Modularity of Galois representations over imaginary quadratic fields

Krzysztof Klosin (joint with T. Berger)

City University of New York

December 3, 2011

• F=im. quadr. field, $p \nmid \# \text{Cl}_F d_K$, fix $p \mid p$

イロト イ部 ト イ君 ト イ君 ト

目

- F=im. quadr. field, $p \nmid \# \text{Cl}_F d_K$, fix $p \mid p$
- $\bullet \Sigma =$ finite set of finite places of F, $\mathfrak{p}, \overline{\mathfrak{p}} \in \Sigma$, $G_{\Sigma} =$ Gal(F_{Σ}/F);

 299

┌ ─ ヽ ヽ ゠ ゝ

- F=im. quadr. field, $p \nmid \# C|_F d_K$, fix $p | p$
- $\bullet \Sigma =$ finite set of finite places of F, $\mathfrak{p}, \overline{\mathfrak{p}} \in \Sigma$, $G_{\Sigma} =$ Gal(F_{Σ}/F);
- \bullet $\mathcal{O}=$ ring of integers in a finite extension of \mathbf{Q}_p , ϖ =uniformizer, **F** = \mathcal{O}/ϖ ;

4母 ト 4回 ト

 Ω

- F=im. quadr. field, $p \nmid \# C|_F d_K$, fix $p | p$
- $\bullet \Sigma =$ finite set of finite places of F, $\mathfrak{p}, \overline{\mathfrak{p}} \in \Sigma$, $G_{\Sigma} =$ Gal(F_{Σ}/F);
- \bullet $\mathcal{O}=$ ring of integers in a finite extension of \mathbf{Q}_p , ϖ =uniformizer, **F** = \mathcal{O}/ϖ ;
- $\Psi =$ (unramified) Hecke character of ∞ -type $\frac{z}{\overline{z}}$, $\Psi_{\mathfrak{p}}: G_{\Sigma} \to \mathcal{O}^{\times}$ the associated Galois character, $\chi_0 = \Psi_{\mathfrak{p}}$ $(mod \; \varpi)$

∢ 何 ▶ 《 手 》 《 手 》

Suppose that dim_F $\mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\chi_0, \mathbf{1}) = 1$.

4 17 18

- ∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ ▶

Þ

Suppose that $\dim_{\mathsf{F}} \mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\chi_0,\mathbf{1})=1.$ Let $\rho:G_{\Sigma}\to \mathsf{GL}_2(\overline{\mathbf{Q}}_{\rho})$ be continuous and irreducible. Suppose that:

Suppose that $\dim_{\mathsf{F}} \mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\chi_0,\mathbf{1})=1.$ Let $\rho:G_{\Sigma}\to \mathsf{GL}_2(\overline{\mathbf{Q}}_{\rho})$ be continuous and irreducible. Suppose that:

Suppose that $\dim_{\mathsf{F}} \mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\chi_0,\mathbf{1})=1.$ Let $\rho:G_{\Sigma}\to \mathsf{GL}_2(\overline{\mathbf{Q}}_{\rho})$ be continuous and irreducible. Suppose that:

- det $\rho = \Psi_{\mathfrak{p}}$
- $\overline{\rho}^{\rm ss} = 1 \oplus \chi_0$

Suppose that $\dim_{\mathsf{F}} \mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\chi_0,\mathbf{1})=1.$ Let $\rho:G_{\Sigma}\to \mathsf{GL}_2(\overline{\mathbf{Q}}_{\rho})$ be continuous and irreducible. Suppose that:

- det $\rho = \Psi_{p}$
- $\overline{\rho}^{\rm ss} = 1 \oplus \chi_0$
- \bullet ρ is crystalline (or ordinary if p splits)
- \bullet ρ is minimally ramified.

Suppose that $\dim_{\mathsf{F}} \mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\chi_0,\mathbf{1})=1.$ Let $\rho:G_{\Sigma}\to \mathsf{GL}_2(\overline{\mathbf{Q}}_{\rho})$ be continuous and irreducible. Suppose that:

• det $\rho = \Psi_{p}$

$$
\bullet\;\,\overline{\rho}^{\mathrm{ss}}=1\oplus\chi_0
$$

- \bullet ρ is crystalline (or ordinary if p splits)
- \bullet ρ is minimally ramified.

Then ρ is modular, i.e.,

$$
L(\rho\otimes\gamma,s)=L(s,\pi)
$$

for some automorphic representation π of $GL_2(\mathbf{A}_F)$.

