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Overview

Let F be a number field.
E/F elliptic curve
l?
cuspidal Hecke eigenform f on GL2 /F whose eigenvalues
are closely related to the number of points on E over
various finite fields

We investigate the case when F is the complex cubic field of
discriminant −23.
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Modular forms via cohomology

Borel conjectured and Franke proved that the complex
cohomology of an arithmetic group Γ can be computed in terms
of certain automorphic forms.

1 Construct a suitable topological space X .
2 Compute cohomology.
3 Compute Hecke action on cohomology classes.
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Cohomology

For Γ torsion-free, the quotient Γ\X is a Eilenberg-Mac Lane
space.

H∗(Γ;C) ' H∗(Γ\X ;C).

These are the cohomology spaces that are built from certain
automorphic forms.

Replace C with complex representation of G(Q) to
introduce weight structure.
Isomorphism is true even if Γ has torsion.

Dan Yasaki MF and EC over the cubic field of disc. −23 4 / 29



Introduction
Reduction of 1-sharblies

Motivating example

G = SL2
G = SL2(R)
X = complex upper half-plane h
Γ = Γ0(N) congruence subgroup of matrices that

are upper triangular modulo N.
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Modular curve Γ\h

Figure: Fundamental domain for action of SL2(Z).
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Eichler-Shimura isomorphism

We have

H1(Γ\X ;C) ' S2(N)⊕ S2(N)⊕ Eis2(N),

where
S2 is space of weight 2 cusp forms,
Eis2 is space of weight 2 Eisenstein series,
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Tessellation by ideal triangles

Figure: Well-rounded tree (gold) and dual tessellation (blue).
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Modular symbols

Figure: Unimodular symbols (black) and non-reduced symbol (red).
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Reduction of modular symbol

Figure: Re-expression of non-reduced symbol (red) as a sum of
unimodular symbols (green).
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General setting

Let F be a number field of class number 1 with ring of integers
O.

G = ResF/Q GLn
G = GLn(S) ' (

∏
GLn(R))× (

∏
GLn(C))

X = associated symmetric space G/KAG
= space of (Hermitian) forms modulo homothety

Γ ⊆ GLn(O), congruence subgroup
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Which n and F?

F = Q
n = 3: Ash-Grayson-Green, Ash-McConnell, van Geemen-van der

Kallen-Top-Verberkmoes
n = 4: Ash-Gunnells-McConnell

F a complex quadratic field
n = 2: Grunewald, Cremona, Schwermer, Vogtmann, Y

F a totally real field
n = 2: Dembélé, Voight

F the CM quartic field Q(ζ5)

n = 2: Gunnells-Hajir-Y
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Setting

Let F be the (mixed signature) cubic field of discriminant −23
defined by polynomial x3 − x2 + 1.

G ' GL2(R)×GL2(C)

V = Sym2(R)× Herm2(C)

C = Sym2(R)+ × Herm2(C)+

X = C/ ∼ 6-dimensional symmetric space

Natural G-action on C descends to G-action on X .
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Modular forms and elliptic curves

For each cuspidal Hecke eigenform with integral eigenvalues
ap, one wants E/F such that

|E(Fp)| = N(p) + 1− ap.
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Voronoï polyhedron

View point x ∈ O2 as point q(x) ∈ C̄

q(x)v = xv x∗
v .

q(O2) is discrete in C̄.
Voronoï Π is convex hull of {q(x) | O2 \ 0}.

Cell structure of Π descends to tessellation of X .
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6-dimensional cells

There are nine GL2(O)-classes of 6-polytopes.
Seven are simplicial with f-vector (7,21,35,35,21,7).
One has f-vector (8,28,56,68,48,16).
One has f-vector (9,36,81,108,81,27).
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Voronoi cells for F

Dimension # of classes

6 9
5 35
4 47
3 31
2 10
1 2

The number of GL2(O)-classes
of Voronoï cells are given. The
2-dimensional cells are
simplicial.
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Sharbly complex

The sharbly complex is a resolution of the Steinberg module
that can be used to compute the cohomology (Ash,
Lee-Szczarba).

Hν−k (Γ;C) ' Hk (S∗(Γ))
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Sharbly complex

Let Sk , k ≥ 0, be the Γ-module Ak/Ck , where Ak is the set of
formal C-linear sums of symbols [v ] = [v1, · · · , vk+n], where
each vi is in F n, and Ck is the submodule generated by

1 [vσ(1), · · · , vσ(k+2)]− sgn(σ)[v1, · · · , vk+n],
2 [v , v2, · · · , vk+2]− [w , v2, · · · vk+n] if

Ray(vv∗) = Ray(ww∗), and
3 [v], if v is degenerate, i.e., if v1, · · · , vk+n are contained in a

hyperplane,
with the usual boundary map.

Hν−k (Γ;C) ' Hk (S∗(Γ))
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1-sharblies

v1 v2

v3

av

For n = 2, 1-sharblies are
formal sums of triples of
vertices of Π∑

av[v1, v2, v3].
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1-sharbly cycle

v1 v2M3

v3

M1M2 av

av = coefficient
vi = vertices
Mi = lift data
boundary vanishes modulo
Γ
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Generic case (3 bad edges)

v1 v2M3

v3

M1M2 av

v1 v2

v3

w1w2

w3
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Less generic case (2 bad)

v1 v2M2

v3

M1M3 av

v1 v2

v3

w1w2
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Even less generic case (1 bad)

v1 v2M2

v3

M1M3 av

v1 v2

v3

w1
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Very special case (0 bad)

v1 v2M2

v3

M1M3 av

e1 e2

v
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Very special case (0 bad)

e1 e2

v

va vb

e1 e2

v

va vb
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Example

For level (4t2 − t − 5) of norm 89, the cuspidal space is
1-dimensional. We find an elliptic curve

[a1,a2,a3,a4,a6] = [t − 1,−t2 − 1, t2 − t , t2,0]

with matching Hecke data.

Dan Yasaki MF and EC over the cubic field of disc. −23 27 / 29



Introduction
Reduction of 1-sharblies

More examples . . .

Nm a1 a2 a3 a4 a6

89 t − 1 −t2 − 1 t2 − t t2 0
107 0 −t −t − 1 −t2 − t 0
115 −t2 + t − 1 −t2 + 1 t − 1 −1 −t2

136 −t2 −1 −t2 + 1 t + 1 0
161 t2 − t − 1 −t2 + t − 1 t2 − t + 1 t2 − t t − 1
167 t2 + 1 t + 1 t2 + t − 1 −t2 − t + 1 −t2 + t + 1
185 t −t2 + t + 1 t + 1 0 0
223 1 t2 t2 + t − 1 −t2 + t − 1 1
253 −1 −t2 − t −t2 − t −t2 − t 0
259 0 1 −t2 − t − 1 t2 − t + 1 −t2 − t + 1
275 −t2 + t t t2 − t 0 0
289 −1 t2 − t t 1 0

...
...

...
...

...
...
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Thank you.
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