Modularity of Galois representations over imaginary quadratic fields

Krzysztof Klosin (joint with T. Berger)

City University of New York

December 3, 2011

• F=im. quadr. field, $p \nmid \# \operatorname{Cl}_F d_K$, fix $\mathfrak{p} \mid p$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

- F=im. quadr. field, $p \nmid \# \operatorname{Cl}_F d_K$, fix $\mathfrak{p} \mid p$
- Σ = finite set of finite places of F, p, p̄ ∈ Σ, G_Σ = Gal(F_Σ/F);

- **→** → **→**

- F=im. quadr. field, $p \nmid \# \operatorname{Cl}_F d_K$, fix $\mathfrak{p} \mid p$
- $\Sigma = \text{finite set of finite places of } F, \mathfrak{p}, \overline{\mathfrak{p}} \in \Sigma, \ G_{\Sigma} = \text{Gal}(F_{\Sigma}/F);$
- \mathcal{O} = ring of integers in a finite extension of \mathbf{Q}_p , ϖ =uniformizer, $\mathbf{F} = \mathcal{O}/\varpi$;

- F=im. quadr. field, $p \nmid \# \operatorname{Cl}_F d_K$, fix $\mathfrak{p} \mid p$
- Σ = finite set of finite places of F, p, p̄ ∈ Σ, G_Σ = Gal(F_Σ/F);
- \mathcal{O} = ring of integers in a finite extension of \mathbf{Q}_{p} , ϖ =uniformizer, $\mathbf{F} = \mathcal{O}/\varpi$;
- $\Psi = (\text{unramified})$ Hecke character of ∞ -type $\frac{z}{z}$, $\Psi_{\mathfrak{p}}: G_{\Sigma} \to \mathcal{O}^{\times}$ the associated Galois character, $\chi_0 = \Psi_{\mathfrak{p}}$ (mod ϖ)

Suppose that dim_F $\operatorname{Ext}^{1}_{\mathsf{F}[G_{\Sigma}]}(\chi_{0}, \mathbf{1}) = 1.$

(4 同) (4 日) (4 日)

э

Suppose that dim_F $\operatorname{Ext}^{1}_{F[G_{\Sigma}]}(\chi_{0}, 1) = 1$. Let $\rho : G_{\Sigma} \to \operatorname{GL}_{2}(\overline{\mathbb{Q}}_{\rho})$ be continuous and irreducible. Suppose that:

Suppose that dim_F Ext¹_{F[G_Σ]}(χ_0 , 1) = 1. Let ρ : $G_{\Sigma} \to GL_2(\overline{\mathbf{Q}}_p)$ be continuous and irreducible. Suppose that:

Suppose that dim_F Ext¹_{F[G_Σ]}(χ_0 , 1) = 1. Let ρ : $G_{\Sigma} \to GL_2(\overline{\mathbf{Q}}_p)$ be continuous and irreducible. Suppose that:

- $\det \rho = \Psi_{\mathfrak{p}}$
- $\overline{
 ho}^{\mathrm{ss}} = 1 \oplus \chi_0$

Suppose that dim_F Ext¹_{F[G_Σ]}(χ_0 , **1**) = 1. Let $\rho : G_{\Sigma} \to GL_2(\overline{\mathbf{Q}}_p)$ be continuous and irreducible. Suppose that:

- det $\rho = \Psi_{\mathfrak{p}}$
- $\overline{\rho}^{\mathrm{ss}} = 1 \oplus \chi_0$
- ρ is crystalline (or ordinary if p splits)
- ρ is minimally ramified.

Suppose that dim_F Ext¹_{F[G_Σ]}(χ_0 , **1**) = 1. Let $\rho : G_{\Sigma} \to GL_2(\overline{\mathbf{Q}}_p)$ be continuous and irreducible. Suppose that:

- det $\rho = \Psi_{\mathfrak{p}}$
- $\overline{\rho}^{\mathrm{ss}} = 1 \oplus \chi_0$
- ρ is crystalline (or ordinary if p splits)
- ρ is minimally ramified.

Then ρ is modular, i.e.,

$$L(\rho\otimes\gamma,s)=L(s,\pi)$$

for some automorphic representation π of $GL_2(\mathbf{A}_F)$.