Remarks to the Main Theorem

¹ At the moment this is the only known modularity result for an imaginary quadratic field.

 QQ

Remarks to the Main Theorem

- **4** At the moment this is the only known modularity result for an imaginary quadratic field.
- ² This is similar to a result of Skinner and Wiles which applies to Q or a totally real field, but their method fails for $F=$ imaginary quadratic. An important step in their method is the existence of an ordinary, minimal deformation

$$
\rho = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} : G_{\mathbf{Q}} \to GL_2(\mathcal{O})
$$

of the residual representation

$$
\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix} \not\cong 1 \oplus \chi_0
$$

つくへ

(uses Kummer theory).

Remarks to the Main Theorem

- **4** At the moment this is the only known modularity result for an imaginary quadratic field.
- **2** This is similar to a result of Skinner and Wiles which applies to Q or a totally real field, but their method fails for $F=$ imaginary quadratic. An important step in their method is the existence of an ordinary, minimal deformation

$$
\rho = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} : G_{\mathbf{Q}} \to GL_2(\mathcal{O})
$$

of the residual representation

$$
\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix} \not\cong 1 \oplus \chi_0
$$

(uses Kummer theory). But

Theorem (Berger-K.)

No such deformation ρ exists for F.

We do not follow [SW]-strategy. Instead we develop a commutative algebra criterion that allows one to reduce the problem of modularity of all deformations of ρ_0 to that of modularity of the *reducible* deformations of ρ_0 .

- We do not follow [SW]-strategy. Instead we develop a commutative algebra criterion that allows one to reduce the problem of modularity of all deformations of ρ_0 to that of modularity of the *reducible* deformations of ρ_0 .
- The condition $\dim_{\mathsf{F}} \mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\chi_0, \mathbf{1}) = 1$ is (probably) essential (work in progress).

- We do not follow [SW]-strategy. Instead we develop a commutative algebra criterion that allows one to reduce the problem of modularity of all deformations of ρ_0 to that of modularity of the reducible deformations of ρ_0 .
- The condition $\dim_{\mathsf{F}} \mathsf{Ext}^1_{\mathsf{F}[G_{\Sigma}]}(\chi_0, \mathbf{1}) = 1$ is (probably) essential (work in progress).
- The unramifiedness of Ψ-condition can be replaced by demanding that $H_c^2(S_{K_f}, \mathbf{Z}_p)^{\text{tors}} = 0.$

Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \gamma \end{bmatrix}$ 0 χ_{0} $\Big]$: $\mathsf{G}_{\mathsf{\Sigma}} \to \mathsf{GL}_2(\mathsf{F})$ be a non-semisimple residual representation.

 QQ

K 何 ▶ 【 手 ▶

- Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \gamma \end{bmatrix}$ 0 χ_{0} $\Big]$: $\mathsf{G}_{\mathsf{\Sigma}} \to \mathsf{GL}_2(\mathsf{F})$ be a non-semisimple residual representation.
- \bullet We study the crystalline (or ordinary if p splits) deformations of ρ_0 .

- Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \gamma \end{bmatrix}$ 0 χ_{0} $\Big]$: $\mathsf{G}_{\mathsf{\Sigma}} \to \mathsf{GL}_2(\mathsf{F})$ be a non-semisimple residual representation.
- We study the crystalline (or ordinary if p splits) deformations of ρ_0 .
- There exists a universal couple $(R_{\Sigma}, \rho_{\Sigma}: G_{\Sigma} \to GL_2(R_{\Sigma}))$

- Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \gamma \end{bmatrix}$ 0 χ_{0} $\Big]$: $\mathsf{G}_{\mathsf{\Sigma}} \to \mathsf{GL}_2(\mathsf{F})$ be a non-semisimple residual representation.
- \bullet We study the crystalline (or ordinary if p splits) deformations of ρ_0 .
- There exists a universal couple $(R_{\Sigma}, \rho_{\Sigma}: G_{\Sigma} \to GL_2(R_{\Sigma}))$
- **•** One gets a surjection $\phi : R_{\Sigma} \rightarrow T_{\Sigma}$

- Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \gamma \end{bmatrix}$ 0 χ_{0} $\Big]$: $\mathsf{G}_{\mathsf{\Sigma}} \to \mathsf{GL}_2(\mathsf{F})$ be a non-semisimple residual representation.
- \bullet We study the crystalline (or ordinary if p splits) deformations of ρ_0 .
- There exists a universal couple $(R_{\Sigma}, \rho_{\Sigma}: G_{\Sigma} \to GL_2(R_{\Sigma}))$
- **•** One gets a surjection $\phi : R_{\Sigma} \rightarrow T_{\Sigma}$
- Goal: Show that ϕ is an isomorphism.

