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Introduction

Overview

Let F be a number field.
@ E/F elliptic curve
17?
@ cuspidal Hecke eigenform f on GL, /F whose eigenvalues
are closely related to the number of points on E over
various finite fields

We investigate the case when F is the complex cubic field of
discriminant —23.
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Introduction

Modular forms via cohomology

Borel conjectured and Franke proved that the complex
cohomology of an arithmetic group I' can be computed in terms
of certain automorphic forms.

@ Construct a suitable topological space X.
@ Compute cohomology.
© Compute Hecke action on cohomology classes.
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Introduction
Cohomology

For I' torsion-free, the quotient '\ X is a Eilenberg-Mac Lane
space.
H*(T'; C) ~ H*(M"\X; C).

These are the cohomology spaces that are built from certain
automorphic forms.

@ Replace C with complex representation of G(Q) to
introduce weight structure.

@ Isomorphism is true even if I has torsion.
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Introduction
Motivating example

- X0

SL,

SL2(R)

complex upper half-plane b

M'o(N) congruence subgroup of matrices that
are upper triangular modulo N.
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Introduction

Eichler-Shimura isomorphism

We have
H'(M\X; C) ~ S(N) @ S3(N) @ Eisz(N),

where
@ S, is space of weight 2 cusp forms,
@ Eis, is space of weight 2 Eisenstein series,
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Introduction

Tessellation by ideal triangles

Figure: Well-rounded tree (gold) and dual tessellation (blue). @UNCG
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Introduction

Modular symbols

Figure: Unimodular symbols (black) and non-reduced symbol (re%L
UNCG
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Introduction

Reduction of modular symbol

Figure: Re-expression of non-reduced symbol (red) as a sum of
unimodular symbols (green). @UNCG
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Introduction
General setting

Let F be a number field of class number 1 with ring of integers

0.

xXOO

-

Nl

Res,:/Q GL,

GLn(S) ~ (ITGLA(R)) x (ITGLA(C))
associated symmetric space G/KAg

space of (Hermitian) forms modulo homothety
GLx(0O), congruence subgroup
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Introduction

Which nand F?

e F=Q

n = 3: Ash-Grayson-Green, Ash-McConnell, van Geemen-van der
Kallen-Top-Verberkmoes
n = 4: Ash-Gunnells-McConnell

@ F a complex quadratic field

n = 2: Grunewald, Cremona, Schwermer, Vogtmann, Y
@ F atotally real field

n = 2: Dembélé, Voight

@ F the CM quartic field Q(¢s)

n = 2: Gunnells-Hajir-Y
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Introduction
Setting

Let F be the (mixed signature) cubic field of discriminant —23
defined by polynomial x® — x? 4 1.

G ~ GLz(R)x GLy(C)

V. = Symy(R) x Hermy(C)

C = Sym,(R)" x Hermy(C)™

X = C/~ 6-dimensional symmetric space

Natural G-action on C descends to G-action on X.
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Introduction

Modular forms and elliptic curves

For each cuspidal Hecke eigenform with integral eigenvalues
a,, one wants E/F such that

|E(Fp)| = N(p) +1 - &,
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Introduction

Voronoi polyhedron

View point x € ©O? as point g(x) € C

q(x)v = xvXx,.

@ g(0?)is discrete in C.
@ Voronoi M is convex hull of {g(x) | ©2\ 0}.

Cell structure of N descends to tessellation of X.
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Introduction
6-dimensional cells

There are nine GL,(O)-classes of 6-polytopes.
@ Seven are simplicial with f-vector (7,21, 35, 35,21,7).
@ One has f-vector (8,28, 56, 68,48, 16).
@ One has f-vector (9,36,81,108,81,27).
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Introduction

Voronoi cells for F

Dimension # of classes

6 9 The number of GL,(O)-classes
S 35 of Voronoi cells are given. The
4 47 2-dimensional cells are
3 31 simplicial.
2 10
1 2
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Reduction of 1-sharblies
Sharbly complex

The sharbly complex is a resolution of the Steinberg module
that can be used to compute the cohomology (Ash,
Lee-Szczarba).

H" (T C) =~ Hi(S.(I))
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Reduction of 1-sharblies
Sharbly complex

Let Sk, k > 0, be the I-module Ax/Cx, where A is the set of

formal C-linear sums of symbols [v] = [v4,- -, Vktn], Where
each vjisin F", and Cy is the submodule generated by
Q [Vorty: s Vsl —8aN(0)[v1, - -+, Vikn)s
Q [v,vo, - Vikga] = [W, V2, - Vieyp] if
Ray(vv*) = Ray(ww*), and
© |v], if vis degenerate, i.e., if vq,--- , vk, are contained in a
hyperplane,

with the usual boundary map.

HY=K(I; C) ~ Hk(S.(T))
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1-sharblies

V3

ay

Reduction of 1-sharblies

For n = 2, 1-sharblies are
formal sums of triples of
vertices of I1

Z aV[V17 V27 V3]'

V4

Vo
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Reduction of 1-sharblies

1-sharbly cycle

V3
@ ay = coefficient
Y M @ v; = vertices
2 ay ! e M, = lift data
@ boundary vanishes modulo
[
V4 Mz Vo
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Reduction of 1-sharblies

Generic case (3 bad edges)

V3 V3
Wo W1
M. M —
2 a 1
V
vy M Vo Vi Wa Vo
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Reduction of 1-sharblies

Less generic case (2 bad)

V3 V3

ay

Vi M, Vo V4 V2
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Reduction of 1-sharblies

Even less generic case (1 bad)

V3 V3

ay

Vi M, Vo V4 V2
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Reduction of 1-sharblies

Very special case (0 bad)

V3 v

ay

Vi M, Vo €4 €2
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Reduction of 1-sharblies

For level (412 — t — 5) of norm 89, the cuspidal space is
1-dimensional. We find an elliptic curve

[31,32,a3,a4,36]:[t—1,—t2—1,t2—t,t2,01

with matching Hecke data.
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Reduction of 1-sharblies

More examples ...

DELREREN

MF and EC over the cubic field of disc. —23

Nm a as as as as
89 t—1 1 Pt [ 0
107 0 —t —t—1 -t 0
115 | -2+t —1 —+1 t—1 —1 —f
136 - -1 2 +1 t+ 1 0
161 | P—t—1 —P+t—1 £—t+1 -t t—1
167 £+ 1 t+1 PH+t—1 —P—t+1 —P+t+1
185 t - 4t41 t+1 0 0
223 1 £ P4+t—-1 —rP+t—1 1
253 —1 -t -t Pt 0
259 0 1 ——t—1 P—t+1 ——t+1
275 4t t 22—t 0 0
289 —1 -t t 1 0
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Reduction of 1-sharblies

Thank you.
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