Remarks to the Main Theorem

At the moment this is the only known modularity result for an imaginary quadratic field.

Remarks to the Main Theorem

- At the moment this is the only known modularity result for an imaginary quadratic field.
- This is similar to a result of Skinner and Wiles which applies to Q or a totally real field, but their method fails for F=imaginary quadratic. An important step in their method is the existence of an ordinary, minimal deformation

$$\rho = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} : G_{\mathbf{Q}} \to \mathsf{GL}_2(\mathcal{O})$$

of the residual representation

$$\rho_{\mathbf{0}} = \begin{bmatrix} \mathbf{1} & * \\ \mathbf{0} & \chi_{\mathbf{0}} \end{bmatrix} \not\cong \mathbf{1} \oplus \chi_{\mathbf{0}}$$

(uses Kummer theory).

Remarks to the Main Theorem

- At the moment this is the only known modularity result for an imaginary quadratic field.
- This is similar to a result of Skinner and Wiles which applies to Q or a totally real field, but their method fails for F=imaginary quadratic. An important step in their method is the existence of an ordinary, minimal deformation

$$\rho = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} : G_{\mathbf{Q}} \to \mathsf{GL}_2(\mathcal{O})$$

of the residual representation

$$\rho_{\mathbf{0}} = \begin{bmatrix} \mathbf{1} & * \\ \mathbf{0} & \chi_{\mathbf{0}} \end{bmatrix} \not\cong \mathbf{1} \oplus \chi_{\mathbf{0}}$$

(uses Kummer theory). But

Theorem (Berger-K.)

No such deformation ρ exists for F.

We do not follow [SW]-strategy. Instead we develop a commutative algebra criterion that allows one to reduce the problem of modularity of all deformations of ρ₀ to that of modularity of the *reducible* deformations of ρ₀.

- We do not follow [SW]-strategy. Instead we develop a commutative algebra criterion that allows one to reduce the problem of modularity of all deformations of ρ₀ to that of modularity of the *reducible* deformations of ρ₀.
- The condition dim_F Ext¹_{F[G_Σ]}(χ₀, 1) = 1 is (probably) essential (work in progress).

- We do not follow [SW]-strategy. Instead we develop a commutative algebra criterion that allows one to reduce the problem of modularity of all deformations of ρ₀ to that of modularity of the *reducible* deformations of ρ₀.
- The condition dim_F $\operatorname{Ext}^{1}_{F[G_{\Sigma}]}(\chi_{0}, \mathbf{1}) = 1$ is (probably) essential (work in progress).
- The unramifiedness of Ψ -condition can be replaced by demanding that $H_c^2(S_{K_f}, \mathbf{Z}_p)^{\text{tors}} = 0.$

• Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix}$: $G_{\Sigma} \to GL_2(\mathbf{F})$ be a non-semisimple residual representation.

- Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix}$: $G_{\Sigma} \to GL_2(\mathbf{F})$ be a non-semisimple residual representation.
- We study the crystalline (or ordinary if p splits) deformations of ρ_0 .

- Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix}$: $G_{\Sigma} \to GL_2(\mathbf{F})$ be a non-semisimple residual representation.
- We study the crystalline (or ordinary if p splits) deformations of ρ_0 .
- There exists a universal couple $(R_{\Sigma}, \rho_{\Sigma} : G_{\Sigma} \rightarrow GL_2(R_{\Sigma}))$

- Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix}$: $G_{\Sigma} \to GL_2(\mathbf{F})$ be a non-semisimple residual representation.
- We study the crystalline (or ordinary if p splits) deformations of ρ_0 .
- There exists a universal couple (R_Σ, ρ_Σ : G_Σ → GL₂(R_Σ))
- One gets a surjection $\phi : R_{\Sigma} \twoheadrightarrow \mathbf{T}_{\Sigma}$

- Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix}$: $G_{\Sigma} \to GL_2(\mathbf{F})$ be a non-semisimple residual representation.
- We study the crystalline (or ordinary if p splits) deformations of ρ_0 .
- There exists a universal couple (R_Σ, ρ_Σ : G_Σ → GL₂(R_Σ))
- One gets a surjection $\phi : R_{\Sigma} \twoheadrightarrow \mathbf{T}_{\Sigma}$
- Goal: Show that ϕ is an isomorphism.