$I_{\text{re}} :=$ the smallest ideal *I* of R_{Σ} such that

$$
\operatorname{tr} \rho_{\Sigma} = \chi_1 + \chi_2 \pmod{I}
$$

for χ_1, χ_2 characters.

 299

- 4 三 ト

 $I_{\text{re}} :=$ the smallest ideal *I* of R_{Σ} such that

tr $\rho_{\Sigma} = \chi_1 + \chi_2 \pmod{I}$

for χ_1, χ_2 characters.

 $R_{\Sigma}/I_{\rm re}$ controls the *reducible* deformations

Key idea: Reduce the problem to that of modularity of reducible lifts.

Theorem (Berger-K.)

Let R, S be commutative rings. Choose $r \in R$ such that $\bigcap_n r^n R = 0$. Let A be a domain and suppose that S is a finitely generated free module over A. Suppose we have a commutative diagrams of ring maps:

Theorem (Berger-K.)

Let R, S be commutative rings. Choose $r \in R$ such that $\bigcap_n r^n R = 0$. Let A be a domain and suppose that S is a finitely generated free module over A. Suppose we have a commutative diagrams of ring maps:

If $\text{rk}_A S/\phi(r)S = 0$, then ϕ is an isomorphism.

Theorem (Berger-K.)

Let R, S be commutative rings. Choose $r \in R$ such that $\bigcap_n r^n R = 0$. Let A be a domain and suppose that S is a finitely generated free module over A. Suppose we have a commutative diagrams of ring maps:

If $\text{rk}_A S/\phi(r)S = 0$, then ϕ is an isomorphism.

The rank condition can be replaced by a condition $\frac{rR}{r^2R}\cong \frac{\phi(r)S}{\phi(r)^2S}$ $\overline{\phi(r)^2S}$ and then the theorem gives an alternative to the criterion of Wiles and Lenstra.

Corollary

Set $S = T_{\Sigma}$, $R = R_{\Sigma}$.

4 17 18

→ (何) > → (目) → → (目) →

 299

重

Corollary

Set $S = T_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{\text{re}} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{\text{re}})\mathbf{T}_{\Sigma} < \infty$.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

э

Corollary

Set $S = T_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{\text{re}} = rR$ and $\#T_{\Sigma}/\phi(I_{\text{re}})T_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \rightarrow T_{\Sigma}$ induces an isomorphism

$$
R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),
$$

then ϕ is an isomorphism.

Corollary

Set $S = T_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{\text{re}} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{\text{re}})\mathbf{T}_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \rightarrow T_{\Sigma}$ induces an isomorphism

$$
R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),
$$

then ϕ is an isomorphism.

Upshot: To show $R_{\overline{2}} = T_{\overline{2}}$ it suffices to prove:

Corollary

Set $S = T_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{\text{re}} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{\text{re}})\mathbf{T}_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \rightarrow T_{\Sigma}$ induces an isomorphism

$$
R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),
$$

then ϕ is an isomorphism.

Upshot: To show $R_{\overline{2}} = T_{\overline{2}}$ it suffices to prove:

 \bullet $I_{\rm re}$ is principal,

同 ▶ イヨ ▶ イヨ ▶ │

Corollary

Set $S = T_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{\text{re}} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{\text{re}})\mathbf{T}_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \rightarrow T_{\Sigma}$ induces an isomorphism

$$
R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),
$$

then ϕ is an isomorphism.

Upshot: To show $R_{\overline{2}} = T_{\overline{2}}$ it suffices to prove:

- \bullet $I_{\rm re}$ is principal,
- $R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}})$, i.e., that every *reducible* deformation of ρ_0 is modular.

Corollary

Set $S = T_{\Sigma}$, $R = R_{\Sigma}$. Suppose $I_{\text{re}} = rR$ and $\#\mathbf{T}_{\Sigma}/\phi(I_{\text{re}})\mathbf{T}_{\Sigma} < \infty$. If the map $\phi : R_{\Sigma} \rightarrow T_{\Sigma}$ induces an isomorphism

$$
R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}}),
$$

then ϕ is an isomorphism.

