃ at most one π.

Ex: ell curves E ↔ wt 2 forms f so that L(s + 1
2 ,E ) = L(s, f )

Lp(s, f ) = (1− ap,1(f )p−s)−1(1− ap,2(f )p−s)−1 for ap,1, ap,2 ∈ S1.
Lp(s,E ) = (1− ap(E )p−s + p1−2s)−1.

ap(E )/p1/2 =
p+1−#E(Fp)

p1/2
= ap,1(f ) + ap,2(f )︸ ︷︷ ︸

p−1/2·(Tp-e.v.)

∈ [−2, 2].
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Sato-Tate revisited

Recall: E ↔ f  p−1/2ap(E ) = ap,1(f ) + ap,2(f ) ∈ [−2, 2].
(Given ap(E ), roots of x2 − p−1/2ap(E )x + 1 = ap,1, ap,2 ∈ S1.)

Theorem (cited before)

{p−1/2ap(E )} are equidist on [−2, 2] wrt µST = 1
π

√
1− x2/4dx.

Implied if

(
ap,1 0

0 ap,2

)
defines a “random” conj class in

SU(2) = {A ∈ M2(C) : AA
T

= 1} as p →∞.

i.e. if µST is “push-forward” of Haar measure on SU(2) via

SU(2) −→ SU(2)/conj
trace−→ [−2, 2].

♠ In generalized S-T, replace SU(2) by max cpt subgp of some C
Lie gp Ĝ . (Here G depends on problem.)
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Entering last part

1 Families

Families in general
Distribution problems
Why interesting?

2 Equidistribution

General setup
Original Sato-Tate conjecture (for elliptic curves)

3 L-functions and automorphic forms

Automorphic forms and representations
Automorphic L-functions and their local invariants
Level and weight aspects

4 Equidistribution for automorphic families

Questions and Results
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Recap of the story so far

Introduced auto rep π of GLn(A) (or G (A)).

π  L(s, π) =
∏

p Lp(s, π)  (ap,1, ..., ap,n) ∈ (C×)n/Sn.

Our concern · · · {Fk}k≥1 = family of auto reps of GLn(A).

(level aspect) level Nk →∞, wt κk fixed, or

(wt aspect) wt κk →∞, level Nk fixed.

Have |Fk | <∞, limk→∞ |Fk | =∞.

{Fk}k≥1  {Fk}k≥1 family of L-functions

Interesting statistical problems on {Fk} or {Fk} · · ·

(equi-)dist of (ap,1(π), ..., ap,n(π))? (See next slide.)

Etc...
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Statistical questions for automorphic families

{Fk}k≥1 = family of auto reps of GLn(A), level or wt aspect

π 7→ tp(π) := (ap,1, ..., ap,n) ∈ (C×)n/Sn = T̂/Ω is invt at p.

Question (Are the following µ-equidist for some µ on (C×)n/Sn?)

(Assume all π ∈ Fk are unramified at p or pk .)

1 {tp(π) : π ∈ Fk}k≥1, where p fixed,

2 {tpk (π) : π ∈ Fk}k≥1, where pk →∞,

3 {tp(π)}p:prime, where π fixed.

∗ May ask similar questions about general G in place of GLn.

Theorem (Q1: S., 2009; Q2: S.-Templier, 2011)

Answers Q1 and Q2 for G s.t. G (R) has d.s. (No clue to Q3.)

Q2 (resp. Q3) is “S-T conj for families (resp. indiv aut reps)”.

Previous (beyond GL2): Q1 (mainly cpt quot), Q2 (none).
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Answer to Q1: Plancherel density for families - (1)

For Q1, we fix p.

Interested in the limit as k →∞ of

µcountFk ,p
:=

1

|Fk |
∑
π∈Fk

δπp , a measure on T̂c/Ω, where

T̂/Ω ⊃ T̂c/Ω
Satake↔ {unr temp reps πp of G (Qp)}.

T̂c = copies of S1; T̂ = copies of C×.

Some πp may not be tempered  ignore in the sum.

Need to be weighted suitably.

We are going to relate the limit of µcountFk ,p
to:

µplp = Plancherel measure on T̂c/Ω (depending on p).

Toy model: G fin gp  µpl =
∑

ρ:irr rep(dim ρ) · δρ on fin set.
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Answer to Q1: Plancherel density for families - (2)

Theorem (S.)

Let {Fk} be a family in level or wt aspect. If G (R) admits a disc

series (or an ell torus) then limk→∞ µ
count
Fk ,p

= µplp .

(“p-compos are like random var chosen from T̂c/Ω acc. to µplp .”)

Previous: Clozel (d.s. of G (Qp), 1986), Sauvageot (cpt quot,
1997), Conrey-Duke-Farmer and Serre (GL2, 1997).

Sarnak envisioned in 1980s.

Remark

Theorem is true for not only unr reps but all reps. Just

replace T̂c/Ω  unitary dual of G (Qp).

Analogue holds at infinite places.
(Limit mult formula for disc series on real gps; Weyl’s law.)

Cor: Ramanujan conj holds at p for 100 percent of reps.
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Answer to Q2: Sato-Tate for families - (1)

Recall: µcountFk ,pk
captures the dist of pk -compos of π ∈ Fk .

µST = Sato-Tate measure on T̂c/Ω (dep only on G ),

push-forward Haar meas on Ĝc via Ĝc � Ĝc/conj ' T̂c/Ω.

Our main theorem is:

Theorem (S.-Templier)

If G (R) admits a disc series and

pk →∞ “slowly” relative to the growth of level or wt, then

lim
k→∞

µcountFk ,pk
= µST .
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Answer to Q2: Sato-Tate for families - (2)

lim
k→∞

µcountFk ,pk
= µST (S-T for families)

is deduced from “Plancherel density thm with error terms”:

Theorem (S.-Templier)

If fp is an elt of unr Hecke alg for G (Qp) of “exponent≤ δ”,

µcountF ,p (fp)− µplp (fp) =

{
O(paδN−b), level aspect,
O(pcδκ−d), wt aspect,

(1)

where a, b, c , d and const in O(·) are indep of p, e and N (or κ).

Indeed,

µplpk → µST as k →∞ (standard).

pk grows “slowly” rel to Nk or κk ⇒ O(· · · )→ 0 as k →∞.

(In fact, (1) implies answer to Q1 by fixing p and N →∞ or
κ→∞.) How do we prove (1)?
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Idea of proof: Thm with error terms (wt aspect)

Starting point is Arthur-Selberg trace formula. Its spectral side
essentially computes µcountF ,p (fp) (if weighted suitably): For suitable

functions

f∞,p on G (A∞,p) (dep on fixed level outside p),

fκ on G (R) (dep on wt κ),

µcountF ,p (fp) = Ispec(fpf∞,pfκ).

The trace formula tells us: Ispec(fpf∞,pfκ) = Igeom(fpf∞,pfκ)

=
∑

γ∈G(Q)/∼
R−ell

vol(Gγ)·OG(A∞)
γ (fpf∞,p)·ΦG

∞(γ, κ)+

(
similar terms
for Levi of G

)
.

Levi=G , γ = 1  main term fp(1) = µplp (fp) (up to const).

remaining terms (error): count γ, bound vol, ΦG , and orb-int.
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Application to low-lying zeros in families

Theorem (S.-Templier)

The previous result plus quite a bit of work confirms:

the prediction of Katz-Sarnak about low-lying zero stats for
families of automorphic L-functions via random matrix theory

for families of level or weight aspect considered in our Sato-Tate
type theorem.

Remark

Probably the first time shown for L-fcns of arbitrarily high degree.
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Thank You!
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