$\mathit{I}_{\mathrm{re}}:=$ the smallest ideal I of R_Σ such that

 $\operatorname{tr} \rho_{\Sigma} = \chi_1 + \chi_2 \pmod{I}$

for χ_1, χ_2 characters.

- ∢ ≣ ▶

A D

- ∢ ≣ ▶

 $\mathit{I}_{\mathrm{re}}:=$ the smallest ideal I of R_{Σ} such that

 $\operatorname{tr} \rho_{\Sigma} = \chi_1 + \chi_2 \pmod{I}$

for χ_1, χ_2 characters.

 $R_{\Sigma}/I_{
m re}$ controls the *reducible* deformations

Key idea: Reduce the problem to that of modularity of reducible lifts.

Theorem (Berger-K.)

Let R, S be commutative rings. Choose $r \in R$ such that $\bigcap_n r^n R = 0$. Let A be a domain and suppose that S is a finitely generated free module over A. Suppose we have a commutative diagrams of ring maps:

Theorem (Berger-K.)

Let R, S be commutative rings. Choose $r \in R$ such that $\bigcap_n r^n R = 0$. Let A be a domain and suppose that S is a finitely generated free module over A. Suppose we have a commutative diagrams of ring maps:

If $\operatorname{rk}_A S/\phi(r)S = 0$, then ϕ is an isomorphism.

Theorem (Berger-K.)

Let R, S be commutative rings. Choose $r \in R$ such that $\bigcap_n r^n R = 0$. Let A be a domain and suppose that S is a finitely generated free module over A. Suppose we have a commutative diagrams of ring maps:

If $\operatorname{rk}_A S/\phi(r)S = 0$, then ϕ is an isomorphism.

The rank condition can be replaced by a condition $\frac{rR}{r^2R} \cong \frac{\phi(r)S}{\phi(r)^2S}$ and then the theorem gives an alternative to the criterion of Wiles and Lenstra.

Corollary

Set $S = \mathbf{T}_{\Sigma}$, $R = R_{\Sigma}$.

3

Corollary

Set $S = \mathbf{T}_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{re} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{re})\mathbf{T}_{\Sigma} < \infty$.

伺 と く ヨ と く ヨ と

э

Corollary

Set $S = \mathbf{T}_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{re} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{re})\mathbf{T}_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \twoheadrightarrow \mathbf{T}_{\Sigma}$ induces an isomorphism

$$R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),$$

then ϕ is an isomorphism.

Corollary

Set $S = \mathbf{T}_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{re} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{re})\mathbf{T}_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \twoheadrightarrow \mathbf{T}_{\Sigma}$ induces an isomorphism

$$R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),$$

then ϕ is an isomorphism.

Upshot: To show $R_{\Sigma} = \mathbf{T}_{\Sigma}$ it suffices to prove:

Corollary

Set $S = \mathbf{T}_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{re} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{re})\mathbf{T}_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \twoheadrightarrow \mathbf{T}_{\Sigma}$ induces an isomorphism

$$R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),$$

then ϕ is an isomorphism.

Upshot: To show $R_{\Sigma} = \mathbf{T}_{\Sigma}$ it suffices to prove:

• $I_{\rm re}$ is principal,

Corollary

Set $S = \mathbf{T}_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{re} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{re})\mathbf{T}_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \twoheadrightarrow \mathbf{T}_{\Sigma}$ induces an isomorphism

$$R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),$$

then ϕ is an isomorphism.

Upshot: To show $R_{\Sigma} = \mathbf{T}_{\Sigma}$ it suffices to prove:

- $I_{\rm re}$ is principal,
- $R_{\Sigma}/I_{\rm re} \cong T_{\Sigma}/\phi(I_{\rm re})$, i.e., that every *reducible* deformation of ρ_0 is modular.

Corollary

Set $S = \mathbf{T}_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{re} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{re})\mathbf{T}_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \twoheadrightarrow \mathbf{T}_{\Sigma}$ induces an isomorphism

$$R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),$$

then ϕ is an isomorphism.