Upshot: To show $R_{\overline{2}} = T_{\overline{2}}$ it suffices to prove:

- \bullet $I_{\rm re}$ is principal,
- $R_{\Sigma}/I_{\mathrm{re}} \cong \mathbf{T}_{\Sigma}/\phi(I_{\mathrm{re}})$, i.e., that every *reducible* deformation of ρ_0 is modular.

Remark: The criterion removes the condition $p||B_{2,\omega^{k-2}}$ from a modularity result for residually reducible Galois representations over Q due to Calegari.

Theorem (Bellaïche-Chenevier, Calegari)

If

$$
\mathsf{dim}_{\mathsf{F}}\,\mathsf{Ext}^1_{\mathsf{F}[G_\Sigma]}(\chi_0,\mathbf{1})=\mathsf{dim}_{\mathsf{F}}\,\mathsf{Ext}^1_{\mathsf{F}[G_\Sigma]}(\mathbf{1},\chi_0)=1,
$$

then I_{re} is principal.

 \sim \sim

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

∍

If

 $\mathsf{dim}_{\mathsf{F}}\,\mathsf{Ext}^1_{\mathsf{F}[G_\Sigma]}(\chi_0,\mathbf{1}) = \mathsf{dim}_{\mathsf{F}}\,\mathsf{Ext}^1_{\mathsf{F}[G_\Sigma]}(\mathbf{1},\chi_0) = 1,$

then I_{re} is principal.

Theorem (Berger-K.)

Let A be a Noetherian local ring with $2 \in A^{\times}$. Set $S = A[G_{\Sigma}]$. Let ρ : $S \to M_2(A)$ be an A-algebra map with $\rho = \rho_0$ mod \mathfrak{m}_A .

$$
\mathsf{dim}_{\textsf{F}}\,\mathsf{Ext}^1_{\textsf{F}[G_\Sigma]}(\chi_0,\mathbf{1})=\mathsf{dim}_{\textsf{F}}\,\mathsf{Ext}^1_{\textsf{F}[G_\Sigma]}(\mathbf{1},\chi_0)=1,
$$

then I_{re} is principal.

If

Theorem (Berger-K.)

Let A be a Noetherian local ring with $2 \in A^{\times}$. Set $S = A[G_{\Sigma}]$. Let ρ : $S \to M_2(A)$ be an A-algebra map with $\rho = \rho_0$ mod \mathfrak{m}_A . If A is reduced, infinite, but $\#A/I_{\text{re},A} < \infty$, then $I_{\text{re},A}$ is principal.

Goal is to show that $\overline{\phi}: R_{\Sigma}/I_{\rm re} \twoheadrightarrow T_{\Sigma}/\phi(I_{\rm re})$ is an isomorphism.

 QQ

Goal is to show that $\overline{\phi}: R_{\Sigma}/I_{\rm re} \twoheadrightarrow T_{\Sigma}/\phi(I_{\rm re})$ is an isomorphism.

Two steps:

• Show $#R_{\Sigma}/I_{\text{re}} \leq #\mathcal{O}/L$ – value (Iwasawa Main Conjecture -Rubin).

Goal is to show that $\overline{\phi}: R_{\Sigma}/I_{\rm re} \twoheadrightarrow T_{\Sigma}/\phi(I_{\rm re})$ is an isomorphism.

Two steps:

- Show $#R_{\Sigma}/I_{\text{re}} \leq #\mathcal{O}/L$ value (Iwasawa Main Conjecture -Rubin).
- Show $\#\mathsf{T}_{\Sigma}/\phi(I_{\mathrm{re}}) \geq \#\mathcal{O}/L$ value (congruences Berger).

Let

• F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;

 \sim \sim

K 何 ▶ 【 手 ▶

- 4 国 ド

 299

э

Let

- F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j: \mathsf{G}_\mathsf{\Sigma}\to \mathsf{GL}_{n_j}(\mathsf{F})$ be absolutely irreducible;

4. 重

モミド

 Ω

Let

- F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j: \mathsf{G}_\mathsf{\Sigma}\to \mathsf{GL}_{n_j}(\mathsf{F})$ be absolutely irreducible; $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix}$ 0 τ_2 $\Big]$: $\mathsf{G}_{\mathsf{\Sigma}} \to \mathsf{GL}_{n_1+n_2}(\mathsf{F})$ be non-semisimple.