Upshot: To show $R_{\Sigma} = \mathbf{T}_{\Sigma}$ it suffices to prove:

- $I_{\rm re}$ is principal,
- $R_{\Sigma}/I_{\rm re} \cong T_{\Sigma}/\phi(I_{\rm re})$, i.e., that every *reducible* deformation of ρ_0 is modular.

Remark: The criterion removes the condition $p||B_{2,\omega^{k-2}}$ from a modularity result for residually reducible Galois representations over **Q** due to Calegari.

Theorem (Bellaïche-Chenevier, Calegari)

lf

$$\mathsf{dim}_{\mathsf{F}} \mathsf{Ext}^{1}_{\mathsf{F}[G_{\Sigma}]}(\chi_{0}, \mathbf{1}) = \mathsf{dim}_{\mathsf{F}} \mathsf{Ext}^{1}_{\mathsf{F}[G_{\Sigma}]}(\mathbf{1}, \chi_{0}) = 1,$$

then $I_{\rm re}$ is principal.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Bellaïche-Chenevier, Calegari)

$$\dim_{\mathsf{F}} \mathsf{Ext}^{1}_{\mathsf{F}[G_{\Sigma}]}(\chi_{0}, \mathbf{1}) = \dim_{\mathsf{F}} \mathsf{Ext}^{1}_{\mathsf{F}[G_{\Sigma}]}(\mathbf{1}, \chi_{0}) = 1,$$

then $I_{\rm re}$ is principal.

Theorem (Berger-K.)

Let A be a Noetherian local ring with $2 \in A^{\times}$. Set $S = A[G_{\Sigma}]$. Let $\rho: S \to M_2(A)$ be an A-algebra map with $\rho = \rho_0 \mod \mathfrak{m}_A$.

Theorem (Bellaïche-Chenevier, Calegari)

lf

$$\mathsf{dim}_{\mathsf{F}} \mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\chi_0, \mathbf{1}) = \mathsf{dim}_{\mathsf{F}} \mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\mathbf{1}, \chi_0) = 1,$$

then $I_{\rm re}$ is principal.

Theorem (Berger-K.)

Let A be a Noetherian local ring with $2 \in A^{\times}$. Set $S = A[G_{\Sigma}]$. Let $\rho : S \to M_2(A)$ be an A-algebra map with $\rho = \rho_0 \mod \mathfrak{m}_A$. If A is reduced, infinite, but $\#A/I_{\mathrm{re},A} < \infty$, then $I_{\mathrm{re},A}$ is principal. Goal is to show that $\overline{\phi} : R_{\Sigma}/I_{\rm re} \twoheadrightarrow \mathbf{T}_{\Sigma}/\phi(I_{\rm re})$ is an isomorphism.

Goal is to show that $\overline{\phi} : R_{\Sigma}/I_{\rm re} \twoheadrightarrow \mathbf{T}_{\Sigma}/\phi(I_{\rm re})$ is an isomorphism.

Two steps:

• Show $\#R_{\Sigma}/I_{\rm re} \leq \#\mathcal{O}/L$ – value (Iwasawa Main Conjecture - Rubin).

Goal is to show that $\overline{\phi} : R_{\Sigma}/I_{\rm re} \twoheadrightarrow \mathbf{T}_{\Sigma}/\phi(I_{\rm re})$ is an isomorphism.

Two steps:

- Show $\#R_{\Sigma}/I_{\rm re} \leq \#\mathcal{O}/L$ value (Iwasawa Main Conjecture Rubin).
- Show $\# \mathbf{T}_{\Sigma} / \phi(I_{\mathrm{re}}) \geq \# \mathcal{O} / L \text{value}$ (congruences Berger).

Let

• *F* be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;

- **→** → **→**

- ∢ ≣ ▶

э

Let

- *F* be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j : G_{\Sigma} \to \operatorname{GL}_{n_j}(\mathbf{F})$ be absolutely irreducible;

Let

- *F* be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j : G_{\Sigma} \to \operatorname{GL}_{n_j}(\mathbf{F})$ be absolutely irreducible; • $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix} : G_{\Sigma} \to \operatorname{GL}_{n_1+n_2}(\mathbf{F})$ be non-semisimple.

Let

- *F* be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j : G_{\Sigma} \to \operatorname{GL}_{n_j}(\mathbf{F})$ be absolutely irreducible; • $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix} : G_{\Sigma} \to \operatorname{GL}_{n_1+n_2}(\mathbf{F})$ be non-semisimple.
- Study crystalline deformations of ρ_0 , get $(R_{\Sigma}, \rho_{\Sigma})$.

Let

- F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j : G_{\Sigma} \to \operatorname{GL}_{n_i}(\mathbf{F})$ be absolutely irreducible;
- $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix}$: $G_{\Sigma} \to \operatorname{GL}_{n_1+n_2}(\mathbf{F})$ be non-semisimple.
- Study crystalline deformations of ρ_0 , get $(R_{\Sigma}, \rho_{\Sigma})$.

Then

• *I*_{re} is principal for essentially self-dual deformations (Berger-K., 2011);

Let

- F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j : G_{\Sigma} \to \operatorname{GL}_{n_i}(\mathbf{F})$ be absolutely irreducible;
- $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix}$: $G_{\Sigma} \to \operatorname{GL}_{n_1+n_2}(\mathbf{F})$ be non-semisimple.
- Study crystalline deformations of ρ_0 , get $(R_{\Sigma}, \rho_{\Sigma})$.

Then

- *I*_{re} is principal for essentially self-dual deformations (Berger-K., 2011);
- Commutative algebra criterion still works;

• One needs to prove $R_{\Sigma}/I_{\rm re} = {f T}_{\Sigma}/\phi(I_{\rm re}).$

A D

э

- \bullet One needs to prove ${\it R}_{\Sigma}/{\it I}_{\rm re}={\rm T}_{\Sigma}/\phi({\it I}_{\rm re}).$ This uses
 - the Bloch-Kato conjecture for the module $\text{Hom}(\tilde{\tau}_2, \tilde{\tau}_1)$, where $\tilde{\tau}_i$ are the unique lifts of τ_i to \mathcal{O} ,

- One needs to prove $R_{\Sigma}/I_{
 m re}={f T}_{\Sigma}/\phi(I_{
 m re}).$ This uses
 - the Bloch-Kato conjecture for the module $\text{Hom}(\tilde{\tau}_2, \tilde{\tau}_1)$, where $\tilde{\tau}_j$ are the unique lifts of τ_j to \mathcal{O} ,
 - Congruences among automorphic forms on higher-rank groups (results of Agarwal, Böcherer, Dummigan, Schulze-Pillot and K. on congruences to the Yoshida lifts on Sp₄ allow us to prove that certain 4-dimensional Galois represenentations arise from Siegel modular forms.)

Another modularity result

N=square-free, k=even, $p > k \ge 4$, $F = \mathbf{Q}$. Assume that every prime $l \mid N$ satisfies $l \not\equiv 1 \mod p$. Let $f \in S_2(N), g \in S_k(N)$, $\Sigma = \{l \mid N, p\}$. Assume that $\overline{\rho}_f$ and $\overline{\rho}_g$ are absolutely irreducible.

Theorem (Berger-K.)

Suppose:

• dim_F $H^1_{\Sigma}(\mathbf{Q}, \operatorname{Hom}(\overline{\rho}_g, \overline{\rho}_f(k/2 - 1))) = 1;$

•
$$R_{\overline{\rho}_f(k/2-1)} = R_{\overline{\rho}_g} = \mathcal{O};$$

• the B-K conjecture holds for $H^1_{\Sigma}(\mathbf{Q}, \operatorname{Hom}(\rho_g, \rho_f(k/2 - 1)))$.

Let $\rho: G_{\mathbf{Q},\Sigma} \to \mathsf{GL}_4(\overline{\mathbf{Q}}_p)$ be continuous, irreducible and such that:

•
$$\overline{
ho}^{\mathrm{ss}} \cong \overline{
ho}_f(k/2-1) \oplus \overline{
ho}_g$$
;

• ρ is crystalline at p and essentially self-dual.

Then ρ is modular. More precisely, there exists a Siegel modular form of weight k/2 + 1, level $\Gamma_0(N)$ and trivial character such that $\rho \cong \rho_F$.

Thank you.

For papers and preprints visit www.math.utah.edu/~klosin