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶ │

Let

- F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j: \mathsf{G}_\mathsf{\Sigma}\to \mathsf{GL}_{n_j}(\mathsf{F})$ be absolutely irreducible; $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix}$ 0 τ_2 $\Big]$: $\mathsf{G}_{\mathsf{\Sigma}} \to \mathsf{GL}_{n_1+n_2}(\mathsf{F})$ be non-semisimple.
- Study crystalline deformations of ρ_0 , get $(R_{\Sigma}, \rho_{\Sigma})$.

Let

- F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j: \mathsf{G}_\mathsf{\Sigma}\to \mathsf{GL}_{n_j}(\mathsf{F})$ be absolutely irreducible;
- $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix}$ 0 τ_2 $\Big]$: $\mathsf{G}_{\mathsf{\Sigma}} \to \mathsf{GL}_{n_1+n_2}(\mathsf{F})$ be non-semisimple.
- **•** Study crystalline deformations of ρ_0 , get $(R_{\Sigma}, \rho_{\Sigma})$.

Then

 I_{re} is principal for essentially self-dual deformations (Berger-K., 2011);

Let

- F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j: \mathsf{G}_\mathsf{\Sigma}\to \mathsf{GL}_{n_j}(\mathsf{F})$ be absolutely irreducible;

•
$$
\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix}
$$
 : $G_{\Sigma} \to GL_{n_1+n_2}(\mathbf{F})$ be non-semisimple.

• Study crystalline deformations of ρ_0 , get $(R_{\Sigma}, \rho_{\Sigma})$.

Then

- I_{re} is principal for essentially self-dual deformations (Berger-K., 2011);
- Commutative algebra criterion still works;

• One needs to prove $R_{\Sigma}/I_{\rm re} = {\bf T}_{\Sigma}/\phi(I_{\rm re})$.

 4.17

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 299

э

- One needs to prove $R_{\Sigma}/I_{\rm re} = T_{\Sigma}/\phi(I_{\rm re})$. This uses
	- the Bloch-Kato conjecture for the module $\text{Hom}(\tilde{\tau}_2, \tilde{\tau}_1)$, where $\tilde{\tau}_i$ are the unique lifts of τ_i to \mathcal{O}_i ,

 Ω

- One needs to prove $R_{\Sigma}/I_{\rm re} = T_{\Sigma}/\phi(I_{\rm re})$. This uses
	- the Bloch-Kato conjecture for the module Hom $(\tilde{\tau}_2, \tilde{\tau}_1)$, where $\tilde{\tau}_i$ are the unique lifts of τ_i to \mathcal{O} ,
	- Congruences among automorphic forms on higher-rank groups (results of Agarwal, Böcherer, Dummigan, Schulze-Pillot and K. on congruences to the Yoshida lifts on Sp_4 allow us to prove that certain 4-dimensional Galois represenentations arise from Siegel modular forms.)

Another modularity result

N=square-free, k=even, $p > k > 4$, $F = Q$. Assume that every prime l | N satisfies $l \neq 1$ mod p. Let $f \in S_2(N), g \in S_k(N)$, $\Sigma=\{I\mid \textit{N},\textit{p}\}$. Assume that $\overline{\rho}_{\textit{f}}$ and $\overline{\rho}_{\textit{g}}$ are absolutely irreducible.

Theorem (Berger-K.)

Suppose:

dim_F $H^1_{\Sigma}(\mathbf{Q},\mathsf{Hom}(\overline{\rho}_g,\overline{\rho}_f(k/2-1)))=1$;

$$
\bullet \ \ R_{\overline{\rho}_f(k/2-1)}=R_{\overline{\rho}_g}=\mathcal{O};
$$

the B-K conjecture holds for $H^1_{\Sigma}(\mathbf{Q}, \text{Hom}(\rho_g, \rho_f(k/2-1))).$

Let $\rho: G_{\mathbf{Q},\Sigma} \to GL_4(\overline{\mathbf{Q}}_p)$ be continuous, irreducible and such that:

$$
\bullet \ \ \overline{\rho}^{\text{ss}} \cong \overline{\rho}_f(k/2-1) \oplus \overline{\rho}_g;
$$

 \bullet ρ is crystalline at p and essentially self-dual.

Then ρ is modular. More precisely, there exists a Siegel modular form of weight $k/2 + 1$, level $\Gamma_0(N)$ and trivial character such that $\rho \cong \rho_F$.

Thank you.

For papers and preprints visit www.math.utah.edu/∼klosin

 \sim \sim

 \sim

 299

э \sim э